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AMORTIZED ANALYSIS OF ALGORITHMS FOR SET UNION
WITH BACKTRACKING*

JEFFERY WESTBROOK" AND ROBERT E. TARJAN

Abstract. Mannila and Ukkonen [Lecture Notes in Computer Science 225, Springer-Verlag, New York,
1986, pp. 236-243] have studied a variant of the classical disjoint set union (equivalence) problem in which

an extra operation, called de-union, can undo the most recently performed union operation not yet undone.
They proposed a way to modify standard set union algorithms to handle de-union operations. In this paper
several algorithms are analyzed based on their approach. The most efficient such algorithms have an amortized

running time of O(log n/log log n) per operation, where n is the total number of elements in all the sets.

These algorithms use O(n log n) space, but the space usage can be reduced to O(n) by a simple change.
The authors prove that any separable pointer-based algorithm for the problem requires fl(log n/log log n)
time per operation, thus showing that our upper bound on amortized time is tight.
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1. Introduction. The classical disjoint set union problem is that of maintaining a
collection of disjoint sets whose union is U {1, 2,..., n} subject to a sequence of
rn intermixed operations of the following two kinds:

find(x): Return the name of the set currently containing element x.

union(A, B): Combine the sets named A and B into a new set, named A.

The initial collection consists of n singleton sets, {1}, {2}, ., {n}. The name of initial
set {i} is i. For simplicity in stating bounds we assume rn f(n). This assumption
does not significantly affect any of the results, and it holds in most applications.

Several fast algorithms for this problem are known [10], [13]. They all combine
a rooted tree set representation with some form of path compaction. The fastest such
algorithms run in O(t (m, n)) amortized time per operation, where a is a functional
inverse of Ackermann’s function [10], [13]. No better bound is possible for any
pointer-based algorithm that uses a separable set representation [11]. For the special
case of the problem in which the subsequence of union operations is known in advance,
the use of address arithmetic techniques leads to an algorithm with an amortized time
bound of O(1) per operation [2].

Mannila and Ukkonen [7] studied a generalization of the set union problem called
set union with backtracking, in which the following third kind of operation is allowed:

de-union: Undo the most recently performed union operation that has not yet been
undone.

This problem arises in Prolog interpreter memory management [6]. Mannila and
Ukkonen showed how to extend path-compaction techniques to handle backtracking.
They posed the question of determining the inherent complexity of the problem, and
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they claimed an O(log log n) amortized time bound per operation for one algorithm
based on their approach. Unfortunately, their upper bound argument is faulty.

In this paper we derive upper and lower bounds on the amortized efficiency of
algorithms for set union with backtracking. We show that several algorithms based on
the approach of Mannila and Ukkonen run in O(log n/log log n) amortized time per
operation. These algorithms use O(n log n) space, but the space can be reduced to
O(n) by a simple change. We also show that any pointer-based algorithm that uses a
separable set representation requires (log n/log log n) amortized time per operation.
All the algorithms we analyze are subject to this lower bound. Improving the upper
bound of O(log n/log log n), if it is possible, will require the use of either a non-
separable pointer-based data structure or of address arithmetic techniques.

The remainder ofthis paper consists offour sections. In 2 we review six algorithms
for set union without backtracking and discuss how to extend them to handle backtrack-
ing. In 3 we derive upper bounds for the amortized running times of these algorithms.
In 4 we derive a lower bound on amortized time for all separable pointer-based
algorithms for the problem. Section 5 contains concluding remarks and open problems.

2. Algorithms for set union with backtracking. The known efficient algorithms for
set union without backtracking [10], [13] use a collection of disjoint rooted trees to
represent the sets. The elements in each set are the nodes of a tree, whose root contains
the set name. Each element contains a pointer to its parent. Associated with each set
name is a pointer to the root of the tree representing the set. Each initial (singleton)
set is represented by a one-node tree.

To perform union(A, B), we make the tree root containing B point to the ro.ot
containing A, or alternatively make the root containing A point to the root containing
B and swap the names A and B between their respective elements. (This not only
moves the name A to the right place but also makes undoing the union easy, as we
shall see below.) The choice between these two alternatives is governed by a union
rule. To perform find(x), we follow the path of pointers from element x to the root of
the tree containing x and return the set name stored there. In addition, we apply a

compaction rule, which modifies pointers along the path from x to the root so that. they
point to nodes farther along the path.

We shall consider the following possibilities for the union and compaction rules:

Store with each tree root the number of elements in its tree.
When doing a union, make the root of the smaller tree point
to the root of the larger, breaking a tie arbitrarily.

Union by rank: Store with each tree root a nonnegative integer called its rank.
The rank of each initial tree root is zero. When doing a union,
make the root of smaller rank point to the root of larger rank.
In the case of a tie, make either root point to the other, and
increase the rank of the root of the new tree by one.

Compaction Rules (see Fig. 1):
Compression: After a find, make every element along the find path point to the

tree root.

Splitting: After a find, make every element along the find path point to its
grandparent, if it has one.

Halving" After a find, make every other element along the find path (the
first, third, etc.) point to its grandparent, if it has one.

Union Rules:

Union by weight:



SET UNION WITH BACKTRACKING 3

COMPRES.

A

FIG. 1. Path compression, path splitting, and path halving. The element found is "a."

The two choices of a union rule and three choices of a compaction rule give six
possible set union algorithms. Each of these has an amortized running time of
O(a(m, n)) per operation [13].

We shall describe two ways to extend these and similar algorithms to handle
de-union operations. The first method is the one proposed by Mannila and Ukkonen;
the second is a slight variant.

We call a union operation that has been done but not yet undone live. We denote
a pointer from a node x to a node y by (x, y). Suppose that we perform finds without
doing any compaction. Then performing de-unions is easy: to undo a set union we
merely make null the pointer added to the data structure by the union. To facilitate
this, we maintain a union stack, which contains the tree roots made nonroots by live
unions. To perform a de-union, we pop the top element on the union stack and make
the corresponding parent pointer null.

This method works with either of the two union rules. Some bookkeeping is needed
to maintain set names and sizes or ranks. Each entry on the union stack must contain
not only an element but also a bit that indicates whether the corresponding union
operation swapped set names. If union by rank is used, each such entry must contain
a second bit that indicates whether the union operation incremented the rank of the
new tree root. The time to maintain set names and sizes or ranks is O(1) per union
or de-union; thus each union or de-union takes O(1) time, worst-case. Either union
rule guarantees a maximum tree depth of O(log n) [13]; thus the worst-case time per
find is O(log n). The space needed by the data structure is O(n).

Mannila and Ukkonen’s goal was to reduce the time per find, possibly at the cost
of increasing the time per union or de-union and increasing the space. They developed
the following method for allowing compaction in the presence of de-unions. Let us
call the forest maintained by the noncompacting algorithm described above the reference
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forest. In the compacting method, each element x has an associated pointer stack P(x),
which contains the outgoing pointers that have been created during the course of the
algorithm but have not yet been destroyed. The bottommost pointer on this stack is
one created by a union. Such a pointer is called a union pointer. The other pointers
on the stack are ones created by compaction. They are called findpointers. Each pointer
(x, y) of either type is such that y is a proper ancestor of x in the reference forest.

Each pointer has an associated union operation, which is the one whose undoing
would invalidate the pointer. To be more precise, for a pointer (x, y) the associated
union operation is the one that created the pointer (z, y) such that z is a child of y
and an ancestor of x in the reference forest. As a special case of this definition, if
(x, y) is a union pointer, then z x and the associated union operation is the one that
created (x, y). A pointer is live if its associated union is live.

Unions are performed as in the noncompacting method. Compactions are per-
formed as in the set union algorithm without backtracking, except that each new pointer
(x, y) is pushed onto P(x) instead of replacing the old pointer, leaving x. When
following a find path from an element x, the algorithm pops dead pointers from the
top of P(x) until P(x) is empty or a live pointer is on top. In the former case, x is
the root of its tree; in the latter case, the live pointer is followed.

This algorithm requires a way to determine whether a pointer is live or dead. For
this purpose the algorithm assigns each union operation a distinct number as it is
performed. Each entry on the union stack contains the number of the corresponding
union. Each pointer on a pointer stack contains the number of the associated union
and a pointer to the position on the union stack where the entry for this union was
made. This information can be computed in O(1) time for any pointer (x, y) when it
is created. If (x, y) is a union pointer, the information is computed as part of the
union. If (x, y) is a find pointer, then the last pointer on the find path from x to y
when (x, y) was created has the same associated union as (x, y) and has stored with
it the needed information. To test whether a pointer is live or dead, it is merely necessary
to access the union stack entry whose position is recorded with the pointer and test
first, if the entry is still on the stack, and second, whether its union number is the same
as that stored with the pointer. If so, the pointer is live; if not, dead.

The implementation of de-union must be changed slightly, to preserve the invariant
that in every pointer stack all the dead pointers are on top. To perform a de-union,
the algorithm pops the top entry on the union stack. Let x be the element in this entry.
The algorithm pops P(x) until it contains only one pointer, which is the union pointer
created by the union that is to be undone. The algorithm restores the set names and
sizes or ranks as necessary, and pops the last pointer from P(x). Because of the
compaction, the state of the data structure after a de-union will not in general be the
same as its state before the corresponding union.

We call this method the lazy method since it destroys dead pointers in a lazy
fashion. Either of the union rules and any of the compaction rules can be used with
the method. The total running time is proportional to m plus the total number of
pointers created. (With any of the compaction rules, a compaction of a find path
containing k_>-2 pointers results in the creation of (k) pointers, k-1 in the case of
compression or splitting and [k/2J in the case of halving.)

An alternative to the lazy method is the eager method, which pops pointers from
pointer stacks as soon as they become dead. To make this popping possible, each
union stack entry must contain a list of the pointers whose associated union is the one
corresponding to the entry. When a union stack entry is popped, all the pointers on
its list are popped from their respective pointer stacks as well. Each such pointer will



SET UNION WITH BACKTRACKING 5

be on top of its stack when it is to be popped. To represent such a pointer, say (x, y),
in a union stack entry, it suffices to store x. With this method, numbering the union
operations is unnecessary, as is popping pointer stacks during finds.

The time required by the eager method for any sequence of operations is only a
constant factor greater than that required by the lazy method, since both methods
create the same pointers but the eager method destroys them earlier. With either union
rule, the eager method uses O(n log n) space in the worst case, since the maximum
tree depth is O(log n) and all pointers on any pointer stack point to distinct elements.
(From bottom to top, the pointers on P(x) point to shallower and shallower ancestors
of x.)

The lazy method also has an O(n log n) space bound [3]. For any node x, consider
the top pointer on P(x), which is to a node, say y. Even if the pointer from x to y is
currently dead, it must once have been live, and all pointers currently on P(x) point
to distinct nodes on the tree path from x to y as it existed when the pointer from x
to y was live. Thus there can be only O(log n) such pointers. The total number of
pointers therefore is O(n log n). The total number of numbers needed to distinguish
relevant union operations is also O(n log n), which implies that the total space needed
is O(n log n), as claimed.

The choice between the lazy and eager methods is not clear-cut. As we shall see
at the end of 3, a small change in the compaction rules reduces the space needed by
either method to O(n).

3. Upper bounds on amortized time. The analysis to follow applies to both the
lazy method and the eager method. If we ignore the choice between lazy and eager
pointer deletion, there are six versions of the algorithm, depending on the choice of
a union rule and a compaction rule.

As a first step on the analysis, we note that compression with either union rule is
no better in the amortized sense than doing no compaction at all, i.e., the amortized
time per operation is II(log n). The following class of examples shows this. For any
k, form a tree of 2k elements by doing unions on pairs of elements, then on pairs of
pairs, and so on. This produces a tree called a binomial tree Bk, whose depth is k. (See
Fig. 2.) Repeat the following three operations any number of times: do a find on the
deepest element in B, undo the most recent union, and redo the union. Each find
creates k 1 pointers, which are all immediately made dead by the subsequent de-union.
Thus the amortized time per operation is fl(k)= fl(log n).

Both splitting and halving perform better; each has an O(logn/loglogn)
amortized bound per operation, in combination with either union rule. To prove
this, we need a definition. For an element x, let size(x) be the number of descend-
ants of x (including itself) in the reference forest. Th6 logarithmic size of x, lgs(x), is
Jig size(x)J .2

We need the following lemma concerning logarithmic sizes when union by weight
is used.

LEMMA 1 10]. Suppose union by weight is used. If node v is the parent of node w
in the referenceforest, then lgs(w) < lgs(v). Any node has logarithmic size between 0 and
lg n (inclusive).

.Proof. When a node v becomes the parent of another node w, size(w) = 2 size(v)
by the union by weight rule. Later unions can only increase size(v) and cannot increase
size(w) (unless the union linking v and w is undone). The lemma follows.

For any x, lg x log2 x.
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FIG. 2. Binomial trees.

THEOREM 1. Union by weight in combination with either splitting or halving gives
an algorithm for set union with backtracking running in O(log n/log log n) amortized
time per operation.

Proof. We shall charge the pointer creations during the algorithm to unions and
finds in such a way that each operation is charged for O(log n/log log n) pointer
creations. For an arbitrary positive constant c < 1, we call a pointer (x, y) short if
lgs(y)-lgs(x)_-< c lg lg n and long otherwise. (The logarithmic sizes in this definition
are measured at the time (x, y) is created.) We charge the creation of a pointer (x, y)
as follows:

(i) If y is a tree root, charge the operation (union or find) that created (x, y).
(ii) If y is not a tree root and (x, y) is long, charge the find that created (x, y).
(iii) If y is not a tree root and (x, y) is short, charge the union that most recently

made y a nonroot.
A find with splitting creates two new paths of pointers, and a find with halving

creates one new path of pointers. Thus O(1) pointers are charged to each operation
by (i). The number of long pointers along any path can be estimated as follows. For
any long pointer (x, y), lgs(y)-lgs(x)> c lg lg n. Logarithmic sizes strictly increase
along any path and are between 0 and lg n by Lemma 1. Thus if there are k long
pointers on a path, lg n >- kc lg lg n, which implies k _<- lg n/(c lg lg n). Thus a find with
either splitting or halving can create only O(log n/log log n) long pointers, which
means that O(log n/log log n) pointers are charged to each find by (ii).

it remains for us to bound the number of pointers charged by (iii). Consider a
union operation that makes an element x a child of another element y. Let I be the
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time interval during which pointers are charged by (iii) to this union. During /, the
sizes, and hence the logarithmic sizes, of all descendants of x remain constant. Interval
I ends with the undoing of the union.

For each descendant w of x, at most one pointer (w, x) can be charged by (iii)
to the union, since the creation of another such pointer charged by (iii) cannot occur
at least until x again becomes a root and then becomes a nonroot, which can only
happen after the end of L Thus the number of pointers charged by (iii) to the union
is at most one per descendant w of x such that lgs(x)-lgs(w) <- c lg lg n.

Since logarithmic sizes strictly increase along tree paths, any two elements u and
v with lgs(u)= lgs(v) must be unrelated, i.e., their sets of descendants are disjoint.
This means that the number of descendants w of x with lgs(w) is at most size(x)/2 =<
2 lgs(x)+l-i, and the number of descendants w of x with lgs(x)-lgs(w) < c lg lg n is at
most

Igs(x)

2gsx)+-i<--2Lcglgnl+2=O((logn)C)=O(logn/loglogn),
i=lgs(x)- [c lg Ig nJ

since c < 1. Thus there are O(log n/log log n) pointers charged to the union by (iii).
The same result holds if union by rank is used instead of union by weight, but in

this case the proof becomes a little more complicated because logarithmic sizes need
not strictly increase along tree paths. We deal with this by slightly changing the
definition of short and long pointers. We need the following lemma.

LEMMA 2 13]. Suppose union by rank is used. If node v is the parent of node w in
the reference forest, then 0 <-_ lgs(w) _-< lgs(v) _-< lg n and 0 <-_ rank(w) < rank(v) _-< lg n.

Proof. The first group of inequalities is immediate. The definition of union by
rank implies rank(w)<rank(v). A proof by induction on the rank of v shows that
size(v) => 2rank(v), which implies that rank(v) <= lg n.

THEOREM 2. Union by rank in combination with either splitting or halving gives an
algorithm for set union with backtracking running in O(log n/log log n) amortized time
per operation.

Proof. We define a pointer (x, y) to be short if max {lgs(y)-lgs(x),rank(y)-
rank(x)}-< c lg lg n and long otherwise, where c < is a positive constant. We charge
the creation of pointers to unions and finds exactly as in the proof of Theorem 1 (rules
(i), (ii), and (iii)). The number of pointers charged by rule (i) is O(1) per union or
find, exactly as in the proof of Theorem 1. A long pointer (x, y) satisfies at least one
of the inequalities lgs(x)-lgs(x)> c lg lg n and rank(y)-rank(x)> c lg lg n. Along
any tree path only O(log n/log log n) long pointers can satisfy the former inequality
and only O(log n/log log n) long pointers can satisfy the latter, by Lemma 2. It follows
that only O(log n/log log n) pointers can be charged per find by rule (ii).

To count short pointers, we have one additional definition. For a nonroot element
x, let p(x) be the parent of x in the reference forest. A nonroot x is good if lgs(x)<
lgs(p(x)) and bad otherwise, i.e., if lgs(x)= lgs(p(x)). The definition of lgs implies
that any element can have at most one bad child. The bad elements thus form paths
called bad paths of length O(log n); all elements on a bad path have the same
logarithmic size. We call the element of largest rank on a bad path the head of.the
path. The head of a bad path is a bad element whose parent is either a good element
or a tree root.

Consider a union operation that makes an element x a child of an element y. We
count short pointers charged to this union as follows:

(1) Short pointers leading from good elements. If v and w are good elements such
that lgs(v)= lgs(w), then v and w are unrelated in the reference forest, i.e., they have
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disjoint sets of descendants. The analysis that yielded the count of short pointers in
the proof of Theorem 1 applies to the good elements here to yield a bound of
O((log n) c) O(log n/log log n) short pointers leading from good elements that are
charged to the union by (iii).

(2) Short pointers leading from bad elements. Consider the number of bad paths
from which short pointers can lead to x. The head of such a path is an element w such
that p(w) is either good or a tree root, and lgs(x)- lgs(w) -< c lg lg n. Heads of different
bad paths have different parents. The analysis that counts short pointers in the proof
of Theorem yields an O((log n) c) bound on the number of bad paths from which
short pointers can lead to x. Along such a bad path, rank strictly increases, and
the definition of shortness implies that only the c lg lg n elements of largest rank
along the path can have short pointers leading to x. The total number of short
pointers leading from bad nodes that are charged to the union by (iii) is thus
O(c log log n (log n) c) O(log n/log log n).

We conclude this section by discussing how to reduce the space bound for both
the lazy method and the eager method to O(n). This is accomplished by making the
following simple changes in the compaction rules. If union by size is used, the
compaction of a find path is begun at the first node along the path whose size is at
least lg n. If union by rank is used, the compaction of a find path is begun at the first
node whose rank is at least lg lg n. With this modification, only O(n/log n) nodes have
find pointers leaving them, and the total number of pointers in the data structure at
any time is O(n). The analysis in Theorems 1 and 2 remains valid, except that there
is an additional time per find of O(log log n) to account for the initial, noncompacted
part of each find path.

4. A general lower bound on amortized time. We shall prove that the bound in
Theorems 1 and 2 is best possible for a large class of algorithms for set union with
backtracking. Our computational model is the pointer machine [41, [5], [9], 11 with
an added assumption about the data structure called separability. Related results follow.
Tarjan [11] derived an amortized bound in this model for the set union problem
without backtracking. Blum [1] derived a worst-case-per-operation lower bound for
the same problem. Mehlhorn, Niher, and Alt [8] derived an amortized lower bound
for a related problem. Their result does not require separability.

The algorithms to which our lower bound applies are called separable pointer
algorithms. Such an algorithm uses a linked data structure that can be regarded as a
directed graph, with each pointer represented by an edge. The algorithm solves the
set union with backtracking problem according to the following rules:

(i) The operations are presented on-line, i.e., each operation must be completed
before the next one is known.

(ii) Each set element is a node of the data structure. There can be any number
of additional nodes.

(iii) (Separability.) After any operation, the data structure can be partitioned into
node-disjoint subgraphs, one corresponding to each currently existing set and contain-
ing all the elements in the set. The name of the set occurs in exactly one node in the
subgraph. No edge leads from one subgraph to another.

(iv) The cost of an operation find(x) is the length (number of edges) of the
shortest path from x to the node that holds the name of the set containing x. This
length is measured at the beginning of the find, i.e., before the algorithm changes the
structure as specified in (v).

(v) During any find, union, or de-union operation, the algorithm can add edges
to the data structure at a cost of one per edge, delete edges at a cost of zero, and move,
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add, or delete set names at a cost of zero. The only restriction is that separability must
hold after each operation.

The eager method of 2 obeys rules (i)-(v). This is also true of the lazy method,
if we regard pointers as disappearing from the model data structure as soon as they
become dead. This does not affect the performance of the algorithm in the model,
since once a pointer becomes dead it is never followed.

THEOREM 3. For any n, any m l( n), and any separable pointer algorithm, there
is a sequence ofmfind, union, and de-union operations whose cost is 12(m log n/log log n).

Proof. We shall prove the theorem for n of the form 22k for some k => 1 and for
m-> 4n. The result follows for all n and m f(n) by padding the expensive problem
instances constructed below with extra singleton sets on which no operations take
place and with extra finds.

In estimating the cost of a sequence of operations, we shall charge the cost of
adding an edge to the data structure to the deletion of the edge. Since this postpones
the cost, it cannot increase the total cost of a sequence.

We construct an expensive sequence as follows. The first n-1 operations are
unions that build a set of size n by combining singletons in pairs, pairs in pairs, and
so on. The remaining operations occur in groups, each group containing between 1
and 2n- 2 operations. Each group begins and ends with all the elements in one set.
We obtain a group of operations by applying the appropriate one of the following two
cases (if both apply, either may be selected). Let b =[lg n/(2 lg lg n)J.

(1) If some element in the (only) set is at distance at least b away from the set
name, do a find on this element.

(2) If some sequence of t de-unions will force the deletion of b edges from the
data structure (to maintain separability), do these de-unions. Then do the corresponding
unions in the reverse order, restoring the initial set of size n.

We claim that if there is only one set, formed by repeated pairing, then case (1)
or case (2) must apply. If this is true, we can obtain an expensive sequence of operations
by generating successive groups of operations until more than m- 2n + 2 operations
have occurred, and then padding the sequence with enough additional finds to make
a total of m operations. The cost of such a sequence is at least (m-3n+3)b
f(m log n/log log n).

It remains to prove the claim. Suppose case (2) does not apply. We shall show
that case (1) does. Let f--(lg n)2. For 0 <- i<=lg n/lgf we define a partition Pi of the
nodes of the data structure as follows:

Pi {XIX is the collection of nodes in the subgraph corresponding to one of
the sets that would be formed by doingfi- 1 de-unions}.

Observe that IP, =f’. Also fgn/gy= n, so P is defined for i-<lg n/lgf. In particular
Pb is defined, since b =[lg n/(2 lg lg n)J [lg n/lgfJ.

For 0<= i_-<lg n/lgf, we define the collection D of deep sets in Pi as follows:

D {X P all elements in X are at distance at least from the name of the single set}.

Let di IDol. We shall show that db > 0, which implies the existence of an element at
distance at least b away from the name of the single set; hence case (1) applies.

Let g be the number of edges leading from one set in P to another. We have
bf, since otherwise performance of fi-1 de-unions would force the deletion of

bf edges from the data structure, and case (2) would apply.
Now we derive a recursive bound on d. We have dl =f-1, since only one of the

f sets in P1 can contain the only set name. We claim that d/l >=fd-. To verify the
claim, let us consider Di. Since n 22k and the union structure of the only set forms
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a binomial tree, each set X in Di consists off sets in Pi+l, all of whose elements are
at distance at least from the name of the only set. For an element x X to be at
distance exactly from the set name, some edge must lead from x to a set in Pi other
than X; otherwise X would not be in D. There are i such edges. Each such edge
can eliminate one set in P+I from being in Di+l. But this leaves fdi- sets in D+I,
namely the fd sets into which the sets in Di divide, minus at most eliminated by
edges between different sets in Pi. That is, di+ >-fd- 6, as claimed.

Applying the bound ’ =< bf gives di+ >=fd- bf. Using d =f- 1, a proof by
induction shows that d ->f-(f-(i- 1)b- 1).

We wish to show that db> 0. This is true provided that (f-(b- 1)b- 1)> 0. But
f=(lgn)2 and b=llgn/(21glgn)J, giving (f-(b-1)b-1)=(f-b2+b-1) >-

(lg n)2> 0, since we are assuming n->4, which implies b2<- (lg n)2/4 and b-> 1. Thus
db> 0, which implies that some element is at distance at least b from the set name,
i.e., case (1) applies. D

5. Remarks. Our bound of (R)(log n/log log n) on the amortized time per operation
in the set union problem with backtracking is the same as Blum’s worst-case bound
per operation in the set union problem without backtracking [1]. Perhaps this is not
a coincidence. Our lower bound proof resembles his. Furthermore the data structure
he uses to establish his upper bound can easily be extended to handle de-union
operations; the worst-case bound per operation remains O(log n/log log n) and the
space needed is O(n).

The compaction methods have the advantage over Blum’s method that as the ratio
of finds to unions and de-unions increases, the amortized time per find decreases. The
precise result is that if the ratio of finds to unions and de-unions in the operation
sequence is 3’ and the amortized time per union and de-union is defined to be (R)(1),
then the amortized time per find is (R)(log n/(max {1, log (y log n)})). This bound is
valid for any value of y, and it holds for splitting or halving with either union rule,
and it is the best bound possible for any separable pointer algorithm. This can be
proved using straightforward extensions of the arguments in 3 and 4. The space
bound can be made O(n) by an extension of the idea proposed at the end of 3. If
the de-union operations occur in bursts, the time per operation decreases further, but
we have not attempted to analyze this situation.

Perhaps the most interesting open problem is whether the lower bound in 4 can
be extended to nonseparable pointer algorithms. (In place of separability, we require
that the out-degree of every node in the data structure be constant.) We conjecture
that the bound in Theorem 3 holds for such algorithms. The techniques of Mehlhorn,
Niher, and Alt [8] suggest an approach to this question, which might yield at least
an (log log n) bound if not an (log n/log log n) bound on the amortized time.
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THE BIT COMPLEXITY OF RANDOMIZED
LEADER ELECTION ON A RING*
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Abstract. The inherent bit complexity of leader election on asynchronous unidirectional rings of
processors is examined under various assumptions about global knowledge of the ring. If processors have
unique identities with a maximum of m bits, then the expected number of communication bits sufficient to
elect a leader with probability 1, on a ring of (unknown) size n is O(nm). If the ring size is known to within
a multiple of 2, then the expected number of communication bits sufficient to elect a leader with probability

is O(nlogn).
These upper bounds are complemented by lower bounds on the communication complexity of a related

problem called solitude verification that reduces to leader election in O(n) bits. If processors have unique
identities chosen from a sufficiently large universe of size s, then the average, overall choices of identities,
of the communication complexity of verifying solitude is fl(n log s) bits. When the ring size is known only
approximately, then l(n log n) bits are required for solitude verification. The lower bounds address the
complexity of certifying solitude. This is modelled by the best-case behaviour of nondeterministic solitude-
verification algorithms.

Key words, bit complexity, leader election, asynchronous distributed computation, randomized
algorithms, processor rings, communication complexity, attrition, solitude verification, lower bounds
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1. Introduction. Studies in the complexity of distributed computation typically
ask two questions. (i) What is the complexity, under some chosen measure(s), of a
chosen problem or family of problems, on distributed networks formalized in a chosen
model? (The model might include both the network topology and assumptions about
the processors and their interprocessor communication.) (ii) How is this complexity
affected by changes in the model ? This paper addresses these questions for the problem
of electing a leader using randomized distributed algorithms running on asynchronous
unidirectional rings of processors, where the measure of complexity is the expected
number of bits transmitted.

Leader-election results in a unique processor, from among a specified subset of
the processors, entering a distinguished final state. This problem is one of a small
number of problems which are fundamental in that their solutions form the building
blocks of many more involved distributed computations. Earlier work in the study of
distributed computation has established the importance of the ring topology as a
test-bed for the design and analysis of distributed algorithms. It is the chosen model
here because it is a simple topology which exhibits many important attributes of
distributed computations.

A unidirectional ring can be viewed as a sequence P1, , Pn of processors where
each processor Pi sends messages to Pi/l and receives messages from Pi_ (subscripts
are implicitly reduced in the obvious way). A number of variants of this basic model
are distinguished by supplementary properties. Communication between processors is
either synchronous or asynchronous. Processors may be indistinguishable or may have

* Received by the editors February 24, 1986; accepted for publication (in revised form) January 4, 1988.

" Department of Computer Science, University of British Columbia, Vancouver, British Columbia,
Canada.

Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada.
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distinct identifiers. Processors may or may not know the size of the ring at the start of
computation. The complexity, measured by the number of communication messages,
of leader election on models with various combinations of these properties has been
well studied.

On an asynchronous unidirectional ring of processors with distinct identifiers, a
leader can be elected by a deterministic algorithm which operates using pairwise
comparisons of processor identifiers, using O(n log n) messages each of O(m) bits
[DKR], [Pe], where m is the number of bits in the largest processor identifier. If
interprocessor communication is synchronous and identifiers are drawn from some
known countable universe, then O(n) messages suffice to elect a leader in the worst
case [FL]. On the other hand, in the asynchronous case, if the universe of identifiers
is unbounded, any deterministic leader-election algorithm must exchange (n log n)
messages (of arbitrary length) in the worst case [B], [PKR] or average case [PKR],
even if bidirectional communication is possible. Even if the ring size n is known to
all processors and messages are transmitted synchronously, algorithms which are
restricted to operate either on the basis of comparisons of processor identifiers or
within a bounded number of rounds, must transmit f(n log n) messages in the worst
case [FL].

If processors are not endowed with distinct identifiers then, as was first observed
by Angluin [A], deterministic algorithms are unable to elect leaders, even if n is known
to all processors. Itai and Rodeh [IR] propose the use of randomized algorithms to
skirt this limitation. They present a randomized algorithm that elects a leader in an
asynchronous ring of known size n using O(n log n) expected messages of O(log n)
bits each. The lower bound results of [Pa] show that even if processors have distinct
identifiers drawn from some sufficiently large universe, the expected number of
messages (of arbitrary length) communicated by a randomized leader election algorithm
is f(n log n). However, O(n) expected messages suffice for randomized leader election
on a synchronous ring without identifiers [IR], provided the ring size n is known to
all processors.

In this paper, it is shown that with respect to bit complexity, the algorithms cited
above for asynchronous rings are not optimal. The relationship between leader election
and two subproblems, called attrition and solitude verification, is explored in 2.
Efficient reductions are established which motivate the development of procedures for
these two subproblems ( 3) and lower bounds for solitude verification ( 4).

It follows from the results of 3 that when each processor in a unidirectional ring
of n processors has a distinct m-bit identifier, it is possible to elect a leader by a
randomized algorithm using O(mn) expected bits of communication. In addition, when
the processors are indistinguishable but each knows the ring size n to within a factor
of 2, then it is possible to elect a leader by a randomized algorithm using O(n log n)
expected bits of communication.

These upper bounds are complemented by the lower bounds of 4. It follows
from the results of that section that when processors have unique identifiers drawn
from a sufficiently large universe of size s then any algorithm must transmit f(n log s)
bits to elect a leader, even in the best case. If processors are indistinguishable but each
knows the ring size only to within some interval of size A, then any algorithm must
transmit f(n log A) bits to elect a leader, even in the best case.

The lower bounds are proved for successful computations of algorithms in a very
general model. Algorithms may be nondeterministic and nonuniform and may deadlock.
Moreover computations need only terminate in the weak nondistributive sense. An
algorithm terminates distributively if whenever processors enter a decision state .the
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decision is irrevocable, that is, it will not change in light of subsequent messages
received. The weaker nondistributive termination refers to the situation in which the
cessation of message traffic is not necessarily detectable by individual processors and
all decisions are predicated on this undetectable condition.

The upper and lower bounds are tight to within constant factors, except when the
ring size is known to lie within some relatively small interval. This gap is reminiscent
of earlier results concerning knowledge of ring size [FL]. The special case when the
ring size is known exactly is the subject of a companion paper [AAHK2]. Another
direction for investigation is uncertain leader election, that is, probabilistic leader
election that terminates correctly with probability greater than 1-e for some fixed
e >0. A further companion paper [AAHK1] considers this problem on rings of
indistinguishable processors. Pachl [Pa] studies the problem when processors have
distinct identifiers. Some of these results together with an overview of the results of
the present paper are briefly described in 5.

2. Leader election, attrition, and solitude verification. This section sets out a general
framework for the study of leader election on rings. Two fundamental problems are
introduced and their relationship to leader election is established. This relationship
motivates the algorithms and lower bound results of the next two sections.

Leader election requires that a single processor be chosen from among some
nonempty subset of processors called candidates. Initially each candidate is a contender.
Intuitively, a leader election algorithm must (i) eliminate all but one contender by
converting some of the contenders to noncontenders, and (ii) confirm that only one
contender remains. This separation was pointed out and exploited earlier by Itai and
Rodeh [IR]. These subtasks are called attrition and solitude verification, respectively.
More formally, a procedure solves the attrition problem if, when initiated by every
candidate, it eventually takes all but exactly one of these candidates into a permanent
state of noncontention. Typically an attrition procedure does not terminate but rather
enters an infinite loop in which the remaining contender continues to send messages
to itself. An algorithm solves the solitude-verification problem if, when initiated by a
set of processors, it eventually terminates with an initiator in state "yes" if and only
if it was the sole initiator. The more stringent solitude-detection problem requires, in
addition, that all initiators be left in state "no" if there was more than one initiator.

Both attrition and solitude detection can be reduced to leader election with O(n)
bits of communication on rings of size n. For the attrition reduction, a leader is elected
from among the attrition contenders. For the solitude-verification reduction, the pro-
cessors wishing to detect their solitude first use O(n) bits to alert the whole ring to
contend for leadership. Once a leader is elected, it is easy to see how to solve attrition
(no additional communication) or to detect solitude (an additional O(n) bits of
communication). Hence, nonlinear lower bounds on the complexity of either attrition
or solitude verification translate to lower bounds on the complexity of leader election.
Conversely, attrition and solitude verification can be interleaved to solve leader election
by annotating attrition messages with solitude-verification messages. Whenever a con-
tender enters a state of noncontention, it forwards a solitude-verification restart message
to alert remaining contenders that they were not previously alone. When attrition has
reduced the set of contenders to one, solitude verification will proceed uninterrupted,

The reduction outlined here is from solitude verification to a version of leader election in which all
processors are candidates for leadership. In fact, this can be generalized to a reduction to an arbitrary set
of candidates as is shown in 4.2.
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eventually verifying that only one contender, the "leader," remains. If the solitude-
verification algorithm terminates distributively, so does the resulting leader-election
algorithm.

The efficiency of the leader-election algorithm described above depends not only
on the efficiency of the attrition and solitude verification procedures from which it is
constructed, but also on the cost of interleaving. If solitude verification is conservative
in the sense that every message is bounded in length by some fixed constant number
of bits, then annotated attrition messages are at worst a constant factor longer than
unannotated messages. So the cost of premature attempts to verify solitude is dominated
by the cost of attrition. The only remaining cost attributable to interleaving involves
the transmission of restart messages. In general this cost can also be subsumed by the
cost of attrition. This is shown in the next section for the attrition procedure used in
this paper. That section describes a randomized attrition procedure, two different
conservative solitude-verification algorithms (each exploiting different possible proper-
ties of the ring of processors), and an interleaving strategy that combines the procedures
to yield efficient leader-election algorithms.

3. Procedures for attrition and solitude verification. The previous section argues
that leader election can be efficiently reduced to attrition and solitude verification.
This section describes and analyses efficient procedures for these two subproblems.
The attrition procedure is randomized but completely general in that it makes no
assumptions about the host ring. Two solitude-verification algorithms are described
which exploit different assumptions about the ring, specifically the existence of distinct
identifiers or at least partial knowledge of the ring size. Both solitude-verification
algorithms are deterministic and terminate distributively.

3.1. The attrition procedure.
3.1.1. Informal description. The attrition procedure is initiated by all candidates

for leadership. The number of candidates is denoted by c. The candidates are the initial
contenders; all other processors are noncontenders. The procedure uses coin tosses to
eliminate some contenders while ensuring that it is not possible for all contenders to
be eliminated. A noncontender never converts to a contender, but behaves entirely
passivelymsimply forwarding any messages received. Contenders create messages
which are propagated to the next contender. Since contenders (respectively, nonconten-
ders) have active (respectively, passive) roles in the algorithm, they are referred to as
active (passive) processors in the following description.

Like the randomized attrition procedure of [IR], the procedure here can be thought
of as proceeding in phases. However, these phases are implicit only. They are not
enforced by counters, but will be justified in the subsequent analysis of the procedure.

At the beginning of each phase, each active processor tosses an unbiased coin
yielding h or t, sends the outcome to its successor, and waits to receive a message
from its predecessor. Suppose an active processor P sends and receives the same coin
toss. It is possible that this is true for every active processor, so no decision can be
taken by P. P continues alternately to send and receive coin tosses, remaining in the
same phase, until P receives a message different from what it most recently sent.
Suppose P eventually sends and receives h. Then some other active processor Q
must have sent h and received t. If only one of P and Q becomes passive, the possibility
of losing all active processors is avoided. The convention used is that sending and
receiving h changes an active processor to a passive processor in the next phase, while
the opposite results in a processor remaining active in the next phase. Once any active
processor has decided its stat. (active or passive) for the next phase, it sends a *
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message to signal the end of its phase. Any undecided processor Q that receives a *
message while waiting for a coin flip becomes passive in the next phase, since it is
assured that there will remain at least one active processor. Q forwards the * message
to announce that it has ended its phase. * messages continue to be forwarded until
received by a decided processor (which has already propagated a * message).

These ideas are formalized in the transition diagram of Fig. 1. The notation "x/y"
is read "receive x, then send y." h is used where no reception or transmission is to
occur. Each processor begins at START. The transition leaving state FLIP is chosen
by an unbiased coin toss.

3.1.2. Formal descriltion and correctness. This section establishes the following
properties of the attrition algorithm of Fig. 1"

*/" < P-GATE
’/ ( PASS

,I,

FIG. 1. The aCtrition procedure.

(1) There is always at least one active processor. (A processor is active if it is in
any state other than P-GATE or PASS.)

(2) The attrition procedure cannot deadlock.
(3) The number of active processors never increases and eventually decreases to

one.
Some definitions are introduced to facilitate the proofs. Let each processor

maintain an internal phase counter, px. P, is initialized to 0 and incremented each time
P, enters a gate state. When px k, Px is in phase k. The following variables are defined
relative to an arbitrary computation of the attrition process"

s(,,) the jth message sent by p while Px k.
r(,,] the jth message received by P, while px k.
(k)qx, the state of P immediately after Px sends its jth message of phase k.

g(), the state of P immediately before P receives its jth message of phase k.
If P does not receive (send) j messages in phase k, then r(k?x, and gx,"(k) (S(k), and q,,j(k?
are undefined. Note that the state variables are parameterized by messages sent and
received, not by transitions made. For example, if q,.i"(k) IN, then q,_(k) HEADS.
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The following lemma establishes that * messages effectively delimit phase
boundaries.

.(k) r(xk)LEMMA 3.1. , +1o.

Proof. Since messages sent by P are exactly those received by p+, it suffices to
show that P and P+ agree on phase boundaries. Notice from Fig. 1 that P+ enters
a gate (a phase boundary) precisely when it receives a * message. But P, having sent
the * message, cannot send any further message without first passing through a gate.
Nor can P,, enter a gate without sending a * message, l-1

The following lemma is immediate from Fig. 1. It points out that within a phase,
as long as a processor is undecided, its communication alternates between output and
input messages.

LEMMA 3.2. IfP is active in phase k and .(k)
q,. is defined, then ...(k) ...(k)

tI x, gx,j"

It follows from Lemma 3.1 that each phase can be considered in isolation. Consider
an arbitrary phase k with m > active processors. Since passive processors merely
forward messages, they can be ignored for the following lemmas, and it can be assumed
that the ring has only m processors, Po,"" ", P,,-1. In the remainder of this section,
the superscript (k) is omitted, and variables are assumed to describe the kth phase.

The next lemma establishes that the processors cannot all become passive.
LEMMA 3.3. If q.o OUT, then there exists w and such that qw, IN.
Proof. Choose the smallest such that s, *, over all processors P. Let Py be

some processor for which is minimized. Now either qy, IN or qy, =OUT. In the
first case nothing remains to be proved. In the second case, it follows that qy,_ TAILS,
Sy,_ t, and ry,-I h. Let C be the class of t-messages which were the (i-1)th
messages sent by some processor. Py sends a message of class C, but does not receive
one, since ry,_ sy-l,- h. Since there can be at most n messages in class C, and
all are eventually delivered, some processor Pw must receive a class C message without
sending one. The transition from OUT to OUT cannot correspond to the reception of
a class C message, by the minimality of i. The transition from TAILS to FLIP pairs
the absorption of one message in C with the production of one on the previous
transition. The only remaining transitions compatible with receiving a t-message lead
to state IN. Therefore Pw must be in state IN after receiving its ith message, and hence
qw,i-- IN. l-1

The safety properties of the attrition procedure follow from Lemma 3.3 and the
next lemma. At any point during the execution, let N(*) be the number of * messages
awaiting delivery. Let N(OUT) and N(IN) be the number of processors in states OUT
and IN, respectively.

LEMMA 3.4. N(*)= N(IN)+ N(OUT) at every point during the execution.

Proof. The equation holds initially and is preserved by every transition.
COROLLARY 3.5. If any processor reaches phase k + 1, then some processor is active

in phase k + 1.

Proof. In order for any processor to reach a gate, some processor must reach IN
or OUT. By Lemma 3.3, some processor Pw reaches IN. As long as Pw remains at IN,
there is an undelivered * message which must move around the ring, eventually reaching
Pw and causing Pw to enter the active gate.

COROLLARY 3.6. The attrition procedure cannot deadlock.
The next lemma leads to a bound on the number of phases in any computation

of the attrition procedure.
LEMMA 3.7. Suppose qx,j-- IN. Let y be the first number in the list x- 1, x- 2,

(counting modulo m), such that qy.j IN. (Such a y must exist since x occurs in the list.)
Then there is a w {y + 1, y + 2, ..., x-1} such that qwo {OUT, P-GATE}.
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Proof If qx, IN, then r,,-i Sx_,_ t. So qx-,.i-i gx-l,j-1 TAILS. Suppose
rx_,.j_ t. After receiving r,_l,j_, P,_ moves from TAILS to either OUT or P-GATE,
and w x- 1 satisfies the lemma.

Suppose, instead, that rx-,- t. Then q,-2,-1 =TAILS. Again, if r,_2,_ t,
then w-x-2 satisfies the lemma. Otherwise the search continues through x-3,
x- 4, , y + 1 until a w is found such that qw,.j- TAILS and rw,- t. Such a w must
exist since

qy,j IN =:> qy,j-1 HEADS =:> Sy,j_ h ry_l,j_ h

so some first non-t message rw,j_ must be encountered among r_,j_,

rx_2,j_l,’’’ ry+l,j_ That w satisfies the lemma.
COROLLARY 3.8. At least half of the active processors at phase k are passive at

phase k + 1.

Proof Lemma 3.7 associates with each processor P, which remains active, a
distinct processor Pw which becomes passive. The same Pw is not associated with two
different Px, and P,2, since qw,, qw,, {OUT, P-GATE} implies j =j’.

COROLLARY 3.9. There are at most [log cJ phases during which more than one

processor is active, where c is the number of candidates for leadership.
If there remain more than one active processor in phase k, then with probability

1, at least two of them will eventually produce opposite coin flips, thus resulting in a
transition to phase k+ 1. This observation, together with Corollary 3.9 ensures that
the final requirement for correctness is satisfied.

3.1.3. Complexity analysis. Recall that the last phase of the attrition procedure,
when only one active processor remains, is an infinite loop broken by the intervention
of the solitude-verification algorithm. Therefore the complexity of concern for the
attrition procedure is the expected number of bits sent, up to but not including the
last phase. Corollary 3.9 establishes that there can be at most [log cJ + 1 phases. It
remains to bound the expected number of messages sent per phase.

The following random variables over computations are needed:

0 if only one processor is active in phase k, or if phase k is not reached,
M(xk)-" m if more than one processor is active in phase k, and processor P

sends m messages during phase k.

//(k) is defined for both active and passive processors x and for all integers k > 1.
LEMMA 3.10. Pr (M(k) >= m) <-_ 22-’.
Proof The lemma is trivial if k is greater than or equal to the number of the last

phase. Therefore suppose that there are two or more active processors in phase k. It
is sufficient to consider the active processors only, since each passive processor sends
the same number of messages as its nearest active predecessor.

The lemma is proved by induction on m. The case m- 2 is trivial. If, in phase k,
P reaches state FLIP s times, then P sends s / 1 messages. But whenever P reaches
FLIP, there is a probability of at least 1/2 that it will not return to FLIP in the same
phase, since its coin toss is random relative to that of its nearest active predecessor.
The induction follows immediately.

COROLLARY 3.11. E(M(xk))<-3.
COROLLARY 3.12. The expected number of bits communicated by the attrition

procedure up to the last phase is at most 6n [log cJ.
Proof The total number of messages sent up to the last phase is given by

-, (k)x=()-kl IV1 By Corollaries 3.9 and 3.11 this has an expected value of at most
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3n [log cJ. Since there are only three distinct messages used, each can be encoded in
two bits yielding an expected bit complexity of at most 6n [log cJ.

3.1.4. Interleaving properties. The attrition procedure lends itself naturally to being
interleaved with a solitude-verification algorithm. Attrition messages can simply be
annotated with solitude-verification messages. The * messages which serve to delimit
phase boundaries are interpreted as solitude-verification restart signals. The interleaved
algorithm proceeds exactly like attrition until the last phase, at which point the absence
of * messages allows solitude verification to run to completion. This is summarized
by the following theorem.

THEOREM 3.13. Any conservative solitude-verification algorithm of complexity f(n)
can be combined with the attrition procedure to yield a leader-election algorithm of
complexity O( n log c +f( n )).

Note that under the right conditions, a nonconservative solitude-verification
algorithm can be interleaved with attrition to achieve an efficient leader-election
algorithm, but Theorem 3.13 suffices here.

3.2. Solitude verification algorithms. In the absence of,any information about the
ring, solitude verification with certainty is impossible. Therefore solitude-verification
algorithms must use specific ring information to verify that there is a sole active
processor. Two cases are considered here.

(1) Each processor Px has a distinct identifier Ix, consisting of a string such that
if x w, then Ix is not a prefix of Iw.

(2) Each processor knows the size of the ring to within a factor of 2.
Individually, these assumptions are as weak as possible in the sense that if

processors’ identities can appear at most twice or the size of the ring is not known to
within a factor of 2, solitude verification remains impossible. Though solitude
verification is all that is required for leader election, the algorithms are, in fact,
solitude-detection algorithms.

3.2.1. Solitude detection with distinct identifiers. Suppose each processor, Px, has
a distinct identifier, Ix, which is not the prefix of any other identifier in the ring.
Processor Px uses an internal string variable Jx, which is initialized to the empty string.
Each initiator alternately sends the jth bit of its own identifier and receives the jth bit
of its nearest active predecessor, which it appends to Jx. Thus Px builds up in Jx the
identifier of its nearest active predecessor. If Ix contains m bits then after receipt of
at most m bits Px can declare, by comparing Jx and Ix, whether or not it is alone.
Because no identifier is a prefix of any other identifier, Px can never falsely claim
solitude.

THEOREM 3.14. If processors have distinct m bit identifiers, then conservative and
deterministic solitude detection can be achieved with distributive termination using at most

O(mn bits.

3.2.2. Solitude detection when the size of the ring is known approximately. Suppose
that distinct identifiers are not available, but each processor knows the size n of the
ring. In this case, a nonconservative algorithm for determining solitude has each
initiator send a counter which is incremented and forwarded by each passive processor
until it reaches an initiator, Px. By comparing the received counter with n, Px knows
whether or not it is alone. This algorithm can be transformed into a conservative
solitude-detection algorithm without any increase in bit-communication complexity.
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Each processor Px, whether active or passive, maintains a counter cx, initialized
to 0. Let d > 0 denote the distance from P to its nearest active predecessor. The
algorithm maintains the invariant:

if P has received j bits then c dx mod 2j.

Then if Px reaches a state where c n, there must be n-1 passive processors
preceding P, so P can conclude that it is the sole initiator. It remains to describe the
strategy necessary to maintain the invariant.

Initiators first send 0. Thereafter, all processors alternately send and receive bits.
If P is passive, then P, is required to send the jth low-order bit of d, as its jth message.
Initiators continue to send 0. Suppose a processor Py has the lowest order j bits of dy
in Cy. A simple inductive argument shows that when Py receives its (j + 1)st message
(by assumption the (j + 1)st bit of dy- 1), it can compute the first (j + 1) bits of dy and
thus can update the value of Cy to satisfy Cy dy mod 2j.

In the previous algorithm, it was assumed that n is known exactly. Suppose instead,
that each processor knows a quantity N, such that N =< n 2N-1. Then there can be
at most one gap of length N or more between neighbouring active processors. Thus
any gap of less than N confirms nonsolitude and any processor detecting a gap of N
or more can determine solitude by initiating a single checking round. (For the purposes
of leader election, it is sufficient for any active processor that detects a gap of N or
more to declare itself the leader, since it has confidence that no other processor can
do the same.) Thus, the algorithm can be used when n is known to within a factor of
less than 2.

TrEOREM 3.15. If each processor knows a value N such that the ring size n satisfies
N <-_ n <= 2N-1, then conservative and deterministic solitude detection can be achieved
using at most O( n log n) bits. [3

3.3. Time complexity of the leader-election algorithm. The usual notion of the time
complexity of an asynchronous algorithm becomes particularly simple for a unidirec-
tional ring since message delays cannot influence computation sequences. The time
complexity of a randomized algorithm on a unidirectional ring is the expected number
of unit time intervals before the algorithm terminates, under the assumption that
messages travel each communication link in at most unit time, and local processing is
instantaneous.

The time complexity of [DKR] is O(n). Our leader-election algorithm, as
described, requires O(n log n) time steps even for just the final phase, when verification
bits are sent and received one at a time by the sole remaining active processor. It
therefore might appear that the algorithm achieves an improvement by a factor of
O(log n) in bits, only at the expense of an additional factor of O(log n) in time over
other leader-election algorithms. But a slight alteration in the attrition algorithm reduces
the time complexity of the final phase from O(n log n) to almost linear. Suppose that
the ith message of a phase of attrition contains a package of f(i) annotated coin flips
rather than a single coin flip as previously described. Let f(1) 1 and f(i) 2’i-1) for
i> 1. With this packaging, in the final phase of leader election, the remaining active
processor will initiate only O(log* n) messages which propagate around the ring.
O(n log* n) time steps are used to confirm solitude when ring size is known. Similar
packaging yields O(n 10g* m) timesteps when identifiers of length m are used to
confirm solitude. Clearly this packaging does not alter the bit complexity of the
solitude-verification stage of leader election, nor does it significantly affect the bit
complexity of the earlier phases of attrition. The probability that a processor sends at
least k packages of coin flips in a given phase is no more than 2 -(f(l)+’’’+f(k-1)). Hence
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the expected number of coin-flip bits sent by an arbitrary processor in a given
phase is no more than .,,=lf(k)/2f)++f’-)=,= 1/2fl)++fCk-2)- O(1). So the
expected number of annotated coin.flip bits sent by a processor in a phase is also
constant as it was without the packaging.

It remains to analyse the expected time for attrition up to the last phase. Imagine
that each initiator creates an envelope and sends its first message in it. Since the
algorithm is message-driven, it can be thought to proceed as follows. Each processor
waits to receive an envelope. Upon reception of an envelope, a processor examines
its contents and either forwards the envelope (with a possibly new message) or destroys
the envelope. The nature of the algorithm guarantees that at the beginning of each
phase, the number of active processors is equal to the number of envelopes. Thus in
order to bound the expected time for attrition, it is sufficient to bound the expected
time until the number of envelopes is reduced to one. The analysis of the bit complexity
of attrition implies that attrition has the following property P.

P: If at some time there are to envelopes on the ring, then the expected number
of remaining messages exchanged until one envelope is left is at most cn log to

for some constant c.

Let the random variable X be the number of envelopes at time nl. Then nXt+ is
no greater than the total number of messages from time nl until time n(l + 1). Given
that there are to envelopes at time nl, it follows from property P that this total has
expected value at most cn log to + n. Therefore E(X/[X to) <= c log to + 1. Now

E(X+,) Y E(Xt+,IX to) Pr (X to)

-< (c log to Pr(Xl=to))+ 1

=< c log to Pr (X to)+ 1 by the convexity of log,

c log E(X)+ l.

Thus at time n log*/, where I is the number of initiators, the expected number of
envelopes is reduced to a constant, say c’. Again by property P, given that Xlog. to,
the expected number of messages remaining to the completion of attrition following
n log*/ timesteps is at most cn log to < cnto. The expected remaining time, given
Xlog. to, is therefore also less than cnto. So the expected remaining time is less than
cn to Pr (Xiog. to cnc’. Thus the expected total time for attrition with I initiators
is less than n log* I + one’. Combining these results for attrition and solitude verification
yields the following theorem.

THEOREM 3.16. The leader-election algorithm which results from combining the
attrition procedure of 3.1 and the solitude-verification algorithm of 3.2.1 ( 3.2.2) can
be adapted to have time complexity O( n log* rn) (O(n log* n)) without any increase in
the order of the communication complexity.

4. Lower bounds for solitude verification. This section provides lower bounds on
the number of bits of communication required for solitude verification. Two eases,
paralleling those considered in 3.2, are studied. In each case lower bounds are
developed which show that the algorithms discussed earlier are essentially optimal.

The lower bounds apply even to nondeterministic distributed algorithms. In order
to understand the generality of the lower bounds, a formal model of nondeterministic
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algorithms and their computations are presented in 4.1. In 4.2, the solitude-
verification and leader-election problems are defined in terms ofthe model. That section
also contains an O(n) reduction from solitude verification to leader election within
the model, implying that even the general nondeterministic lower bounds for solitude
verification translate to the same lower bounds for leader election. Techniques and
tools common to the proofs are grouped together in 4.3. Sections 4.4 and 4.5 study,
respectively, the cases where processors have distinct identifiers, and processors know
the approximate size of the ring.

4.1. Model of computation. In order to describe a computation, 4.1.1 defines a
process and states some useful properties of rings of processes. Section 4.1.2 clarifies
the relationship between distributed algorithms and rings of processes.

4.1.1. Processes. The following description of a process incorporates two non-
restrictive assumptions [PR], namely, that messages are self-delimiting, and that
communication is message-driven with at most one message sent in response to
receipt of a message.

A message is an element of M {0, 1}* 7q. The symbol is called the end-of-
message marker. A history is a (possibly infinite) sequence of messages. If h is a finite
history, then Ilhll denotes the length of the binary encoding of h using some fixed
encoding scheme to encode each symbol in {0, 1, El}. Note that any history has a

unique parse into a sequence of messages.
A process 7r is modelled as a pair of mappings which describe the next output

message (possibly null) and the next state of 7r as a function of its current state and
current input message. Notice that this models a deterministic process. A process’ state
encodes its entire history so far, and consequently the state set is not bounded. Process

is an initiating process if it produces an output message from its initial state (that
is, before the arrival of the first message). Otherwise it is a noninitiating process.

Let 7rl, , 7r, be a sequence of processes. We use 7rl,n to abbreviate
There is a sequence of histories, C h,. ., hn, called a computation associated with

7r,n in the natural way. Each history hi is composed of a sequence of messages
m mr,.i If 7ri is an initiating process, then m is the message produced by 7ri from
its initial state. The computation is then determined inductively by applying the
mappings defined by 7r through 7r, and letting successive non-null output messages
of 7ri be successive input messages of 7ri+. (Indices are reduced in the obvious way.)
Ifthe hi are finite, then C is said to terminate. A terminating computation C hi, ,
has complexity equal to -’in=l

We distinguish a subset Ma
_
M called accepting messages, and a subset Mr M

called rejecting messages. A history is an accepting history (respectively, rejecting
history) if and only if its last message is an accepting message (respectively, rejecting
message). An accepting or rejecting history is a decisive history. All other histories are
indecisive histories. If a computation C hi,’" ,.h, terminates, then each hi has a
last message and f(hi) {accepting, rejecting, indecisive} denotes its type. By extension,
f(C), the final state of C, abbreviates the sequence f(h),... ,f(h,).

Two types of termination for a distributed computation may be considered. A
weak form of termination, nondistributive termination, allows processors to reach
tentative conclusions which are firm only if all message traffic has terminated for the
entire ring (possibly an undetectable condition.) This conclusion is open to revision
upon receipt of additional messages. Under the usual, stronger type of termination
called distributive termination, it is required that processors come to irrevocable
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decisions and halt computation. Distributive termination is modelled by insisting that
processes never output another message after sending a decisive message. Since the
lower bounds for this paper hold even for nondistributively terminating algorithms,
the model permits accepting and rejecting messages to occur throughout the histories
of a computation.

4.1.2. Algorithms. A labelled ring is a unidirectional n-ring of processors R
P, , Pn where each processor Pi has associated with it a label li from ID x {initiator,
noninitiator} where ID denotes some fixed universe of identifiers. Depending upon
the assumptions, a processor’s identifier in ID may or may not be distinct. The second
label field is used to distinguish processors that initiate a computation from those that
only participate in response to other initiators. The ring R is said to be labelled by
J’= I,"" ",In.

A distributed algorithm can be viewed as an assignment of processes to processors.
A deterministic algorithm for a labelled ring is a mapping from labels to (deterministic)
processes where initiating (respectively, noninitiating) processes are assigned to
initiators (respectively, noninitiators). A more general notion of an algorithm can be
obtained by relaxing the constraint that the assignment be deterministic. Let be the
set of all processes as described in the preceding section. A (distributed.) algorithm a

is a mapping from labels to nonempty subsets of such that sets of initiating processes
are assigned to initiators and sets of noninitiating processes are assigned to non-
initiators. The set a(l) is the collection of processes available to processors with label
/. A sequence 7r.n 7rl, ", 7rn with rri ce(li) corresponds to an arbitrary assignment
of processes to processors on the n-ring labelled with the sequence 11,..., ln. A
computation of a on a ring labelled by l,..., In is a computation induced by
any process sequence 7r,..., 7rn where 7r a(l).

The generalization from deterministic to arbitrary assignments gives algorithms a
nondeterministic attribute. Like conventional nondeterministic algorithms, an
algorithm is said to solve a problem efficiently on a ring labelled by l,..., In is
for some choice of process assignments consistent with , the resulting computation
provides a solution and has low complexity.

Notice that the usual notion of a randomized algorithm is subsumed by this general
definition of an algorithm. In the natural description of a randomized distributed
algorithm, a process’ next state and output message are determined by its current state,
its last input message, and the result of a random experiment. Random choices occur
throughout the run of the algorithm. But these random choices can be simulated as a
single random choice by each processor at the beginning of the algorithm. A processor
randomly chooses a function from internal state input message pairs to internal state
output message pairs. (Essentially, the processor pre-selects all its random coin tosses.)
Hence a randomized distributed algorithm can be modelled as a random assignment
of deterministic processes to labels. This is further generalized by permitting an arbitrary
assignment of processes to labels. Therefore lower bounds on the complexity of a
problem under this model apply to lower bounds for randomized algorithms and in
fact address the complexity of the best-case computation.

The following definition captures the notion of what it means for an algorithm to
solve a given problem. Let T be a predicate defined over elements of N F, where N
is the set of all label sequences in (ID x {initiator, noninitiator}) n, and F is the set of
all final states in {accepting, rejecting, indecisive} n. Let R be a ring labelled by

l,. ., In and C be the computation of some process sequence 7r,n 7r,. ., 7rn,

where 7r a(l). Then 7rl,n respects Tfor label sequence if T(,f(C)). An algorithm
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computes Tfor label sequence if every .Trl,n, with 7ri a(li), respects T for label
sequence . An algorithm c computes T if it computes T for every element of N.

4.2. The problems. Although the algorithms of 3 always solve leader election,
the corresponding lower bounds even apply to a weak version of leader election which
requires that at most one processor be left, at termination, in a distinguished final
state. Formally, the weak leader-election predicate, LE, is defined over N F by:
LE(,f(C (if contains at least one initiator then there exists at most one "accept"
in f(C)). A weak version of solitude verification requires that if any initiator is left in
an accepting final state at termination, then that initiator is the only initiator of the
computation. Formally, the weak solitude-verification predicate, SV, is defined over
NF by: SV(,f(C))=(if there exists such that f(hi) is "accept," then li is the
only initiating label in ).

Notice that an algorithm has to meet only a rather weak requirement in order that
it be said to solve one of these problems. For example, deadlocking computations,
leaving all processors undecided, are tolerated. This only serves to strengthen the
lower-bound results that follow. Conclusions are drawn about the number of bits that
must be transmitted in any computation of an algorithm which succeeds in verifying
solitude (a successful computation), even if the algorithm solves the problem in only
this weak sense. A successful solitude verification computation has exactly one initiating
process 7r and its history h in C hi,..., hn is an accepting history. A successful
leader-election computation has exactly one of the initiators left in final state "accept."
Nonsolitude can be ascertained with low expected communication complexity, but we
wish to focus on the cost of verifying that there is only one .initiator. Therefore the
complexity of solitude verification is defined to be the expected complexity when
solitude is asserted. Let a be an algorithm that computes SV. Say that a has complexity
at least f(n) on rings of size n if every successful computation of a has complexity
at least f(n).

Section 2 contains a description of how a randomized, distributively terminating
algorithm for electing a leader from among all processors on the ring can be converted,
using an additional O(n) bits of communication, to an algorithm for solitude detection
(and hence solitude verification). In fact this O(n) reduction holds even for the
nondeterministic, nondistributively terminating model, and for the weak versions of
the two problems. Initiators, wishing to determine their solitude, alert the ring by
propagating a wake-up message. All processors, having been alerted, nondeterministi-
cally choose whether or not to be candidates for leadership, and run the weak
leader-election algorithm. A candidate remaining in contention guesses if and when
the leader-election algorithm terminates with itself as leader. At this time the elected
leader circulates a single message of constant length to determine whether one or more
than one original initiator was present. A final round announces the result. Because
the portion of this algorithm following leader election is deterministic, the reduction
converts successful computations of leader election to correct computations of solitude
detection. Unsuccessful leader election can happen if either no processor chose to be
a candidate or if the weak leader election algorithm left all processors in a nonleader
state. But in both of these cases the corresponding solitude-detection computation
deadlocks, satisfying weak solitude verification. Finally, if a candidate guesses
erroneously that it is the sole remaining contender before weak leader election has
terminated (nondistributively), thea eventually the leader-election algorithm must
correct this error. So the resulting solitude-verification computation is also eventually
alerted to the error, and correctly achieves nondistributive termination. Thus nonlinear
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lower bounds for computations that verify solitude translate to lower bounds for
computations that elect a leader even for this general model. Notice that nondetermin-
ism allows this reduction to hold for the general version of leader election when a
leader is elected from c candidates rather than from the fixed configuration of all
processors on the ring. Thus the lower bounds for solitude verification imply lower
bounds for a best-case configuration of candidates for leadership.

4.3. Tools. In the lower-bound results that follow, two techniques are used to
convert low-complexity computations of an algorithm a on a ring R labelled by

= l,..., n to new computations of a on a related ring R’. Let C h,..., hn be
the computation of 7r 7r,..., 7rn where 7r a(l). Suppose h h/and h+,..., h
contains no initiators. Consider the new sequence C’= h,. , h, h+, ., hn formed
by removing h+,.,.,hj from C. Then C’ is a computation of 7r,...,

r./+, ", r,. Thus C’ is a computation of a on the ring R’ labelled by ’= l,. ., l,
/+," , In. This process of forming C’ on R’ from C on R when hi hj, while retaining
all initiators, is referred to as collapsing.

Let C h,..., h and C h2, h ., be computations of a on the two rings
2R and R labelled by l, 1, and = l,..., l. Suppose that h h for

h h,’" h,some and j. Consider the sequence C’=h,...,hi, hj+,.
h i/1, h in formed, by combining C and C2. Then C’ is a computation of a on R’
labelled by ’= l, ’, l, l}+, ., 1,,,2 l,. ., lj,2 l+, ., ln. This process of forming
C’ on R’ by combining C on R and C2 on R2 is referred to as splicing. The special
case of splicing a computation to itself is called doubling.

The following lemma takes advantage of the fact that any collection of k distinct
binary strings contains at least (k log k)/2 bits for k> 3.

LEMMA 4.1. IfC h, ", hn is a computation with complexity less than cm log m,
and m <-n, then there exist and j, 0 <j- i< mac such that hi hj.

Proof Let k be the maximum integer such that every subsequence of C containing
k histories has each history distinct. The encoding of a subsequence of k distinct
histories must contain a total of at least (k log k)/2 bits. But C can be decomposed
into [n/kJ >= [n/(2k)] disjoint subsequences each with at least k histories. Since the
complexity of C is less than cm log m, at least one of these subsequences must have
less than (cm log m)/[n/(2k)]<=2ck log rn bits. Hence, (k log k)/2<2ck log m. Thus
k<m4c.

The lower-bound arguments both have similar structure. It is assumed that an
algorithm a exists that solves solitude verification on a ring R with nondistributive
termination and that a has a successful computation C with small communication
complexity. It follows, by some combination of collapsing and splicing, that C can
be transformed into a computation C’ of a on a different ring R’, in which more than
one initiator terminates in state "accept." Thus a does not solve solitude verification
on R’.

4.4. Distinct identifiers. The objective of this section is to characterize the com-
plexity of algorithms that solve the solitude-verification problem on rings of processors
with distinct identifiers chosen (otherwise arbitrarily) from a set ID of size s. Let a be
any algorithm that solves weak solitude verification on all n-rings with distinct identifiers
chosen from ID. There are (;) possible identifier sets for such an n-ring. Suppose that
for each of these sets, there is at least one permutation of the identifier set, such that
for an n-ring labelled with this permutation and with exactly one initiator, a has some
successful computation, a is then said to nontrivially compute solitude verification for
n-rings with identifiers chosen from ID.
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THEOREM 4.2. Let a be any algorithm that nontrivially computes weak solitude

verification on rings ofbetween N and 2Nprocessors with distinct identifiers chosen from
a universe ID of size s>-2N. Then for at least half of the () identifier sets L of size N,
the complexity of on every ring labelled by some permutation ofL is (N log (s/2N)).

Proof Let L be any subset of ID of size N and let C hi, , hu be a successful
computation of rl,u r,’.’, ru where the identifiers associated with r.u are
distinct identifiers chosen from L. C is a cheap computation if it has complexity less
than N log (s/2N). If a cheap C exists, the process sequence rl,rV and the identifier
set L are also said to be cheap. If C is cheap, then at least one of the histories
h,..., h must have length less than log (s/2N). Choose any such history and
call it the cheap history associated with C and indirectly associated with r.N and L.
Now suppose that c has the property that for at least one half of the () possible
choices for L, there exists a cheap successful computation of a and therefore an
associated cheap history. Among all the partitions of ID into s/N subsets of size N,
at least one such partition must have among its subsets at least s/2N cheap identifier
sets. Therefore there exist s/2N disjoint, cheap labellings with corresponding cheap
successful computations. But there are fewer than 2/= s/2N distinct cheap histories
in total. So some cheap history must be associated with successful computations of
on two process sequences with disjoint sets of identifiers. If these computations are
spliced at their common history, the result is a decisive computation of a on a ring
of size 2N, whose processors all have distinct identifiers. However, this computation
leaves two processors in the final state "accept" contradicting the correctness of c.

COROLLARY 4.3. Let be an algorithm that meets the conditions of Theorem 4.2.

If the size s of the universe ID is 12(N+) for some e > O, then for at least half of the
identifier sets L of size N, the complexity Of t on any ring labelled by some permutation
of L is (N log s).

4.5. Ring size known approximately. If ring size n is to be used to verify solitude,
it must be known to within a factor of two. The objective of this subsection is to
characterize the complexity of computations that verify solitude, as a function of
processors’ uncertainty of ring size within this limit.

THEOREM 4.4. Let a be any nondistributively terminating algorithm that computes
solitude verification on the class of all rings of size n, where n N, N+ A] for some N
and 0 < A < N. Then the complexity of a on any ring in this class is I(N log A).

Proof Let C hi,’", h, be any successful computation of a on a ring of size
n, where N =< n _<- N + A. Then f(hi) "accept" for some initiator ri. Without loss of
generality, suppose 1. Let e log A/log N. Suppose that the communication com-
plexity of C is less than (N log A 2N)/4 (eN log N 2N)/4. By Lemma 4.1, there
exist and j such that 1 <j-i< N= A and hi hi. Consider the new computation
hl,...,hi, hj+,...,h, formed by removing S=hi+,...,h and apply repeated
collapsing to each subsequence H h, , hi and H2 h+, , h, separately until
each of these subsequences is composed of distinct histories. Let the resulting computa-
tion be C’ h’l, h, h’/+l, hm,’ where h’l h, h h, and h’, h,. Since
h’l, h and h+, h’ are sequences of distinct histories, their combined com-
munication complexity is at least llogl/2+(m-l) log(m-1)/2, which is at least
(m/2) log (m/2). Thus their combined length m must not exceed N/2, since otherwise,
the assumption on the complexity of C is violated. Therefore C’ can be doubled to
form a new computation, C", of a on a ring of size 2m -_< N processors. But since the
subsequence S, which was originally removed, has length s < A, there exists an integer
k _-> 0 such that N <= 2m + ks _<- N + A. Thus k copies of S can be spliced into C", after
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either history identical to hi, forming a new computation of a on a ring of size
n’[N, N+A] which contains two histories identical to h. Thus two processors
conclude solitude, contradicting the correctness of a for rings of size n
[N, N+A].

It can be shown that Theorem 4.4 holds even if the algorithm c is required to
work correctly only on the class of rings in which processors have identifiers, and no
processor identifier appears more than twice. If all processor identifiers are known to
be distinct then the results are different, as was shown in 4.4.

5. Conclusions.
5.1. Technical results. The inherent communication complexity, measured in terms

of the expected number of bits, of electing a leader in a ring of processors has been
identified to within constant factors for two cases. When all processors know the ring
size to be within some interval [N, Nu] and all processors have distinct identifiers
drawn from some set of size s _-> Nu+, where e > 0, then for all n satisfying N! <= n <=
N,/2, the average, over all n-rings, of the expected bit complexity of randomized
leader election is (R)(n log s). On the other hand, if the ring size is known to be in some
interval [Ni, N,] where Nl+ N7 <-N, <2N, for some e >0, and processor identifiers
are not necessarily distinct then, for all n satisfying NI <= n <--N,, the expected bit
complexity of randomized leader election is t0(n log n).

The results for leader election stem from bounds on the complexity of two more
primitive processes called attrition and solitude verification. The identification of these
subproblems and the clarification of their relationship to leader election is one of the
important contributions of this paper. Efficient conservative solitude verification
algorithms that exploit known properties of a ring can be combined with therandomized
attrition procedure described in 3.1 to provide new efficient leader-election algorithms.
Solitude verification is of equal interest for its role in the proof of lower bounds for
leader election. For all solitude-verification computations of concern there is only one
initiator, which considerably simplifies the analysis. This is reflected in the strong lower
bounds of 4.

5.2. Related issues. In addition to the specific technical contributions cited above
the results of this paper shed light on a number of important issues in distributed
computing. These are summarized under three general headings below.

5.2.1. Global knowledge of ring. Suppose that all processors know that the ring
size n lies in the interval [Nl, N,]. If the processors are indistinguishable then deter-
ministic leader election is impossible [A], even if Nl N,. Furthermore, if N, >-2NI
then even randomized algorithms cannot elect a leader among indistinguishable
processors with certainty. However, if N, <2Nl, then randomized leader election
can be achieved in O(n log n) expected bits. If, in addition, Nl + N7 <- N,, for some
e > 0 (i.e., the interval is not too small), then f(n log n) bits are required to elect a
leader among indistinguishable processors.

On the other hand, even if N! 1 and N, , if processors have distinct identities
chosen from a universe S of size s (which need not be known explicitly) then a leader
can be elected with O(n log s) expected bits. In fact, assuming N, >-_ 2N! and n <-_ s/2,
f(n log (s/n)) bits are required to elect a leader with distinct identities from S.

5.2.2. Type of algorithm. The leader-election algorithms described in this paper
are all randomized. In fact, .the solitude-verification process is deterministic. The
algorithms cannot deadlock. They all terminate distributively with probability 1 and
elect a leader (or detect solitude) with certainty. Finally, with the exception of those
modifications described in 3.3, the algorithms are all conservative.
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In contrast to the above, the lower bounds on solitude verification (and hence
leader election) are proved on a nondeterministic model of computation. The model
admits algorithms that may deadlock. Furthermore algorithms may communicate
nonconservatively, may terminate nondistributively, and may, in the case of solitude
verification, tolerate errors when there is only one initiator. The lower bounds state a
minimum bit complexity of any computation that provides a certificate of solitude.

The juxtaposition of the algorithms and model of computation highlight a remark-
able insensitivity for the problems and complexity measure studied in this paper, to
the details of the underlying model of computation. This insensitivity is not preserved
when the focus shifts to certain closely related problems [AAHK1], [AAHK2].

5.2.3. Type of analysis. The solitude-verification algorithms are analysed with
respect to the worst-case number of bits of communication. The lower bounds refer
to the best-case number of bits communicated by computations of algorithms that
certify solitude.

The bulk of earlier results on leader election are concerned with message com-
plexity. The leader-election algorithms of this paper are competitive in this measure
while improving upon earlier results by a factor of log n in the number of bits
transmitted. While the obvious implementation of the leader-election algorithms of
this paper on a synchronous model makes them somewhat unattractive in terms of
communication time, implementations exist, as described in 3.3, which for all practical
purposes make the algorithms comparable with earlier algorithms in this measure as
well.

5.3. Extensions. The results of the present paper can be extended in two natural
directions. First, the case where the ring size n is known exactly--a situation where
the upper and lower bounds of this paper do not agree--can be explored in more
detail. The solitude-verification problem when n is known exactly is examined in
[AAHK2]. In this case number-theoretic properties of n can be exploited to improve
upon the O(n log n) algorithm contained in this paper. With exact knowledge of ring
size, there is a distinction between the complexity of distributively and nondistributively
terminating versions ofsolitude verification. O(nx/i0g n) bits are necessary and sufficient
to achieve solitude verification with distributive termination. This becomes
19(n log log n) bits for nondistributive termination. The upper bounds in this case are
achieved by nondeadlocking, deterministic algorithms, and the lower bounds apply
on the same general models as used in this paper. The algorithms are nonconservative.
(If conservative solitude verification is required then O(n log n) bits are necessary and
sufficient [H].)

This paper is concerned with leader-election and solitude-verification when enough
information is available to achieve certainty. When processor information is insufficient
to confirm solitude with certainty, it is still possible to solve these problems probabilisti-
cally. Reference [AAHK1] examines probabilistic solitude verification, that is,
algorithms that are correct with probability at least 1- e. When there is no knowledge
of ring size, the communication complexity of solitude verification with nondistributive
termination is O(n log I/e) bits. (Distributive termination with probability 1-e of
correctness is impossible.) When ring size is known to be less than a bound N, then
distributive termination can be achieved with complexity O(nx/log (N/n)+ n log 1/e)
bits. A matching lower bound is shown for rings of actual size no larger than N/2.

Finally, probabilistic solitude detection with exact knowledge of ring size combines
the two extensions above. In this case number-theoretic properties of n and error
tolerance can be simultaneously exploited to reduce the complexity of probabilistic
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solitude detection still further. The results for this version of the problem are more
elaborate than those quoted here. The reader is directed to [AAHK2] for details.
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A FAST PARAMETRIC MAXIMUM FLOW ALGORITHM
AND APPLICATIONS*
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Abstract. The classical maximum flow problem sometimes occurs in settings in which the arc capacities
are not fixed but are functions of a single parameter, and the goal is to find the value of the parameter such
that the corresponding maximum flow or minimum cut satisfies some side condition. Finding the desired
parameter value requires solving a sequence of related maximum flow problems. In this paper it is shown
that the recent maximum flow algorithm of Goldberg and Tarjan can be extended to solve an important
class of such parametric maximum flow problems, at the cost of only a constant factor in its worst-case
time bound. Faster algorithms for a variety of combinatorial optimization problems follow from the result.

Key words, algorithms, data structures, communication networks, complexity, flow sharing, fractional
programming, graphs, knapsack constraint, linear programming, maximum flow, maximum-density sub-
graphs, network flows, network vulnerability, networks, nonlinear zero-one programming, ratio closure,
record segmentation, parallel computations, parametric programming, provisioning, pseudoforest, schedul-
ing, selection, sequencing
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1. Introduction. The well-known maximum flow problem calls for finding a
maximum flow (or alternatively a minimum cut) in a capacitated network. This problem
arises in a variety of situations in which the arc capacities are not fixed but are functions
ofa single parameter, and the goal is to find the value of the parameter such that the
corresponding maximum flow (or minimum cut) meets some side condition. The usual
approach to solving such problems is to use a maximum flow algorithm as a subroutine
and to use either binary search, monotonic search, or some other technique, such as
Megiddo’s [29], to find the desired value of the parameter.

Existing methods take no advantage of the similarity of the successive maximum
flow problems that must be solved. In this paper, we address the question of whether
this similarity can lead to computational efficiencies. We show that the answer to this
question is yes" an important class of parametric maximum flow problems can be
solved by extending the new maximum flow algorithm devised by Goldberg and Tarjan
[13]. This algorithm is the fastest among all such algorithms for real-valued data,
uniformly for all graph densities. The resulting algorithm for the par netric problem
has a worst-case time bound that is only a constant factor greater than the time bound
to solve a nonparametric problem of the same size. The parametric problems we
consider are those in which the capacities of the arcs leaving the source are nondecreas-
ing functions of the parameter, those of arcs entering the sink are nonincreasing
functions of the parameter, and those of all other arcs are constant. Our parametric
maximum flow algorithm has a variety of applications in combinatorial optimization.
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This paper consists of four sections in addition to the Introduction. In 2 we
extend the Goldberg-Tarjan algorithm to find maximum flows in an n-vertex, m-arc
network for O(n) ordered values of the parameter in O(nm log ,(nZ/m)) time. In 3
we use the algorithm of 2 to compute information about the minimum cut capacity
as a function of the parameter, assuming that each arc capacity is a linear function of
the parameter. In this case, the minimum cut capacity is a piecewise linear concave
function of the parameter. We describe successively more complicated algorithms for
finding the smallest (or largest) breakpoint, finding a maximum, and finding all the
breakpoints of this function. Each of these algorithms runs in O(nm log (tl2/m)) time.

In 4 we discuss applications of our parametric maximum flow algorithm to
various combinatorial optimization problems. Depending on the application, our
method is faster than the best previously known method by a factor of between log n
and n. The applications include flow sharing problems [3], [18], [21], [22], [27], [28],
zero-one fractional programming problems [4], [5], [11], [12], [24], [25], [30], [33]-
[35], [39], and others [9], [43]. Section 5 contains a summary of our results and some
final remarks.

2. Parametric maximum flows and the preflow algorithm. We begin in this section
by reviewing the maximum flow algorithm of Goldberg and Tarjan [13], here called
the preflow algorithm. Then we extend their method to the parametric maximum flow
problem and we analyze three versions of the parametric preflow algorithm. We
conclude with some remarks about the parametric problem and our algorithm for
solving it.

2.1. Flow terminology. A network (see [10], [44]) is a directed graph G=(V, E)
with a finite vertex set V and arc set E, having a distinguished source vertex s, a
distinguished sink vertex t, and a nonnegative capacity c(v, w) for each arc (v, w). We
denote the number of vertices by n and the number of arcs by m. We assume that for
each vertex v, there is a path from s through v to t; this implies n O(m), since every
vertex other than has at least one exiting arc. We extend the capacity function to
arbitrary vertex pairs by defining c(v, w) =0 if (v, w): E. Aflowf on G is a real-valued
function on vertex pairs satisfying the following three constraints"

(2.1) f(v, w) -< c(v, w) for (v, w) V x V (capacity),

(2.2) f(v, w)=-f(w, v) for(v, w) Vx V (antisymmetry),

(2.3) Y f(u, v)=0 for v V-{s, t} (conservation).

The value of the flow f is E vf(v, t). A maximum flow is a flow of maximum value.
If A and B are two disjoint vertex subsets, the capacity of the pair A, B is

c(A, B)= YA,wB C(V, W). A cut (X, X) is a two-part vertex partition (X w X V,
X c X 0) such that s X and X. A minimum cut is a cut of minimum capacity.
If f is a flow, the flow across the cut (X,X) is f(X,X)=Yx,w:f(v, w). The
conservation constraint implies that the flow across any cut is equal to the flow value.
The capacity constraint implies that for any flow f and any cut (X, X), we have
f(X, X)<-_ c(X, X), which in turn implies that the value of a maximum flow is no
greater than the capacity of a minimum cut. The max-flow rain-cut theorem of Ford
and Fulkerson [10] states that these two quantities are equal.

2.2. The preflow algorithm. The ,preflow algorithm computes a maximum flow in
a given network. To describe the algorithm we need two additional concepts, those of
a preflow and a valid labeling.



32 G. GALLO, M. D. GRIGORIAD!S, AND R. E. TARJAN

A preflow f on G is a real-valued function on vertex pairs satisfying the capacity
constraint (2.1), the antisymmetry constraint (2.2), and the following relaxation of the
conservation constraint (2.3)’

(2.4) f(u, v)>-O forall v V-{s} (nonnegativity).
uEV

For a given preflow, we define the excess e(v) of a vertex v to be uE vf(u, v) if v : s,
or infinity if v s. The value of the preflow is e(t). We call a vertex v : {s, t} active if
e(v) > 0. A preflow is a flow if and only if (2.4) js satisfied with equality for all v {s, t},
i.e., e(v) 0 for all v {s, t}. A vertex pair (v, w) is a residual arc forfiff(v, w) < c(v, w);
the difference c(v, w)-f(v, w) is the residual capacity of the arc. A pair (v, w) that is
not a residual arc is saturated. A path of residual arcs is a residual path.

A valid labeling d for a preflow f is a function from the vertices to the nonnegative
integers and infinity, such that d(t) =0, d(s) n, and d(v) <- d(w)+ 1 for every residual
arc (v, w). The residual distance ds(v, w) from a vertex v to a vertex w is the minimum
number of arcs on a residual path from v to w, or infinity if there is no such path. A
proof by induction shows that if d is a valid labeling, d (v) min { dy(v, t), dy(v, s) + n }
for any vertex v.

The preflow algorithm maintains a preflow f, initially equal to the arc capacities
on arcs leaving s and zero on arcs not incident to s. It improves f by pushing flow
excess toward the sink along arcs estimated (by using d) to be on shortest residual
paths. The value of f gradually becomes larger, and f eventually becomes a flow of
maximum value. As a distance estimate, the algorithm uses a valid labeling d, initially
defined by d (s) n, d (v) 0 for v s. This labeling increases as flow excess is moved
among vertices; such movement causes residual arcs to change.

To implement this approach, the algorithm uses an incidence list I(v) for each
vertex v. The elements of such a list, called edges, are the unordered pairs {v, w} such
that (v, w) E or (w, v) E. Of the edges on I(v), one, initially the first, is designated
the current edge of v. The incidence lists I(v) for all v V can be generated from an
arbitrarily ordered arc list E in. O(m) time.

The algorithm consists of repeating the following steps until there are no active
vertices:

Push/Relabel. Select any active vertex v. Let { v, w} be the current edge of v. Apply
the appropriate one of the following three cases:

Push. If d(v)>d(w) and f(v, w)<c(v, w), send 6 =min {e(v), c(v, w)-f(v, w)}
units of flow from v to w. This is done by increasing f(v, w) and e(w) by 6, and by
decreasing f(w, v) and e(v) by 6. (The push is saturating if 6 c(v, w)-f(v, w) and
nonsaturating otherwise.)

Get Next Edge. If d(v)<-d(w) orf(v, w)=c(v, w), and {v, w} is not the last edge
on I(v), replace {v, w} as the current edge of v by the next edge on I(v).

Relabel. If d(v)<=d(w) or f(v, w)=c(v, w), and {v, w} is the last edge on I(v),
replace d(v) by min {d(w)[{v, w}e I(v) and f(v, w)<c(v, w)}+ 1 and make the first
edge on I(v) the current edge of v.

When the algorithm terminates,f is a maximum flow. A minimum cut can be computed
as follows. For each vertex v, replace d(v) by min {dy(v, s)+ n, dy(v, t)} for each v V.
(This replacement cannot decrease any distance label. The values dy(v, s) for all v and
ds(v, t) for all v can be computed in O(m) time by breadth-first searches backward
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from s and t, respectively.) Then, the cut (X,X) defined by X={vld(v)>=n} is a
minimum cut whose sink side X is of minimum size, a property that follows from
Theorem 5.5 of Ford and Fulkerson [10]. If desired, a cut (X’, X’) of minimum-size
source side can be computed as follows. For each v V let d’(v)=min {dy(s, v),
dy(t, v)+n}, and let X’={vld’(v)<n}.

The efficiency of this "generic" form of the preflow algorithm depends on the
order in which active vertices are selected for push/relabel steps. We shall consider
this selection issue after we have extended the algorithm to the parametric problem.
For the moment, we merely note the bounds derived by Goldberg and Tarjan for the
generic algorithm (with any selection order).

LEMMA 2.1 [13]. Any active vertex v has df(v, s) <o, which implies d(v)<=2n 1.
The value ofd (v) never decreases during the running’of the algorithm. The total number
of relabel steps is thus O(n2); together they and all the get next edge steps take O(nm)
time.

LEMMA 2.2 13 ]. The number ofsaturatingpush steps through any particular residual
arc (v, w) is at most one per value of d (v). The total number of saturating push steps is
thus O(nm); each such step takes 0(1) time.

LEMMA 2.3 [13]. The total number of nonsaturating push steps is O(n2m); each
such step takes 0(1) time.

In all variants of the algorithm, the running time is O(nm) plus O(1) time per
nonsaturating push step; making the algorithm more efficient requires reducing the
number of such steps. This is also true in the parametric extension, as we shall see.

2.3. Extension to parametric networks. In a parametric network, the arc capacities
are functions of a real-valued parameter A. We denote the capacity function by ca and
make the following assumptions:

(i) ca (s, v) is a nondecreasing function of , for all v # t.
(ii) ca (v, t) is a nonincreasing function of A for all v # s.
(iii) ca (v, w) is constant for all v s, w t.

When speaking of a maximum flow or minimum cut in a parametric network, we mean
maximum or minimum for some particular value of the parameter ,.

We shall address the problem of computing maximum flows (or minimum cuts)
for each member of an increasing sequence of parameter values A <, <... <,.
Successive values are given on-line; that is, Ai+ need not be known until after the
maximum flow for Ai has been computed. In stating time bounds we shall assume that
the capacity of an arc can be computed in constant time given the value of )t. (Such
is the case if, for example, the arc capacities are linear functions of A.) The algorithm
we shall describe computes no more than n- 1 distinct minimum cuts, no matter how
many values of , are given. For all of our applications, O(n).

We shall now extend the preflow algorithm to the parametric maximum flow
problem. Suppose that for some value Ai of the parameter we have computed a
maximum flow f and a valid labeling d for f What is the effect of changing the value
of the parameter to ,/? The capacity of each arc (s, v) may increase; that of each
arc (v, t) may decrease. Suppose we modify f by replacing f(v, t) by min {ca,+,(v, t),
f(v, t) for each arc (v, t) E, and replacing f(s, v) by max { cA,+, (s, v), f(s, v)} for each
arc(s, v)E such that d(v)<n. The modified f is a preflow, since e(v) for vC:{s, t}
can only have increased. Furthermore, d is a valid labeling for the modified f, since
the only new residual arcs are of the form (s, v) for d (v) --> n and (v, s) for d (v) < n.
This means that we can compute a maximum flow and a minimum cut for Ai+ by
applying the preflow algorithm beginning with the modified f and the current d.
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This idea leads to the following parametric preflow algorithm. The algorithm finds
a maximum flow f and a minimum cut (Xi, Xi) for each value ,i of the parameter. It
consists of initializing f 0, d (s) n, d (v) 0 for v s, and 0, and repeating the
following three steps times:

Step 1. (Update preflow.) Replace by i+1. For (v, t)E, replace f(v, t) by
min { cA, (v, t), f(v, t) }. For (s, v) E with d (v) < n, replace f(s, v) by max { cA, (s, v),
f(s,v)}.

Step 2. (Find maximum flow.) Apply the preflow algorithm to the network with
arc capacities corresponding to hi, beginning with the current f and d. Let f and d be
the resulting flow and final valid labeling.

Step 3. (Find minimum cut.) Redefine d(v)=min {dr(v, s)+ n, dr(v t)} for each
v V. The cut (Xi, Xi) is then given by Xi {rid(v)>-n}.
The minimum cuts produced by the algorithm have a nesting property that was
previously observed in the context of various applications by Eisner and Severance
[9], Stone [43], and perhaps others. Megiddo [27] has also noted a similar property
in a related problem. Here, the result follows directly from our algorithm.

LEMMA 2.4. For a given on-line sequence of parameter values
the parametric preflow algorithm correctly computes maximum flows fl,f2,"" ,fl and
minimum cuts (X1,-’1), (X2, 2)," ", (X, t) such that XI. X2 Xl.

Proof The correctness of the algorithm is immediate. For any vertex v, the label
d(v) cannot decrease in Step 3, which implies that d(v) never decreases during the
running of the algorithm, This means that X1

_
X2 _’"_ Xl, which in turn implies

that there can be at most n- 1 distinct sets Xi.
2.4. Analysis of the parametric preflow algorithm. In view of Lemma 2.4, Lemmas

2.1 and 2.2 hold without change for the parametric preflow algorithm. Furthermore,
the time spent in Steps 1 and 3 is O(m) per iteration, for a total of O(lm) time. Thus
the parametric preflow algorithm runs in O((n + l)m) time plus O(1) time per non-
saturating push.

The number of nonsaturating pushes depends on the order in which push/relabel
steps are performed. We shall analyze three versions of the parametric preflow
algorithm. For each, we show that the time bound for the nonparametric case extends
to the parametric case with an increase of at most a constant factor. The proofs of the
following three theorems are analogous to those given in [13].

We first analyze the generic version, in which push/relabel steps take place in any
order.

THEOREM 2.5. If the order of push/relabel steps is arbitrary, then the number of
nonsaturating push steps is O( n2(l + m ). The total running time ofthe parametric preflow
algorithm is O((n2(l+ m)), or O(n2m) if l= O(n).

Proof Let O=Y {d(v)lv is active} if some vertex is active, and O=0 otherwise.
A nonsaturating push step decreases by at least one. The function is always in
the range 0 to 2n2. Step 1 can increase by at most 2n 2, for a total over all iterations
of Step 1 of O(In). A relabeling step increases by the amount by which the label
changes. Thus the total increase in due to relabeling steps is O(n2). A saturating
push step can increase by at most 2n. Thus the total increase in due to such steps
is O(n2m). These are the only ways in which can increase. The total number of
nonsaturating push steps is bounded by the total increase in over the algorithm,
which is O(nm).

Next we consider the first-in first-out (FIFO) version of the preflow algorithm,
which solves the nonparametric problem in O(n3) time [13]. In this version, a queue
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Q is used to select vertices for push relabel steps. Initially Q is empty. At the beginning
of Step 2 of the parametric preflow algorithm, every active vertex is appended to Q.
The FIFO algorithm consists of repeating the following step until Q is empty:

Discharge. Remove the vertex v on the front of Q. Apply push/relabel steps to v
until v is no longer active or v is relabeled. If a push from v to another vertex w makes
w active, add w to the rear of Q.

THEOREM 2.6. For the FIFO version ofthe parametric preflow algorithm, the number
of nonsaturating push steps is O(n3). The total running time is O(n3+ ln2), or O(n3) if
l=O(n).

Proof. We define passes over the queue Q as follows. The first pass during an
iteration of Step 2 consists of the discharge steps applied to the vertices initially on
Q. Each pass after the first in an iteration of Step 2 consists of the discharge steps
applied to the vertices added to Q during the previous pass. There is at most one
nonsaturating push step per vertex v per pass, since such a step reduces e(v) to zero.
We claim that the total number of passes is O(n + ln), from which the theorem follows.

To establish the claim, we define d=max{d(v)[vQ} if Q, and =0 if
Q . Consider the effect on of a pass over Q. If v Q at the beginning of a pass
and d(v) , then v Q at the end of the pass unless a relabel step occurs during the
pass. Thus, if is the same at the end as at the beginning of the pass, some vertex
label must have increased by at least one. If increases over the pass, some d(v)
must increase by at least the amount of the increase in . From the end of one iteration
of Step 2 to the beginning of the next, can increase by O(n)i Thus (i) the total
number of passes in which can increase or stay the same is O(n2+ In); (ii) the total
number of passes in which can decrease is at most the total increase in between
passes and during passes in which it increases, which is also O(n+ ln). We conclude
that the total number of passes is at most O(n+ In), verifying the claim and hence
the theorem. I-1

A more elaborate version of the preflow algorithm [13] uses the dynamic tree data
structure of Sleator and Tarjan [40], [41] to reduce the running time to
O(nm log (n2/m)) if l= O(n). The corresponding version of the parametric preflow
algorithm also runs in O(nm log (n2/m)) time. It uses a queue Q for vertex selection,
and it performs discharge steps exactly as does the FIFO algorithm, but in place of
push! relabel steps it uses more complicated tree-push/relabel steps. A tree-push! relabel
step can move an amount of flow excess through several arcs at once. Extending the
analysis in [13] to the parametric case is straightforward. We shall merely summarize
the results.

The dynamic tree algorithm uses a parameter k, the maximum tree size, which can
be chosen freely in the range from 2 to n. An easy extension of the analysis in [13]
shows that the parametric preflow algorithm runs in O(nm log k) time plus O(log k)
time per addition of a vertex to Q. Furthermore, the number of additions of a vertex
to Q is O(nm) plus O(n/k) per pass over Q, where passes are defined as in the proof
of Theorem 2.6. The O(n2+ ln) bound on the number of passes in the proof of Theorem
2.6 remains valid if the dynamic tree algorithm is used in place of the FIFO algorithm.
Combining these estimates, we obtain an O((nm+(n3+ln2)/k)log k) bound on the
total running time. Choosing k max {2, n2/m}, we have the following theorem.

THEOREM 2.7. The parametric preflow algorithm implemented using dynamic trees
runs in O((n+ l)m log (n2/m)) time. Ifl= O(n), the time bound is O(nm log (n/m)).

2.5. Additional observations. We conclude this section with several observations
about the parametric maximum flow problem and our algorithm for solving it. Our



36 G. GALLO, M. D. GRIGORIADIS, AND R. E. TARJAN

first observation concerns variants of the parametric maximum flow problem. Our
algorithm remains valid if the arc capacity functions are nonincreasing on arcs out of
s and nondecreasing on arcs into t, and the values of the parameter , are given in
decreasing order. To see this, merely substitute - for ,. The algorithm also applies
if the arc capacity functions are nondecreasing on arcs out of s and nonincreasing on
arcs into t, and the values of are given in decreasing order. In this case, reverse the
directions of all the arcs, exchange the source and sink, and apply the original algorithm
tO this reversed network, which we shall denote by GR. Each minimum cut (, X)
generated for Gt will correspond to a minimum cut (X, ) in the original (nonreversed)
network that will have the source side of minimum size instead of the sink side.
Successively generated minimum cuts in GR will correspond to cuts with successively
smaller source sides in the original network.

If we are only interested in computing minimum cuts, there is a variant of the
preflow algorithm that does less computation, although it has the same asymptotic
time bound [13]. This variant, here called the rain-cut preflow algorithm, computes a
preflow of maximum value and a minimum cut, but not a maximum flow. It differs
from the original algorithm in that a vertex v is considered to be active only if e(v) > 0
and d(v)< n. The algorithm terminates having computed a maximum preflow. (A
preflow f is maximum if and only if for every vertex v, v s or e(v) 0 or d,.(v, t) < .)
If this variant is used to compute minimum cuts, a maximum flow for a desired
parameter value can be computed by beginning with the corresponding maximum
preflow and converting it into a maximum flow using the original preflow algorithm.
Most of the applications we shall consider only require the computation of a sequence
of minimum cuts or even minimum cut values and not maximum flows. We shall refer
to the variant of our parametric preflow algorithm.that computes minimum cuts and
maximum preflows as the min-cut parametric algorithm.

So far we have required all arc capacities to be nonnegative, but if we are only
interested in computing minimum cuts, we can allow negative capacities on arcs out
of s and on arcs into t. This is because there is a simple transformation that makes
such arc capacities nonnegative without affecting minimum cuts [35]. For a given
vertex v, suppose we add a constant A(v) to c(s, v) and c(v, t). Then the minimum
cuts do not change since the capacity of every cut is increased by A(v).

By adding a suitably large A(v) to c(s, v) and c(v, t) for each v, we can make all
the arc capacities positive. In the parametric problem, we can choose a new function
A on the vertices of G for each new value hi of without affecting the O((n+ 1)m
log (nZ/m)) time bound for our algorithm. It suffices to choose

A,(v) max {0,--c,(s, v)}+ max {0,-c,(v, t)},

Aa,+,(v)=A,,(v)+G,,(v,t)-ca,+,(v,t) for i-> 1.

With this choice, the transformed arc capacities are nondecreasing functions of A on
arcs leaving s and constant on arcs that enter t. Although the same effect could be
obtained by adding a sufficiently large constant to the capacities of these arcs, the
modification we have described has the additional advantage of keeping capacities as
small as possible. In subsequent sections, when discussing minimum cut problems, we
shall allow arbitrary capacities, positive or negative, on arcs leaving s and arcs entering t.

The minimum cuts corresponding to various parameter values have a nesting
property that is a strengthening of Lemma 2.4. The following lemma is an extension
of known results [10, pp. 13], [43] that we shall need in the next section. To prove
the lemma, we shall use the min-cut preflow algorithm discussed above.
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LEMMA 2.8. Let (X, X) be any minimum cut for A A, and let (Y, Y) be any
minimum cut for A A_ such that A l<= A. Then, (X Y, X Y) is a minimum cut for
A AI and (X w Y, X c Y) is a minimum cut for A A.

Proof. Run the min-cut parametric algorithm for , A, followed by A -A. At
the beginning of the computation for A =A_, all vertices vX-{s} have d(v)>-_n.
Thus, after a maximum preflow is computed for A A2, all arcs (v, w) with v X, w X
are saturated (their flow has not changed during the computation for A A2). Since
(Y, Y) is a minimum cut for A Ae, all arcs (v, w) with v Y, we Y are saturated.
Furthermore, if v Y-{t} then e(v)=0, since the net flow across (Y, Y) must be
equal to the excess at t.

Now consider the cut Z (X w Y), Z (X Y). Any arc (v, w) with v . Z, w Z
must be saturated. Since v Z-{t} implies e(v)=0, the cut (Z, Z) must have capacity
e(t), and hence it must be a minimum cut.

The proof for (X c Y, w ’) is similar" proceed on GR, and run the min-cut
parametric algorithm for A A, followed by A A 1"]

A direct consequence of this lemma is the following corollary, which we shall
need in the next section.

COROLLARY 2.9. Let (X1,X) be a minimum cut for A.= A1, let (X2,X) be a
minimum cutfor A A such thatX

_
X and A <- A 9_, and let A be such that A <= A3 A 2.

Then there is a cut (X3, X3) minimum for A3 such that X1
_
X3

_
X.

Proof. Let (X, X) be any minimum cut for A A3. Take X3 (X w X) X,
X V-X3, and apply Lemma 2.8 twice. [3

Our last observation is that if the graph G is bipartite, the O((n + 1)m log (n2/m))
time bound for computing parametric maximum flows can be improved slightly.
Suppose V A w B, A B , and every arc in G has one vertex in A and one in B.
Let rtA --IAI and n/ Inl and suppose that tla r/t. Then the time to compute maximum
flows for ordered values of A can be reduced to O(nAm log (na/m+2)) if l= O(nA).
This requires modifying the preflow algorithm so that only vertices in A are active,
and modifying the use of the dynamic tree data structure so that such a tree contains
as many vertices in A as in B. The bound is slightly worse if to(r/a). The details
can be found in [42].

3. The min-cut capacity function of a parametric network. For a parametric network,
we define the min-cut capacity function K(A) to be the capacity of a minimum cut as
a function of the parameter A. We shall assume throughout this section that the arc
capacities are linear functions of A satisfying the conditions (i)-(iii) of 2. It is well
known [9], [43] and follows from the results of 2 that under this assumption K(A)
is a piecewise-linear concave function with at most n- 2 breakpoints. (By a breakpoint
we mean a’value of A at which the slope of (A) changes.) The n- 1 or fewer line
segments forming the graph of (A) correspond to n- or fewer distinct cuts. We
shall develop three algorithms for computing information about (A). The first com-
putes the smallest (or equivalently the largest) breakpoint. The second computes a
value of A at which (A) is maximum. The third computes all the breakpoints. Each
of these algorithms uses the algorithm of 2 as a subroutine and runs in
O(nm log (r/2/m)) time. Although the algorithm for computing all breakpoints solves
all three problems, we shall present all three algorithms since each is more complicated
than the preceding one and since the resulting difference in constant factors may be
important in practice.

We shall assume that the capacities c(s, v) and c(v, t) are given in the
form cA(s, v)=ao(v)+Aa(v) and cA(v, t)=bo(v)-Ab(v), with arbitrary coefficients
ao, bo and nonnegative coefficients a, b. A minimum cut (Xo, Xo) for some
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h ho gives an equation for a line that contributes a line segment to the function
K(A) at A=ho. This line is Lxo(A)=ao+Ao, where ao=CAo(Xo, Xo)-Aoflo and
/30 Zo a(v)-xobl(V). (Recall from 2 that cA(X, X)=X,wx. cA(v, w). Also
note that a(v)=Oif(s, v)_ E, and bl(V) =0 if (v, t) Eo)

3.1. Computing the smallest breakpoint of (A). To compute the smallest break-
point of K(A)we use.an algorithm stated by Gusfield [18] for an application involving
scheduling transmissions in a communication network, discussed in more detail in 4.1.

The algorithm, an adaption of Newton’s method, consists of the following two
steps.

Step O. Compute h , h such that the smallest breakpoint ho satisfies h <_- ho <- h2.
Compute a cut (X, X) that is a minimum for h. Go to Step 1.

Step 1. Compute a cut (X, X2) that is a minimum for h2. If Lx,(hl) Lx(h2),
stop: h_ is the smallest breakpoint. Otherwise, replace h2 by the value of h such that

Lx(h)= Lx2(h) and repeat Step 1. (The appropriate value of h is (a2-ai)/(fl-fl2).)

The values of h2 generated by this algorithm are strictly decreasing; thus the
parametric prefloW algorithm of 2 applied to Gg performs all iterations of Step 1 in
O(nm log (n2/m)) time, saving a factor of n over Gusfield’s algorithm [18].

In Step 0, it suffices to select h sufficiently small so that for each vertex v such
that (s, v) or (v, t) is of nonconstant capacity, c, (s, v) +uv-s,, c(u, v) < cA, (v, t). A
simple computation shows that a suitable value of h is

(3.1) min {b(v)-a(v)-’v-t c(u’ v)
v-s., a,(v)+b,(v)" a(v)+b(v)>O-1.

Similarly, it suffices to select h sufficiently large so that for each vertex v such that
(s,v) or (v,t) is of nonconstant capacity,, c2(v,t)+Ywv_,,c(v, w)<cA(s,v). A
suitable value of h2 is

{ b(v)-a(v)+v-’tc(v’w)(3.2) max a(v)+b(v)>O +1.
,v-., a,(v)+b,(v)

Essentially the same algorithm can be used for computing the largest breakpoint;
instead of successively decreasing 2 and using Gn, successively increase A and use G.

3.2. Finding a maximum of (A). Our algorithm for finding the value of A that
maximizes u(A) is based on a simple method of iterative interval contraction for
computing the maximum f(A*) of a strictly concave and continuously differentiable
function f(A on a nonempty interval A , A3] of the real line. The method is as follows.
First, compute the function values and the tangents of f(A) at each end of the given
interval. Second, compute the point A2 [A1, Aa] where the two tangent lines intersect,
and also compute f’(A2). Then, iff’(A2)> 0 replace A3 by A2 and .repeat; iff’(A2)> 0
replace A by A2 and repeat; if f’(A2)=0 accept A2 as the solution. Of course this
algorithm need not terminate, but it will converge to the maximum.

The method is seldom used in this general setting because it is inferior to several
other algorithms for one-dimensional maximization. But it can be specialized in the
obvious way to handle the piecewise-linear concave function n(A) efficiently. A
maximum of (A) can be computed in as many function evaluations as there are linear
segments that comprise n(A), namely n- 1 or fewer. Using the notation introduced
above, ,2 (t3- al)/(1-3) if the line segments of (h) at h and at/3 are distinct.
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Otherwise, the search terminates with a line segment of zero slope and h*= h (or
A*--A3). The algorithm will compute a maximum of K(A) in O(n2m log (n2/m)) time
since at most n- 1 minimum cut problems must be solved.

The running time of this algorithm can be improved by partitioning the sequence
of successive values of A2 into two subsequences, one increasing and the other decreas-
ing. It is then possible to use two concurrent invocations of the parametric preflow
algorithm: invocation I that starts with h and computes minimum cuts of G for an
increasing sequence of h values, and invocation D that starts with A and computes
minimum cuts of GR for a decreasing sequence of h values. A new value A2 is a
member of the increasing sequence if/32 > 0, and a member of the decreasing sequence
otherwise. The initial values of h and A must be such that all breakpoints lie in the
interval [hi, h3], a property that is assured by using (3.1) to give the initial value of
hi. and (3.2) to give the initial value of h3.

The algorithm to compute a maximum of K (h) consists of the following four steps.

Step O. Compute the initial values A and/-3 from (3.1) and (3.2). Start concurrent
invocations (I and D) of the parametric preflow algorithm of 2" For A A , invocation
I computes a minimum cut (X1, X1) having IX] maximum; for A -A3, invocation D
computes a minimum cut (X3, X3) having IX3] minimum.

Step 1. Compute A2-"(O3--O1)/(1--3), pass ’2 to both invocations I and D,
and run them concurrently. If invocation I finds a minimum cut (X,)) first, suspend
invocation D and go to Step 2 (the other case is symmetric). Compute /32
Ev:2 al(v)-Ex2 bl(v).

Step 2. If f12=0, stop: A*=A2. Otherwise, if f12>0, replace A1 by A2, back up
invocation D to its state before it began processing A2, and go to Step 1. Otherwise,
go to Step 3.

Step 3 (/32<0). Finish running invocation D on A2. This produces a minimum
cut (X, D), not necessarily the same as (X, /). If f12 -> 0, stop: A * A2. Otherwise,
replace A3 by A2, back up invocation I to its state before processing A2, and go to Step 1.

Backing up invocation D or I as required in Steps 2 and 3 is merely a matter of
restoring the appropriate flow and valid labeling, which takes O(m) time. The total
time spent during one iteration of Steps 1, 2, and 3 is proportional to the time spent
in invocation I or D, whichever one is run to completion on A2 and not backed up.
The total number of values of A2 processed is O(n). Thus the total time is proportional
to the time necessary to run the parametric preflow algorithm of 2.3 twice, once on
an increasing sequence of values and once on a decreasing sequence of values; i.e.,
O(nm log (n2/m)).

3.3. Finding all breakpoints of (A). In some applications it is necessary to produce
all the line segments or breakpoints of (A), possibly along with the corresponding
minimum cuts. To do.this we extend the maximum-finding algorithm of the previous
section. This algorithm uses iterative contraction of the interval [A1,A3]; it ignores
breakpoints that lie in the discarded portion of the interval. We can. find all the
breakpoints by proceeding as in the algorithm of 3.2 but using a divide-and-conquer
strategy that recursively examines both of the subintervals [A1, A2] and [A2, A3] into
which the current interval is split by the new value A2. This method was proposed by
Eisner and Severance [9] for bipartite graphs in the context of a database record-
segmentation problem (see 4,4). Unfortunately, a straightforward implementation of
this idea yields an O(n2m log (n,2/m))-time algorithm. To obtain a better bound it is
necessary to use two concurrent invocations of the parametric preflow algorithm, and
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also use graph contraction so that recursive invocations of the method compute cuts
on smaller and smaller graphs.

If G is a network and X is a set of vertices such that at most one of s and is
in X, we define G(X), the contraction ofG by X, to be the network formed by shrinking
the vertices in X to a single vertex, eliminating loops, and combining multiple arcs
by adding their capacities. The algorithm we present reports only the breakpoints of
(A), although it computes cuts corresponding to the line segments of the graph of
(A). If the actual cuts are needed, they can either be saved as the computation
proceeds or computed in a postprocessing step using one application of the method
in 2.3.

Our algorithm uses a recursive procedure called slice. With each network G to
which slice is applied, we associate four pieces of information: Two values of A,
denoted by A and A3, and two flows f and f3, such that f is a maximum flow for
f is a maximum flow for A3, the cut ({s}, V-{s}) is the unique minimum cut for A,
the cut (V-{t}, {t}) is the unique minimum cut for A3, and A < A3. The initial values
for A1 and A3 are computed from (3.1) and (3.2) as before. The breakpoint algorithm
consists of the following two steps.

Step 1. Compute A according to (3.1) and A3 according to (3.2). Compute a
maximum flow f and minimum cut (X,X) for A such that [X] is maximum by
applying the preflow algorithm to G. Compute a maximum flow f3 and minimum cut
(X3, J3) for A such that IX3I is minimum by applying the preflow algorithm to GR.
Form G’ from G by shrinking the vertices in X3 to a single vertex, shrinking the
vertices in X1 to a single vertex, eliminating loops, and combining multiple arcs by
adding their capacities. (Note that X3c X =.)

Step 2. If G’ contains at least three vertices, let f’ and f be the flows in G’
corresponding to f and f3, respectively; perform slice (G’, A, A3, f, f’3), where slice
is defined as follows:

Procedure slice (G, A 1, i3, fl, f3)"

Step S1. Let A2 be the value of A such that c2({s}, V-{s})=c2(V-{t}, {t}).
(This value will satisfy A <--Ae<--A3 .)

Step $2. Run the preflow algorithm for the value A on G starting with the preflow
f formed by increasing f on arcs (s, v) to saturate them and decreasing f on arcs
(v, t) to meet the capacity constraints. As an initial valid labeling, use d(v)=
rain {d,,(v, t), d.,,(v, s)+ n}. Concurrently, run the preflow algorithm for the value A2
on GR starting with the preflow f formed by increasing f3 on arcs (v, t) to saturate
them and decreasing f3 on arcs (s, v) to meet the capacity constraints. As an initial
valid labeling, use d(v) min {d.r,,.(s v), d.ed.(t, v)+ n}. Stop when one of the concurrent
applications stops, having computed a maximum flowf2. Suppose the preflow algorithm
applied to G stops first, (The other case is symmetric.) Find the minimum cuts (X2, X2)
and (X;, J) for 2 such that Ixl is minimum and Ixl is maximum. If IX21> n/2,
complete the execution of the preflow algorithm on GR and let f2 be the resulting
maximum flow.

Step $3. If c (X2, J2) cA (X, J) for some A, report A2 as a breakpoint.
Step $4. If X2 {s}, perform slice (G(X2), A1, A2, fl, f2). If X2 {t}, perform

slice (G(X’2), A2, A3, f2, f)-

Remarks. Step is an initialization step that guarantees that the graph G’, on
which slice is called, has unique minimum cuts ({s}, V-{s}) and (V-{t}, {t}) for A
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and /-3, respectively. The flows f and f3 are needed as input parameters to slice to
guarantee that the initial labeling is such that the time for a sequence of calls to slice
is subject to the bound of 2.

The correctness of this algorithm follows from Corollary 2.9. Note that the
minimum cuts computed in Step $2 correspond to minimum cuts for A2 in the original
network, with the correspondence obtained by expanding the contracted vertex sets.
Since each vertex of G is in at most one of the two subproblems in Step $4, there are
O(n) invocations of slice.

3.4. Analysis of the breakpoint algorithm. Two ideas underlay the efficiency of the
breakpoint algorithm. To explain them, we need to develop a framework for the analysis
of the algorithm. We shall charge to an invocation of slice the time spent in the
invocation, not including the time spent in nested invocations. The time charged to
one invocation is then O(m) plus the time spent running the preflow algorithm in Step
$2. Summing O(m) over all O(n) invocations of slice gives a bound of O(nm). It
remains to estimate the time spent running the preflow algorithm.

In our analysis we shall denote by no and mo the number of vertices and edges
in the original (unshrunken) graph, and by n and m the number of vertices and edges
in one of the shrunken graphs passed to slice. We use the dynamic tree version of the
preflow algorithm, with the maximum tree size k chosen globally. Specifically, let ko
max {2, n/too}. For an invocation of slice on a graph with n vertices and m edges,

we let the maximum tree size for this subproblem be k min {n, ko}. Then the running
time of this invocation of the preflow algorithm is O((nm+n3/k) logk)
O((nm + n3/ko) log ko).

The first idea contributing to the speed of the algorithm is that the results of 2
allow us to bound the time of a sequence of preflow algorithm applications, not just
a single one, by O((nm + n3/ko) log ko). That is, if we charge this much time for an
invocation of slice, we can regard certain of the nested invocations as being free. The
second idea is that running the preflow algorithm concurrently on G and on G allows
us to regard the larger of the nested invocations in Step $4 as being free, since the
time spent on the larger subproblem invocation is no more than that spent on the
smaller, which implies that the total time is at most twice the time spent on all the
smaller subproblem invocations. This leads to a recurrence bounding the total running
time for all nested invocations whose solution is O((nm + n3/ko) log ko). This gives a
total time bound for the breakpoint algorithm of O(no mo log (n/too)).

Consider an invocation of slice G(A, A3, fl, f3). Let G G(X2) as computed in
Step $4, and let G3--G(X); let n, ml and n2, m2 be the numbers of vertices and
arcs in G and G, respectively. We regard this invocation of slice as being a continu-
ation of the algorithm of 2.3 applied to G, with A the most recently processed value
of A and f the resulting maximum flow. Simultaneously, we regard the invocation as
being a continuation of the algorithm of 2 applied to GR, with A3 the most recently
processed value of A and f3 the resulting flow.

With this interpretation we can regard the preflow algorithm applications in Step
$2 as being free, but if [X] =< n/2 we must account for new applications of the algorithm
in 2 on G(z) and GR(), and otherwise (i.e., I1_< n/2) we must account for
new applications of the algorithm in 2 on G(X) and GR(x’2). Thus we obtain the
following bound on the time spent in invocations of the preflow algorithm. If G has
n vertices and m arcs, the time spent in such invocations during the computation of
(A) is at most T(n, m)+ O((nm+ r/3/k0) log ko), where T(n, m) is defined recursively
as follows"
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0 ifn =<3,

T(n, m)=
max {T(nl, ml)+ T(n2, m2)+ O((nl ml + n3/ko) log ko)"

n, n2->3; n+n<=n+2;
n<=n2; ml,mz>=l; m+mz<=m+l} ifn>3.

Remark. In this analysis, the sequence of preflow algorithm invocations associated
with a particular application of the algorithm of 2.3 is on a sequence of successively
smaller graphs, but the analysis in 2.4 remains valid. In the definition of T(n, m),
the constraint ml + mz <_- m + 1 allows for the existence of an arc (s, t), which will appear
in both subproblems.

A straightforward proofby induction shows that T(n, m) O((nm + n3/ko) log ko).
By setting n no and m mo, we obtain the following theorem.

THEOREM 3.1. The breakpoint algorithm runs in O(nm log (n2/ m)) time on a graph
with n vertices and m edges.

3.5. Additional observations. We conclude this section with two observations. First,
as noted by Stone [43], a complete set of minimum cuts for all values of A can be
represented in O(n) space: store with each vertex vC={s, t} the breakpoint at which v
moves from the sink side to the source side of a minimum cut, for a set of minimum
cuts whose source sides are nested. The breakpoint algorithm can be augmented to
compute this information without affecting its asymptotic time bound. Second,
the time bound of the three algorithms in Sections 3.1-3.3 can be improved to
O(nAm log (nA/m+2)) if G is bipartite and K(A) has O(nA) breakpoints. Here nA is
the size of the smaller half of the bipartite partition of V. This bound follows using
the bipartite variant of the preflow algorithm mentioned at the end of 2.5.

4. Applications. In this section, we give a number of applications of the algorithms
in 2 and 3. For each application, we obtain an algorithm running in
O(nm log (n2/m)) time, where n is the number of vertices and m is the number of
arcs in the graph involved in the problem. For applications in which the graph is
bipartite, the bound is O(nAm log (n2A/m+2)), where nA is the size of the smaller half
of the bipartite partition of the vertex set. (When the latter bound is applicable, we
shall state it within square brackets.) Depending on the application, our bound is a
factor of from log n to n better than the best previously known bound. Our applications
fall into four general categories: Flow-sharing problems, zero-one fractional program-
ming problems, parametric zero-one polynomial programming problems, and miscel-
laneous applications.

4.1. Flow sharing. Consider a network with a set of sources S {s, s2,"’, Sk}
and a single sink t, in which we want to find a flow from the sources in S to t. We
require flow conservation at vertices not in S w {t}. We can model this problem as an
ordinary one-source, one-sink problem by adding a supersource s and an arc (s, si) of
infinite capacity for each 1,. , k}. The resulting network can have many different
maximum flows, with different utilizations of the various sources; we define the
utilization ui of source si to be the flow through the arc (s, si). The question arises of
how to compare the quality of such flows. Suppose each source si has a positive weight
wi. Several figures of merit have been proposed, leading to the following optimization
problems:

(i) Perfect sharing. Among flows with u/w equal for all i {1,..., k}, find one
that maximizes the flow value e(t).
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(ii) Maximin sharing. Among maximum flows, find one that maximizes the smal-
lest ui/ wi, { 1,. , k}.

(iii) Minimax sharing. Among maximum flows, find one that minimizes the largest
ui/wi, i_{1,...,k}.

(iv) Optimal sharing. Among maximum flows, find one that simultaneously
maximizes the smallest u/w and minimizes the largest u/wi, i {1,..., k}.

(v) Lexicographic sharing. Among maximum flows, find one that lexicographically
maximizes the k-component vector whose jth component is the jth smallest u/wi,
i{l,...,k}.

Flow-sharing problems with one source and multiple sinks are completely
analogous to the multiple-source case: merely exchange source and sinks and reverse
the network. For the criteria (ii)-(v), we can even allow multiple sources and multiple
sinks, and simultaneously optimize one criterion for the sources and a possibly different
criterion for the sinks. This is because each of problems (ii)-(v) calls for a maximum
flow, and a multiple-source, multiple-sink problem can be decomposed into a multiple-
source, one-sink problem and a one-source, multiple-sink problem, by finding a
minimum cut of all sources from all sinks, contracting all vertices on the sink side to
give a one-sink problem, and separately contracting all vertices on the source side to
give a one-source problem. This observation is due to Megiddo [27].

Perfect sharing arises in a network transmission problem studied by Itai and Rodeh
[22] and Gusfield [18] and in a network vulnerability model proposed by Cunningham
[5]. We discuss these models below. Brown studied maximin sharing [3], Ichimori,
Ishii, and Nishida [21] formulated minimax and optimal sharing, and Megiddo [27],
[28] studied lexicographic sharing. Motivation for these problems is provided by the
following kind of example, which gives rise to a multiple-sink problem. During a
famine, relief agencies supplying food to the stricken areas want to distribute their
available food supplies so that each person receives a fair share. The weight associated
with each sink (famine area) is the population in that area, possibly adjusted for
differences in food needs between adults and children, and other factors. A perfect
sharing solution gives every person in every famine area the same amount of food,
but it may be too restrictive since it need not allocate all the available and transportable
food supply. A better solution will be provided by solving one of the problems (ii)-(v).
There are analogous industrial interpretations of this model.

We shall show that all five flow-sharing problems can be solved in
O(nm log (n2/m)) time using the algorithms of 2 and 3. The lexicographic sharing
problem requires computing all the breakpoints of a min-cut capacity function by the
algorithm of 3.3. The other four problems are easier, and can be solved by the algorithm
for finding the smallest (or largest) breakpoint given in 3.1. Our tool for solving all
five problems is the following parametric formulation: for each s S, let arc (s, s)
have capacity wA, where A is a real-valued parameter. Since all arc capacities are
nonnegative, the range of interest of A is [0, co). There are at most k breakpoints of
the min-cut capacity function K(A), one per source si.

Perfect sharing. Find the smallest breakpoint AL Of K(A). Any maximum flow for
A.,. solves the perfect sharing problem. This was observed by Gusfield 18] in the context
of the network transmission-scheduling problem described below. Another application
will arise in 4.2.

Scheduling transmissions. Itai and Rodeh state the following problem of scheduling
transmissions in a "circuit-switched" communication network represented by a directed
graph G V, E) with fixed positive arc capacities. The capacity c(v, w) is the effective
transmission rate of the communication channel (v, w) in the direction from v to w,
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say in bits per second. A central vertex (sink) V receives all traffic that originates
at a subset of vertices S

_
V-{t} called emitters (sources). Each emitter si S has

wi > 0 bits of information that it wishes t’o send to t. We assume that G has paths from
each si S to t. The communication protocol allows the sharing of arc capacities by
everal paths, but it requires that at least one path from s to be established before
transmission from si can begin. Clearly, if transmissions are scheduled from each
emitter, one at a time, the entire task can be completed in T’=.ics wi/c(Xi, X)
seconds, where (X, X) is a minimum cut separating si and t. But since arc capacities
can be shared, it may be possible to obtain a lower value for T. The objective is to
minimize the time T within which all transmissions can be completed.

To see that the problem is a perfect sharing multiple-source problem, let 1/T,
where T is in seconds, and assign a capacity of wi bits per second to each arc (s, s)
from the supersource s to an emitter s S. Once s and the corresponding maximum
flow have been computed by the algorithm above, the actual transmission schedule
can be constructed from the flow in O(m) time as described in [22]. Itai and Rodeh
proposed two algorithms for this problem, with running times of O(kn2m) and
O(kZnm log n). These are modifications of known maximum-flow algorithms. In com-
parison, our algorithm runs in O(nm log (n2/m)) time.

Maximin sharing. Find the largest breakpoint of (). Any maximum flow for
solves the maximin sharing problem.
Minimax sharing. Find the smallest breakpoint s of (). Find a maximum flow

for .. Construct a residual network in which each arc (v, w) with s { v, w} has capacity
c(v, w)-f(v, w), each arc(s,s) has infinite capacity, and each arc(s,s) has zero
capacity. Find a maximum flow f’ in the residual network. The flow f+f’ is a minimax
flow in the original network.

Optimal sharing. Find the smallest breakpoint )s and the largest breakpoint of
(). Find a maximum flow f for .. Construct a residual network in which each
are (v, w) with s {v, w} has capacity c(v, w)-f(v, w), each arc (s, s) has capacity
w(-), and each arc(s,s) has zero capacity. Find a maximum flow f’ in the
residual network. The flow f+f’ is an optimal flow in the original network.

Lexicographic sharing. Find all the breakpoints of (). For each source s, let i
be the breakpoint at which s moves from the sink side to the source side of a minimum
cut. For each arc (s, s) define its capacity to be wi. Find a maximum flow f with
these upper bounds on the capacities of the arcs out of s. Flow f is a le.xicographic
flow, and hence an optimal flow.

The correctness of the first four algorithms above is easy to verify. We shall prove
the correctness of the algorithm for the lexicographic sharing problem. Renumber the
sources if necessary so that =< z=<. ., and let G denote the parametric network
with oo.

THeOreM 4.1. On G there is a maximum flow f such that f(s, s)= w,ifor all i.
Such a flow is a lexicographic flow,

Proof Let i, i2,’’" it- be the values of such that <+. Let io=0 and
it k. Then , ,..., , are the distinct breakpoints in increasing order. Let {s}---
Xo = X = X=... = X be the sets such that (X, X./) for 1 <-j _<-I is the minimum cut
with the smallest sink side for ) =)!. Then s_,+, s_,+z,. ., s! X-X_. For
1 _j_<- l, the cut (X_, X._) is a minimum cut for as well, specifically the one
with the smallest source side. Thus, ci(X._, X._) e,(X, X). It follows by induction
on j that for =<j =< l,

k

(4.1) c,,,(Xj, X/) E w, Ai + E w,A,,,
i:-:l i----ii+l
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which implies that

(4.2) c(Xj-{s}, j)= E

Equation (4.2) implies that any flow for G such that f(s, s)= wA for all must be
a maximum flow (choose j in (4.2)). It must also be a lexicographic flow, since for
all j, any flow that has f(s, s) >= wA for

_
!- must either have f(s, s) wiA for

_--- ii or have some {i- + 1,..., ii}, such that f(s, s) < wihi.

It remains to show that G admits a flow f with f(s, s) wh. Consider running
the min-cut parametric preflow algorithm presented in 2.5 on the parametric network,
for the successive h values h,, h, , h,. Letf, f, ,f be the successive maximum
preflows generated by the algorithm. When the min-cut preflow algorithm is restarted
with a new value h;; of A, the flow on each arc (s, s;) with i {ii- + 1,..., k} is first
increased from wh;__, to wh. All of this new flow successfully reaches the sink t,
because of (4.1) and the fact that (Xj, Xj) is a minimum cut for h -h!. It follows by
induction on j that f is a flow and that (s, s) wh for 1 -< =< ii- In particular, j is
the desired flow.

4.2. Fractional programming applications. Another class of problems that can be
solved by the parametric preflow algorithm of 2.3 arises from various discrete and
network optimization problems with fractional objectives. In general, the fractional
programming problem is defined as

(4.3) A’(x*) =max {A(x)=f(x)/g(x)},
xS

where f(x) and g(x) are real-valued functions on a subset S of R ", and g(x)> 0 for
all x S. Isbell and Marlow [23] proposed an elegant solution method for the important
case of linear f and g, but their approach has been extended to nonlinear problems
(see, e.g., Dinkelbach [7]), and more recently to several classes of combinatorial
problems (see, e.g., Picard and Queyranne [33], [34], Padberg and Wolsey [31], and
Cunningham [5]).

A problem that is intimately related to (4.3) is

(4.4) z(x*, A max {z(x, A =f(x)- Ag(x)},
xS

where A is a real-valued constant. These two problems are related in the sense that x*
solves (4.3) if and only if (x*, A*) solves (4.4) for A A*= A(x*) giving the value
z(x*, A*)= 0. Isbell and Marlow’s algorithm generates a sequence of solutions until
this condition is met, We state their algorithm below in a form useful for our purposes
(see, e.g., Gondran and Minoux [14, pp. 636-641]):

ALGORITHM FP.
Step O. Select some x S. Compute Ao=f(x)/g(x). Set k =0.
Step 1. Compute xk+l, solving the problem (4.4): z(xk+l, A)= maxxs z(x, A)=

f(x)-Ag(x).
Step 2. If z(x+, Ak)=0, stop: x*=x. Otherwise, let A+=f(x+)/g(x+),

replace k by k + 1 and go to Step 1.

THEOREM 4.2. Algorithm FP is correct. The sequence of values {A,} generated by
the algorithm is increasing.

Proof For any particular k, z(x+, A) is nonnegative in Step 1, since
z(x+, A)=> z(x, Ak)= 0. If z(x+, A)= 0, the algorithm halts with x, which solves
(4.4) for A A, and hence solves (4.3). The algorithm continues only if z(x+, A) > 0;
i.e., f(x+’) Akg(x+) > 0, which implies A+I =f(x+)/g(x
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If maximization is replaced by minimization in problem (4.3), it suffices to replace
maximization by minimization in (4.4) and use the same algorithm. In this case all
values of z(xk+, ,k), except the last one, are less than zero, and a decreasing sequence
{hk} is generated. Another important observation is that in Step 1 the maximization
(4.4) can be taken over a larger set S’ S, provided that z(x, hk) <- 0 for all x S’- S.
In the minimization problem, the corresponding requirement is z(x, hk)>--O for all
x S’-S. Several of our applications make use of this extension.

The following lemma can be used to bound the number of iterations of Algorithm
FPin some situations.

LEMMA 4.3. g(xk+l) < g(Xk) for k >- 1.

Proof Consider iterations k and k of Algorithm FP, and assume A (x) < A (x*).
In iteration k-1 we have z(xk, )tk-)> 0 and )t =f(xk)/g(xk). In iteration k we have

0 < z(xk+’, Ak) =f(xk+’ Akg(Xk+’)
=f(xk+’) Ak-, g(xk+’) + A,_, g(x’+’) Akg(Xk+’)
<--f(xk) Ak- g(xg) +/k--I g(xk+l akg(xk+l)
kg(xk k--I g(xk "-/k--I g(xk+l kg(xk+l
(g(xk) g(xk+l))(Ak

which implies that g(xk) > g(xk+) since ,t > a-l. The inequality "-<" above follows
from z(xk+l, ,,_)<-z(x, ’k-) since x maximizes z(x, h/f_l). ["]

The efficiency of Algorithm FP depends on the number of times problem (4.4)
has to be solved, and on the time spent solving it. For continuous functions f and g
defined on a nonempty compact set S, Schaible [38] has shown that the decreasing
sequence {g(xk)} for k=> approaches g(x*) linearly, and the increasing sequence
{Ak} approaches * superlinearly. Nevertheless, (4.4) may be as hard to solve as the
original fractional problem unless some assumptions are made about f, g, and S.
Fortunately, even the most restrictive assumptions find relevant applications in practice.
For instance, iff and g are linear and S is polyhedral (the case in [23]), the algorithm
consists of solving a finite number of linear programs (4.4) whose solution is imple-
mented by cost-parametric programming on intervals [/k, /k+l], for successive k. This
can be specialized to network simplex parametric programming by using the primitives
described by Grigoriadis [15]. If f is a negative semidefinite quadratic form and g is
linear, the sequence of concave quadratic programs defined by (4.4) can be handled
by the parametric algorithm of Grigoriadis and Ritter [16]. If f and g are negative-
and positive-definite quadratic forms, respectively, Ritter’s parametric quadratic pro-
gramming method [37] can be used. Approaches for more general nonlinear problems
are analyzed in [7] and [38].

If S is nonempty and finite, f is real-valued, and g is positive, integer-valued, and
bounded above by some integer p> 0, Lemma 4.3 implies that Algorithm FP will
terminate in p+ 1 or fewer iterations. This observation has been used in various
applications where g(x) is a set function, for which usually p O(n). Such is the case
whether (4.3) is a maximization or a minimization problem.

We shall now describe a number of applications of the generic Algorithm FP. In
each case the sequence of problems (4.4) that arises can be handled by our parametric
preflow algorithm or its min-cut variant described in 2.5.

Strength ofa directed network. This is an application due to Cunningham [5, 6].
Let G (V, E) be a given directed graph with n vertices, m arcs, nonnegative arc
weights and nonnegative vertex weights, and a distinguished vertex s e V. We assume
that every v V-{s} is reachable from s in G. The arc weight c(v, w) represents the
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cost required to "destroy" the arc (v, w) E. The node weight d is the "value" attributed
to having v reachable from s. Destroying a set of edges A_ E (at a total cost of
f(A) =(,w)A C(V, W)) may cause some subset of vertices VA c_ V-{s} to become
unreachable from s, resulting in a loss of g(A)=’VA d in total value. The ratio
f(A)/g(A) is the cost per unit reduction in value. Cunningham defines the strength of
the network to be the minimum of this ratio taken over all subsets A

___
E whose removal

reduces the value of the network, i.e., such that g(A)> 0. This is a problem of the
form (4.3):

)t (A*)= min {)t (A)=f(A)/g(A)},
A_E,g(A)>O

which leads to a sequence of problems (4.4) that Cunningham calls attack problems:

z(Ak+, Ak) max {z(A, ,) =f(A)- )tg(A)}.
AE

Each such problem amounts to finding a minimum cut in an expanded network formed
by adding to G a sink and an arc(v, t) with capacity Akd for each v V-{s}. If
we solve the strength problem using Algorithm FP and use the algorithm of 2.3 to
compute minimum cuts for the generated parameter values, we obtain an algorithm
running in O(nm log (n2/m)) time; as Cunningham notes, there can be only. O(n)
iterations of Step 1. Alternatively, we can make use of his observation that (4.5) is
zero if and only if there is flow in the expanded network such that f(v, t)= Akd for
each v V. Equivalently, A(A*) is the largest value of A for which the minimum cut
is (V, {t}). That is, the strength problem is a perfect sharing problem, and it can be
solved in O(nm log (n2/m)) time as described in 4.1. Either method improves over
Cunningham’s method, which solves O(n) minimum cut problems, without making
use of their similarity.

Zero-one fractional programming. An important subclass of (4.3) is the problem
for which f(x)>-O and g(x)>0 are given polynomials defined for all x in S=
{0, 1}n {0}n as follows:

(4.5) f(x)= Y, ae I-I xi+ aixi,
PA iP i=1

(4.6) g(x)= bo l-I x+ i bx.
QB iO i=1

The sets A and B are given collections of nonempty nonsingleton subsets of { 1, , n},
ap >= 0 for each P A, and bo <= 0 for each Q B. Since f(x) >= 0 and g(x) > 0 for all
xe S, we have a_>-0 and b>0 for each i{1,..., n}. This problem was studied by
Picard and Queyranne [33]. For ease in stating time bounds we assume n O(IAI + IBI).

Algorithm FP leads to a sequence of problel’ns of the form (4.4) for increasing
values Ag -> 0 of A. Each such problem is an instance of the selection or provisioning
problem, characterized by Rhys [36] and Balinski [2] as a minimum cut problem on
a bipartite graph.

The entire sequence of these problems can be handled as a parametric minimum
cut problem of the kind studied in 2. We give two different formulations, one of
which works for the special case of B = (i.e., g(x) contains no nonlinear terms) and
the other of which works for the general case. All the subsequent applications we
consider fall into the case B .

If B =, we define a bipartite network G whose vertex set contains one vertex
for each set P e A, one vertex for each e {1,..., n}, and two additional vertices, a
source s and a sink t. There is an arc (s, v) of capacity ap for each vertex v corresponding
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to a set PeA, an arc(i, t) of capacity Abi-ai for every i{1,..., n}, and an arc(v, i)
of infinite capacity for every vertex corresponding to a set P A that has as one of
its elements. Observe that the capacities of all arcs into are nondecreasing functions
of A, and those of all other arcs are constant. The parametric preflow algorithm operates
on GR instead of G. For a given value of A, a minimum cut (X, ) in G corresponds
to a solution x to (4.4) defined by xi 1 if i X, x 0 if e X.

In the general case (B 0), it is convenient to assumef(x) > 0 for some x (otherwise
the solution to (4.3) is A(x)=0, attained for any x) and that Algorithm FP starts with
an x such that o> 0. Then, the entire sequence {Ak} is strictly positive. To solve (4.4)
we rewrite it as follows"

z(x*, A) max (f(x)/A -g(x)).
x55

We define the network G to have a vertex set consisting of one vertex for each
set P e A, one vertex for each set Q B, one vertex for each e { 1, , n}, and a source
s and a sink t. There is an arc (s, v) of capacity a,/h for each v corresponding to a
set P A, an arc (s, v) of capacity -bo for each v corresponding to a set Q e B, an
arc (v, i) of infinite capacity for each vertex v corresponding to a set P e A or Q B
that has as one of its elements, and an arc (i, t) of capacity bi-a/A for each
i {1,..., n}. The capacities of arcs out of s are nonincreasing functions of A and
those of arcs into are nondecreasing functions of A; the parametric preflow algorithm
operates on GR. Minimum cuts in G correspond to solutions exactly as described above.

Remark. This formulation differs from that in [33] because of the division by A.
The formulation of[33] gives a parametric minimum cut problem in which the capacities
of arcs out of the source and of arcs into the sink are nondecreasing functions of ,
to which the results of 2 do not apply.

The following analysis is valid for both of the above two cases. The nesting
property of minimum cuts (Lemma 2.4) implies that the number of iterations of Step
1 of Algorithm FP is O(n), a fact also observed by Picard and Queyranne [33]. To
state time bounds, let us denote by n’ and rn’ the number of vertices and edges,
respectively, in G; n’= n+IAI+IBI+2 and m’= n+la[+lBl+Zea IP]+Zo,_n IQI.
Algorithm FP, in combination with the parametric preflow algorithm of 2.3,
yields a time bound of O(n’m’log(n’/m)) [or O(nm’log(n:/m’+2))], improving
over the algorithms of Picard and Queyranne [33] and Gusfield, Martel, and
Fernandez-Baca [20].

Maximum-ratio closure problem. This problem was considered by Picard and
Queyranne [34] and independently by Lawler [25], who only considered acyclic graphs
(see the next application). The problem can be solved by a straightforward application
of Algorithm FP. Each problem in the sequence of problems (4.4) is a maximum-weight
closure problem. The maximum-weight closure problem (Picard [32]) is the generaliz-
ation to nonbipartite graphs of the selection or provisioning problem [2], [36] men-
tioned above.

These closure problems are defined formally as follows. Let G (V, E) be a
directed graph with vertex weights a of arbitrary sign. A subset U

_
V is a closure in

G if for each arc (v, w) E with v U we also have w U. A closure U* V is of
maximum weight if the sum of its vertex weights is maximum among all closures in
G. To compute a maximum-weight closure, construct the graph G* from G as follows.
Add a source s and a sink to G. Create an arc (s, v) of capacity a and an arc (v, t)
of zero capacity for each v V. Assign infinite capacity to all arcs in E. A minimum
cut (X, X) of G* gives the desired closure U*= X-{s}.
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Now let a,->_ 0 and by> 0 be given weights on the vertices of G (V, E). The
maximum-ratio closure problem is to find a closure U* that maximizes the ratio
a( U)/b(U) over all nonempty closures U

_
V. To compute a maximum-ratio closure,

Picard and Queyranne [34] suggest the use of Algorithm FP. This requires the solution
of a sequence of O(n) maximum-weight closure problems, each of which is a minimum-
cut problem. Thus an O(nZm log (n2/m))-time algorithm results. Lawler’s algorithm
uses binary search and runs in O(knm log (n2/m)) time, where k-
log (max {n, amax, bmax}), assuming integer weights.

We can solve the entire sequence of these minimum-cut problems by the parametric
preflow algorithm of 2.3 as follows. Modify (3* so that for each vertex v V there
is an arc (s, v) of capacity av-Abv and an arc (v, t) of capacity zero. All other arcs
have infinite capacity. We start with U= Vw{s}; or, equivalently, with a sufficiently
small value of A so that the minimum cut is ({s} w V, t}). Such a value is Ao mini ai/
The capacities of arcs out of the source are nonincreasing functions of the parameter,
and the parameter values are given on-line in increasing order. The parametric preflow
algorithm operates on (G*) R and runs in O(nm log (n2/m)) time, improving the bound
of Picard and Queyranne by a factor of n and that of Lawler by a factor of k.

Remark. Negative arc capacities in the various minimum-cut problems can be
made nonnegative using the transformation suggested in 2.5. In the minimum-ratio
closure problem, it suffices to assign a capacity of max {0, a- Abv} to each arc (s, v)
and a capacity of max {0, Ab- a} to each arc (v, t).

A job-sequencing application. Lawler [25] applied his algorithm to a problem
studied by Sidney [39] and others: there are n jobs to be scheduled for processing on
a single machine subject to a partial order given as an acyclic graph G (V, E), where
V is the set of jobs. Each job v has a processing time a and a "weight" b > 0 that
describes its importance or some measure of profit. Let the completion time of job v
as determined by a given feasible sequence be C. It is required to find a sequence
that minimizes v v bC. This problem is NP-complete for an arbitrary partial order
even when all a or all by [25]. Sidney offered the following decomposition
procedure. First find a maximum-ratio closure U1 such that ]U1] is minimum. Remove
the subgraph induced by U1 from G, find a maximum-ratio closure U2 of the reduced
graph, and repeat this process until the entire vertex set is partitioned. Sidney and
Lawler call closures initial sets of V. Once such a decomposition is found, an optimal
schedule can be computed by finding an optimal schedule for each closure, for example,
by a branch-and-bound method, and then concatenating the solutions. The algorithm
described above can be used to find each closure. The overall time bound depends on
the size of each closure. (Our algorithm will give closures of minimum cardinality,
since the algorithm is applied to the graph (G*)R; see 2.5.)

Maximum-density subgraph. A special case ofthe fractional programming problem
(4.3) is that of finding a nonempty subgraph of maximum density in an undirected
graph G V, E) with n vertices and m edges. The density of a subgraph of G induced
by a subset of vertices V’_ V is the number of its edges divided by the number of its
vertices, For this application, (4.5) and (4.6) have the simpler forms f(x)= xAx and
g(x) ex, where e is the vector of all ones, A is the vertex-vertex incidence matrix of
G, and xi if vertex i V’, and xi 0 otherwise. Algorithm FP, which yields x* and
the maximum density A*, can be used to compute a maximum-density subgraph of G.
It is not necessary to construct a bipartite network and solve minimum-cut problems
on it. We can merely modify (3 by specializing the construction of [35]. Replace each
edge of (3 by two oppositely directed arcs of unit capacity, add a source s and a sink
t, and create an arc (s, v) of capacity 6 A and an arc (v, t) of zero capacity for each
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v V, where 6 is one-half the degree of vertex v in G. We can also allow weights on
the edges and vertices. The resulting algorithm runs in O(nm log (n2/m)) time. This
bound is better than that of Picard and Queyranne [34] and of Goldberg [12] by a
factor of log n; Goldberg’s bound is valid only for the unweighted version of the
problem.

The integer [A*] is known as the pseudoarboricity of G: the minimum number of
edge-disjoint pseudoforests into which G can be decomposed. (A pseudojbrest is a
subgraph each of whose connected components is a tree or a tree plus an edge.) If in
the above network the capacities of arcs (s, v) and (v, t) for each v V are increased
by m, the minimum cut and maximum flow for A A* can be used to construct a
decomposition of G into [A*] pseudoforests by the procedure suggested in [33].

4.3. Parametric zero-one polynomial functions. We consider the problem of com-
puting a minimum of the function

(4.7) z(A) max {f(x)-A(dx-b)}
xS

where S= {0, 1}", f(x) is a polynomial in zero-one variables defined by (4.5), and
di> 0, { 1, , n }, such that Yi d > b > 0.

The function z(A) differs from the corresponding function (4.4) that arises in the
zero-one fractional programming application of 4.2 because of the term Ab in (4.7).
The function z(A) is piecewise linear and convex, and it has at most n-1 linear
segments and n- 2 breakpoints. The network formulation of (4.7) is as defined for the
zero-one fractional programming application. The breakpoints of z(A) coincide with
those of the min-cut capacity function K(A) for this network. In general, no minimum
of z(A) coincides with a maximum of K(A). To compute a minimum of z(A), we can
use the algorithm of 3.2 for finding a maximum of r(A), modified to use the graph
of z(A) instead of the graph of (A) to guide the search. We have z(0)= YP-:A ai, +
=1 a>0 (for x e). The slope of the leftmost line segment of z()t) is b-de <0,
and the slope of the rightmost line segment is b>0. The algorithm consists
of the following.three steps and finds a minimum of z(Z) in O(n’m’log(n’2/m’))
[or O(nm’log (n2/m’+2))] time. A cut (X, 3) in this network defines a solution x by
x 1 if vertex X, and xi 0 otherwise.

Step O. Start with initial values AI=0, x=e, z(A)=f(x), and h=b-dx.
Choose A3 sufficiently large so that x3=0; let z(A3)= A3b and/33 b.

Step 1. Compute Az=(Z(A3)-z(A))/(-3), pass A2 to two invocations, I and
D, of the parametric preflow algorithm, and run them concurrently. If invocation !
finds a minimum cut (X, 3) first, suspend invocation D and go to Step 2 (the other
case is symmetric). Compute 2 b dx2, the slope of the line segment of z(Z) derived
from this cut.

Step 2. If/32=0, stop: /*---/2" Otherwise, if/32>0, replace A3 by Z2, back up
invocation D to its state before it began processing Az, and go to Step 1. Otherwise,
go to Step 3.

Step 3 (/32< 0). Finish the invocation D for A2. This produces a minimum cut
(X(’, 3), not necessarily the same as (X, 32). If 2 0, stop" A * Z.. Otherwise,
replace A1 by A2, back up invocation I to its state before processing A2, and go to Step 1.

We now describe an application of this algorithm.
Knapsack-constrained provisioning problems. We consider the following provision-

ing problem with a knapsack constraint that limits the weight of the selected items:

(4.8) z(x*) max {f(x) dx <-_ b},
x{0,1}"
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where f(x) is given by (4.5), d is a positive n-vector of item weights and b is a scalar,
the knapsack size, such that iv di> b > 0, V {1,..., n}. Thus, in addition to the
benefit a obtained for including an individual item i V in the knapsack, the model
allows the possibility of an additional reward of a, _-> 0 for including all of the items
that comprise a given subset P e A. The (linear) knapsack problem is a special case of
(4.8) in which all subsets P A are singletons.

This NP-complete problem was suggested by Lawler [24]. Because of its many
practical applications there is interest in the fast computation of bounds on z(x*). To
this end we consider the Lagrangian function for (4.8):

L(x,A)=f(x)-A(dx-b) for A -> O,

which has a finite infimum over x {0, 1} n. For each A _-> 0, we define the dualfunction:

max L(x, ).
x{0,1}"

(A) is a piecewise linear convex function of A, having at most n- 1 line segments
and n- 2 breakpoints. We wish to solve the following Lagrangian dual problem"

(A*) min (A).

This value is an upper bound on z(x*) and can be used to construct heuristics and
search procedures for computing an approximate or exact solution to (4.8). It can be
evaluated by the above algorithm in O(n’m’ 10g (n’2/m’)) [or O(nm’ log (n2/m’+ 2))]
time.

A special case of considerable practical importance is the quadratic knapsack
problem, for which f(x) xAx, where A [ao] is a nonnegative real symmetric matrix
having no null rows. For this case, Gallo, Hammer, and Simeone [11] proposed an
O(n log n)-time algorithm for creating a class of "upper planes" bounding z(x).
Chaillou, Hansen, and Mahieu [4] showed that its Lagrangian dual can be solved as
a sequence of O(n) minimum-cut problems in O(nZrn log (n:/rn)) time.

The problem of evaluating (A) for a fixed A can be formulated as a minimum-cut
problem using a graph construction similar to that described earlier for the maximum-
density subgraph problem, thereby avoiding the use of a bipartite graph. Let G V, E)
be a directed graph with vertex set V={1,..., n}, arc set E ={(v,.w): avw>O, v,
w V}, and arc weights a(v, w) avw. We add to G a source s, a sink t, and an arc (s, v)
of capacity a-Ad and an arc (v, t) of zero capacity for each v V, where a
Ywvaw. Using this network formulation, the above algorithm computes the
Lagrangian relaxation of a quadratic knapsack problem in O(nrn log (nZ/m)) time.

4.4. Miscellaneous applications. Our last two applications both use the algorithm
developed in 3.3 for computing the min-cut capacity function K(A) of a parametric
minimum-cut problem. The first application is to a problem of computing critical load
factors for modules of a distributed program in a two-processor distributed system
[43]. The second application is to a problem of record segmentation between primary
and secondary memory in large shared databases [9].

Critical load factors in two-processor distributed systems. Stone [43] modeled this
problem by a graph G V, E) in which V { 1, , n} is the set of program modules
and / is the set of pairs of modules that need to communicate with each other. The
capacity of an arc (v, w)/ specifies the communication cost between modules v and
w (it is infinity if the modules must be coresident). The two processors, say A and B,
are represented by the source s and the sink t, respectively, that are appended to the
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network. There is an arc (s, v) of capacity Ab > 0, where b is the given cost of executing
program module v on processor B. There is an arc (v, t) of capacity (1-A)a>0,
where a is the given cost of executing program module v on processor A.

The parameter [0, is the fraction of the time processor A that delivers useful
cycles, commonly known as the load factor. For a fixed value of A, a minimum cut
(X, X) in this network gives an optimum assignment of modules to processors. For
A =0, a minimum cut (X, X) with IXI minimum has X {s}, i.e., all modules are
assigned to B. For A a minimum cut (X, ) with [XI maximum has {t}, i.e.,
all modules are assigned to A. The objective is to find the best assignment of program
modules to processors for various values of A, or to generate these assignments for
each breakpoint of the min-cut capacity function K(A). Lemma 2.4 implies that, at
each breakpoint, one or more modules shift from one side of the cut to the other. By
listing, for each module, the breakpoint at which it shifts from one side of the minimum
cut to the other, one can determine what Stone calls the critical load factor for each
module. The operating system can then use this list of critical load factors to do
dynamic assignment of modules to processors. The algorithm of 3.3 will compute
the critical load factors of the modules in O(nm’ log ((n + 2)2/ m’)) time, where
m’= rn + 2n. Stone does not actually propose an algorithm for this computation.

Record segmentation in large shared databases. Eisner and Severance [9] have
stated a model for segmenting records in a large shared database between primary and
secondary memory. Such a database consists of a set of data items S {1,..., N}
and serves a set of users T {1, , n}. Each user w T retrieves a nonempty subset
Sw
_
S of data items and receives a "value" (satisfaction) of bw> 0 whenever all of

the items in Sw reside in primary memory. The cost of transporting and storing a data
item v S in primary memory is Aa > 0, where a > 0. The scalar A > 0 is a conversion
factor such that A units of transportation and storage costs equals one unit of user
value. The objective is to find a segmentation that minimizes the total cost minus user
satisfaction.

For a fixed value of A the problem can be formulated as a selection or provisioning
problem [2], [36] as follows. Construct a bipartite graph having the data items S as
its source part and the users T as its sink part. Construct an arc (v, w), v S, w T of
infinite capacity if data item v belongs to the set of data items Sw retrieved by user w.
Create a supersource s and a supersink t, and append an arc (s, v) of capacity Aa for
each v S and an arc (w, t) of capacity bw for each w T. A min-cut (X, X) separating
s and in this network necessarily partitions S and T into (S, S) and (T, T),
respectively. It is easy to see that

c(X,X)= min A a+ ) bw
sx’rx,g.u ’x .gx w’rx

The value of A plays an important role in this linear performance measure, and it
depends on the system load. In practice it is necessary to create a list of primary storage
assignments for all critical values of A. The database inquiry program can then select
and implement the best assignment at appropriate times. This table consists of all the
breakpoints of the min-cut capacity function K(A) and, for each data item and user,
the parameter value at which it moves from one side to the other of a minimum cut.
This information can be computed by the breakpoint algorithm of 3.3 in O((n + N)rn
log ((n+ N)2/rn)) [or O(min {n, N}m log ((min {n, N})Z/m+2))] time. The algorithm
proposed by Eisner and Severance [9] for solving the parametric problem requires the
solution of O(min {n, N}) minimum-cut problems. Our algorithm improves their
method by a factor of min { n, N}. They also consider a nonlinear performance measure,
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for which an algorithm such as that in 4.3 can be used to derive bounds on an
optimum solution. This bounding method gives an approximate solution, and the
method can be used in a branch-and-bound algorithm to give an exact solution.

5. Remarks. We have shown how to extend the maximum-flow algorithm of
Goldberg and Tarjan to solve a sequence of O(n) related maximum-flow problems at
a cost of only a constant factor over the time to solve one problem. The problems
must be instances ofthe same parametric maximum flow problem and the corresponding
parameter values must either consistently increase or consistently decrease. We have
further shown how to extend the algorithm to generate the entire min-cut capacity
function of such a parametric problem, assuming that the arc capacities are linear
functions of the parameter.

We have applied our algorithms to solve a variety of combinatorial optimization
problems, deriving improved time bounds for each of the problems considered. Our
list of applications is meant to be illustrative, not exhaustive. We expect that more
applications will be discovered. Although we have only considered a special form of
the parametric maximum-flow problem, most of the parametric maximum-flow prob-
lems we have encountered in the literature can be put into this special form.

We have discussed only sequential algorithms in this paper, but our ideas extend
to the realm of parallel algorithms. Specifically, the preflow algorithm has a parallel
version that runs in O(n 2 log n) time using n processors on a parallel random-access
machine. This version extends to the parametric preflow algorithm in exactly the same
way as the sequential algorithm. Thus we obtain O(n2 log n)-time, n-processor parallel
algorithms for the problems considered in 2 and 3 and for each of the applications
in 4, where n is the number of vertices in the network.

There are a number of remaining open problems. One is to find additional
applications. Our methods might extend to parametric maximum-flow problems that
do not have the structure considered in this paper. Such problems include computing
the arboricity of a graph [30], [33], computing properties of activity-selection games
[45], and computing processor assignment for a two-processor system in which the
processor speeds vary independently [17]. (This last problem is a two-parameter
generalization of Stone’s model [43] discussed in 4.4.) Gusfield [19] has recently
found a new application, to a problem considered by Cunningham [5], of solving the
sequence of attack problems involved in the computation of the strength of an undirec-
ted graph. (This problem is related to the strength problem considered in 4.2 but is
harder.)

Another area for research is investigating whether an arbitrary maximum-flow
algorithm can be extended to the parametric problem at a cost of only a constant
factor in running time. One algorithm that we have unsuccessfully tried to extend in
this way is that of Ahuja and Orlin [1]. Working in this direction, Martel [26] has
recently discovered how to modify an algorithm based on the approach of Dinic [6]
so that it solves the parametric problem with only a constant factor increase in running
time.
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LOWER BOUNDS FOR ACCESSING BINARY SEARCH TREES
WITH ROTATIONS*

ROBERT WILBERt

Abstract. Two methods are given for obtaining lower bounds on the cost of accessing a sequence of
nodes in a symmetrically ordered binary search tree, in a model Where rotations can be done on the tree
and the entire sequence is known before accessing begins (but the accesses must be done in the order given).
For example, it can be proven that the bit-reversal permutation requires O(n log n) time to access in this
model. It is also shown that the expected cost of accessing random sequences in this model is the same as
it is for the case where the tree is static.

Key words, data structures, binary search tree, rotation, lower bound
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1. Introduction. A binary search tree is a binary tree whose nodes are distinct
members of some totally ordered set and for which the nodes are in symmetric order,
i.e., each node is greater than all nodes in its left subtree and less than all nodes in
its right subtree. Binary search trees can efficiently support such operations as insert,
find, delete, find minimum, find maximum, split, and join, A variety of algorithms for
maintaining binary search trees have been proposed that provide some combination
of these operations [1]-[31, [5]-[9]. Most of these algorithms use rotations to modify
binary trees. If node u is the left child of node v, then u is rotated over v by making
v the new right child of u; this makes the old right child of u (if there is one) the new
left child of v, and the old parent of v (if there is one) the new parent of u. The mirror
image operation applies if u is the right child of v. A rotation preserves the symmetric
order of the tree.

Here we consider the following problem. Given an initial binary search tree To,
and a sequence s of nodes in To, what is the minimum time required to access the
nodes in s (in the order given) when we are allowed to do rotations on the tree? We
assume that the entire sequence s is known before we start (i.e., the algorithm is
"offline"). The cost of assessing a node at depth d (where the root is at depth zero)
is d + 1, and the cost of a rotation is 1. One easy observation is that by losing at most
a factor of 2, we may assume that we always access a node by rotating it to the root
in some way. For, given an arbitrary rotation algorithm, we may simulate as follows.
Whenever the algorithm accesses a node at depth d (at cost d + 1), we instead do d
rotations to bring the node to the root, access it there (at cost 1), and then do the
reverse sequence of d rotations to bring the node back to where it was, for a total cost
of 2d + 1. So without loss of generality we will consider only those, algorithms that
access a node by rotating it to the root. Such an algorithm shall be called a standard
search algorithm. We let X(s, To) denote the minimum cost of accessing the nodes in
sequence s, starting from tree To, by a standard search algorithm. We are concerned
with finding lower bounds for X(s, To).

This problem is motivated by a conjecture of Sleator and Tarjan concerning their
splay algorithm [9]. The splay algorithm is an online algorithm for maintaining binary

Received by the editors March 11, 1987; accepted for publication (in revised form) March 17, 1988.
A preliminary version of this paper appeared in the Proceedings of the 27th Annual EEE Symposium on
Foundations of Computer Science, 1986, pp. 61-70.

t AT&T Bell Laboratories, Murray Hill, New Jersey 07974.

56



ACCESSING BINARY SEARCH TREES 57

search trees using rotations in a way that has provably good amortized behavior.
Although any single operation on an n node tree can take O(n) time, Sleator and
Tarjan were able to prove the following surprising fact.

THEOREM 0 (Sleator and Tarjan). Let V be a set of n keys. Let s be a sequence qf
keys in V and let be the minimum time required to access s on any static tree (i.e., a
tree that is fixed for sequence s and cannot be modified as the sequence is accessed). Let
To be an arbitrary binary search tree whose nodes are the keys in V. Then the time required
by the splay algorithm to access s starting from tree To is O( + n).

Thus the splay algorithm does essentially as well as the best static algorithm, even
though the splay algorithm is an online algorithm. Sleator and Tarjan have conjectured
that their splay algorithm does as well as the best offline dynamic binary tree algorithm
(an algorithm that does rotations and is allowed to pick its initial tree after seeing the
sequence). That is, for any sequence s and for any initial tree To they conjecture that
the time used by the splay algorithm to access sequence s is O(A(s, To)+ n).

This "dynamic optimality conjecture" implies that, for any initial n node tree, the
splay algorithm is able to access the nodes of the tree in sorted order in O(n) time.
This corollary ofthe conjecture has been proved by Tarjan 11 ]. Even this very restricted
case required a difficult proof.

In order to prove (or disprove) the dynamic optimality conjecture, it may be useful
to have bounds on X(s, To). Here two methods for getting lower bounds on X(s, To)
are described. The first method, described in the next section, requires the use of an
auxiliary structure called a lower bound tree. The bound obtained is a function of the
lower bound tree as well as of s and To. This method can achieve tight bounds for
some particular sequences, such as a (R)(n log n) bound for the bit reversal permutation,
and can also be used to get tight expected time bounds for sequences generated at
random. However, because of the somewhat artificial introduction of a lower bound
tree, the method seems likely not to provide tight bounds in general.

Culik and Wood [4] showed that the number of rotations needed to convert one
n node symmetrically ordered binary tree into another is at most 2n 2. Sleator, Tarjan,
and Thurston [10] proved that the bound is at most 2n--6, and that this is tight for
infinitely many n. Thus A(s, To) does not have a strong dependence on To; the choice
of initial tree cannot change the cost by more than 2n-6. The second lower bound
method, given in 3, makes use of this--not only is there no dependence upon a lower
bound tree, there is no dependence upon the initial tree To. The second lower bound
method can also be used to get the O(n log n) bound for accessing the bit reversal
permutation (although with a worse constant factor than the first method yields). It
seems more likely to give tight bounds for particular sequences than the first method,
although it has not proven to be as suitable for analyzing the expected cost of accessing
a random sequence.

2. The first lower bound. For a sequence of integers s and integer we let s +
denote the sequence obtained by adding to each element of s. If s is an integer
sequence and x y, then sl denotes the subsequence of s consisting of the elements
in the interval Ix, y].

We will assume without loss of generality that the nodes of search trees are
consecutive integers. If u is a child of v the rotation of u over v is denoted by the
pair (u, v). The action of a standard search algorithm on some particular access sequence
and some particular initial search tree is completely described by the sequence of
rotations generated by the algorithm. If R is a sequence of rotations and x_-< y, then
R[Y denotes the subsequence of R consisting of the pairs in [x, y]2.
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Let T be a search tree whose nodes are the integers in [j, k], for some j_-< k. Then
a lower bound tree for T is a symmetrically ordered binary tree with 2(k-j)+ 1 nodes
whose leaves are the integers j, j+ 1,..., k and whose internal nodes are the half-

1/2ointegers j +1/2, j +5, ., k- We define an integer function Al(S, ro Y) such that for
any search tree with consecutive integer nodes To, any sequence s of nodes in To, and
any lower bound tree Y for To, we have X(s, To) >-- A(s, To, Y). For fixed s and To the
function A will have different values for different lower bound trees Y; this lower
bound method requires judgement in choosing a lower bound tree that will maximize
the value of A.

We now describe how to compute A(s, To, Y). Let m be the length of sequence
s and let U be the set of internal nodes of Y. For each node u U we compute its
score, A (u), as follows. Let and r be the leftmost and rightmost leaf nodes, respectively,
in the subtree of Y with root u. Let r’= s] and let h be the length of or’. Let v be the
lowest common ancestor in To of the nodes in [1, r] (we always have v [l, r]). Let
sequence r ro, cry, , O’h, where ro v and, for e 1, h ], ri rl. Say that an integer
i [1, h] is a u-transition if ri_l < u and o’; > u or if o_ > u and o- < u. We define
A(u)=l{i[1 h]:i is a u-transition}]. The function A is computed as

Al(S, To, Y) m + 2 A(u).
uGU

THEOREM 1. Let To be a search tree with consecutive integer nodes, let Y be a lower
bound tree for To, and let s be a sequence of nodes in To. Then X(S, To)>--A(s, To, Y).

Before we can prove Theorem we need to define a kind of generalized subtree
operation. Let T be a search tree with integer nodes, and let V be the set of nodes in
T. For any node v 6 V, the left inner path of v is the path that starts at the left child of
v and proceeds downward along the right child links until a node is reached that has
no right child. If v has no left child its left inner path is the null path. Likewise, the
right inner path of v is the path that starts at the right child of v and proceeds along
the left links. Let x <_- y. The restriction of T to the interval [x, y], denoted TlY, is defined
as follows. The set of nodes of TlY is V’= VVl[x, y]. Let v V’ and let P be v’s left
inner path in T. If P has no nodes in V’ then v has no left child in TlY. Otherwise
the first node in P that is in V’ is the left child of v in TlY. The right child of v in
is defined similarly--it is the first node in V’ along the right inner path of v in T, if
such a node exists, and otherwise v has no right child in Tl. Clearly TlY is a
symmetrically ordered binary tree, and its root is the lowest common ancestor in T of
the nodes in V’. Also, if u is a child of v in T and u, v V’, then u is a child of v in

TlY. More generally, if u is a descendent of v in T and u, v V’, then u is a descendent
of v in T] y

LEMMA 2. Let T1 be a search tree with integer nodes, let node u be a child of node
v in T, and let T2 be the tree that results when u is rotated over v in T1. Let x <-y. If
either u or v is not in the interval [x, y] then TIYx T2IYx On the other hand, if u and v
are both in [x, y] then TzIYx is the tree obtained by rotating u over v in TIY.

Proof Let T’l TIYx and T T2IYx. Consider the case where at least one of u or
v is not in [x, y]. These are four subcases: u is the left child of v in T and u < x, u
is the left child of v and v > y, u is the right child of v and u > y, and u, is the right
child of v and v < x. The fourth case is the mirror image of the second case, the second
case is the time reversal of the third case, and the third case is the mirror image of
the first case, so we need consider only the first case, where u is the left child of v in
T and u < x. Let w be any node in [x, y]. We must show that the children of w in T
are the same as in T. Since u < x and w _-> x node u cannot be in the right subtree of
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W in T. Since v is the parent of u, v cannot be in the right subtree of w either. Thus
the rotation of u over v has no effect on the right subtree of w, so the right child of
w in T is the same as the right child of w in T. Let P be the left inner path of w. If
w v and v is not in P then P is unaffected by the rotation, so the left child of w in

T is the same as it is in T. If v is in P then the effect of the rotation is to insert u
into P, and if v w the effect is to remove u from P, but since u Ix, y] this does not
change the left child of w in the restricted tree. Thus the rotation does not change the
restricted tree.
The case where u and v are both in [x, y] is just as easy and it is left to the reader. [3

Proof of Theorem 1. Let m be the length of sequence s. After a node has been
rotated to the root of the search tree the cost of accessing it is 1, so the access cost
for sequence s, exclusive of the cost of all rotations, is m. Therefore it suffices to show
that Y,u A(u), where U is the set of internal nodes of Y, is a lower bound on the
number of rotations that must be carried out by any standard search algorithm.

Let n be the number of nodes in the search tree. We use induction on n. If n 1
then there is only one possible lower bound treemthe tree with a single leaf node and
no internal nodes. In that case Y.,u A(u) =0 and there is nothing to prove. So assume
n -> 2. Let R be the sequence of rotations generated by some standard search algorithm
that accesses the sequence s starting from tree To. Let r be the length of R and, for
an integer [1, r], let T, be the tree that results from applying Rt to T,_. Let w be
the root of Y and let Y and y2 be the left and right subtrees, respectively, of w. Let
R= RIW and R2= RIw% Let M be the subsequence of R obtained by deleting those
rotations that are in R or R2. The sequences R, R2, and M are disjoint, so we have

r-IR’I+IR2I+IMI.
For 1, 2 let U be the set of internal nodes of i. Let s s w and let s Slw.

lvFor t [0, r], let Tit Tt[W_ and let T,2= T, Let T’, T ..., Tr, be the sequence
of search trees obtained by deleting from the sequence T, T,..., Tr those trees T
such that T T_. By Lemma 2, T’ can be derived from 1,Tt_ by applying rotation
R,, for all e [1, r]. Also, for all e [0, r] if the root v of T, is less than w then v is
also the root of T. Therefore R is a sequence of rotations that, starting from T,
brings to the root the successive nodes in s . Tree Y is a lower bound tree for T,
and the scores assigned to its internal nodes are precisely the scores obtained in the
computation of A(s, T,Y). So by the induction hypothesis, [Rll>-uuiA(u).
Similarly, R2 is a sequence of rotations that, starting from T, brings to the root the
successive nodes in s2, and Y is a lower bound tree for T. So ]R2l>-_.,uu2 A(u).

Let tr be the sequence obtained by concatenating the root of To with s. Let integer
be a w-transition. Without loss of generality, we may assume that tr_ < w and tr > w.

After the (i- 1)th access, tr_ is at the root of the search tree and after the ith access,
tr is at the root. Thus between the (i-1)th and ith accesses there must be a time
such that the root of T,_ is less than w and the root of T, is greater than w. Let y be
the root of T,_ and z be the root of 7’,. We must have R, (z, y) M. Thus there is
at least one rotation in M for every w-transition so ]MI_->A(w).

Putting it all together, we have

r-IR’I/IRI/IMI>--.u’ A(u)/. A (u)/ A (w)-- .uZ A(u). [3

As an application of Theorem 1, we show that the bit reversal permutation on n
nodes requires O(n log n) time to access. Let k be a nonnegative integer and let
i[0,2k-1]. If the k-binary representation of is bk-bk-’’" bbo then the k-bit
reversal of i, denoted by brk(i), is the integer whose k-bit binary representation is
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bobs’" bk-2bk-. The bit reversal permutation on n 2k nodes is the sequence Bk--

brk(0), brk(1),’’’, brk(n-- 1).
COROLLARY 3. Let k be a nonnegative integer and let n 2 k. Let To be any search

tree with nodes O, 1, , n 1. Then x(Bk, To) >= n log n + 1.
(Note. All logarithms in this paper are base 2.)
PROOF. Let Y be the balanced lower bound tree for To. That is, the root of Y is

w =n -1/2 and in general at depth d [0, k- 1] the internal nodes are (2i- 1)2-d+)n
d, for l_-<i=<2. Let U be the set of internal nodes of Y and let A(u) be the score

assigned to a node u U for sequence B k and initial tree To. By Theorem 1, we have
x(Bk, To)>-A(Bk, To, Y)= n+Y,,c A(u). We show by induction that Y,,t A(u) ->-
n log n-n+ 1.

If k 0 then n log n-n + 1 0 and there is nothing to prove. Suppose k >_- 1. Let
Y and y2 be the left and right subtree of Y, respectively, and let U and U2 be the
sets of their internal nodes. The elements of sequence Bk are alternatively less than w
and greater than w. Thus, regardless of the choice of To, we have A (w)-> n- 1. We
have Bk]woo-- Bk-1 and Bk]w Bk- / 2k-1. Also, Y1 and Y2 are balanced lower bound
trees, so by induction Y, t; A (u)>1n log (1/2n) -n + 1, for 1, 2. Thus

A(u)= A(u)+ A(u)+A(w)>=nlogn-n+l.
U U U

We now consider the expected cost of accessing a sequence generated at random.
If x is a random variable we denote the expected value of x by E(x). For i[1, n]
let Pi--> 0 and let i=l Pi 1. Suppose sequence s is generated by choosing m integers
in [1, n] independently and at random, where the probability that k is chosen is Pk.
If we construct the optimum static tree for the given probabilities the expected cost
of" accessing s by an algorithm that does not change the tree is (R)(m(l/__

p log (1/pi))) [6]. We now show that the same expected cost applies to offline
algorithms that do rotations.

THEOREM 4. Let sequence s be generated in the manner described above. Then for
any initial tree To we have E(X(s, To))= (R)(m(1 /Z= P log (1/p))).

Proofi The upper bound follows from the bound for the static case. For the lower
bound it is convenient to assume that p > 0 for all i. If Pk- 0 for some k then that
integer will never be selected and it does not contribute to the sum of the p log (1/pi)s,
so it can be ignored. We use a lower bound tree Y that is balanced with respect to
probabilities. That is, for each internal node u ofY we make the probability of accessing
a leaf in the left subtree of u as close as possible to the probability of accessing a leaf
in the right subtree of u. More precisely, a probability-balanced tree with leaves j
through k is constructed recursively as follows (Y is constructed by applying this
procedure to leaves through n). If j- k then the tree has the single leaf node j and
we are done. Otherwise, normahze the probabdtes by setting P-i :Pi and, for

)
c=J1

t[j,k], p=p/P. Let e be the least nteger such that Y__2p=. If i= p+p<,
then set b- c, otherwise set b c-1. The root of the tree is u b +1/2. The left subtree
of u is the probability-balanced tree for leaves j through b, and the right subtree of u
is the probability-balanced tree for leaves b + 1 through k. The assumption that p > 0
for all ensures that the sets of leaves of the left and right subtrees of u are nonempty.
The integer c is called the center leaf of u.

Let U be the set of internal nodes of Y. We modify the accounting for the lower
bound as follows. For u U, let a(u) be the number of times the center leaf of u
occurs in sequence s. The modified score of u is A’(u)= A(u)+1/2c(u). Each leaf node
is the center leaf of at most two internal nodes, so ,t a(u) -<_ 2m. Thus A(s, To, Y)
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Suppose we step through the successive elements of s, on the ith step computing
the modified scores of the internal nodes on the basis of To and the subsequence
s, s2,’’ ", si. For u U let ,’i(u) be the increase in ,’(u) due to step i. Let Ai(u) be
the increase in (u), and let ai(u) be the increase in a(u). Let the leftmost leaf in the
subtree with root u be lu and let the rightmost leaf be ru. Let ql u=<<u P and let
qz ,<. p. Let P q + q be the probability that s is a leaf of the subtree with
root u. For k= 1,2 let q=q/P. We have E(A(u))=Pr, where r is the conditional
probability that is a u-transition, given that s[l,, r,]. If the last node accessed
under u was in u’s left subtree then r=q, and if it was in u’s right subtree
then r q’. (If there was no node previously accessed under u then r is either q
or q, depending upon whether the lowest common ancestor of nodes through
r in To is less than or greater than u.) In any case rmin (q, q). Let e be the
center leaf of u, and let p’ =p/P be the conditional probability that s e, given
that s[l,,r]. We have E(a(u))=Pp’. Thus E(’i(u))=E((u))+E((u))
P(min (q, q)+p).

By the construction of Y, we always have min (q, q)+p So E(A(u))P.
Summing over all m elements of s, we have E (A’(u)) mP. Thus

E(A,(s, To, V)) . E(a’(u))=> . p Zdp,
U j= j=l

where d is the number of internal nodes along the path from the root of Y to leaf j.
As is easily shown by induction, j= dpj = p log (1/p), for any binary tree

with n leaves in which the internal path length of leaf j is d (see, for example, Knuth
[6, p. 445]). So E(A(s, To, Y))m=plog(1/p). Also, we always have

A (s, To, Y) m. So, by Theorem 1,

plog(1/p)((s, To)) (A(s, T0, Y)) >max

i=1

3. Te see ler. One problem with the lower bound of the previous
section is that it requires picking a good lower bound tree. For an initial tree with n
nodes and an access sequence of length m the optimum lower bound tree (i.e., the
one that gives the largest bound) can be found in time O(mn3) by dynamic program-
ming, since if a lower bound tree with root w is optimal for sequence s its left subtree
is optimal for sequences and its right subtree is optimal for sequence sl. However,
if we hope to prove that an oine search algorithm is optimal by showing that the
time it takes to access a sequence matches some known lower bound then the dynamic
programming technique is not very helpfulit is very dicult to get a grip on how
the lower bound that comes out relates to the access sequence. Also, there is good
reason to believe that even the optimal lower bound tree does not in general give a
good bound. For a 10ng sequence may have an access pattern that varies widely from
one section of the sequence to another, so that no single lower bound tree works very
well.

In this section an alternative way of computing a lower bound for (s, To) is
described. It does not depend upon a lower bound tree (or even upon To) and seems
to be better able to handle shifting access patterns.

Let s be a sequence of length m. We describe below a procedure for computing,
for each i[1, m], a quantity (i), called the score of access i. The new lower bound
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is defined as

A2(s)= m+ 2 t(i).
i=1

When K(i)> 0 the procedure for computing K(i) also determines the inside accesses

of i, hi, b2, bK(i), the inside nodes of i, vj Sbj, forj 6 [1, (i)], the crossing accesses

of i, Cl, c2,. cK(i)+l, and the crossing nodes of i, wj=scj, forj [1, n(i)+ 1].
A formal procedure for computing the score of i, together with its inside and

crossing accesses, is shown in Fig. 1. Here we give an informal description of the
procedure. We find the inside and crossing accesses of by working backward in time
from access i. The first crossing access, c, is simply the access prior to access i, namely
i-1. The corresponding crossing node is wl Sc, si-1. The second crossing access,
c, is found by going backward in time from Cl until we reach an access to a node on
the side of si opposite from wl. That is, if wl > si then c is the latest access prior to

c to a node less than or equal to s, and if w < s it is the latest access prior to cl to
a node greater than or equal to s. The corresponding crossing node is w sc2. Assume
without loss of generality that w < s so that w >-si. Once the second crossing access
has been found we can determine the first inside node, vl. It is the greatest node less
than s accessed after c2 but before (or at) access cl. The first inside access, bl, is the
access to vl within this time interval (if vl has been accessed more than once within
the interval bl is the latest such access). So we have at this point cz < bl -< cl < and

wl -< Vl < s _-< w. If w si, we are done; otherwise we proceed with the computation
of c3. The third crossing access, c3, is the latest access prior to c2 to a node between

procedure compute-kappa(s, i)
if then begin K(i) O; quit end;
c 1; w Si_l"

if w < s then Vo +oo else Vo
/*-1;
loop

case

wl- si: begin K(i) 1-1; quit end;
W Si

begin

if Q= then begin (i) 1-1; quit end;
c1+ max Q;
Wl+ Scl+l
v- max {s:j(c+,, c] and s <s};
b max {j (c,+, c]:s=v};
end

W > S

begin
Q {j e 1, ct) s
if Q= then begin (i)-l-1; quit end;
C+l max Q;
Wl+ Scl+l"
v+-min{s:j(c+, c] and s> si};
b/- max {je(cl+, Cl]:Sj= v};
end

endease;
endloop

FIG. 1. Procedure for computing the score of an access.
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/)1 (exclusive) and si (inclusive), and the corresponding crossing node is w3 so3. Then
the second inside node, v2, is computed as the smallest node greater than si that is
accessed after c3 but before (or at) c2. The second inside access, b2, is the latest access
to v2 within this time interval. At this point we have c3 < b-< c < b <= Cl < i, and
w -< v < w3 -<- si < v2 -< w. If w3 s we are done; otherwise Ca is computed as the latest
access prior to c3 to a node between s (inclusive) and v (exclusive), and w4 is set to

sc4. Then v3 is computed as the greatest node smaller than s that is accessed after Ca
but before (or at) c3. We continue in this way, with the crossing and inside nodes at
alternate sides of s, getting closer to si as we go back in time. Eventually we reach
the previous access of s (if there is one) or the beginning of the sequence (if there is
not) at which point we stop. The score, K(i), is the number of inside accesses found.

It will help to go through an example. We distinguish between accesses and nodes
by using boldface letters (ordered alphabetically), rather than integers, to denote nodes.
Suppose the sequence s is a, i, h, j, g, f, c, 1, k, e, n, d, la, p, m, o, i. This sequence is
illustrated in Fig. 2. The nodes are in sorted order and the order of the access sequence
is given by directed edges above the nodes. Suppose we wish to compute K(17), the
score for the second access of node i. We start at access 17 and follow the access
sequence backward in time. The previous access (16) is c, the first crossing access,
so w o. To find the second crossing access we go backward until we find an access
to a node on the side of opposite from o. The two accesses immediately prior to
access 16 are to nodes m and p, which are on the same side of as o. Access 13 is to
node b, so c2 13 and w2--b. The first inside node is the closest node to accessed
after c2 that is on the right side of i. This node is m, reached at access 15, so b 15
and v--m. To get the third crossing access we go backward from access c2 until we
reach an access to a node greater than or equal to and less than v m. The access
before 13 is to node d, on the wrong side of i, the access before that is to n, on the
wrong side of m, and the access before that is to e, on the wrong side of i. It is not
until access 9, to k, that we find c3. The second inside node is the closest node to on
its left side that is accessed after c3 and before or at access c2. This is node e, so b2 10
and v2--e. The fourth crossing access is obtained by going backward from c3 until an
access to a node between vz =e (exclusive) and (inclusive) is reached. This is access
6, to node f. The third inside node is the closest node to on its right side that is
accessed after Ca and before or at c3. This is node k, the same as the third crossing
node, so b3-- c3 9. The fifth crossing access is the first access before c4 to a node

a b c d e f g h j k m n 0 p

c2 c4 c6 c7 c5 c3

b2 b4 b6 b5 b3
FIG. 2. Computing the score for the second access of in the sequence a, i, h, j, g, f, c, 1, k, e, n, d, b, p,
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greater than or equal to and less than v --k. This is access 4, to node ws =j. The
fourth inside node is the closest node to on its left side that is accessed after c5 and
before or at Ca, and this is g, reached at access 5. Continuing in this way, we find

c6 3, w6 h, and b5 c5 4, v5 w5 j. The seventh crossing access is 2, the previous
access of i, and b6 is determined to be equal to c6. At this point the procedure terminates,
with K (17) 6.

The crossing and inside accesses of are all earlier than and are equal to or
later than the previous access of si (if there was one). Thus each of the crossing and
inside nodes of is above si at some time between the previous access of si and access
i. Intuitively, after access i- 1 we expect that the inside nodes of will be on the path
from the root to node s. Therefore for access we expect that a standard search
algorithm will have to rotate si over at least K(i) nodes, and then once si is at the root
there will be a cost of for accessing it. Of course, in general many other nodes will
have been above s at some time since the previous access of s, but they can usually
be kicked out of the way during the access of some inside node of i. Actually, you can
always arrange to have as few inside nodes above si after access i-1 as you want, but
for each inside node that is not above si either there will be some other node above

s in its place or some extra cost will be imposed upon some access prior to the ith access.
The next two simple lemmas formally state properties that by now are probably

quite clear.
LEMMA 5. Let s be a sequence of integers of length m. Let i6[1, m], let k= (i),

and suppose k>-_ 1. Then the inside accesses of i, b,..., bk, the inside nodes of
i, vl,’", Vk, the crossing accesses of i, c,’’’,ck+, and the crossing nodes of
i, w,. ., Wk/l, are all well defined. Also, the following relationships hold:

Ck+ < bk <= Ck < bk- <= Ck-l <" < b <= c < i.

If Wl < si and k is odd then

(2a) WI Ul< W3V3 <’" "<WkVk<SiWk+l<Uk_lWk_l<’’’<U2W2,

if W < S and k is even then

(2b) w /.)1 < w3 /)3 < < Wk-1 Vk-1 < Wk+l Si < Vk Wk < < /.)2 W2,

if W > S and k is odd then

and if w > s and k is even then

(2d) W2 /.)2 < W4" V4 <’"

Proof Equations (2a)-(2d) are essentially the same, so assume without loss of
generality that wl < s and k is odd. Everything follows from an easy induction on /.

Assume without loss of generality that w < si. If -< n (i) then {j 1, Cl) sj s, v_)}
is nonempty so Cl+ is well defined and is less than c. Also, s-< wt+ < v_, and the
first branch of the case statement ensures that wl/--si only if l--(i). We have

WI{Sj:j(cI+I, Cl] and Sj<Si} SO D is well defined and viewl. The definition of v
ensures that b is well defined and by definition of b we have ct+l < bl <= Clo ["]

LEMMA 6. Let s be a sequence of integers oflength rn and let [1, m] with k= ( i)
positive. Let c,. ., Ck/l be the crossing accesses of i, let w1,’’’, Wk+ be the crossing
nodes of i, and let v,..., Vk be the inside nodes of i. Let [1, k]. Let interval I be
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either (vt, wt+l] or [Wt+l, Vt), according to whether v<si or vt>si. Then i=
min {j > Cl+l" s I1}.

Proof Assume without loss ofgenerality that vt > si. Let Y {j > ct+l" Si (vl, w+l]}.
Let h min Y. Since Y we have h _-< i. We show that the assumption that h < leads
to a contradiction. Suppose h < i. Then h-_< i-1 cl. So, by (1), there is an rn 1, l]
such that h (c,,+1, c,, ]. We must have w,, < si or Wm > Si.

Suppose wm< s. If Sh < Si then by definition of v,, we have Sh <= V,,. But v,, <--Vl
so Sh <----Vl, contradicting the definition of h. Thus the assumption that w < si implies
that Sh >- Si. Since sc,,, w,, < s we must have h < era. Also, Wl+l < Vl-1 <= v,,-l, so Sh
[S, Vn-). So by definition of c,,+ we have c,,+1 >--h, a contradiction.

Therefore we must have Wm > S. Since w < s we must have m l, i.e., m _-< l- 1.
If Sh > S then by definition of v,, we have Vm <---- Sh. But w+ <--_ Wm+2 < Vr, SO Wl+I < Sh,

contradicting the definition of h. So we must have Sh <= Si and since Vm-1 < v we have
Sh (Vm-, Si]. Since so,,, w,,> s we must have h <Cm. SO by definition of c,+ we
have e,,+l>= h, a contradiction. V]

THEOREM 7. For any search tree To and sequence s of nodes in To we have
X(s, To) >= Az(s).

Proof Let m be the length of s, and for each i[1, m] define K(i) using the
procedure cornpute-kappa(s, i). Once a node is at the root the cost of accessing it is
1, so it suffices to show that Y= K(i) is a lower bound on the number of rotations
required by any standard search algorithm that accesses s.

We use an accounting argument. Let R be the sequence of rotations generated
by some standard search algorithm acting on sequence s and initial tree To. Let r be
the length of R. For [1, r], let T, be the search tree obtained by applying rotation
R, to tree T,_. Let ’o 0 and, for 1, rn ], let - be the smallest integer greater than
or equal to -_ such that s is at the root of T,.

For each time [1, r], we put a dollar on at most one node, determined as
follows. Let R, (u, v) (node u is rotated over node v). Let I,, (u, v] if u < v and
1,, v, u) if u > v. Let j be the smallest integer such that ’ _-> and s I,., if such
an integer exists. If j is undefined then no node gets a dollar at time t. Otherwise, a
dollar is put on node s..

After rotation R, is carried out all the dollars on node s are thrown away. Since
at most one dollar is put in the tree per rotation the number of dollars thrown away
is a lower bound on the number of rotations used. Thus to get the desired bound it
suffices to show that for each i [1, m], after rotation R has been carried out the
number of dollars taken off node si is at least (i).

Let 1, m] with k (i) positive. Let bl, , bk be the inside accesses of i, let
v,..., Vk be the inside nodes of i, let c,..., ek+ be the crossing accesses of i, and
let wl,"’, Wk+l be the crossing nodes of i. By setting l= k in Lemma 6 we see that
i=min{j>ck+’Si=S}, so no dollars are taken from s in the interval (’c+,, %].
Therefore it suffices to show that for each [1, k] a dollar is placed on node s for
some t (%+,, ’,]. (By Lemma 5 these k intervals are all disjoint.)

Let/[1, k]. Assume without loss of generality that W+l <_-s. For all (-.,+,, ’b,]
let a(t) be the lowest common ancestor of Wl+ and Vl in tree T,. We have a (,+,) Wl+ <-
s; and a (-,) v > sg. So there must be a (-.,+,, %] such that a(t- 1) _-< si and a(t) > s.
Let R, (y, z). It is straightforward to verify that we must have a(t 1) z and a(t) y,
for otherwise the lowest common ancestor of w+ and v would not change with tth
rotation. Also Wl+ <-z and y <-_ Vl. Thus s [z, y)_ [Wl+, vt). Let h be the smallest
integer such that ’h => t. Since > ’,+, we have h > c+1. The node that gets the dollar
forrotationtissisuchthatj=min{g>-h’sg[z,y)}andbyLemma6thatnodeiss. [3
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It is perhaps not immediately obvious that A2(s) ever gives a bound that is
superlinear in the length of s. Here we show that A2(s) can be used to get the (R)(n log n)
bound for accessing the bit reversal permutation.

THEOREM 8. Let Bk be the bit reversal permutation on n 2k nodes. Then A2(Bk) -->
n log n + 1.

Proof. It is convenient to index the sequence Bk from zero rather than 1, so that
the ith access is to node brk(i). By definition A2(s)= n+i=o K(i), where K(i) is the

n--1number of inside accesses of i. We use induction on k to show that ,--o (i) >-

n log n-n + 1. When k-< the claimed bound is zero so there is nothing to prove.
B0 /lkSuppose k >2 Clearly the sequence k k Bk

", Bn/2_ is precisely Let
i,j [0, n/2- 1]. Then j is an inside access of for sequence Bk if and only ifj is an
inside access of for sequence Bk-. So by the induction hypothesis,

E (i)>-- log -+1.i=0

We also have Bk-I 1/2( k kB,,/2 1), 1/2( -1) 1/2(B kB,/2+l ,_-1). Let i,j
In/2, n ]. Then j is a crossing access of for sequence Bk if and only if j n/2 is
a crossing access of i-n/2 for sequence Bk-. So each i In/2, n- 1] has at least as
many inside accesses in sequence Bk as i-n/2 has in sequence Bg-1. We will show
that each In/2, n -2] actually has at least one more inside access in Bk than i- n/2
has in Bk--. When i= n/2 access i-n/2 has no crossing accesses and no inside
accesses in Bk-, but access (to node l) has two crossing accesses in B k, namely,
i-1 and 0, so it has one inside access. If i[n/2+l,n-2] then i-n/2 has at least
one crossing access in Bk-, so it suffices to show that has one more crossing access
in Bk than i-n/2 has in Bg-1. Access has a crossing access in In/2, n-1], namely
i-1, so let c be the earliest crossing access of that is greater than or equal to n/2.
Let u B/k. Suppose c is the lth crossing access of i. Assume without loss of generality
that B < u. Let v be the (1-1)th inside node of i. (If we may take v to be +oo.)
There is at least one even node in [u, v) (namely u + l) and of these the one that is
accessed latest is a crossing node of i, and its access is in [0, n/2-1]. So by the
induction hypothesis,

Therefore

Y, (i)-> log +1+ -1
i==n/2 -(i) >

i=o =- n log n n + l.

Conclusions. Two methods for obtaining lower bounds on X(s, To) have been
described. The first is useful for getting bounds on the expected value of X(s, To) when
sequence s is chosen at random, whereas the second seems more likely to give tight
bounds for specific sequences. The obvious unresolved problem is to obtain tight
bounds for X(s, To). That is, to find an efficient (polynomial-time) procedure for
computing an upper bound on X(s, To) that can be shown to match some known lower
bound. Preferably the procedure would give an explicit method for optimally accessing
sequence s offline. The function A2(s) may give a tight bound for the cost of accessing
sequence s (up to a constant factor). However, I have been unable to find a binary
search tree algorithm whose performance provably matches the A2(s) lower bound.

Of course, the ultimate goal is to find some simple online algorithm that always
runs in time O(x(s, To)+ n). The splay algorithm may yet prove to be such an algorithm.
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AN INCREMENTAL LINEAR-TIME ALGORITHM FOR
RECOGNIZING INTERVAL GRAPHS*
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Abstract. The fastest-known algorithm for recognizing interval graphs [S. Booth and S. Lucker, J.
Comput. System Sci., 13 (1976), pp. 335-379] iteratively manipulates the system of all maximal cliques of
the given graph in a rather complicated way in order to construct a consecutive arrangement (more precisely,
a tree representation of all possible consecutive arrangements). This paper presents a much simpler algorithm
using a related, but much more informative tree representation of interval graphs. This tree is constructed
in an incremental fashion by adding vertices to the graph in a predefined order such that adding a vertex
u takes O([Adj (u)l + 1) amortized time.

Key words, interval graphs, incremental recognition, graph algorithm, perfect elimination scheme,
modified PQ-tree, amortized time
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1. Introduction. A graph (see [4] for all graph-theoretic notation not defined
here) G (V, E) is called an interval graph if its vertices v can be represented by (not
necessarily distinct) intervals Iv of the real line such that two vertices are adjacent if
and only if the corresponding intervals intersect. Such a collection (I)c v is called
an interval representation of G.

Interval graphs arise in many applications that deal with the arrangement of
overlapping connected parts of a linear or sequential structure. Examples are seriation
in archeology, consecutive retrieval in data base systems, scheduling problems, VLSI-
layout problems, and many others (cf. [2], [4], [5], [8] for details and references). The
main reason for these applications is the following characterization theorem due to
[3], which relates the "sequential" structure of interval graphs to a consecutiveness
property of their maximal cliques.

THEOREM 1.1 [3]. A graph G is an interval graph ifand only if the maximal cliques
of G can be linearly ordered such that, for each vertex v, the maximal cliques containing
v occur consecutively.

We call such an arrangement of the maximal cliques a consecutive arrangement.
Constructing such a consecutive arrangement is the basis of the fastest recognition
algorithm for interval graphs presently available [1].

The first phase of this algorithm makes use of the fact that interval graphs are
triangulated (cf. [4] for details) and thus have a perfect vertex elimination scheme
(perfect scheme for short), i.e., an ordering [Vl, v2," ", vn] of the vertices of G
such that each set (Adj (vi)U {vi})f3 {vi, Vi+l,’", v,} is a clique of G. (Here Adj (vi)
denotes the set of vertices adjacent to vi.) Testing whether such a scheme exists and
constructing it can be done by lexicographic breadth-first search in O([ V]+lE]) time
(cf. [9], [11]). A perfect scheme =[Vl,’", vn] naturally induces a list of cliques
C(vi) {vjAdj (vi)lJ> i}U{vi} (i= 1,..., n) which contains all maximal cliques.
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These maximal cliques are the input for the second phase of the algorithm, in
which an attempt to construct a consecutive arrangement for the cliques is made. The
data structure used in this phase is the PQ-tree. It was invented in [1] for the more
general purpose of representing all permutations of a set M that are consistent with
constraints of consecutiveness given by a system M of subsets ofM with the convention
that the elements of each M’ M must occur consecutively in the permutation. In the
interval graph case, M is the set of maximal cliques of G, and M consists of all
v V, where C(v) denotes the set of all maximal cliques containing v.

A PQ-tree is a rooted tree T with two types of internal nodes: P and Q, which
will be represented by circles and rectangles, respectively. The leaves of T are labeled
1-1 with the maximal cliques of the interval graph G (in general, with the elements
of M).

The frontier of a PQ-tree T is the permutation of the maximal cliques obtained
by the ordering of the leaves of T from left to right. PQ-trees T and T’ are equivalent,
if one can be obtained from the other by applying the following rules a finite number
of times:

(1) Arbitrarily permute the successor nodes of a P-node.
(2) Reverse the order of the successor nodes of a Q-node.
For an example see Fig. 1, where the frontier of T is given by [C,, C2," ", C6].

An equivalent frontier is [C5, C6, C3, C2, C,, Ca].

{2,3} G {7, S,9}
{3, 4} C6={7,8,10}

T

[4]

FIG. 1. An interval graph G, its PQ-tree T, and its modified PQ-tree T*.

In [1] it is shown that a graph G is an interval graph if and only if there is a
PQ-tree T whose frontier represents a consecutive arrangement of the maximal cliques
of G. They also develop an O(I VI + IEI) algorithm that either constructs a PQ-tree for
G (by successively making the maximal cliques from each (v), v V, consecutive),
or states that G is not an interval graph. If G is an interval graph, then all consecutive
arrangements of the maximal cliques of G are obtained by taking equivalent PQ-trees.

The algorithm contains an update procedure that constructs, from a given PQ-tree
T for a system A/= {(v,),. , (Vk)}, a PQ-tree T’ representing plus one addi-
tional constraint set (vk+,). This is done in a bottom-up way along the tree T by
comparing parts of the tree with a fixed number of patterns that induce certain local
replacements in T. If none of the patterns applies, G is no interval graph. Otherwise,
the algorithm returns T’. This update procedure is rather complicated, since many
patterns must be considered, and large parts of the tree may be affected. Also the
complexity analysis is rather intricate.
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We develop a considerably simpler algorithm that follows a related approach (i.e.,
it uses a graph search method related to perfect schemes for constructing a consecutive
arrangement), but differs essentially in the following points.

First, it uses a different data structure, the so-called modified PQ-tree introduced
in [7]. Second, it is incremental, i.e., it grows the modified PQ-tree gradually by adding
one vertex to the graph at a time (in a predefined order determined by lexicographic
breadth-first search). The different data structure and the incremental growth result in
a simple update scheme having three immediate advantages over that of Booth and
Lueker: (a) fewer and simpler templates, (b) only a path of the tree must be modified
when a vertex is added to the current graph (instead of a complete subtree), and (c)
no need to be concerned with interior children of Q-nodes when exploring the path
along which modifications occur (interior children of Q-nodes are a major headache
for any PQ-tree implementation).

In addition, the modified PQ-tree contains much more information about the
graph G than PQ-trees and is interesting in its own right. It is, for instance, used in
[6], [7] to obtain fast algorithms for constructing an interval representation of G that
respects given side constraints such as order relations among the intervals or their
endpoints (seriation with side constraints; see also [8] for an overview).

Also, the incremental nature of the algorithm may be important for several
applications. For instance, in gate matrix layout (a type of VLSI layout problem, see,
e.g., [2]) we look for a large interval subgraph of an arbitrary graph representing
conditions on the layout. One way to do this is to add as many vertices as we can
while maintaining an interval graph. Hence data structures permitting incremental
updating are very well suited to these applications.

The approach followed here has been extended in [6] to general online algorithms
in which the graph is not known in advance, and vertices are added one at a time.
This is, however, achieved at the cost of a higher worst-case complexity of O(] V[2)
and a more complicated tree-updating scheme that must consider subtrees and interior
sons of Q-nodes as does the algorithm of Booth and Lueker.

2. Modified PQ-trees. The modified PQ-tree (MPQ-tree) T* assigns sets of vertices
(possibly empty) to the nodes of a PQ-tree T representing an interval graph G V, E).
A P-node is assigned only one set, while a Q-node has a set for each of its sons
(ordered from left to right according to the ordering of the sons).

For a P-node P, this set consists of those vertices of G contained in all maximal
cliques represented by the subtree of P in T, but in no other cliques.

For a Q-node Q, the definition is more involved. Let Q1," ", Q, be the sons (in
consecutive order) of Q, and let T/be the subtree of T with root Qi. (Note that m _-> 3.)
We then assign a set Si (a so-called section) to Q for each Qi. Section Si contains all
vertices that are contained in all maximal cliques of T/and some other T, but not in
any clique belonging to some other subtree of T that is not below Q. Since the maximal
cliques containing a fixed Vertex occur consecutively in T, it suffices to represent a
vertex v belonging to several sections only in the leftmost and rightmost sections in
which it appears. This convention assures that T* represents G in O(IVI) space,
whereas PQ-trees require O([V[+IEI) space, since each maximal clique is stored
separately. An example MPQ-tree is given in Fig. 1.

The following theorem from [7] summarizes some key properties of MPQ-trees:
THEOREM 2.1. [7]. Let T be a PQ-tree for G= V, E) and let T* be the associated

MPQ-tree. Then we have the following:
(a) T* can be obtainedfrom Tin O([VI+IEI) time and represents G in o(I vl) space.
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(b) Each maximal clique of G corresponds to a path in T* from the root to a leaf,
where each vertex v V is as close as possible to the root.

Property (b) states the essential property of MPQ-trees, which consists of distin-
guishing vertices of G with respect to their membership in maximal cliques while
keeping the consecutiveness properties given by the underlying PQ-tree. In particular,
the root of T* contains all vertices belonging to all maximal cliques, while the leaves
contain the simplicial vertices of G (vertices belonging only to one maximal clique).

As a consequence of this property, MPQ-trees may be viewed as qbstract interval
representations of interval graphs that explicitly model the overlapping structure of
the intervals while maintaining all degrees of freedom with respect to actual arrange-
ments of the intervals by the PQ-tree operations. The higher a vertex u is located in
the tree, the longer the respective interval I, must be. Standard interval representations,
in which the length of I, is equal to the number of maximal cliques containing u, are
given in Fig. 2 for the graphs and MPQ-trees from Figs. 1 and 3.

2 5

Ct Ce Cs C4 Cn C a

2

7 10

Ce
FIG. 2. Standard interval representations for the graphs from Figs. and 3.

The following notation and statements concerning MPQ-trees will be used in the
sequel. Given a node N of the tree T, we denote by VN the associated vertex set if N
is a P-node or a leaf. If N is a Q-node, we put VN := $1 " Sk, i.e., the union of
its sections. When no confusion is possible, we will sometimes identify a node N and
its vertex set VN.

LEMMA 2.2. Let N be a Q-node. Let $1," ", S,, (in this order) be the sections of
N, and let V denote the set of vertices occurring below Si in T (i= 1,..., m). Then we
have the following:

(a) Si-1 (3 Si # ( for i= 2,. ., m.
(b) SI

_
$2 and S,,_I

_
S

(c) V ( and
(d) (S S+)\S # ( and (S_, fq Si)\S, # ( for i= 2,. ., m 1.

Proof If Si- f-)Si , then any two maximal cliques C, C2 going through one
of the sections S, , Si_ and Si, , S,,, respectively, have only vertices in common
that are above N in T. Hence, reversing the order of the maximal cliques going through
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Si,... S and $1,"’, Si-1, respectively, gives another consecutive arrangement
because of m _-> 3. This contradicts the fact that only the reversal of the Q-node as a
whole yields a consecutive arrangement. Hence (a) follows.

By definition of the sections, $1 contains all the vertices that are in all the maximal
cliques going through S and some other S, but not those that occur in any other
maximal clique. Since the S must also contain the respective vertices from S, this
gives S [-J.j=2 (S S). The consecutiveness property implies S S

_
S CI $2 for all

j->2. Hence, S S $2, which shows (b) for S. The proof for Sm is completely
analogous.

Let C, C be maximal cliques through S1, $2, respectively. Then C\C2
because of the maximality. All vertices above N in T belong to C1 C, and all vertices
in C VN S belong to Czfq VN S because of (b). So, CI\C2

_
V, which gives

V , and also, by symmetry, Vm
Assume that (Si CI Si+)\S1 , i.e., Si CI Si+l

_
S. Then reversing the order of the

maximal cliques going through S1, Sz,. ., Si (there are at least two since i-> 2) gives
another consecutive arrangement, since the overlapping condition with Si+ is pre-
served. This contradicts the definition of a Q-node as in the proof of (a).

3. Lexicographic breadth-first search. Lexicographic breadth-first search (LEXBFS
for short) was introduced in [9] for the purpose of constructing perfect elimination
schemes. LEXBFS is like the usual breadth-first search (BFS) with the additional rule
that vertices with earlier visited neighbors are preferred.

More precisely, we say that v, w V disagree on u V is one of them is adjacent
to u, but not both. Then LEXBFS produces an ordering A =[vl,..., vn] of V with
the property:

(3.1) If there is some /-)i on which v., Vk with i<j < k disagree, then the leftmost
vertex on which they disagree is adjacent to v..

We will call this leftmost vertex that causes v to enter A before ok the distinguisher
of v./with respect to Vk.

THEOREM 3.1 [9]. Let G V, E) be a graph.
(a) A LEXBFS-ordering A v ., vn] ofG can be obtained in O([ V[ + IEI) time.
(b) G is triangulated if and only if A R

Vn, V-I, , V] is a perfect scheme.
This can be tested for in O(I VI + [El) time.

For implementation details (which are not too involved), we refer to [9], [4]. An
example is given in Fig. 3.

We will show now that any LEXBFS traverses the MPQ-tree of a graph in a very
special way. This feature will be exploited by our recognition algorithm.

G T*

--10 3,5,6

FIG 3. A LEXBFS-ordering of an interval graph and the associated MPQ-tree.
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LEMMA 3.2. Let G=(V, E) be an interval graph, and let T be its associated
MPQ-tree. Let N be a Q-node with sections $1, ", S, (in this order) and let V denote
the set of vertices of G occurring below Si in T.

Then for any LEXBFS-ordering A, the rightmost vertex of V :=

SI V U. Sm Vm with respect to A is a member of
Proof We will consider certain points or stages in the construction of A. These

stages occur when all vertices from V := t.J i_= (Si t_J V) that are forced by some earlier
distinguisher have been visited, and the next distinguisher for vertices of V becomes
active, i.e., determines the choice of the next vertices from V to be visited. We will
show the following properties for each such stage"

(3.2) The already completely visited sets Si V form a consecutive subsequence
of S1U V, Sm U Vm.

(3.3) If, at the current stage, S U V1 and Sm U Vm are not completely visited, then
at most one of them is completely visited at the next stage.

Obviously, (3.2) and (3.3) imply that the last vertex v V to be visited by belongs
either to $1U V or to S,, U Vm. Since $1 $2 and Sm c_ S,,_ (Lemma 2.2(b)), S1 and
S,, are then already completely visited. So v V or v V,,, proving the lemma.

So it remains to show (3.2) and (3.3). We will do this by induction along the
different stages. To start with, let ul be the first vertex in , that disagrees on vertices
from V, i.e., u is adjacent to some, but not to all vertices from V. Since all vertices in
an ancestor of node N are adjacent to all v V, it follows that u e V and that u is
the first distinguisher for vertices from V. So from V, Adj (u) enters before any
v V\Adj (ul). If uI S := S U U Sm, then Adj (u) f"l V= U u,csi (SU V), andthese
Si U V,. are consecutive. So (3.2) holds. Since u is not adjacent to all v 6 V, we have

u S f3 Sin, which implies that V or Vm still contains unvisited vertices after Adj (u)
has been added to ,. This shows (3.3). If u S, then ul is in some V (since all vertices
above N are adjacent to every v V). Then Adj (u) f3 V S, U V and either no S U V
(if the inclusion is strict) or exactly S U V has been completely visited after Adj (ul)
is added to . So (3.2) and (3.3) hold. Together, the cases u S and u S yield the
inductive base for the first stage.

So assume now that (3.2) and (3.3) were valid at the last stage, and that u, , u
are the previous distinguishers. Then, at the last stage, Adj (u)f’l V was added to ,

Adj (u). Let S, t.J V So U Vo be the already com-before any vertex v e V\U=
pletely visited sets after Adj (u) has been added to h. We distinguish several cases.

Case 1. io 1, i.e., S U V is already completely visited. If jo m- 1, then only
S, U V, contains unvisited vertices and these are contained in Vm since Sm -S,_
and Sm_ is completely visited. So we may assume that jo -< m- 2. Because of Lemma
2.2(a), Sjo (q S./o+1 . For every v S/o [q S.o+1, let Sr() be the rightmost section contain-
ing v. We call r(v) the right range of v. Let r be the minimum right range of a vertex
v Sxo f’l Sxo+. Any vertex u 6 Sxo with r(u)= r is said to have a short right range. By
definition, r >jo. Lemma 2.2(d) implies that r < m, i.e., every vertex u with short right
range is not adjacent to any unvisited vertex from (S+ U Vr+) U" U (Sin U Vm). NOW
consider two unvisited vertices v Si U V with jo < _-< r and vj 6 S./U V with j > r.
Then (3.2) and the definition of r imply that the only already visited vertices that
disagree on v and vx are vertices u S/o with short range. So the first such u in A is a

distinguisher that forces all unvisited vertices from U =Xo+ (Si U V,.) to enter A because
of (3.1). This shows (3.2) and also (3.3) because of r < rn.
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Case 2. jo m. This case is completely symmetric to the previous one.
Case 3. io 2 and jo m- 1. Then, only S U V and Sm t3 V,, contain unvisited

vertices from V. Because of Lemma 2.2(a) these must belong to V Vm, which proves
the lemma in this case.

Case 4. (io > 2 and jo =< rn 1) or (io --> 2 and io < rn 1). Similar to Cases 1 and 2,
we consider vertices u So So/ with short right range r and vertices w Sio- f3 S
with short left range I. The assumptions on i0 and j0 guarantee that > 2 or r < m. If
l> 2 and r < m- 1, then the first vertex in A with short right or left range is the next
distinguisher Uk+ that forces at least the sets S t_J V in its short range to enter A and
possibly also on the other end if l(uk+) and r= r(Uk+). So (3.2) and (3.3) hold.
If l> 2 and r rn- 1, then the first vertex with short left range or with neighbors in
V,, but not in V is the next distinguisher, and (3.2) and (3.3) follow. The final case

2 and r < m 1 is completely symmetric. [3

In the example graph in Fig. 3, the stages are as follows. The first distinguisher
is ul 1, and it forces S V {1, 2} into A. Then u2 2 is the first vertex with short
right range r 2. It forces $2 t_J V2 {2, 3, 4, 5} to enter ,. Then u3 3, forcing $312 V3
SaU V4 {6, 7, 8, 9} to enter A. Finally, U4-- 6, forcing v 10 V,, into ,.

Call a maximal clique C of G an outer clique if there is a consecutive arrangement
of the maximal cliques of G with C as first (or last) clique. All maximal cliques that
are not outer cliques are called inner cliques. If LEXBFS is viewed as traversing maximal
cliques rather than vertices (a clique is traversed when its last vertex has been traversed),
the maximal cliques for a vertex are not necessarily traversed consecutively (for
example, vertex 6 of Fig. 3). But Lemma 3.2 implies that any such traversal ends with
an outer clique. The following theorem gives a stronger version of this conclusion.

TIJEOREM 3.3. Let G=(V, E) be an arbitrary graph with associated LEXBFS-
ordering A--[Vl, Vtl], and let Gi denote the subgraph of G induced by V
{v,, v}.

Then G is an interval graph ifand only if, for each 1,. , n 1, G is an interval
graph and Adj (v+l)f3 V is contained in an outer clique of G. In this case, v+ is a
simplicial vertex of Gi+.

Proof If G is an interval graph then, by heredity, each G is an interval graph,
and thus triangulated. Furthermore, i+ :=[v,..., vi+] is a LEXBFS-ordering for
Gi+ and thus, by the results of [9], v+ is a simplicial vertex of Gi+, i.e., it is contained
in a unique maximal clique C of G+. By Lemma 3.2, C is an outer clique of G+.
Since v+ is simplicial, Adj (vi+l)f3 V

__
C.

In the converse direction, suppose that G is an interval graph (which is trivial
for i= 1) and Adj (v+)f3 V is contained in an outer clique of G. Then there is a
consecutive arrangement C,..., C,, of the maximal cliques of Gi with Co :=
Adj (v+)(3 V_ C. Then either Ckl{vi+}, C2,’", C,, (if Co= C) or Co{Vi+},
C1, C2,- ., C,, (if Co c C) is a consecutive arrangement of the maximal cliques of
G+. Thus, Gi+ is an interval graph with simplicial vertex vi+. The iterative application
of this argument then yields that Gn G is an interval graph. [3

Note that it is not necessary to know whether G is triangulated or not. Furthermore,
Lemma 3.2 and the theorem do not hold for other graph-search orderings A yielding
perfect schemes (such as the simple maximal cardinality search considered in [11]).
BFS together with lexicographical tie breaking are essential for these results.

4. The algorithm for growing the MPQ-tree. Theorem 3.3 is the basis for an
incremental algorithm that traverses G in a LEXBFS-ordering and iteratively builds
the MPQ-tree Ti+ representing G+ from the MPQ-tree T for G if G+ is an interval
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graph (i.e., if vi+ has only neighbors in some outer clique of Gi), or states that Gi+
(and thus G Gn) is not an interval graph.

Each such building step consists of two phases, a labeling phase, and a tree-updating
phase.

In the labeling phase, each node N (including Q-nodes) of the current tree T
and each section S of a Q-node is labeled according to how the new vertex u is related
to the vertices of N or S. The label is c, 1, or 0 if u is adjacent to all, some, or no
vertex from N or S, respectively. Empty sets obtain the label 0. Labels and c are
called positive labels. Note that a Q-node has a label for itself and for each of its
sections. These labels will be used for testing the condition that u is adjacent only to
vertices from an outer clique of the current graph.

LEMMA 4.1. Let G be an interval graph, let T be its associated MPQ-tree, and let
u be a vertex to be added to G. Then G+ u is an interval graph if and only if (a) and
(b) hold:

(a) All nodes with a positive label are contained in a unique path of T.
(b) For each Q-node N with positive label, Adj (u)f"l VN is contained in an outer

section of Q.
The proof follows immediately from Theorem 3.3. Note that (b) does not imply

that only the outer section S has a positive label. There may be others, but all vertices
in them that are adjacent to u are also contained in S. So, in particular, the sections
with a positive label are consecutive and have label 1, except the outer section, which
has label or .

If the labeling phase is affirmative (i.e., G+ u is an interval graph), then the new
MPQ-tree T(G+ u) of G+ u is obtained by modifying T(G) in the updating phase.
This modification is local with respect to T(G), as is shown by Lemma 4.2 below.

We use the following notation in the updating phase. G is the given graph, and
T(G) is its MPQ-tree. The vertex to be added is u, and Adj (u) is its set of adjacent
vertices in G. We will omit the trivial case Adj (u)= , in which the tree updating can
obviously be carried out in constant time (even the labeling phase can be omitted).
Let P’ denote the unique path of T(G) containing all nodes with positive label, and
let P be a path from the root to a leaf containing P’. There are several possible choices
for P if P’ does not contain a leaf of T(G), but because of Lemma 4.1, P can be
chosen such that it corresponds to a maximal outer clique C of G. Let N, be the
lowest node in P with label or . If P contains nonempty P-nodes or sections above
N, with label 0 or 1, let N* be the highest such P-node or Q-node containing the
section. Otherwise put N, N*.

LEMMA 4.2. In the above situation, exactly one of the two following cases applies:
Case (a) All nonempty P-nodes and sections on P have label . Then in G + u, the

maximal clique C ofG is replaced by C + u. T(G + u) is obtainedfrom T(G) by adding
u to the leaf of P.

Case (b) There are nonempty P-nodes or sections or a leaf on P with label 0 or 1.
Then in G+u, the maximal clique Adj (u)l,.J{u} is added, and T(G+u) is obtained

from T( G) by modifying only nodes between N, and N* on P (including N,, N*).
Proof Case (a) is obvious. Case (b) follows by observing that the set of cliques

of G+u differs from that of G only by adding the new maximal clique Co :=
Adj (u)t_J{u}. This affects C and all maximal cliques of G that have a nonempty
intersection with Adj (u) C. However, vertices belonging to nodes N not on P or
below N, or above N* are either adjacent to no v Adj (u), or to all such v. So only
vertices belonging to nodes between N, and N* must be reorganized, l-1

The construction of T(G+ u) in Case (a) is obvious. In Case (b), the modification
is done by traversing the path P bottom-up from N, to N*.
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In each step, the current node N (together with its associated sets and its label)
is compared with a small number of patterns that trigger the appropriate modification
of N. The combination of pattern recognition and modification is called a template.
There are three groups of templates, depending on whether the current node N is a
leaf, a P-node, or a Q-node. Each group has a template for up to three subcases,
depending on whether or not N N., N. N*, etc. These groups of templates are
displayed in Figs. 4-6. In all cases, VN A B denotes the partition of the vertex set

VN of the current node or section into the set A of vertices adjacent to u and the set
B of vertices not adjacent to u. Furthermore, T and TI always denote subtrees of

(L1) N N, N* [A t2 B]
B 0 [A t2 {u}]

[u] [B]

(P3)

(L2) N-N, -N* [At_IB]

FIG. 4. Templates for a leaf

(P1) N-N,-N* B=O

(P2) N- N, 5 N*

NCN,

[] r

[] T T

T Tt
FIG. 5. Templates for a P-node.
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(Q1)

(Q)

N-N, andA_C

N-N, andA:Vm
N, and B- 0

N, :/: N* oB#0

+ H2

(Q3)

[u] T Tk T

FIG 6. Templates for a Q-node.

T(G) that contain only nodes with label 0. (This is an immediate consequence of
Lemma 4.1.) HI and H2 are help-templates that deal with special cases such as only
one son, etc. They are displayed in Fig. 7. Note that template (L1) is designed so as
to also cover Case (a) in Lemma 4.2.

THEOREM 4.3. The application of the templates along the path Pfrom N, to N*
correctly produces T(G + u ).

Proof It is easily seen that the templates cover all formally distinct cases. Also,
all templates for the case N, N* and the help-templates H and H2 are easily shown
to be correct.

Now consider the case N, N*. Since N, has the label 1 or , the associated
set A, is nonempty. Similarly, the set B* associated with N* is nonempty. Let B
denote the set of vertices associated with nodes that are below N* but not on P (which
exist since N* is not a leaf).
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(H1)

FIG. 7. Help-templates (H1) and (H2).

Let col, c2 3 denote the collections of maximal cliques of G+ u containing
A, U {u}, A, kJ B*, and B* B, respectively. Obviously, they must be represented by
a Q-node in T(G+ u). Let Q be this Q-node. The first section of Q is the union of
all sets A associated with the nodes or sections between N, and N*. Furthermore,
contains an inner section SN for each node N between N, and N* (including N,,
N*), where SN is the union of all sets A associated with nodes or sections between
N and N* on the path P. Other inner sections may occur by "gathering" sections
from Q-nodes N between N, and N*. Finally, the last section has the associated
vertex set A*U B* of N*.

The templates L2, P2, Q1 a) and Q2 a) (Figs. 4-6) construct the first part of
this Q-node and return it as input for the next template. Inductively, the remaining
templates on the path from N, to N* construct the complete Q-node. Although
straightforward, the details are rather tedious, and therefore omitted.

COROLLARY 4.4. If N, # N*, then all nodes properly between N, and N* on the
path P in T(G) will become inner sections of a Q-node in T(G + u).

As an example, consider the interval graph in Fig. 3. Using the given LEXBFS,
the following templates are applied (the notation is "added vertex: templates-added
vertex," etc., the starting graph is the graph with vertex 1) 2" L1-3" L1-4" L1-5" L1-
6" L2, P3, H1-7" L1-8" Q2-9" PI-10" L2, P3, Q3. This example also shows that while
the Q-node Q of T(G+ u) is constructed, several sections may be equal or empty.
This happens, e.g., when 10 is added and P3 is applied.

i. Implementation and complexity. In this section, we show that the above methods
lead to an O(] V] + [/1) algorithm for recognizing whether a given graph G (V,/) is
an interval graph and for producing its associated MPQ-tree T(G) if it is.

To achieve this complexity, we must use a good data structure for MPQ-trees.
We assume that the children N1," ", Nk of a P-node N are kept in a doubly linked
circular list. Each Ni has a parent pointer to N, and N has a child pointer to one Ni.
The sections S,. ., Sm of a Q-node N have a pointer to their neighbor sections (so
inner sections have two, while outer sections have only one). N has child pointers
only to the outer sections S and S,, and only these have a parent pointer to N. Each
section Si has a pointer to its son. Each node has a parent pointer to its father (which
is a P-node or a section of a Q-node). With each node or section, the associated set
of vertices is given by a doubly linked circular list. Vertices contained in several sections
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of a Q-node are included only in the lists belonging to the rightmost and the leftmost
of these sections. Each vertex in a list has a pointer to the associated node or section.
Vertex positions are given by an array with, for each vertex v, two vertex pointers
pointing to the one or two list locations in which v occurs. Using this array, we have
access to the node and/or sections containing a vertex v, the position of v in the
associated list(s), and the type of the node in O(1) time.

As was mentioned in 3, a LEXBFS-ordering of G can be produced in O(] V] +
time. Consider now a labeling phase. For each v Adj (u), we do the following:

A1. Find the associated node N (leaf, P-node or Q-node).
A2. If N is a Q-node, check whether one of the two sections pointed at is an outer

section by looking at the neighbor pointers.
A3. Remove v from the element list associated with N or the outer section and insert

it in a new list (that represents the set A).
A4. Put the node N or the outer section on a queue QU.

Altogether, this takes O(IAdj (u)l) time. In particular, we have (in Step A2) already
checked condition (b) of Lemma 4.1. If condition (b) is fulfilled we have two lists for
each node or outer section with positive label: the new list representing the set A, and
the modified old list representing the set B.

In order to check condition (a) of Lemma 4.1, we do the following until QU is
empty:

B1. Delete N (a leaf, P-node or outer section) from the front of QU.
B2. If N is unmarked (initially all N on QU are unmarked), mark it and add its

father (unmarked) at the rear of QU. Keep a pointer from the father to N.

When QU is empty, all nodes initially on QU and their ancestors have been
marked and are kept (by the introduced pointers) in a rooted tree whose root is equal
to the root of the MPQ-tree. Obviously, condition (a) of Lemma 4.1 is satisfied if and
only if this rooted tree is a path, i.e., if and only if each node has at most one son.
This can be checked by traversing it downward from the root in O(1) time per node.
Also in O(1) time, we can check whether the associated set B is empty (i.e., the
node/section has label ), and thus find N*. Finally, N. is the leaf of the rooted tree

(if it is a path). Concerning the complexity, we have the following lemma.
LEMMA 5.1. Testing whether condition (b) ofLemma 4.1 holds takes O(IAdj (u)l)

time. Testing whether condition (a) holds takes 0( nodes of T)= 0(I V]) time if (a) is

false, and O(no+ IAdj (u)l) time if (a) is true, where no denotes the number ofnodes/sec-
tions with label 0 between N, and N*.

Since the algorithm stops if (a) is false, the "bad" complexity of O(I VI) occurs
only once and thus does not destroy the overall complexity of O( VI + IEI) at which
we aim. So in the sequel, we will assume that (a) and (b) always hold.

Our complexity analysis uses the notion of amortized time introduced in [10]. Its
definition involves the assignment of a potential to the states that occur after certain
steps of the algorithm. Here, a step is a joint labeling and updating phase. The potential
after a step depends on the current MPQ-tree T and is defined as

(5.1) Pot (T) := 4 nodes + outer sections + Y’, 2. Iv l/
N is leafora Pnode S is outersection

The potential difference A(s) of a step s is the difference of the potentials after the
previous step and after s. Then the amortized time AT(s) of step s is defined as
AT(s)= RT(s)+ c. A(s), where RT(s) is the real time required by step s and c is a
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suitable positive constant (which will be specified later). In the beginning of the
algorithm, the potential is 0; in the end it is nonnegative and equal to the sum of the
A(s) over all steps. So summing up over all steps s, we obtain

E AT(s)=E RT(s)+E A(s)

>= ., RT(s) total real time.

Thus it suffices to consider only the amortized time per step s. Divide s into the
labeling part sl and the updating part s2. Then RT(sl)<= c. (no+ IAdj (u) I) with some
constant c because of Lemma 5.1, and A(s)= 0 since the tree does not change in s.
Now consider the updating part s2 of step s.

The application of a template involves recognition of which template applies,
modification of the tree structure, and an update of the vertex sets associated with tree
nodes and sections.

The tree modification can obviously be carried out in O(1) time per template.
Recognition requires knowing whether N, N*, N--N,, and, for (Q1)-(Q3)

whether or not A c_G_ S,, and B . The first two tests can be done in constant real time
per node N along the path, since N, and N* are known from the labeling phase.
Testing whether A c_ S, can be done in O(IAI) time by traversing the list representing
A (which is available from the labeling phase) and using the array of vertices to check
whether u S,, for each u A. So for all sets A along the path in T, this takes real
time proportional to IAdj (u) I. Finally, testing whether B takes constant time per
node, since B is available as list from the labeling phase.

Updating the vertex sets requires adjusting the vertex pointers from the vertices
in A U B, and in cases in which a P-node is changed into a Q-node, making a copy
of the sets A and B.

If possible, adjustment of vertex pointers is done in such a way that only vertices
from A need to be considered (this is the case for (L1), (L2), (P1), (P2), and (Q1)).
So in these cases, the real time for pointer adjustments is proportional to IAI, and thus
to IAdj (u)] along the path from N, to N*. In all other cases, the vertices from B are
assigned to an inner section of the new Q-node. This reduces Pot (T) by IB], since B
was either contained in a leaf or P-node or in an outer section.

Similarly, copying all lists A along the path from N, to N* takes real time
proportional to IAdj (u)l, while copying lists B also reduces the potential by IBI, since
these vertices belong to inner sections of Q-nodes.

Altogether this shows that the real time per template can be subdivided into a
constant amount cl plus an amount c2" IA[ plus c. IBI. So along the path from N, to
N*, this takes real time c2(no+ {Adj (u)l)+ c3" IAdj (u)l+ c4" [BI, where B is the union
of all sets B for which vertex pointers must be adjusted or that must be copied. At
the same time, the potential is reduced by no- 1 + IBI, since all nodes properly between
N, and N* become inner sections because of Corollary 4.4, and since the elements
from B are moved from a P-node, leaf, or outer section into an inner section.

So choosing c => max {c + C2, C3, Ca} we obtain

AT(s) RT(sl) + A(s) + RT(s) + A(s)

< (c, / c=). (no/ IAdj (u)[) / cz. IAdj

-c. (no-1)-c"

<= c" (IAdj (u)l+ 1).
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So altogether, we have the following.
THEOREM 5.2. IfG + u is an interval graph, then constructing its MPQ-tree T(G + u)

from T(G) takes O(IAdj (u)l+ 1) amortized time.
COROLLARY 5.3. Testing whether a given graph G V, E) is an interval graph and

constructing its MPQ-tree is possible in 0(I VI + ILl) time.

Proof The above complexity analysis gives Theorem 5.2. The total real time in
the corollary is bounded by t.1 + t2, where tl is the time to recognize at some step that
G is not an interval graph and where t2 is the time required in the other steps. Lemma
5.1 yields tl O(I V[), and (5.1), together with Theorem 5.2, yields

t2<-E AT(s) E c. (IAdj (u)l+ 1)= O(IVI+IEI).
uV

Concerning space requirement, the algorithm requires only O(n) space if the
current next vertex u in the LEXBFS-scheme and its adjacency set are given. We also
note that LEXBFS requires only partial knowledge of the graph in the sense that
unvisited parts may still change as the search continues. This implies that it is not
necessary to know the whole graph in advance, but only portions "compatible" with
LEXBFS.

Note that we can obtain an on-line, O(n) space algorithm by allowing for more
complicated templates. This is achieved in [6] at the cost of a higher time complexity
of O(n2).

Acknowledgment. We thank the referees for pointing out several weaknesses in
an earlier proof of Lemma 3.2 and for bringing the application to gate matrix layout
problems to our attention.
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MINIMUM DELAY CODES*

LAWRENCE L. LARMORE’

Abstract. Huffman’s algorithm finds a prefix-free binary code on a weighted alphabet which minimizes
the expected length of the code string for a single symbol A definition is given for the expected delay for
a prefix-free binary code on a weighted alphabet: it is the expected time between a request to transmit the
symbol and the completion of that transmission, assuming a channel with fixed capacity, where requests
are queued. An O(nS)-time O(n3)-space convex hull algorithm is given that finds a code of minimal expected
delay, where n is the size of the alphabet. It is conjectured that the algorithm has substantially lower time
and space complexities in the worst case, and still lower in the average case.

The heart of the proof of polynomial time complexity is the convex hull theorem, which states that under
certain conditions a binary tree that minimizes one penalty measure can be changed to a binary tree that
minimizes a second penalty measure in a carefully controlled sequence of changes called elementary shifts.

Key words, coding, binary tree, convex hull, dynamic programming

AMS(MOS) subject classifications. 68P20, 68P25

1. Introduction. Motivation. This paper is the response to a question originated
by Gopinath [3], and treated by Flores [1] in his dissertation. The classic Huffman
coding problem is to find a prefix-free binary code for a weighted alphabet, which
minimizes the expected time to transmit a symbol. If the goal is to maximize information
transmitted over a channel, the expected length of one code string is the correct penalty
measure that needs to be minimized. But suppose that what is desired is to minimize
the expected waiting time between the request to transmit a symbol and the completion
of that transmission. We call that quantity delay, and it is the sum of two components:
the time the symbol waits on a queue if the channel is busy, and the actual time to
transmit the code. The expected delay d is thus the sum of two quantities" one is the
expected length of a code string, and the other depends on the distribution of arrival
times of requests. (We assume that the channel transmits bits at the rate of one per
unit time.) If arrivals are independent, the arrival times have a Poisson distribution,
and standard queueing theory techniques show that

d= -+I
2(1 -Al)

where A is the expected number of requests per unit time, is the expected length of
a code string, and -2 is the expected value of the square of the length of a code string
[1]. Huffman’s classic algorithm [6] finds a code that minimizes in O(n log n) time,
actually linear time if the frequencies are presorted [8]. Finding a code that minimizes
expected delay is much harder. In fact, up until now, no polynomial-time algorithm
was known.

Preliminaries. We let n be the size of the source alphabet, and bi the frequency
of its ith symbol. The alphabet can first be sorted by frequency; thus we can assume

* Received by the editors October 7, 1987; accepted for publication (in revised form) April 7, 1988.
? California State University, Dominguez Hills, California. Present address, Department of Information

and Computer Science, University of California, Irvine, California 92717.
A code is prefix-free if no code string is a proper prefix of any other. The advantage of a code being

prefix-free is that a coded message can be uniquely decoded. For example, if a- 0, b- 11, and c- 10, the
string 0100011100 can be uniquely decoded as acaabca.

82
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(Di i--l" A prefix-free binary code corresponds to a binary tree2 of size n, If T=
(11,’’’, ln) is such a tree, define

F-- l’( T) cili, f2__ F2(T)--- il2,
i=1 i=1

A ’2(T)
d=d(T)=2(l_Ar(T))+ I(T).

The minimum delay problem is then to find a binary tree T for which d(T) is
minimized, subject to the condition that A (T)< 1.

Plotting trees in a plane. Only trees for which li >- li_ need be considered, since a
tree that does not satisfy that monotonicity condition can always be replaced by a tree
at least as good which does (see, for example, [1]). Abstractly, the minimum delay
problem can be solved geometrically. Plot each T in the plane as the point
(-(T), -2(T)), and let be the set of all those plotted points. It is possible for two
distinct trees T and T’ to be plotted to the same point: if so, we say that T and T’
are equivalent. Let

Ay
f(x,Y)=2(I_Ax) +x"

The minimum delay tree Tpt then is plotted as a point pptE in the region 0 < x <
1/A, y > 0, for which f is minimized. The level curves off are parabolic, with negative
first derivative and positive second derivative in that region. If a line is drawn through
popt tangent to the level curve of f through that point, all other points of will lie
on or above the level curve, and hence above the tangent. (See Fig. 1.)

The convex hull. A set C c_ R is said to be convex if the line segment joining
any two points of C lies entirely within C. If S c__ R is any set, CH(S), the convex hull

FIG.

ii

In this paper, a binary tree will be a full binary tree, i.e., each nonleaf node has exactly two children.
Furthermore, a tree will be identified with the list consisting of the depths of its leaves, in left-to-right order.
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of S, is defined to be the smallest convex set containing S. If S is finite, CH(S) is a
polygon together with its interior.

Let H=CH(). The boundary of H is a closed polygonal curve. One of the
vertices of this boundary will be Px-min, which we define to be the point of for which
x is minimized, and another is Py-min, which we define to be the point of for which
y is minimized. (If there are two or more points of for which x is minimized, the
one with minimum y is taken to be Px-min; this is similar for Py-min-) Let B be the
portion of the boundary of H that lies to the lower left of H, a polygonal arc joining
-Px-min and Py-min. We call extremal points of vertices of B, and one of them must
be popt. (See Fig. 2.)

FIG. 2 The polygonal path B.

The convex hull algorithm finds all vertices of B and then simply determines
which of them minimizes f by linear search. The time to find one vertex of B is O(n3),
using a bottom-up approach similar to Garey’s algorithm [2], and the number of
vertices of B is O(n2) by the convex hull theorem given in 5.

2. The convex hull algorithm. In this section, we give the details of the algorithm
and the proof of correctness. Throughout, assume that a &l," "’, bn are given, where
hi is the frequency of the ith symbol of the source alphabet.

Outline of the method. The algorithm uses a subroutine we call Find_Best(re, ),
which, for given re,/3 => 0, returns a tree T for which the quantity

t-(T) + t -(T)
is minimized. If B has m vertices,, all of those vertices may be found by executing
Find_Best at most 4m +3 times. Each call of Find_Best takes O(n) time and uses
O(n) space, but the space can be reused for the next call.

The first step of the convex hull algorithm is to find a tree T1 for which I(T) is
minimized; either Find_Best(I, 0) or Huffman’s original algorithm can be used. The
second step is to find a tree T2 for which -z(T) is minimized by calling Find_BestO; 1).
The third step is a call to a recursive function Span, which produces a list of trees
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whose plotted points in the graph include all vertices between two given points on the
path B. Finally, linear search through those trees will locate Tpt. ("&" denotes
concatenation of lists.)

THE CONVEX HULL ALGORITHM.
T Find_Best(I, O)
T2 - Find_Best(O, 1
if T1 and T_ are equivalent then

return T1
else

Candidate_List - (T1) & Span( T1, T) & (T2)
return some T Candidate_List for which d(T) is minimized

end if

SPAN( T, T’)
, =/(T)- (T’)
fl l(T’)- I(T)
T" - Find_Best(a, fl
if (T")+13(T")=(T)+I(T) then

return empty list
else

return Span( T, T") & (T") & Span( T, T")
end if

Intuitively, Span works as follows. T is plotted above and to the left of T’ in R2.
Connect those two points by a line l, and find the lowest line l’ parallel to that meets. If l’= l, then T and T’ both lie on B, and no vertices of B lie between them.
Otherwise, some portion of B must meet l’, and Find_Best(a, ) returns one point of
B on l’, although that point is not necessarily a vertex of B. (See Fig. 3.)

Correctness of the convex hull algorithm is guaranteed by the following lemma,
whose proof we postpone to 3"

LEMMA 2.1. (i) Candidate_List contains all vertices orB.

Fig. 3
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(ii) If m is the number of vertices of B, then the number of calls to Find_Best does
not exceed 4m + 3.

The following lemma is proved in 5.
LEMMA 2.2. If di <-di-1 for all i, the number of vertices of B does not exceed n 2.
The time complexity of the convex hull algorithm is the time complexity of the

subroutine Find_Best, multiplied by the number of calls of that subroutine. By Lemmas
2.1 and 2.2, the number of those calls is O(n2), if

We now concentrate on the subroutine Find_Best(a, ). Let T be the tree that
will be found by that subroutine, i.e., a tree for which a--penalty(T) a(T) + fl/-2(T)
is minimized.

Thefunction g. For any pair i, j such that 1 _-< _-< j =< n, and for any d >- 0, we define
g(i,j, d) recursively, as follows:

g( i, i, d) ached + ch,d

if i<j, then g(i,j,d)=min{g(i,k-l,d+l)+g(k,j,d+l)li<k<=j}.

If T has a subtree whose root is at depth d, and whose leaves are the ith through
the jth leaves of T, then the contribution of that subtree to the a-fl-penalty of T must
be minimized, since T has minimum overall a-fl-penalty. The recursive definition of
g guarantees that g(i, j, d) is that contribution. The a-fl-penalty of T itself is g(1, n, 0).

The values of g(i, j, d) can then be computed dynamically, in order of increasing
j- i. Since a subtree at depth d can have size at most n d, g need only be computed
for triples satisfying the condition d <_-n-j +i-1. There are O(n3) such triples, and
(using linear search among all candidates for k) the time to compute g(1, n, 0) is
O(n4), and the space is O(n3).

Recovery of T. A system of pointers can be retained to recover the optimal tree
T. If i<j, define cut(i,j, d) to be that value of k for which the minimum is achieved
in the recurrence portion of the definition of g. If there are multiple k’s for which the
minimum is achieved, cut(i, j, d) is defined to be the smallest one. The values of cut
are naturally computed during the dynamic algorithm, and if they are retained, the
tree T can be recovered in O(n) time.

The monotonicity lemma. Find_Best can actually be executed in O(n 3) time by
making use of the following lemma (similar to monotonicity lemmas used in [2] and
[7], for example).

LEMMA 2.3 (Monotonicity Lemma). Ifj>i+ 1, then

cut(i,j-1, d)<= cut(i,j, d)<-cut(i+ 1,j, d).

We postpone the proof of the monotonicity lemma to 4. The fact that the lemma
reduces the computation time by an entire order of magnitude can be shown by an
argument similar to that used by Knuth [7]. Let N(i,j, d) be the number of candidates
that need to be examined to determine cut(i,j, d). The total time to execute Find_Best

is dominated by the number of times such a candidate must be examined, which is

n--1 n+.j--i--1

E ., N(i,j,d).
i=1 .j=i+l d=O

We have

N(i,i+l,d)=l;

if j> i+ 1, then N(i,j, d)=cut(i+ 1,j, d)-cut(i,j-1, d)+

by the monotonicity lemma. Substituting the values for N(i, j, d) and canceling terms,
we can see that the summation is O(n3).
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Combining this result with Lemmas 2.1 and 2.2, we see that the convex hull
algorithm has time complexity O(n 5) if 4i_-< 4i-1, since the search set for cut(i,j, d)
can be restricted to the range indicated by the monotonicity lemma.

3. Proof of Lemma 2.1. ProofofLemma 2.1. We begin by making a claim, which
we prove by induction.

CLAIM. Suppose Span(T, T’) is called and there are exactly r vertices of B that lie
strictly between T and T’. Then Span( T, T’) will find all those vertices, using at most
4r + 1 calls to Find_Best. Furthermore, at most 4r 1 calls to Find_Best will be used ifr > O.

Proofof Claim. If r 0, one call to Find_Best will detect that there are no vertices
of B strictly between T and T’. Now suppose r > 0. Let T" be the point returned by
the top level call of Find_Best in the execution of Span(T, T’). Either T" is itself a
vertex of B, or lies in the interior of a line segment on B. Let ro be the number of
vertices strictly between T and T", and let rl be the number of vertices strictly between
T" and T’. We now consider the two cases. If T" is a vertex of B, r0+ r r-1. The
number of calls already made is 1, the number of calls needed to find all vertices
between T and T" is at most 4ro + 1, and the number of calls needed to find all vertices
between T" and T’ is at most 4r + 1. Thus, the total number of calls does not exceed
4r-1. On the other hand, suppose T" lies in the interior of a line segment which is
an edge of B. The endpoints of that edge must be vertices, both of which must be
distinct from { T, T’}. It follows that ro> 0, r > 1, and that r ro+ r. The number of
calls already made is 1, the number of calls needed to find all vertices between T and
T" is at most 4ro-1, and the number of calls needed to find all vertices between T"
and T’ is at most 4r- 1. Thus, the total number of calls does not exceed 4r-1.

The convex hull algorithm makes two initial calls to Find_Best. By the claim, no
more than 4m + 1 additional calls are needed. This concludes the proof of Lemma 2.1.

4. The monotonicity lemma. Let g be the function introduced in 2, with fixed
choice of a and/3. We first need a technical lemma.

LEMMA 4.1.
(i) g(i,i,d+l)-g(i,i,d)=d?(o+(Zd+l)),
(ii) g(i,j, d + l)-g(i,j, d)=>th(a+(Zd+l)/3).
Proof Equation (i) follows immediately from the basis of the definition of g.

Equation (ii) is proved by induction on j-i, and the basis follows from (i). Now
suppose that j > i. Let k cut(i,j, d + 1). From the definitions of g and cut, we have

(1) g(i,j, d+ 1) g(i, k-l, d+Z)+g(i, k-l, d+2),

(2) g(i,j, d) <- g(i, k- 1, d+ 1)+g(i, k- 1, d+ 1),

while from the inductive hypothesis we have

(3) g(i,k-l,d+Z)-g(i,k-l,d+l)>=chi(a+(Zd+3)fl)>-ch(a+(2d+l)fl),

(4) g(k,j, d+2)-g(k,j, d + 1)_>- bk(c + (2d +3)/3) => 0.

Subtracting (2) from (1), then substituting (3) and (4), we conclude the proof of
Lemma 4.1.

Next we need to show that the function g satisfies a "quadrangle condition," as
defined by Yao 11 ].

LEMMA 4.2. If io <= il <=jo <-j then

g(io,jo, d)+ g(i,j, d) <= g(il,jo, d)+ g(io,jl, d).
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Proof The proof is by induction on jo-il. We will consider the basis step last,
since it is more complicated.

Suppose il <jo. Let k0 cut(il,jo, d) and let kl cut(io,jl, d). By the symmetry
of the problem, we can assume that ko <- k without loss of generality. By the definitions
of g and cut:

(1) g(io,jo, d)<= g(io, ko- 1, d + 1)+ g(ko,jo, d + 1),

(2) g(i,,j,, d) g(i,, k,- 1, d+ 1)+g(k,,j,, d+ 1),

(3) g(i,,jo, d)-- g(il, ko- 1, d + l)+ g(ko,jo, d + 1),

(4) g(io,j,, d)= g(io, kl- 1, d + 1)+ g(kl,jl d + 1),

while by the inductive hypothesis"

(5) g(io, ko-l,d+l)+g(il,k-l,d+l)<-g(i,ko-l,d+l)+g(io, kl-l,d+l).

Add (1) and (2), add (3) and (4), and add the quantity g(ko,jo, d + 1)+g(k,,j,, d + 1)
to both sides of (5). The result follows by transitivity.

We now consider the basis case, namely i jo c, which itself needs to be proved
by induction on jl-io. The basis here, namely io=j, is trivial. Otherwise, let k
cut(io, j, d). By symmetry of the problem, we may assume, without loss of generality,
that k =< c. By the definitions of g and of cut, we have

(6) g(io, c, d) <= g(io, k- 1, d + 1)+ g(k, c, d + 1),

(7) g(io,jl, d)= g(io, k- 1, d + 1)+ g(k,j,, d + 1),

while by Lemma 4.1

(8) g(c,j,, d + 1)-g(c, jl, d)>=g(c, c, d + 1)- g(c, c, d).

By the inductive hypothesis

(9) g(k, c, d+ 1)+ g(c, jl, d+ 1) <-g(c, c, d + l)+ g(k,j, d +1).

Add g(c,j, d) to both sides of (6). Subtract (8) from (9), add g(io, k-1, d + 1) to
both sides, then substitute on the right side using (7). The result follows from transitivity.

5. The convex hull theorem. This section is devoted primarily to the statement and
proof of the convex hull theorem, which is used to prove Lemma 2.2.

If f and g are weight functions that satisfy the hypotheses of the convex hull
theorem, each tree can be plotted in a two-dimensional graph, using those two weight
functions. The trees that lie along the lower left boundary of the convex hull of the
graph of all trees are called (f, g)-minimal. The convex hull theorem states that
consecutive trees along that boundary are obtained, one from the other, by a specific
kind of change called an elementary shift. Under certain conditions that hold for the
minimum delay problem, the theorem also limits the number of those trees. When we
let the two weight functions be /-2 and , the convex hull theorem yields an upper
bound on the running time of the convex hull algorithm.

We begin by introducing a new representation of binary trees. Fix n => and L => 0.
We only consider trees (11,’", ln) such that l;-< L. We say that T is monotone if
li li-. If no depth restriction is desired, let L n- 1.

Nodeset representation. Define a node to be an ordered pair (i, l) such that 1, n ],
which is called the index of the node, and [1, L], which is called the level of the
node. Any set of nodes we call a nodeset. If T is a tree, define

nodeset(T) {(i,/)[1 =< -</,}
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where li is the depth of the ith leaf of T. For example, if T is the tree shown in Fig.
4(a), nodeset(T) is the set shown in Fig. 4(b).

Width and rank. If (i, l) is any node, define

width(i, l) 2-l, rank(i, l) iL- + 1.

If A is a nodeset, width(A) will be the sum of the widths of its constituent nodes.
Properties of nodesets. If A is any nodeset, we have the following:
(a) A is monotone if (i, l) A implies (i + 1, l) A;
(b) A is proper if (i, l) A implies (i, 1) A;
(c) A is a virtual treeset if width(A)= n- 1;
(d) A is a treeset if A nodeset(T) for some tree T.
The Kraft equality implies that every treeset is a virtual treeset, and it can be

shown (see, for example, [4]) that if A is a monotone proper virtual treeset, it is the
treeset of some monotone tree.

Weight functions. We define a weight function to be any positive function

f :[1, n]x[1, L]-> A

where A is any ordered integral domain.4

If A is any nodeset, define f(A) (which we call the f-weight of A) to be the sum
of the weights of the members of A, and if T is a tree, define f( T) f(nodeset( T)).
We have the following:

(a) f is monotone if f( + 1, l) <=f( i, 1);
(b) f is proper if f(i, l- 1) -<f(i,/);
(c) A is f-minimal if there is no nodeset of width equal to A of smaller f-weight.
To emphasize the fact that minimality is a relative term, we shall sometimes say,

for clarity, that A is "f-minimal among nodesets of width w."
Example. Let (bl,." ", b,) be a frequency list. Define

l,(i, l)

FIG. 4. (a) T. (b) nodeset(T).

2-1 1.That is, i=
That is, A has addition, subtraction, and multiplication’ multiplicative identity; and satisfies the usual

commutative, associative, and distributive laws. Furthermore, A is ordered, and a < b implies a + c < b + e,
also ac < be if e > 0. Two well-known examples are R reals and Z integers. See 10], for example, for a
discussion of integral domains.
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These weight functions are simply the expected path length and expected square path
length defined in the Introduction. Furthermore, l and -2L. are proper, and they are
monotone if is monotone (i.e., 4i =< 4i-1).

Pairs of weight functions. Suppose f and g are weight functions, taking values in
the same ordered integral domain A. We say that a weight function h is a positive
linear combination of f and g if there exist nonnegative a,/3 A, not both zero, such
that h(i, l) af(i, l) +/3g(i, l) for all (i, l). We say that a nodeset is (f, g)-rninirnal if it
is h-minimal for some h, which is a positive linear combination off and g. For clarity,
we shall sometimes say "A is (f, g)-minimal among nodesets of width w."

Flatness. We say that a weight function g is flatter than another weight function

f provided l’> if the following inequality holds"

g(i, l)f(i’, l’)<=f(i, /)g(i’, l’).
For example, for any frequency list , - is flatter than ],. (The word "flatter" is
used because typically a tree that is g-minimal will have more equally deep leaves
than a tree that is f-minimal.)

Elementary shifts. If A and A’ are nodesets, we say that A’ is obtainedfrom A by
an elementary shift, and write A=#A’, if the following two conditions hold:

width (A’) width (A), A’ A consists of exactly one node.

THEOREM 5.1 (convex hull theorem). Let f, g be weight functions, taking values in
a multiplicative ordered domain A, and let 0-< w-< n(1- 2-L) be an integer. Then there
exists a sequence ofnodesets Ao, , A, each ofwidth w, such that we have thefollowing"

(1) f(Ak-1) <=f(Ak);
(2) g(Ak-) >- g(Ag);
(3) Ao is f-minimal among nodesets of width w;
(4) A: is g-minimal among nodesets of width w;
(5) Ak is (f,, g)-minimal among nodesets of width w;
(6) If h is any positive linear combination off and g, then there is some Ak that is

h-minimal among nodesets of width w;
(7) Either Ak_ Ak or Ak Ak_ 1.

Furthermore, iff and g are both monotone and proper, then
(8) Ak is monotone and proper.

Furthermore, if g is flatter than f,, then
(9) Ak-Ak;
(10) K<=nL.
We now prove Lemma 2.2. Let A R, L n- l, w n- 1, f 1-, and g -. By

(6), each tree whose plot is a vertex of B is equivalent to some tree whose nodeset is
some A. Since K _-< n2- n, we are done.

We will first prove the convex hull theorem under the additional hypothesis that
the two weight functions satisfy a general position condition. Then we will reduce the
general convex hull theorem to this special case by making use of infinitesimals.

General position. We say that a weight function f is in general position if no two
nodesets have the same f-weight, and we say that f is in almost general position if no
three nodesets have the same f-weight. If f and g are weight functions, we say that f
and g are in jointly general position iff and g are each in general position and if each
positive linear combination of f and g is in almost general position.

The concept of almost general position has a simple geometric interpretation.
Graph each nodeset A to the point (f(A), g(A)). Then f and g are in jointly general
p,sition if no two nodesets are graphed to points in the same vertical or the same
horizontal line, and no three nodesets are graphed to collinear points.
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LEMMA 5.2. If all the hypotheses of Theorem 5.1 are satisfied, and iffand g are in
jointly general position, then the conclusions of Theorem 5.1 hold.

We now begin the proof of Lemma 5.2. Let A0," , An be the set of all (f, g)-
minimal nodesets, sorted in order of increasing f-weight. Then (1), (5), and (6)
automatically hold. If g(Ak-1)< g(Ak), then Ak could not be (f, g)-minimal, so (2)
holds. Letting a 1 and/3 =0, we obtain (3). Letting a =0 and fl 1, we obtain (4).

To prove (7), we need two lemmas.
LEMMA 5.3. Let o g(Ak-1)- g(Ak), let fl =f(Ak)--f(Ak-), and let h af+ fig.

Then Ak-1 and Ak are both h-minimal, and are the only two h-minimal nodesets.
Proof. Since h(Ak_) h(Ak), either both are h-minimal or neither is. Suppose

neither is. Then there must exist an h-minimal nodeset. By (6), that h-minimal nodeset
must be Aj for some j. By (5), Ak is h’-minimal for some positive linear combination
h’= a’f+ fl’g. We have three inequalities:

Inequality 1:
Inequality 2:
Inequality 3:

h(Ak) > h(Aj), since Aj is h-minimal and Ak is not;
h’(Ak_l) >= h’(Ak), since Ak is h’-minimal;
h’(Aj) >- h’(Ak), since Ak is h’-minimal.

The remainder of the proof is tedious but straightforward. First, multiply both sides
of Inequality 1 by fl’, both sides of Inequality 2 by f(AJ)--f(Ak), and both sides of
Inequality 3 by ft. Add the left sides and the right sides of the three resulting inequalities
to obtain a single inequality, which will be strict, since Inequality 1 is strict. Replace
each instance of a with g(Ak_)- g(Ak), and each instance of/3 with f(Ak)--f(Ak-1).
There will be 12 terms on each side, all of which cancel. Thus we obtain 0<0, a
contradiction. The assumption that j < k-1 leads to a similar contradiction. Finally,
note that h must be in almost general position; thus Ak_ and Ak are the only h-minimal
nodesets. This concludes the proof of Lemma 5.3.

LEMMA 5.4. IfA is any nodeset ofwidth at least 2-1, and if the level ofevery element
ofA is at least l, then there exists a nodeset B

_
A such that width(B)= 2-1.

Proof. The proof is by backward induction on I. If L, every element of A has
level L, and we can let B consist of just one of those elements. Otherwise, we consider
two cases. The first case is that A contains a node of level I. Let B consist of just that
node. In the second case, A has no node of level l, i.e., all of its elements have level
at least + 1. By the inductive hypothesis, we can pick B1 c_ A and B2___ A-B, each
of width 2-(//1). Let B B U B2. This completes the proof of Lemma 5.4.

We now prove (7). Let h be as in the statement of Lemma 5.3. Let B Ak -Ak-1,
and B’= Ak- Ak. If either B or B’ consists of a single node, we are done by definition
of elementary shift. Otherwise, let be the smallest level of any node in either B or
B’, i.e., 2-i is the greatest width ofany node in B or B’. Note that width (B) width (B’) >
2-!. By Lemma 5.4, we can pick nodesets C c_ B and C’c_ B’ each of width 2-I. Let
A Ak-1 C C’, and let A’= Ak C’- C. The combined h-weight of A and A’ must
be equal to the combined h-weight of Ak-1 and Ak, because exactly the same nodes
appear in the summations. On the other hand, it must be greater by Lemma 5.3, a
contradiction. Thus (7) is established.

For the remainder of the proof of Lemma 5.2, assume that f and g are monotone
and proper.

LEMMA 5.5. IfA is any nodeset ofwidth q2-1 + r, where q is an integer and 0 <- r < 2-1,
then there exists a nodeset B

_
A such that width(B)= q2-1.

Proof. The proof is by induction on r, which is necessarily an integral multiple
of 2-L. If r- 0, let B A. Otherwise, let (i,/’) e A have the greatest level, i.e., smallest
width. Then apply the inductive hypothesis to A {( i, /’)}, and Lemma 5.5 is proved.
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Suppose that Ak is not monotone. Then there exists (i, 1)
Ak. Let A Ak {(i + 1, 1)} {(i, l)}. By monotonicity and general position off and g,
A has smaller f-weight and also smaller g-weight than Ak. Thus, Ak cannot be
(f, g)-minimal, which contradicts (5). Suppose that Ak is not proper. Then there exists
(i, l) Ak such that (i, Ak. Let A Ak [2 { (i, 1) } { (i, l) }. By Lemma 5.5, there
exists a nodeset B

_
A of width w. Since f and g are proper and in general position,

B has smaller f-weight and smaller g-weight than Ak, SO Ag cannot be (f, g)-minimal,
which contradicts (5). Thus (8) holds.

For the remainder of the proof of Lemma 5.2, we assume that g is flatter than f
By (7), either Ak_I=Ak or Ak=Ak_I. If the former holds, we are done. If the

latter holds, we will obtain a contradiction. Let (i, l) be the unique member of Ak- Ak.
Let B Ak Ak-1. We first note that, for any (i’, l’) B, l’->_ l, since B must have width
2-. Since Ak-I and Ak are monotone, l’> I.

By (1), we have

Inequality 1" f(i, l)<(i,,l,)f(i’ l’)

while by (2), we have

Inequality 2: g(i, l) > (i’,l,)B g(i’,l’).

Since g is flatter than f, g(i, l)f(i’, l’)<=f(i, 1)g(i’, l’) for all (i’, l’)6 B. Multiplying
Inequality 1 by g(i, l) and Inequality 2 by f(i, l), we obtain a contradiction. Thus (9)
is established.

Now, by (9), Ak--Ak_ always consists of a single node, say (i, l). If Ak-1--Ak
consists of a single node, that would imply that AkZ:ZAk-1, which was shown to be
impossible in the previous paragraph. Thus, Ak- has greater cardinality than Ak, and

IAol >-IAKI+ K. Since there are only nL nodes altogether, IAol <-_ nL. Inequality (10)
follows immediately.

This concludes the proof of Lemma 5.2.
Proof in the general case. We now reduce the convex hull theorem to Lemma 5.2,

i.e., to the special case where the weight functions are in relatively general position.
The polynomial domain. Let x and y be formal symbols, and let A[x, y] be the

polynomials with coefficients in A over x and y. We make A[x, y] an ordered integral
domain by the rules that y is infinitesimal, and x is infinitesimally smaller than y. That
is, if p, q, r, s are nonnegative integers, and if A,/ are positive elements of A, then
0 ,,xPy q t.lcxry if and only if one of the following holds" either q > s, or q s and
p>r, orq=sandp=rand

Degrees. If h e A, we say that the term ,xPyq has x_degree p and y_degree q. Any
nonzero a e A[x,y] consists of the sum of unlike nonzero terms. We define the
x_y_degree of a to be the maximum x_degree of a term of a of maximal y_degree.
For example, x_y_degree x + x3y + x4y) 4. We note that, for nonzero a,/3 A[x, y]"

x_y_degree(a x_y_degree( a + x_y_degree(fl ).

Proof of Theorem 5.1. We define weight functions fx and gY, by taking values
in A[x, y], by

ffx:l(i, l) f(i, l)+ x"(c-t)+i g[Y](i, 1) g(i, 1)+ y ’’(-t)+i

Intuitively, ftx. and gty? differ from f and g "infinitesimally." The differences are not
enough to disturb relations among nodesets using f and g, but are used only to break
enough ties to ensure general position.



MINIMUM DELAY CODES 93

We refer to the quantity n(L-l)+i as the degree of the node (i, 1). Each node
has a distinct degree in the range [1, nL].

LEMMA 5.6. The weight functions f’], g[Y] are jointly in general position.
Proof. Since no two nodes have the same degree both f-’] and gY are

(individually) in general position. Now suppose that there are three distinct nodesets,
A, B, and C of the same h-weight, where h afx]+flgyJ and a, fl A[x, y] are not
both zero. Now let r be the highest degree that serves to distinguish between some
two of those three nodesets, i.e., any node of degree higher than r lies in either all or
none of the three sets A, B, and C, while the node of degree r lies in either one or
two, but not in three, of those same sets.

Without loss of generality, A and B both contain the node of degree r while C
does not, or C contains the node of degree r while A and B do not. Let s < r be the
highest degree of a node that lies in A but not in B, or in B but not in A. Since A and
B have the same h-weight, we have

Equation 1" a(fXJ(A)-fX(B)) fl(gY](B)-gY](A)),

while, since A and C have the same h-weight, we have

Equation 2" a(f](A)-f](C)) fl(gY](C)-gY](A)).

Let a x_y_degree(a) and b x_y_degree(). From Equation 1, we have a + s b + 0,
while from Equation 2, we have a + r= b +0, a contradiction. Thus, Lemma 5.6 is
proved.

The difference between the f-weight of a node and the f’]-weight of that same
node is infinitesimal in A, i.e., it cannot be made larger than any positive element of
A by multiplication by any element of A. Thus, if a nodeset A is f]-minimal it is
also f-minimal. Similarly, if A is gY-minimal it is also g-minimal, and if it is
(f], gY)-minimal, it is also (f, g)-minimal. We also observe the following:

(a) Iff is monotone, then fx is montone;
(b) If g is monotone, then g[Y] is monotone;
(c) Iff is proper, then f] is proper;
(d) If g is proper, then g[Y] is proper;
(e) If g is flatter than f, then gY is flatter than f.
Thus,f and gY satisfy the hypotheses of Lemma 5.2, and if Ao, , AK is a

list of nodes which satisfies the conclusion of Lemma 5.2 for the inputs f- and gY],
it also satisfies the conclusion of Theorem 5.1 for the inputs f and g.

This concludes the proof of Theorem 5.1, the convex hull theorem.

6. Open questions. Improvements. When we use the methods of [8], the time
to execute Find_Best should be reduced from O(n 3) to roughly O(n 5/2 log n). Such a
result will be unimportant, though, if the conjectures given below hold.

CONJECTURE 1. The time for the convex hull algorithm can be reduced to
O(n4log n) by dynamically computing, for all pairs (i, j), in order of increasing
j i, g(i, j, 0) for all possible choices of a and/3, and by making use of the monotonicity
lemma, Lemma 2.3.

CONJECTURE 2. The number of vertices of B is O(n /) in the average case.
Conjecture 2 is suggested by a statistical result by Renyi and Sulanke [9]. The

Renyi-Sulanke result states that the number of points in the boundary of the convex
hull of a randomly selected set of N points in the plane is expected to be (R)(log/2 N),
if the points are placed according to a normal distribution. In our application, if N
is the number of trees of size n, then log N (R)(n). We expect that it will be quite
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difficult to show that Conjecture 2 holds, but simulations indicate just such a bound
with random data.

The most optimistic conjecture, which combines the best features of Conjectures
and 2, follows.

CONJECTURE 3. The convex hull algorithm can be modified to run in O(n5/2 logn)
time in the average case.

Again, simulations support Conjecture 3.
Alphabetic codes. We say that a prefix-free code is alphabetic if the source alphabet

has a given order, and the lexical order of the code strings must correspond to that
order. The example code given in the Introduction is not alphabetic, but the following
code is:

b->lO

cll.

Hu and Tucker [5] present an algorithm that minimizes for a prefix-free alphabetic
code. The convex hull algorithm presented in this paper correctly finds an alphabetic
code of minimal expected delay, since at no time was it necessary to assume that the
bi are monotone during the proof of correctness. However, there is no guarantee that
the algorithm will take polynomial time, since Lemma 2.2 strongly depends on monoton-
icity of the weights. The question of whether a polynomial-time algorithm exists for
finding an alphabetic prefix-free code of minimal delay remains open.

Dynamic andparallel computation. The algorithm presented in this paper is sequen-
tial, and finds a minimum delay code for given (static) frequencies. Instead we could
ask for a dynamic algorithm that changes the code as frequencies are updated during
the transmission of a message. Either the static or the dynamic code could be computed
using parallel processors; the question then would be to find an efficient tradeoit
between the number of processors and time. We could also ask whether the problem
of finding a minimum delay code is in class NC, the class of problems that can be
solved in polylogarithmic time using polynomially many processors.

Acknowledgment. I wish to thank George Lueker for calling my attention to this
problem.
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Abstract. The Boolean Hierarchy I: Structural Properties [J. Cai et al., SIAM J. Comput., 17 (1988),
pp. 1232-1252] explores the structure of the boolean hierarchy, the closure of NP with respect to boolean
operations. This paper uses the boolean hierarchy as a tool with which to extend and explain three important
results in structural complexity theory.

(1) Hartmanis, Immerman, and Sewelson [Proc. 15th Annual Symposium on the Theory of Computation,
1983, pp. 382-391] showed that E NE if and only if NP-P contains no sparse sets. In this paper it is
shown that this reflects a behavior of the boolean hierarchy. When E--NE, sparse sets fall from alternate
levels of the boolean hierarchy (Fig. 2(a)). Furthermore, it is shown that capturable sets (i.e., subsets of
sparse NP sets) are banished from the boolean hierarchy when E-- NE: E NE implies that BH-P has no
capturable sets.

(2) Counting classes are natural candidates as complete languages for the levels of the boolean hierarchy.
The authors show that in relativized worlds counting classes are not complete for the levels of the boolean
hierarchy. Relatedly, the work of Blass and Gurevich Inform. and Control, 55 (1982), pp. 80-88] is extended
and it is concluded that counting classes are weak in some relativized worlds.

(3) Karp and Lipton [Proc. 12th Annual Symposium on the Theory of Computation, 1980, pp. 302-309]
showed that if NP has a sparse 9racle (i.e., if there is a sparse set S so NP_ pS; equivalently, if NP has
small circuits), then the polynomial hierarchy collapses to NPNP. The authors demonstrate that this cannot
be much improved. There is a relativized world in which NP has a sparse oracle, yet the boolean hierarchy
is infinite. Thus no proof that relativizes can show: NP has a sparse oracle implies that the polynomial
hierarchy equals the boolean hierarchy.

The results of this paper present new ideas and techniques, and put previous results about NP and DP

in a richer perspective. Throughout, the emphasis is on the structure of the boolean hierarchy and its relations
with more common classes.

Key words, sparse sets, counting classes, circuits, boolean hierarchy, structural complexity theory,
polynomial-time hierarchy, relativized complexity classes
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1. Introduction and overview of results.
1.1. Introduction and background. The boolean hierarchy I: Structural properties

[CGI] explored the structural properties of the boolean hierarchy [W85a]. The
hierarchy defined in that paper is used here to extend three central results of structural
complexity theory.
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DP, the closure of NP(.J coNP under intersections, has recently been carefully
studied [PY82], [PW85], [CM85]. A natural completion of such extensions of NP is
the boolean hierarchy--the closure of NP under boolean operations. The boolean
hierarchy (BH) has a clear "physical" interpretation. The sets in the boolean hierarchy
are exactly those representable by hardware over NP. Each boolean hierarchy language
is accepted by a hardware tree connecting NP machines (Fig. 1).

P(x) S(x) T(x) W(x) X(x) Y(x)

Each predicate is an NP predicate.
FG. l. Hardware over NP.

Each level of the boolean hierarchy consists of sets represented by a certain fixed
structure of boolean operators on NP sets. Sets in the boolean hierarchy have normal
forms. Each can be written as a finite union of DP sets"

NP (0) P,
NP (1) NP,

NP (2)= Dr’= {L (] E2[ LI, L2 G NP},
NP (3) (L, CI ) L3 L,, Lz, L3 NP},

NP (4) {((L, (’l L-2) U L3) 0 L-4[ L,, L2, L3, L4 NP},
BH= NP(i),

i>o

coNP (i)= {SI6 NP (i)}.
LEMMA [CGI]. The following are equivalent"
(1) T BH.
(2) T is a finite union of DP sets.
(3) T is a finite intersection of coDP sets.

(4) T is in the boolean closure of NP.
(5) T <P

b, SAT.
1.2. Sparse sets in the boolean hierarchy and E = ?NE. Hartmanis, Immerman, and

Sewelson [HIS83] linked the behavior of sparse sets in NP to the E NE question.
We show that E NE forces sparse sets in odd levels of the boolean hierarchy down
one level. This result is the best possible among results holding in all relativizations;



THE BOOLEAN HIERARCHY II" APPLICATIONS 97

our "candy cane" relativization alternates stripes with and without sparse sets
throughout the boolean hierarchy (Fig. 2b). Indeed, since this oracle leaves sparse sets
in coNP(2k+l)-NP(2k+l) but not in NP(2k+I)-coNP(2k+I), we have an
infinite set of structurally asymmetric complementary classesmthe levels of the boolean
hierarchy.

THEOREM. E NE ifand only iffor all k, NP (2k + 1) NP (2k) has no sparse sets.
THEOREM (Candy Cane Relativization). There exists a set A such thatfor all k >-_ O,

NPA (2k + 1)- NPA (2k) has no sparse sets, yet NPA (2k + 2)- NPA (2k + 1) has sparse
sets.

It follows easily that E NE forces all tally sets out of BH-P, but may leave
sparse sets. Is there some natural class of sparse sets that is richer than the class of
tally sets and can be forced from the boolean hierarchy? To answer this question, we
define capturability of sets, a notion we feel to be of general interest.

DEFINITION. A set is capturable if it is a subset of some sparse set in NP.
THEOREM. If E NE, then all capturable sets in the boolean hierarchy are in P.

1.3. Counting classes. Counting classes, such as the class US defined by Blass and
Gurevich [BG82], seem promising sources of natural complete sets for the boolean
hierarchy. Let S be a finite or cofinite set of natural numbers. We define its associated
counting class, CPs, as the set of languages accepted by a nondeterministic polynomial-
time machine that has the following acceptance mechanism: an input x is accepted if
and only if the number of accepting computation paths on input x is a member of S.
These classes are all contained in A’. In 3 we discuss natural complete languages,
containment relationships, and relativized separations among counting classes. Our
relativizations, which are obtained by combinatorially exploiting the limited control
of counting machines, reveal the weakness of counting classes; in appropriately
relativized worlds, counting classes fail to even contain NP.

These classes have canonical complete languages of the form SATs {lithe
number of solutions to f is a member of S}. Further, many basic containments can be
derived from the following theorem.

CONTAINMENT THEOREM. For z >--_ 1, ct >= 1 (1<= <-- z), k >- O, and j> >-_

min=z (k) _-> 1"

c + +.’. + + k, c + + + c +
k k

We display a world where more counting is strictly more powerful. Nonetheless,
the most interesting aspect of counting is that it can be made weak. Counting can be
made too weak to capture NP or coNP. As a consequence, no amount of counting is
hard for even low levels of the boolean hierarchy.

THEOREM. There is a recursive set A so that U Stinite CPsA 75 NPA and
[-J Scofinite CP ; coNPA.

COROLLARY. There is a relativized world where n__qo amount of counting is hard for
DP (A) or coDP (A) (i.e., where no counting class contains either DP (A) or coDP (A)).

1.4. The boolean hierarchy and sparse oracles for NP. We study the relations
between sparse oracles and the boolean hierarchy. We say NP has a sparse oracle if
there is a sparse set S so that NP_ pS. Mahaney [M82] showed that if NP has a sparse
many-one complete set then P NP. Karp and Lipton [KL80] showed that if NP has
a sparse Turing hard set or a sparse oracle, then E2p= I-IP. Does the existence of a
sparse oracle for NP imply something stronger than zP 1-I’ ?

By displaying a relativized world where NP has a sparse oracle but in which the
boolean hierarchy is infinite, we show that the conclusion in [KL80] is nearly the
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strongest possible among results that relativize. In terms of circuits, this result shows
that (in relativized worlds) the existence of small circuits for NP does not imply that
P NP or even that the boolean hierarchy is finite. Our result improves the work of
Kurtz, Immerman, and Mahaney reported in [HIS83]. Similarly, by displaying a
relativized world where PSPACE has a sparse oracle but where the boolean hierarchy
is infinite, we show that the Karp-Lipton result on sparse oracles for PSPACE (i.e.,
if PSPACE has a sparse oracle then PSPACE Z’) is also nearly as strong as possible.
Indeed, we show the stronger result that pS= PSPACEs, S sparse, can be consistent
with an infinite boolean hierarchy.

THEOREM. There is a relativized world where the boolean hiera.rchy is infinite and
PSPACE has sparse oracles (and, indeed, in which there is a sparse S so pS PSPACES).

COROLLARY. No proof that relativizes can show the following: if NP has a sparse
oracle then the polynomial hierarchy equals the boolean hierarchy.

2. Sparse sets in the boolean hierarchy and E ?NE.
2.1. Basic results. In 1983, Hartmanis, Immerman, and Sewelson [HIS83] extend-

ing work of Book [B74], noted a connection between the density of sets in NP and
the structure of exponential time classes. They proved the following theorem, in which
E U .>o TIME [2 and NE (3 c>o NTIME [2"].

THEOREM 2.1.1 [HIS83]. The following are equivalent:
(1) There is a sparse set in NP-P.
(2) There is a tally set in NP-P.
(3) ENE.
COROLLARY 2.1.1 [HIS83]. There is a recursive set A for which EA= NEA and

coNpA_ pA has sparse sets.
This section considers the implications ofthe existence of sparse sets in the boolean

hierarchy. We start by noting that there are tally sets in BH- P if and only if E NE.
It follows that forcing tally sets from NP-P banishes them from the entire boolean
hierarchy; that is, BH-P has tally sets if and only if NP-P does.

THEOREM 2.1.2. There are tally sets in BH-P if and only if E NE.
Proofof Theorem 2.1.2. :=>: Assume E NE. Let L be a tally set from the boolean

hierarchy. In normal form, as the finite union olDP sets, L= N f-) A) Nz f’) Az),
where the N/NP and AicoNP. Since L_I*, L=((Nf’)I*)fq(AI*))LJ...
U((Nzf) 1") fq (A f-) 1")). When E= NE, all tally sets in NPt_J coNP fall to P [HIS83],
so L is the boolean combination of P sets. Thus L is in P.
: If E NE, there are even tally sets in NP-P, by an easy padding pro-

cedure.
COROLLARY 2.1.2. There are tally sets in NP-P if and only if there are tally sets

in BH-P.
The behavior of sparse sets in the boolean hierarchy when E NE is unusual:

sparse sets fall out of alternate levels. That is, NP- P, NP (3) DP, NP (5) NP (4),
have no sparse sets when E NE (Fig. 2a). Also, coDP-coNP, coNP (2k +2)-
coNP (2k + 1) have no sparse sets.

There is a relativized world where sparse sets do fall from alternate levels, yet
they find sanctuary in the gaps, i.e., P, DP-NP, NP (4)-NP (3),. .. Since in this
world the boolean hierarchy is striped with regions of sparseness and nonsparseness,
we call this the candy cane relativization (Fig. 2(b)). Corollary 2.1.1 reflects the base
case of this result.

THEOREM 2.1.3. (a) E= NEC:> (Vk) [NP(2k+ 1)-NP(2k) has no sparse sets].

Recall that NP (0) P.
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etc.

NP(S)

NP(4)

NP(3)

DP

NP

Figure 4a: The arrows indicate the
movement of sparse sets when NE.

FIG. 2(a). The arrows indicate the movement of sparse sets when E NE.

arse
NP(3) NP(3)

DP KEY: Shaded DP
regions have no
sparse sets; white

se regions have
NP sparse sets. NP

FIG. 2(b). In our candy cane relativization, regions with and without sparse sets alternate. The left cane
displays the world of Theorem 2.1.4. An easy modification of the oracle (noting Theorem 2.1.3(b)) gives the
right cane.
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(b) E= NE=> (Vk) [coNP (2k + 2)-coNP (2k + 1) has no sparse sets].
Proof of Theorem 2.1.3. (a) <=: The proof is by Theorem 2.1.1.
(a) =>: Let E NE and T be a sparse set in NP (2k + 1). T can, by the definition

of NP (2k + 1), be written N t.J V, where N is in NP and V is in NP (2k). Since T is
sparse, N must be sparse. So N is a sparse set in NP and thus is in P, since E--NE.
NP (2k) is closed under intersection with P sets, so T is in NP (2k).

(b) The proof of (b) is similar.
THEOREM 2.1.4. There is a recursive set A for which we have the following:
(1) EA= NEA (thus NpA--PA, NPa (3)-DpA, NPA (2k+ 1)-NPA (2k),

have no sparse sets), and
(2) (Vk) [coNPa (2k + 1) NPa (2k + 1) has sparse sets].
Proof The proof is deferred to 2.3.
Theorem 2.1.3(a) is a complete characterization, yet Theorem 2.1.3(b) is only an

implication. Can Theorem 2.1.3(b) be made into an "if and only if" statement? In
certain relativized worlds, the answer is no, as it is possible to construct an oracle for
which NP-P contains sparse sets (thus by [HIS83] E NE) yet for which coNP-- NP
(so BH-coNP= ).

2.2. Capturalle sets in the boolean hierarchy. So far, we have noted that E NE
forces all tally sets out of BH--P, but may leave sparse sets. Is there some natural
class of sparse sets that is richer than the class of tally sets and can be forced from
the boolean hierarchy?2 To study this question, we define capturability of sets.

DEFINITION 2.2.1. A set is capturable if it is a subset of some sparse set in NP.
Immunity of sets has been intensely studied (see Russo [R85] and Sch6ning and

Book [SB84]). A set is NP-immune if it contains no infinite NP subset. Our definition
of uncapturability provides a complement to this notion; immunity means no NP set
is inside a set and uncapturability means the set is inside no sparse NP set. A set T
is uncapturable if every NP superset of T is nonsparse.

Capturable sets are a rich class. Nonetheless, capturable sets are sufficiently simple
that we can answer the question that motivated this section. When E NE, all capturable
sets in the boolean hierarchy fall into P.

We first prove the following weaker result.
LEMMA 2.2.1. If E NE, then BH-coNP has no capturable sets.

Proof of Lemma 2.2.1. Assume E NE and let L be a capturable set from the
boolean hierarchy. Write L in normal form as the finite union of De sets: L--
t.J i=<kL (N f)Ai), where N NP and A coNP. Let S be the sparse NP set capturing
L. Then L t_J i<--kL ((N 71 S) (3 A). But since E NE each Ni S is in P, so L is the
finite union of coNP sets and thus is itself in coNP.

THEOREM 2.2.1. If E= NE, then all capturable sets in the boolean hierarchy
are in P.

Proof of Theorem 2.2.1. Assume E NE and let S be a capturable set in the
boolean hierarchy, captured by S’: S__ S’ NP, S’ and S are sparse. Let

L={nk]z,,,,6S}
where Zn,, is the kth string (lexicographically) in Wn S’f3 (Z + e)". Since E NE, S’
is P-printable by the results of Hartmanis and Yesha [HY84], and by the above lemma,
S coNP. Thus L coNE, so L E.

Certainly for the class "subsets of P-printable sets [HY84], [HH86a]" this property holds. We seek
a far richer class.
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Since L E, the following program accepting S is in P:

{Let n := Ixl;
P-print W,;
If x W, then {reject x}
else {suppose x is the kth string (lexicographically) in W,;

accept x if and only if n k e L.
}

2.3. The candy cane construction. Recall ( 2.1) that the candy cane construction
leaves sparse sets in patches throughout the boolean hierarchy (Fig. 2(b)). Though the
construction is somewhat involved, the strategy is straightforward. While coding an
NE complete set into E, we simultaneously perform diagonalizations in the boolean
hierarchy to insure an infinite class of sets sanctuary at various levels of the hierarchy.
The oracle places the "sawing" technique introduced in [CGI] within the framework
developed in [HIS83, Thm. 12]. The "sawing" technique is described in detail in [CGI].

We achieve Ea-- NEa by coding into our oracle an NE-complete language. Let
N be a machine so that for all oracles A, L(NA) is complete for NEa. Without loss
of generality (i.e., by padding), N runs in time 22n. We will code our oracle so
141:x 2211 AC=>x L(NA).

Simultaneously, we wish to offer sanctuary to sparse sets in coNP, coNP(3),
coNP (5),..., coNP (2k+l),.... We define a family of languages {Szk+}, SO that
each Szk+ is obviously in coNP (2k + 1). By careful diagonalization we show that, for
each k, no NP (2k+ 1) machine accepts Szk+. In addition, we poison the oracle to
insure that each Szk+l remains sparse.

To space out our diagonalizations so no two interfere with each other, we define
widely spaced columns in which the diagonalizations are based. Let Ck=
{ml(=li)[m 22(">]}, where (., .) is a standard pairing function. Each diag0nalization
involving Szk+ will use a diagonalizing string whose length is in Czk+.

Taking advantage of these columns as spacing mechanisms, define our sanctuary,
finding sets as follows. Note that each Szk+ is in coNP(2k+ 1). The notation
(Vw’C’S) means "for all w satisfying C, $ holds."

S {x lxl c1 A (Vy" lyl Ixl + 1" Oxy _= a)},
S {X lxl c3 A [(Vy" [y[ Ix[ + 1" Oxy

_
A) ^ [(::ly. [y] Ixl / 2" Oxy e A)

v (Vy. lyl--Ixt / 3" Oxy : A)]]}
$2+, {xllxl c+, ^ [(My" lyl txl+ 1" Oxye!A) ^[(By" lyl---Ixl +2: OxyA)

v [(Vy" lyl Ixl + 3: Oxy A) A [’’" [(3y" lYl lXl + 2k" Oxy A)
v (Vy" lyl---Ixl + 2k + I" Oxy ! A)]... ]1]]}.

Now, for each k, we must assure that S2+l is accepted by no NP (2k + I) machine.
We model an NP (2k + 1) language H as a collection of k + 1 NP machines N and k
coNP machines A, so H N1U [A2 fl [N2 U [. U [Ak+ f"l Nk+l]" ]]]. We use the
machines and their languages synonymously. Without loss of generality, let the ith
coNP (2k + 1) machine be composed of machines running each in time n+ i.

Using the method of successive restrictions (the "sawing" technique) described
in [CGI], we easily perform the needed diagonalizations.

CANDY CANE CONSTRUCTION.
Stage n, Part A. If n U o C2+1 do nothing. Otherwise, suppose n C2k+1. Let H
be the first NP (2k+ 1) machine that might still accept S2k+; let us say that H is the
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lth NP (2k + 1) machine. If > 1/2 log n then skip Part A, otherwise go on. We show that
AL(HA) # Szk+l.

Find an x0, [Xo[ n, such that for all y with n <_-[y[ <_- n + 2k + 1, Oxoy is unspecified
(i.e., a string that has been neither placed in nor barred from A).

Recall that

L(H)= L(N1) U [L(A2) f] [L(N2) U [. [_J [L(Ak+,) f] L(Nk+,)] ]]].

Case 1. There is some extension of A so Nl(xo) accepts. Thus Xoe L(HA) on this
extension. Fix the oracle strings queried along some accepting path of N(xo) on this
extension. To assure that Xo S2k+l, find a y, ly] n+ 1, so Oxoy is unspecified and
add it to the oracle.

Case 2. For every extension of A, Np(xo) rejects and for some extension of A
so that (’y: Jy}= n+ 1" Oxoy: A), A(xo) rejects. Thus Xo: L(HA) on this extension.
Fix in A the elements along some rejecting path. Now assure Xoe S2k+ by adding an
unspecified string Oxoy, lYJ n + 2, to A.

Case 2j (1 <=j <= k). Cases 1, 2, , 2j fail to hold and for some extension of
A so that (Vy" n + -< [Yl -< n + 2j- 1" Oxoy A), A+,(Xo) rejects. Fixing a rejecting path
assures Xo- L(HA). Insure that Xo S2k+ by choosing a [Yl n + 2j so Oxoy is unspecified
and add it to our oracle.

Case 2j+ 1 (0<_-j <-k). Cases 1, 2,..., 2j fail to hold and for some extension of
A so that (Vy: n + _-< [y[ _-< n + 2j: Oxoy A), N+(Xo) accepts. Fixing an accepting path
puts xoin L(HA). Assure Xo- S2k+l by choosing a y, [Yl n + 2j + 1, so Oxoy is unspecified
and add Oxoy to our oracle.

Case 2k + 2. Cases 1, 2,..., 2k + 1 fail to hold. So H rejects Xo on any extension
where (Vy: n + 1 _<-[Yl =< n + 2k + 1: Oxoy

_
A). Freeze all these strings out of A. Now

X0 S2k+l but Xo: L(HA).
All cases. If any of the cases 1, 2, , 2k + 2 has occurred, we must act to maintain

the sparseness of S:k+l. For each x # Xo, find a y,, lyxl--Ixl/ 1 so Oxy,, has not yet
been specified and add that string to A. Thus $2k+1 has at most one string of length n.
Stage n, Part B. Recall that N is a machine so L(NA) is NEa complete for all A. We
will code so that : x# 1 21.1 e A ::> x e L(NA).

For each string x so that log n -< Ixl -_< log (n + 1), in order from the smallest such
of A so that N (x) accepts,x to the largest, do the following. If there is an extension A

fix the elements along that path and add 1 # x 4 221. to A. Otherwise, fix 1 # x4 121 as
out of A.
End Construction

Notes on the construction.
(1) We can find an Xo in Part A, as there are 2 candidates and at most

2+lgn221g2n 2n31gn strings of length at least n have been fixed. All these have been
fixed in Part B. Our Part A actions are spaced double exponentially far apart in
length. Each Part A action cannot get near the strings involved in the next Part A
diagonalization.

(2) Similarly, we can find the strings y, with which we poison strings to maintain
sparseness in Part A.

(3) In Part B, each coding string 1 #x# 12211 will certainly be unspecified when
we assign it. No Part B computation will have touched this string. Any Part A machine
run at stage n cannot even reach things of length ng", by our assumption that the
ith NP (2k + 1) machine is composed of machines running in time at most n + and
our choice of H. So no Part A machine has touched our coding strings.
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3. Counting classes. Counting classes at first seems tempting as natural complete
sets for the boolean hierarchy. In this section, we define the notion of a counting class,
and display relativized worlds where counting classes are not complete for the levels
of the boolean hierarchy.

NP is the class of sets accepted by nondeterministic polynomial-time Turing
machines (NPTMs) that (by definition) accept when at least one computation path
accepts. US is the class of sets accepted by NPTMs that accept when exactly one
computation path accepts. Blass and Gurevich [BG82] showed that there are relativized
worlds where UNIQUE-SAT, a natural complete set for US, is and is not complete
for Dp.

We are interested in more generalized notions of machines that count accepting
paths (see also [GW87]). Our machines accept an input if the number of accepting
paths generated by that input is in a prescribed set. These counting classes have natural
complete sets, i.e., formulas with specified numbers of satisfying assignments. By way
of contrast, counting classes in which certain numbers of accepting paths are forbidden
have no complete sets in appropriately re|ativized worlds (Hartmanis and Hemachandra
[nH86b]).

Please note that throughout 3, even when not explicitly mentioned, in every use
of CPs and SATs we tacitly assume that S is a subset of {1, 2, 3,... } and is either
finite or cofinite.

DEFINITION 3.1. (a) SATs is the set of all formulas whose number of satisfying
assignments is in S. For example, SAT is SAT{,2,3,...} and UNIQUE-SAT is SAT{I}.

(b) CPs is the class of sets accepted by NPTMs that accept, by definition, when
they have a number of accepting computations in S. Mnemonically, CP stands for
"counting polynomial time." Two examples are" NP is CP1,2,3,... and US is CP.

LEMMA 3.1. (a) SATs is many-one-complete for CPs.
b For any S and any complexity class C closed downward under many-one poly-

nomial-time reductions,

SATs is A-hard <p CPs - A.

For example, SATs is NP-hard :>CPs_ NP.
(c) For S finite, SATs

_
coNP. For S cofinite, SATs

_
NP.

Proof ofLemma 3.1. (a) Cook’s reduction [C71], [GJ79] is parsimonious.
(b) The proof is immediate.
(c) Let S be finite. Let at be the largest element of S. Given a formula f, we can

quickly either find a solution (so f is not in UNSAT) or find az nonsatisfying assign-
mentsl Thus f with these assignments ORed on has at more solutions than f, and is
thus in SATs if and only if f is in UNSAT; thus SATs is coNP-hard. Thus we are
done by part (b).

Similarly, for S cofinite, SATs is NP-hard because, we can add j true assignments
to a formula, j max { li >- 0 ^ : S}. H

Clearly, counting of this sort can be done in hardware..For example, a set in CPs,
IS z, is the union of z DP sets, and so is in NP (2z). Similarly, for cofinite S,
CPs c__ coNP (2y), when Isl--y. The containment can easily be made an equality in
relativized worlds. Is the containment always an equality?

We show that in appropriately relativized worlds counting is weak. For example,
we display a world where for no choice of S is SATs complete for DP or coDP.
Furthermore, in this world for no choice of finite S can SATs even be NP-hard and

We always use "hard" in the many-one sense.
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for no choice of cofinite S can SATs be coNP-hard (where we relativize satisfiability
in the standard way--adding membership testing gates). Indeed, each counting class
with S, S finite (cofinite), fails to contain NP (coNP) even when its run time is boosted
from polynomial to certain exponential times.

Similarly, we separate many counting classes so strongly that large boosts in run
time fail to give containment. All these relativized containments are obtained by
combinatorially exploiting the limited control of counting machines. On the other
hand, we note that a clear containment structure exists among counting classes.

3.1. A counting hierarchy. Suppose you have a party at which each guest may
know the names of some of the other guests. The following combinatorial lemma states
conditions under which your party will contain a large set of "strangers," i.e., a large
set A such that each person in A knows the name of no person in A (except perhaps
his own name). This lemma will be useful in proving our separations. Si contains the
names ofparty-goers known by party-goer i. In the proofs ofthe following relativizations
(e.g., Theorem 3.1.1(b)), the Sw correspond to the strings queried by a certain counting
machine when string w is added to the oracle. The combinatorial lemma lets us find
strings w’ and w" so that adding both simultaneously causes the number of accepting
paths to add.

COMBINATORIAL LEMMA.

[ /(/-1)](3T{1 2,... l},lTl>-_k)(Vee T)(VS,,. ., S, c__ N) , is, < L #((-k--f) J.
[Se rq r- e) ]J.

Proof of Combinatorial Lemma. Indeed, we show there is a T of size exactly k.
There are () candidate k-tuples for T. Each element added to some set destroys the
candidacy of at most (Z) new tuples. For example, adding x <-l to set Sy eliminates
tuples containing both x and y. Thus we need at least

t-2[(:)/(k_2)] [ 1-1) 1
k(k- 1)|

elements to eliminate all tuples.
Our first theorem shows that "the number ofvalues accepted on" yields a hierarchy:

more counting is more powerful, and strictly so in some worlds.
THEOREM 3.1.1.
(a) CP{1} UtsI=] CPs

_
Ulsl=2 CPs - Ulsl=3 CPs -’ BH

___
A2P.

(b) There is a recursive oracle A so UIsl= CP# c Ulsl= 2 CP# c Uisl= CP#" ".

Proof of Theorem 3.1.1(a). Clearly counting is in BH. Indeed, CPs sets can be
represented as the union of [SI DP sets, and thus by the lemma cited in 1.1 are in
the boolean hierarchy. If Le CP{o,,...,a}, there is a CP{,2+a,,2+,2,...,2+oz} machine that
simulates the CP{o,,..,,o} machine for L, and mindlessly adds two accepting paths. This
new machine accepts L, Since this holds in general, U lsl___ CPs_UtsI=2CPs_
UIsI=3 CPs _’". Finally, CP{j} CP{1} from Theorem 3.2.1.1.

Proof of Theorem 3.1.1(b). Because of space limitations, we just show a world in
which Ulsl: CPsA c Ulsl__ CPsA. By Theorem 3.1.1(a), it suffices to show a language L
in CP,=} that is not in CP}. We diagonalize over all CP{} machines to show that
L {0i]1 =< ]E (] A] =< 2} is not in CP{l. Since L is clearly in CP{1,2} this suffices. Initially,
set A := .
Stage s. We will establish that the sth CP{} machine, call it Ci, does not accept L.
Let p(.) be the polynomial bound on the length of each of Ci’s computation paths
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(and thus on the length of the strings it queries). Choose j so large that no string of
length j or larger has yet been touched, and so large that p(j)< (2j- 1)/2.

Case 1. cA(0j) has accepting paths.
If it has one accepting path, freeze A for all strings of length up to p(j); now

0 L but 0 L(cA).
If it has more than one accepting path, fix the elements along two paths, put some

unfrozen length j string into A, and then freeze A for all strings of length up to p(j);
now 0 L but 0 L(cA).

Case 2. For some length j string y, cAUy(oj) rejects.
Set A := A t.J {y} and freeze A for all strings of length up to p(j). Now 0J L,

Case 3. For all length j strings, y" CAy(oj) accepts (i.e., it has a unique accepting
path).

For each length j string w define a set

S- {zllz =j and cA(O) queries z along its accepting path}.

We use the Combinatorial Lemma from the start of this section with k--2, 2j, and
using the 2 sets S for Iwl =j. The precondition of the lemma is met since by our
conditions on the choice ofj we have 2Jp(j)<U((2j- 1)/2). Thus there exist strings
y’, y" so y’ is not in Sy,, and y" is not in Sy,. Thus if we add y’ and y" simultaneously
to A we will get at least two accepting paths" the ones corresponding to Sy, and Sy,,.
(Why are these two paths distinct? If y": Sy,, then we have an accepting path in CA(0J),
and this was treated in Case 1. Hence Sy,, and Sy, differ on y".) So CAy’Y"(Oj) has at
least two accepting paths and rejects. Setting A := A kJ {y’, y"} and fixing A up to length
p(j) we have insured that 0 L but 0J L(cA).

More counting gives more power, as these theorems show. Indeed, we have an
infinite hierarchy of counting power. Attempts to make the polynomial hierarchy
infinite in some relativization took many years to succeed [Y85], [BS79].

Counting can also be made weak. Below, we show that counting may be too weak
to even capture NP or coNP. As a consequence, we show that in certain relativized
worlds no amount of counting is hard for even low levels of the boolean hierarchy.

THEOREM 3.1.2. There is a recursive set A so that I,.JsfiniteCPsA75NPa and
[’-J S cofinite CP ; coNPA.

COROLLARY 3.1.1. There is a relativized world where n__qo amount ofcounting is hard
for NPA (k) or coNPA (k), k > 1 (i.e., where no counting class contains either NPA (k)
or coNPa (k), k> 1). In particular, no counting class contains DP (A) or coDP (A).

Proof of Corollary 3.1.1. NPA (k) and coNPA (k) are each NpA-hard and coNPA-
hard for every k > 1, yet the theorem above shows that the artificial and natural complete
languages for counting classes fail to be hard for at least one of these.

Proof of Theorem 3.1.2. Let La {O" (Ely)[lyl n ^ y a]}. Let LLA
{0" (Vy)[[yl n=y A]}. Clearly LA NPa and LLA coNPa.
Stage (( i, z, al , az), 0), 0 < al <. < az. We show that the ith NP machine, viewed
as a cp(a,,...,az machine, does not accept La. Without loss of generality NPi runs in
NTIME hi+ i].

Choose m so large that nothing of length greater than m has yet been fixed, and
so large that 2"(mi+i)< [2m(2m--1)/az(az + 1)]. Let B be the current version of A.
Run N(0m).

Case 1. N(0) accepts. L(N)# LA and we are done.
Case 2a. N(0) rejects and for one of the 2 ways we can add a length m string,

y, to B, NX(0) rejects. Set our current A to B (3 y and again L(NA) # LA.
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Case 2b. N(0") rejects and for all the 2" ways we can add a length m string,
y, to B, NiUY(O") accepts. We apply the combinatorial lemma (from the start of this
section) to get a contradiction.

That is, for each of the 2" extensions, B 15 y, mark one accepting path of N/uY(0m)
and say the path is named by y. Let Sy denote the strings queried on the path named
y. By our assumption that Ni runs in NTIME [ni+ i], Y ISyl<-2"(mi/ i). By our choice
of m, the combinatorial lemma applies (with l- 2", k- az / 1) and chooses for us a
set T of az + 1 special marked paths, none of which queries the name of any of its az
brethren. Furthermore, the az / paths are all distinct, since each one contains its own
name and none of its brethren does. Each special path does indeed contain its name,
otherwise it would have caused N(0") to accept, but we supposed it did not. Thus
Nr(0") has at least a / 1 accepting paths and, viewed as (i.e., with the acceptance
mechanism of) a cpA, .az machine, rejects. Yet 0" LA. So setting our current A to
B (3 T, L(HA) LA and we have diagonalized away another machine.

Stage ((i, z, al, , az, b), 0 < a az b. We show that the ith NP machine,
viewed as a cp(Aa,...,az,b,b+l,b+2,...,} machine, does not accept LLA.

Choose m large. Denote by B the current version of A. Run Nff(0"). If it rejects,
we are done. If it accepts, for each of the 2" ways we can add a length m string, y,
to B, run NY(O’). If any of these 2" ways accepts, we are done. Now if extension
B U y has no accepting paths or has some accepting paths but queries y on none of
them, y must appear on some accepting path of Nff(0"). Thus all but at most
(b 1)m + ofour 2" extensions cause "nice" rejections: rejections (with oracle B (3 y)
where there is some accepting path that queries y.

From here, we are done by the argument of the previous part. In brief, for each
"nice" extension mark a path that queries the extension’s name; appeal to the com-
binatorial lemma to get a set T of b paths that do not contain each others’ names;
thus, NT(0") has b accepting paths and accepts, but 0" LLA, thus L(NA)
LLA

Indeed, counting is even weaker than these results suggest. By making full use of
our combinatorial control arguments, we can show that even giving counting machines
exponential run times does not allow them to subsume NP.

THEOREM 3.1.3. For each k, there is a recursive oracle A for which NpAgt
s,it CTIME [2k"], where CTIMEsA If(n)] is just like CP, except our time bound

has been boosted from P to f( n ).
Proof of Theorem 3.1.3. This is an improvement on our proof of Theorem 3.1.2,

whose notation we adopt. We must make new versions of LA and LLA that depend
on many strings. We let LA={O"l(Zly)[iyl=(k+l)n^yA]} and LLA=
{O"l(Vy)[lyl=(k+ 1)n=yeA]}. There are 2 k+l)" ways (the for the Combinatorial
Lemma) of adding strings. We choose m so large that

( 2k" )2(k+l)m C/_az/l_2’ < !-!
az(az+l)

Indeed, the same tricks apply within the counting hierarchy. For example, there
is a world where

U CTIMEs[2"/’g’];4 U CP.
c,lSl--z ISl=z+

3.2. Relations and natural containments among the CP classes.
3.2.1. Relations based on values. The previous section shows that "the number of

values accepted on" gives a hierarchy. In this section, we fix the number of values, k,
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our classes accept on and see what effects the actual values have For k 1, the number
of paths makes no difference. We can multiply paths (to show CPI_CPk) and
simulate k-tuples of paths (to show CPk

_
CPI) [see, for example, Theorem 32.2.1].

Hence we have the following theorem.
ATHEOREM 3.2.1.1. For every j, k and A, CP CP{k}.

The situation differs markedly when k 2. Our classes here are CP{a.b}, a < b, and
we will call a the minor subscript and b the major subscript. Here (with proper
relativizations) a class never contains any class with a larger major subscript (Theorem
3.2.1.2). When the major subscripts are the same, we can usually relativize so the class
with the larger minor subscript is not contained by the other. On the other hand, there
is more than lexicographical ordering at work here. We can also relativize away from
lexicographical ordering. Indeed, we can combine the relativizations to obtain a world

A A AA where, for example, CP1,73} CP{40,73} and ; CCP{1,73} P{40,73}
THEOREM 3.2.1.2. (a) There is a recursive oracle A so that for <j <j’, CP,

CP,,.
(b) There is a recursive oracle A so that for all <j < k, CPa{1,k} Z CPj,k}.
(c) There is a recursive set A so that for all i, j, k, with i< k, j < k, jl <-k, and

A A+ > k, CP{i,k} 7 CP{j,k}.
COROLLARY 3.2.1 1 There is a world where no CP/, j, contains . CPA{i,j}"
Our.results extend naturally to k 3, 4, , and by interlacing the relativizations,

we can simultaneously obtain these results for all k.

3.2.2. Containments. As we have just seen, combinatorial manipulations allow us
to construct many relativized separations. Nonetheless, there is a clear and ordered
set of containments among counting classes. Figure 3 shows the containments implied
by Corollary 3.2.2.1. Figure 4 shows further containments from Theorem 3.2.2.1.

THEOREM 3.2.2.1 (Containment Theorem). For z >- 1, el >= 1 (1 <= <- z), k >= O, and
j> i>=minl<<_l<_z (kl) >- 1,

c + + + + k, -1- -- -t- --k k \k2/ k

COROLLARY 3.2.2.1. (a) CP(,.i
_
CP,;, when <j <j’.

(b) CP(i,; CP(k+l,k;+l for k >= 1, >= O.
Proof of Theorem 3.2.2.1. Simulate the CP(i,; machine by simulating with crfold

replication each k/-tuple of its paths (i.e., accepting and replicating the tuple if all kt
paths accept). Also, add k dummy accepting paths. If the CP(,; machine has i(j)
accepting paths, we have f(i) (f(j)) accepting paths, where f(m)=Y Cl(k,)+ k. If the
number of paths is neither nor j, we will not get either f(i) or f(j) paths, as f is
strictly increasing in the range [min (k)- 1,

4. The boolean hierarchy and sparse oracles for NP. This section studies the
relations between sparse oracles and the boolean hierarchy. We say NP has a sparse
oracle if there is a sparse set S so that NP_ pS. Mahaney [M82] showed that if NP
has a sparse many-one-complete set then P= NP. Karp and Lipton [KL80], [H82]
showed that if NP has a sparse Turing-hard set or a sparse oracle, then 2P II2P. Does
the existence of a sparse oracle for NP imply something stronger than ’ II’?

By displaying a relativized world where NP has a sparse oracle but in which the
boolean hierarchy is infinite, we show that the conclusion in [KL80] is near the strongest
possible among proofs that relativize.4 In terms of circuits, this result shows that (in

Kadin has optimally strengthened the Karp-Lipton result for the special case of sparse Turing-complete
sets for NP [K87a], [M82].
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FIG 3. Simple containments.

relativized worlds) the existence of small circuits for NP does not imply that P NP
or even that the boolean hierarchy is finite, and improves the work of Kurtz, Immerman,
and Mahaney reported in [HIS83]. Similarly, by displaying a relativized world where
PSPACE has a sparse oracle but where the boolean hierarchy is infinite, we show that
the Karp-Lipton result on sparse oracles for PSPACE (i.e., if PSPACE has a sparse
oracle then PSPACE EP) is also nearly as strong as possible. Indeed, we show the
stronger result that pS PSPACEs, S sparse, can be consistent with an infinite boolean
hierarchy.

Our proofs combine the methods of diagonalization and encoding of computations.
By diagonalization, we win a block of space to use. We store the location of this space
in the sparse oracle. We devote the space to encoding the computations of machines.
Thus NPA

_
pA,S, because the sparse oracle S lets us find NPA computations encoded

in A. We carefully diagonalize to separate the boolean hierarchy. For simplicity, we
prove the case of DP (A) codP (A).

LEMMA 4.1. There is a recursive set A and a sparse set S so NPA_ pA,S and
Dp (A) coDP (A).

THEOREM 4.1. There is a relativized world where the boolean hierarchy is infinite
and PSPACE has sparse oracles (and, indeed, in which there is a sparse S so pS=
PSPACES).

COROLLARY 4.1. No proof that relativizes can show the following: if NP has a

sparse oracle then the polynomial hierarchy equals the boolean hierarchy.
Proof ofLemma 4.1. Let {N,.} and {A} be enumerations of standard clocked NP

and coNP machines, respectively. Without loss of generality, Ni and A run at most
ng*+log* steps on input of size n for i> 20, and one step for -< 20. Define an
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4

FIG. 4. Additional containments.

enumeration {Hi} of standard clocked coDP machines so L(/-/)=L(N)t_J L(Ak),
i=(j, k).

Let UA {Ni #x # 1 l[ NA(x) accepts in at most steps}. UA encodes the computa-
tions of NPA machines. We will code UA into A and S so that NpA pa,S.

Let La={O"l(::ly)[lyl=3n+ ^ ya]}fq{O"[(Vy)[lyl=3n+2=C,yc_a]}. Surely
LAG DP (A). We diagonalize over the Hi’s to show that ta coDP (A).
Stage q, encoding section. Choose an address, aq, laq[ q, so no length 3q string starting
with aq has yet been fixed. The Hi’s fix few enough strings that such an aq can always
be found. Now use the block of length 3q strings starting with aq as a "treasure box,"
to encode the information of all length q strings of UA: [aqyOq ACy UA], for all
lyl q. Crucially, the computations being coded query strings of length at most q, and
our length q strings have long since been settled.

Now we must code the precious address string, aq, into S. For j-<_ q put lq’ in
S if and only if bit j of aq is 1. Now S codes aq’, with q calls to S we can recover aq.
Note that S will be sparse.

Stage q, diagonalizing section. Suppose H is the first coDP machine that still might
accept LA. We will extend A so that L(HA) LA.

Recall L(HA) L(N) L(A’), i= (j, k). Run Nj(0q) with all possible extensions
of A as its oracle.

Case 1. It accepts for some extension. Freeze all queried elements on some
accepting path. Thus L(HA) accepts 0q. Now, put an unfixed length 3q+2 string into
A, so oq: LA. HA does not accept LA.
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Case 2. It rejects on all extensions. So L(H/A) L(A), and a coNP machine
is left with the task of accepting a DP set. Consider all extensions of A in which
(Vz) [[z[ 3q + 2=:> z A].

Case 2a. For some such extension, B, Ai(Oq) rejects. Freeze in A the elements
on a rejecting path and add to A an unfixed length 3q + 1 string. Thus HA(oq) rejects
but 0q LA.

Case 2b. For all such extensions, Ai accepts. Then it accepts with A untouched,
but oqJ_. LA SO it should reject. D

Sketch of the proof of Theorem 4.1. The same method used above in the proof of
the lemma can be used with the "sawing" diagonalization of [CGI], which allows an
infinite separation of the levels. This combination creates a relativized world in which
NP (or, as we note below, PSPACE) has a sparse oracle and the boolean hierarchy is
infinite.

Note that once we win ourselves some coding space we can use the space to code
the computations of any machine class that queries strings of length at most polynomial
in its input’s size. We just code the universal set of that class into our addressed treasure
boxes. Thus the same proof works for PSPACE (part b), with the standard conventions
[FSSS1] about relativized PSPACE. Indeed, with a relativization we could even make
the boolean hierarchy infinite while finding a sparse oracle for the badly nonrecursive
class REpoy, the class of sets accepted by machines that query strings of length at
most polynomial in their input size. l-I
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ALGORITHMS AND DATA STRUCTURES FOR AN
EXPANDED FAMILY OF MATROID INTERSECTION PROBLEMS*

GREG N. FREDERICKSON? AND MANDAYAM A. SRINIVAS$

Abstract. Consider a matroid of rank n in which each element has a real-valued cost and one of d >
colors. A class of matroid intersection problems is studied in which one of the matroids is a partition matroid
that specifies that a base has q elements of color j, for j 1, 2, , d. Relationships are characterized among
the solutions to the family of problems generated when the vector (ql, qa," ", qd) is allowed to range over
all values that sum to n. A fast algorithm is given for solving such matroid intersection problems when d
is small. A characterization is presented for how the solution changes when one element changes in cost.
Data structures are given for updating the solution on-line each time the cost of an arbitrary matroid element
is modified. Efficient update algorithms are given for maintaining a color-constrained minimum spanning
tree in either a general or a planar graph. An application of the techniques to the problem of finding a
minimum spanning tree with several degree-constrained vertices is described.

Key words, data structures, degree-constrained spanning tree, matroid intersection, minimum spanning
tree, on-line updating, partition matroid

AMS(MOS)subject classification. 68Q

1. Introduction. Matroids are discrete mathematical structures that appear in a
variety of applications. They are structures for which the greedy algorithm gives an
optimal solution, and when intersected characterize such problems as minimum-weight
maximum-cardinality bipartite matching [L1]. In this paper we study a class of
combinatorial problems from a matroid point of view. Consider a matroid in which
each element has a real-valued cost, and one of d colors, for some constant d > 1.
Given positive integers ql, q2, , qd, we seek a base of the matroid that is of smallest
cost subject to the constraint that the base must contain q elements of color j, for
j 1, 2,.,., d. For example, we can generalize the minimum spanning tree problem
to a problem in which the edges have colors, and we desire a spanning tree of minimum
cost subject to constraints on the number of edges of each color that are in the tree.

A matroid M consists of a set E of elements, and rules describing a property,
called independence, of certain subsets of E. The rules satisfy axioms that may be found
in ILl ], [W]. A maximal independent subset of E is called a base. A matroid optimization
problem is the problem of finding a minimum cost base in a matroid in which a cost
is associated with each element. For example, finding a minimum spanning tree of a
connected graph is a matroid optimization problem, where the matroid consists of the
set of edges in the graph, and independence corresponds to acyclicity. As stated above,
matroid optimization problems can be solved by the greedy algorithm.

A matroid intersection involves two matroids defined on the same set E of elements,
but with different sets of rules determining the independence of subsets in each matroid.
A matroid intersection problem is an optimization problem whose solution is a subset
of E of maximum cardinality that is independent in both matroids simultaneously,
and is of minimum cost among all such subsets of E. There are algorithms for solving
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any given matroid intersection problem in polynomial time whenever independence
of a set in the matroid can be tested in polynomial time [BCG1], [L2]. However the
polynomial is large: at least O(n2m), where m is the number of elements, and n is
the cardinality of the largest independent set. The special type of matroid intersection
problem that we focus on in this paper is one in which each of the elements is labeled
with one of d colors, and one of the matroids (a partition matroid) specifies that a
certain number of elements of each color must be in the solution. For d 2 colors,
very efficient special-purpose algorithms have been presented for a variety of problems
in [GT], [G]. In this paper we explore the structure of d-color problems that allows
for their efficient solution when d > 2.

The solution techniques of [GT], [G] rely on finding a minimum cost solution
from among only red elements and a minimum cost solution from among only green
elements, and then pairing these red elements and green elements. However, for d > 2
colors, the analogue of such a pairing does not seem to exist. We overcome this difficulty
by generalizing other characterization results in [GT], [G]. We characterize the relation-
ships among the solutions to a family of problems generated when the vector
(ql,’", qd) is allowed to vary over all combinations that sum to n. The number of
problems in this family is thus (n + d 1)!/(n !(d )!), which is O(n d.-i/(d 1)!) for
small d. The key relationship that we establish is the property of dominance, which
allows us to search efficiently within the set of solutions to these problems. Dominance
means that if one constrained minimum cost base dominates another with respect to
the color constraints, then all elements of a certain color in the second base are in the
first.

The dominance property makes possible a divide-and-conquer approach for
finding a constrained minimum cost base that is efficient for small values of d. For a
variety of matroids possessing certain desirable properties, the algorithm runs in time
O(dTo(m, n)+(d!)T(n, 2)), where To(m, n) is the time to solve an uncolored version
of the problem, and T(n, 2) is the time to solve the 2-color version given a solution
for each of the two colors. For graphic matroids, it has been shown in [FT], [GGST]
that To(m, n) is slightly larger than proportional to m, and in [GT] it has been shown
that T(n, 2) is O(n log n). Our algorithm handles any d-color matroid intersection
problem, such as scheduling unit-time jobs with integer release times and deadlines
[GT], in essentially the same time bound. While the algorithm is factorial in d, it
matches the bound in [GT] for d-2 and is significantly more efficient than the
previously known algorithms when d is a small constant.

We also address the problem of updating a solution repeatedly, as the cost of
elements changes one at a time. This on-line updating problem is a generalization of
the 2-color update problem discussed in [FS]. We show how to use the dominance
property to generate and maintain efficiently a sparse description of the (n + d- 1)!/
(n !(d- 1)!) solutions to all problems as the vector (ql,""", qd) ranges over all valid
possibilities. We can update a d-color minimum spanning tree in O(dm/2+
dll/3(d!)2n 1/3 log n) time, and in O(d3(d!)(log d)-l/222(21g(2d)lgn)/2(log n)3/2) time
if the graph is planar. These match the update times in [FS] for the case when d 2.

Our d-co!or algorithm can be used to find a multiple-degree-constrained spanning
tree of a communications network. Suppose the degrees of a number d of the nodes
are prespecified, because of the number of ports that they have. When d-1, the
problem is a special case ofthe 2-color minimum spanning tree problem [GT]. However,
many interesting problem instances may require d degree-constrained nodes, where d

All logarithms are to the base 2.
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is a small constant greater than one. We reduce this problem to a set of (d + 1)-color
problems, one of which yields the solution. While the problem is NP-hard for general
d [GJ, p. 206], our algorithm is efficient for small d. If the set of vertices for which
there are degree constraints is an independent set, then finding a multiple-degree-
constrained spanning tree is tractable, and an O(n3) algorithm exists [BCG2].

The remainder of the paper is organized as follows. In 2 we introduce some
terminology and new concepts that facilitate the later discussion. In 3 we characterize
the structure of d-color problem solutions, and establish the overall minimum cost,
convexity, and dominance properties. In 4 we apply these characterizations to develop
an efficient divide-and-conquer algorithm for the static d-color problem, and illustrate
its efficiency for graphic matroids. In 5 and 6 we generalize the 2-color results of
[FS] to d colors, and describe how to maintain a sparse description of certain
arrangements of solutions to d-color problems to permit fast on-line update. In 7 we
discuss an application of our methods.

2. Definitions. We identify some additional matroid terminology; a more complete
discussion can be found in [L1], [W]. The rank of a set E’_ E, denoted as rank(E’),
is the cardinality of a maximal independent subset of E’. Let B be a base, and f an
element in E- B. The circuit C(f, B) is the set consisting of every element that can be
deleted from B {f} to restore independence. Let e be an element in B. The cocircuit

C(e, B) is the set consisting of every element that restores rank to B-{e}. We will
sometimes refer to an element in C(f B)-{f} as one that f can replace in. B, and an
element in C(e, B)-{e} as one that can replace e in B. Let M/E’ denote the contracted
matroid obtained from M by contracting the elements E’c E. The elements of M/E’
are E- E’. Suppose E’ is independent. Then the independent sets (bases) of M/E’
are those sets XcE-E’ for which X UE’ is independent (a base) in M, and
rank(M/E’) rank(M) rank( E’).

For our problems on graphs, read edge for element, spanning tree for base, cycle
for circuit, and forest for independent set. The rank is the number of edges in a spanning
tree. Thus a minimum spanning tree is a minimum cost base of a graphic matroid.
Similarly, for our unit-time job-scheduling problem, read job for element, a set ofjobs
with a feasible schedule for an independent set, a maximal such set ofjobs for a base,
and a minimal infeasible set ofjobs for a circuit. Thus a maximum-profit set of jobs
with a feasible schedule is a maximum-cost base of a job-scheduling matroid. Let
m [E[ and n rank(M).

We associate a colorj, j {1, , d} with each element in set E. For any set E’ E,
let colors (E’) be a d-tuple (il, i2,"" ", id) giving the count of elements of each color
in E’. Let co(e) be the positive, real-valued cost of element e, and co(E’) the total cost
of elements in a set E’. For a given cost function, we refer to a base B in such a
matroid as a constrained minimum cost base, or a minimum cost base for its vector
colors(B), if B is of minimum cost over all bases with the same colors vector. We
assume that E has been augmented with elements of cost c as necessary so that a
base of each color 1,..., d exists. Thus a monochromatic minimum cost base is a
constrained minimum cost base whose colors vector has exactly one nonzero com-
ponent.

Following [GT], we find it advantageous to extend the cost function so that each
constrained minimum cost base B is unique for its vector colors(B). We make two
different extensions, both similar to extensions given in [GT]. We assume that a unique
index is associated with each element. Let a =min({[co(E’)-co(E")l" E’, E" are sets
of elements, ]E’[=[E"[, co(E’)co(E")}U{co(e)’e in E}). We define c(e)=
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co(e)-a/3 i, where is the index of e. By our choice of a, we note that for any two
distinct bases B1 and Be, c(Bi)# c(Be), and for any three distinct bases B1, Be, and
B3, 2c(Be) # c(B,) + c(B3).

The second extension cL(" of Co(" is based on lexicography. A real function
g(" is said to be convex if for any choice of values x <xe<x3, (g(x2)--g(x))/
(Xz-X)<-(g(x3)-g(Xz))/(x3-xe). Let f= (f(.),fe(" ),’’" ,fd(" )) be a d-tuple of
convex functions, and let 7r be any permutation on d-tuples. Let E’ be a set of edges.
We assume that f(colors(E’)) yields d-tuple (f(il),... ,fd(id)). Let indices(E’) be a
sorted ordering of the indices of the elements in E’. Then we define cL(E’) as the tuple
(co(E’), 7r(f(colors(E’))), indices(E’)). Comparisons between costs are resolved by
lexicography on the tuples.

Note that for any two bases B1 and Be, cL(B1) eL(Be) implies that B1 B2. It is
clear that for any two bases B1 and Be with identical colors vectors, and any f and
c(B) < c(Be) if and only if cL(B)< cL(Be). Thus a constrained minimum cost base
under c(. is a constrained minimum cost base under cL(" ). We find c(. more
convenient in proving several key properties about d-color matroids, and cL(" more
appropriate to use when designing algorithms for d-color matroids. When the cost
function ensures that there is a unique base of minimum cost over all bases with colors
vector i, we call this base BT.

We next define the notion of a uniform cost adjustment with respect to each of
the extended cost functions. The notion of a uniform cost adjustment comes from [G],
where it has been applied in handling 2-color matroids. A uniform cost adjustment with
respect to c(. consists of adding a constant 6./to the cost of every element of color
j in the matroid, for j 1, 2,..., d, and is specified by the d-tuple 6. A uniform cost
adjustment with respect to cL(" consists of adjusting costs according to a d-tuple
and introducing a new d-tuple f of functions, along with permutation 7r. Since only
differences in cost between elements of a particular color are significant in determining
any constrained minimum cost base BT, the base Br remains of minimum cost over
the vector after a uniform cost adjustment. Note that only differences in cost between
various colors are significant in determining the relative costs of bases with different
colors vectors. Furthermore, we can always assume without loss of generality that a
uniform cost adjustment in a d-color matroid has at most d- 1 nonzero components.
The purpose of a uniform cost adjustment is to make some constrained minimum cost
base B of overall minimum cost.

Let j and je #jl be integers in {1, 2,. , d}. We say that a vector -’ is a (j, j2)-
neighbor of (i, i2," id) if t./1 t./1 1, t./2 t./2+ 1, and t./= i./for all other j. Let the
j-negative neighbors of -be the set of all (j,je)-neighbors of . Let the j-positive
neighbors of be the set of all (je,j)-neighbors of i. When there is a unique minimum
cost base for each vector i, we extend the notion of neighbor from vectors to the bases
that they index in the natural way. Let and -’ be the colors vectors of two bases.
Suppose there is a unique color j for which i./> i. Then we say that - dominates
with respect to color j, or that fj-dominates ’.

Given a base B, a swap s (e, f) available in B is an ordered pair of elements,
where e B, f B, e and f are of different colors, and C(f, B) contains e. Element f
can be swapped in to replace element e, resulting in a base B-{e} {f} (denoted by
B)s or B-e +f). Let S be a sequence of ordered element pairs s,..., st, where
each si (e,f). Given a base B, we say that S is a swap sequence available in B if s
is a swap available in B and if r > then s2,’’ ", sr is a swap sequence available in
B sl. If S is a swap sequence available in B then BS denotes the base obtained
by applying S to B. Consider any cost function on E. Suppose swap sequence S is
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available in a constrained minimum cost base B. Let si (ei,fi) for 1,..., r. We
say that the sequence S is optimal if bases Bs, ,Bs. sr are all con-
strained minimum cost bases. The sequence S is color-conserving if colors(f)=
eolors(ei+) for i= 1,..., r-1. The sequence S is acyclic if colors(ei) colors(ej) for
i,j {1,..., d} and ij. Finally, the sequence S is regular if it is optimal, acyclic,
and color-conserving. Note that any subsequence of a regular swap sequence is regular.
We refer to a regular swap sequence S with colors(e)=j and colors(fr)--j2 as a
regular (j j2) sequence.

Let D be a set of bases with distinct colors vectors. The set D is tight if, for every
pair of bases B1 and B2 in D, B1 and B,_ are neighbors. A tight set D with ID[ k > 1
is negative if colors jl,"" ",jk can be uniquely assigned to bases in D such that for
any base B in D, if base B is assigned color j, then every base in D-{B} is a j-negative
neighbor of B. A positive tight set is defined analogously, using j-positive neighbors
instead ofj-negative neighbors. If ID[- 1, then we arbitrarily assign the single base in
D the color 1, and call D negative. We say that hue(B) is the color assigned to B,
and for any subset D’ of D, hue(D’)= _.JBo, hue(B). Let D be a negative tight set, B
a base in D with colors(B)= i, and r--jehue(o ij. Let hspan(D) be the set of bases
with colors vectors P such that jh,e(o) tj r, and tj ij for j hue(D). A tight set D
is complete if DI d. We denote the unique complete, negative, tight set associated
with a base B and color j by D(B,j). Note that if B, B’e D(B,j) and B’ is B’s (j, l)
neighbor, then D(B, j) D(B’, l).

Let D be a negative, tight set of bases. The swap graph Go associated with D has
vertex set D and contains an edge (B, B2) if and only if bases B1 and B2 are related
by a single swap. If every constrained minimum cost base is unique for its colors vector,
then there is a close relationship between negative tight sets of minimum cost bases
and regular swap sequences. If D is negative tight set of minimum cost bases and Go
is its swap graph, then every simple path in Go corresponds to a regular swap sequence.

3. Characterization results. In this section we first give several properties of 2-color
matroids identified in [GT], [G]. We then consider d-color matroids for d > 2 and
establish the following important properties regarding constrained minimum cost bases
and their neighbors which hold for the modified cost function c(. ). First, there is a
uniform cost adjustment that makes each constrained minimum cost base the overall
(unconstrained) minimum cost base. Second, every pair of adjacent constrained
minimum cost bases is related by a regular swap sequence of at most d-1 swaps.
Third, if the colors vector of one minimum cost base dominates that of another with
respect to a certain color, then all elements of that color in the dominated base are
contained in the dominating base. Finally, we characterize how a constrained minimum
cost base changes when the cost of one element changes.

LEMMA 1 [GT, Thm. 3.1]. Consider a matroid with elements of two colors, red and
green. Consider any positive, real-valued cost function. Let B be a constrained minimum
cost base with red elements. Executing a lowest cost red-green swap available in Bi
transforms Bi into a constrained minimum cost base B+ with + 1 red elements.

LEMMA 2 [GT, Cor. 3.3]. Consider a matroid with elements of two colors, red and
green. Consider any positive, real-valued cost function c’(. ). Let Bi_a, Bi and B+I be
constrained minimum cost bases with i- 1, and + red elements, respectively. Then
c’(B,)- c’(B,_,) <= c’(B+,)- c’(B,).

The following result is implicitly stated in [G]. We supply an explicit proof, using
Lemma 2.

LEMMA 3. Consider a matroid with elements of two colors, red and green. Consider
any positive, real-valued cost function c’( ). Let Bi be a constrained minimum cost base
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with red elements. There exists a uniform cost adjustment that makes the cost of Bi less
than or equal to the cost of every other base.

Proof. Let be the smallest index such that B exists, and u the largest index such
that Bu exists. It is observed in [GT] that Bi exists for each i, l_-< i_-< u. Assume as
boundary conditions that c’(Bl_l)=2c’(Bl)-C’(Bu) and c’(B,+l)=2c’(Bu)-c’(Bl).
Take tred c’(Bi-l)-c’(Bi) and tgreen 0. It follows from Lemma 2 by induction that
’(Br) >-- ’(Bi-) c’(Bi) <- c’(Bi.) for _<- i’ < and < i"-< u. [-]

The following lemma, which is a variation of a lemma in [FS], establishes a
fundamental property of bases in matroids.

LEMMA 4. Let B be a base and e, e2, fl, f2 be distinct matroid elements. Suppose
B--el +fl and B-e2+f_ are bases, but B-el-e2+f +f2 is not a base. Then both
B el +f2 and B e2 +fl are bases.

Proof. The proof is similar to that of Lemma 3 of [FS]. [3

We next present some lemmas that will be useful in the proof of the overall
minimum cost and dominance theorems for matroids with elements of d > 2 colors.
Lemma 5 establishes that if an overall minimum cost property holds for constrained
minimum cost bases, then the convexity property holds. Lemma 6 shows that if an
overall minimum cost property holds for a certain subset of constrained minimum cost
bases centered on a negative tight set, then a stronger version of an overall minimum
cost property holds. Lemma 7 establishes how the overall minimum cost property for
a negative, tight set of constrained minimum cost bases impacts the connectedness of
the corresponding swap graph. Finally, Lemma 8 uses the connectedness of the swap
graph to establish the exact relationship between two neighboring constrained minimum
cost bases for which the overall minimum cost property holds.

LEMMA 5. Consider a matroid with elements old > 2 colors. Let B1, B, and B be
constrained minimum cost bases with respect to cost function c(. ), such that B2 is Bl’S
(j, j2) neighbor and B3 is B2’s (j, j2) neighbor, for somejl, j2. Suppose each of B1, BE,
and B can be made an overall minimum cost base through some uniform cost adjustment.
Then c( B2) c( B,) < c(B3) (B).

Proof. Suppose in contradiction that c(B2)- c(B)>-_ c(B3)- c(B). Since B, B2,
and B3 are distinct, this inequality must be strict, by definition of the modified cost
function. Without loss of generality, suppose that B1 is an overall minimum cost base.
Let t be any cost adjustment vector that makes B an overall minimum cost base. (By
our initial assumption, exists.) Make all the adjustments of 8, except those for colors
jl and j2. Note that the new costs c’(B), c’(B2), and c’(B3) have the same relative
values as c(B), c(B2), and c(B3). Now make the adjustments for colors j and j2,
yielding costs c"(B), c"(B2), and c"(B3). Since B_ becomes an overall minimum cost
base, we must have ’(B2)-c’(B1)<tj,-tj2. We also get "(B3)-c"(B2)--
c’(B3)- c’(B2)-(Sj,- 8J2), which by the preceding argument is less than c’(B)- c’(B)-
(SJl 8J2), which is at most tj, 8j (jl 8J:) 0. Thus c"(B3) c"(B2), which contradicts
our assumption that a suitable exists. [3

Note that Lemma 5 will hold for any cost function c’(. derived from c(. by a
uniform cost adjustment.

LEMMA 6. Consider a matroid with elements of d > 2 colors. Let D be a negative,
tight set ofconstrained minimum cost basesfor costfunction c( ). Supposefor each base
B in hspan(D) there is a uniform cost adjustment that makes B an overall minimum
cost base. Then there is a uniform cost adjustment that simultaneously makes every base
in D of overall minimum cost and every base in hspan(D)- D not of overall minimum
cost.

Proof. The proof is by induction on p [DI. The basis case for p 1 follows from
our assumption that every base in hspan(D), and therefore every base in D, can
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individually be made of overall minimum cost through a uniform cost adjustment. For
the inductive step, with p > 1, assume that the lemma holds for any negative tight set
D’ of cardinality less than p. Let B1 be a base in D, of hue jl. Let B2 be a second base
in D, with hue jp Yj. Consider the negative, tight set of bases D D-{B2}, which
is of size p- 1. Since IDol < IDI, by the induction hypothesis there is a uniform cost
adjustment 6 that makes every base in D, but no other base in hspan(D), of overall
minimum cost. We next decrease the cost of color jp so that the B1 and B2 are of the
same cost, yielding uniform cost adjustment 6’ with respect to the original costs. This
does not affect which bases in hspan(D) are of minimum cost among those in
hspan(D), since all bases in hspan(D) have the same number of elements of
color jp.

With respect to adjustment 6’, all bases in D have identical, though not necessarily
overall minimum, cost. We claim that with respect to 6’, the bases in D are the only
bases in hspan(D) that are of minimum cost within hspan(D). To prove the claim, we
consider two cases. For ID[ 2, the claim follows directly from Lemma 5. For [DI p >
2, consider the following. For any color k in hue(D), let jk be the minimum number
of elements of color k in any base in D. (Note that the base of hue k in D will have
jk + 1 elements of color k, and all other bases in D will have j elements of color k.)
Let Cm be the cost of each base in D.

Suppose there is some base B in hspan(D)-D with c(B3)=< Cm. For some r in
hue (D), B has j’r <jr elements of color r. Let D’ be the set of all constrained minimum
cost bases in D with exactly jr elements of color r. We assert that with respect to
adjustment 6’ all bases in hspan(D’)-D’ have cost greater than Cm. We apply the
inductive hypothesis to D’ to prove the assertion. With respect to cost function c(. ),
there is a uniform cost adjustment 3" that makes every base in D’ of overall minimum
cost, and every base in hspan(D’)- D’ not of overall minimum cost. We argue that g’
has the same effect as 3" over the set of bases in hspan(D’). The adjustments in 3" for
colors not in hue (D’) do not affect the relative costs of bases in hspan(D’) and can
thus be equal to the corresponding values in 3’. Since bases in D’ have identical cost
under 6’, and also identical cost under 6", then for any pair of colors k, k2 in hue(D’),

-3’ from the adjustment 6 for each k in hue(D’)6, 6 ,, 6 2 6 ,2. Subtracting k, k

does not affect the relative costs ofbases in hspan(D’), and gives 3’. Thus the adjustment
3’ has the same effect as 3" over the set of bases in hspan(D’). We have proved the
assertion that with respect to 6’, all bases in hspan(D’) have cost greater than era.

NOW collapse all the hues in D except r to a new color s. Consider the set J of
constrained minimum cost bases in this new matroid that have 1 + Ykhue(DJk elements
of colors r and s combined. The base in J with jr elements of color r has cost era,
since the bases in hspan(D’)- D’ have cost greater than Cm. The base in J with jr + 1
elements of color r has cost at most Cm, since the base of hue r in D has cost Cm. By
induction we can show that each base in J that has fewer than jr elements of color r
has cost greater than era, using Lemma 5. But the base in J with j’r <jr elements of
color r has cost at most Cm, since B3 has cost at most era. Thus we achieve a contradiction,
and prove the claim that with respect to 3’, the bases in D are the only bases in
hspan (D) that are of minimum cost within hspan (D).

Finally, we make all colors in hue(D) red, and the rest green. Note that one of
the constrained minimum cost bases B4 in this new problem is one of the bases of
minimum cost in hspan(D) under adjustment 3’. By Lemma 3, there is a uniform cost
adjustment (Yre0, Ygreen) that makes B4 of overall minimum cost. We define the desired
adjustment g’" from g’ and (’)/red, Ygreen) by adding Yred to 6, for each k in hue(D),
and adding Ygreen to 3, for each k not in hue(D). The adjustment 3’" will not alter the
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relative costs of any bases in hspan(D) under 6’, but will ensure that B4, and thus all
the bases in D, will be of overall minimum cost. Iq

LEMMA 7. Consider a matroid M with elements of d >= 2 colors. Suppose that for
any matroid M’ with elements of d’< d colors, and for any constrained minimum cost
base B in M’, there exists a uniform cost adjustment that makes B of overall minimum
cost with respect to c(. in M’. Let D be a complete negative tight set of constrained
minimum cost bases with respect to c(. in M. Let D1 be a negative tight subset of D
such that every base in hspan( D1) can be made ofoverall minimum cost through a uniform
cost adjustment, and no base in D- D1 can be made ofoverall minimum cost by a uniform
cost adjustment. Then the swap graph Go, is connected.

Proof The proof is by induction on d. The basis is with d 2. From Lemma 1,
it is clear that the swap graph is connected. For the induction step, with d > 2, assume
that for any matroid M’ with elements of d’ < d colors, and sets D’ and D as specified,
the swap graph Go is connected. If ID,[- 1, then Go is connected. If IDol > 1, then
consider a connected component D2 in Go,.

We first argue that ID=I> 1. Suppose IDzl- 1. Let B1 D2, and without loss of
generality assume that hue(B)= green. Since B1 D, we can adjust costs uniformly
so that B is a base of overall minimum cost. Temporarily change every color other
than green to red, so that the resulting matroid has only red and green elements. Note
that B is the minimum cost base for its colors vector. By Lemma 1, B is related by
a swap to some constrained minimum cost base B2 with one fewer green element than
B. If we restore the original element colors, it is apparent that B2 is in DI-{B},
since these are the only green-negative minimum cost neighbors of B. By the definition
of swap graphs, D2 should then include B2, a contradiction. Thus ID=I > 1

By Lemma 6, we can perform a uniform cost adjustment such that every base in

D2 is of overall minimum cost, and no other base in hspan(D2) is of overall minimum
cost. We then change to green all colors in hue(D2). One of these bases, say B, will
represent the component D as a constrained minimum cost base in a matroid M’ with
d-IDal/ 1 <d colors. Clearly, D’= D-D2U{B1} is a complete negative tight set of
bases M’. By assumption, for each constrained minimum cost base B in M’, there
exists a uniform cost adjustment that makes B of overall minimum cost with respect
to c(. in M’. Take D’= D’. Thus D is a negative tight subset of D’, and no base
in D’- D’ can be made of overall minimum cost. Note that two bases in the same
connected component of GoI will be in the same connected component of Go,. By
the inductive hypothesis, GoI is connected. Since the bases in D1- D2 tA {B} are in
the same connected component of Go,, and the bases of D2 are in the same connected
component of Go,, Go, is connected. [3

LEMMA 8. Consider a matroid M with elements of d >= 2 colors. Suppose that for
any matroid M’ with elements of d’< d colors, and any constrained minimum cost base
B in M’, there exists a uniform cost adjustment that makes B of overall minimum cost
with respect to c(. in M’. Let B1 and B2 be any two constrained minimum cost bases
in M with respect to c(. such that B2 is B’s j-negative neighbor, for some j. Let
B2 D D(BI,j). Suppose any base in hspan(D) can individually be made of overall
minimum cost through a uniform cost adjustment, and no base in D(B1 ,j)- DI can be
made ofoverall minimum cost by a uniform cost adjustment. Then B andB are connected
by a regular swap sequence of length at most d- 1.

Proof Since D
_
D(B, j), the swap graph Go, has at most d vertices. By Lemma

7, Go, is connected. Thus there is a simple path p of length at most d- between B
and B in GI. Let S be the corresponding swap sequence relating B and B. Since
p is acyclic and of length at most d-1, so is S. Since D1 is tight and negative, S is



120 G. N. FREDERICKSON AND M. A. SRINIVAS

color-conserving. Finally, since all bases in D1 are constrained minimum cost bases,
S is optimal, ff]

We now establish the overall minimum cost and dominance properties.
THEOREM 1 (Overall Minimum Cost). Let M be a matroid with elements of d

colors, d > 1. Let B be a constrained minimum cost base with respect to cost function
c(. ). There exists a uniform cost adjustment that makes B of overall minimum cost.

Proof. The proof is by double induction, with the outer induction on d. The basis
case, in which d 2, follows from Lemma 3. For the inductive hypothesis, assume
that the theorem is true for all matroids that have elements of at most d-1 colors.
For.the inductive step, consider a matroid of d > 2 colors. We prove the inductive step
by induction on k, the number of elements of color 1. We will refer to color I as "green."

For the inner basis, in which k 0, we increase the cost of green elements by an
amount sufficient to ensure that no constrained minimum cost base contains a green
element. This is clearly equivalent to deleting every green element in the original
matroid, obtaining a (d 1)-color matroid. The inner basis then follows from the outer
inductive hypothesis. For the inner inductive hypothesis, assume that the theorem is
true for all constrained minimum cost bases with at most k-1 green elements. For
the inductive step, suppose k > 0.

Suppose the overall minimum cost property did not hold for some base B1 with
k green elements. We proceed to establish a contradiction. Consider the complete,
negative, tight set D(B1, 1) and the negative, tight set D D(B1, 1)- {B}. Every base
in D has k-1 green elements. By the inner inductive hypothesis, every base in
hspan(D) can be made of overall minimum cost. Thus by Lemma 6, we can adjust
costs uniformly such that every base in D is of identical, overall minimum cost in m,
and no other base in hspan(D) is of overall minimum cost. By temporarily changing
every color other than green to red and applying Lemma 1, we conclude that for every
base B in D1 there is a base mate(B) with k green elements such that B and mate(B)
are related by a swap. By Lemma 3, the cost of green elements can be uniformly
adjusted, without disturbing the overall minimum cost property of any base in D,
such that every base in D= {mate(B)lB DI} is also of overall minimum cost. We
have thus succeeded in uniformly adjusting costs such that every base in D U D is
of identical, overall minimum cost. We now restore the original colors to the elements.

Now consider any base B2 in D. Suppose B is Bl’S (green, red) neighbor, and
mate(B2) is B’s (blue, green) neighbor. (Since, by our assumption, B cannot be made
of overall minimum cost and mate(B2) can, B mate(B) and therefore mate(B2)
cannot be a (red, green) neighbor of Bz.) Let sa be the (blue, green) swap that transforms
Bz to mate(B2). Since B2 and mate(B) are of identical cost by our earlier cost
adjustment, (s) 0.

We claim that swap sl is available in any base in D. In particular, s is available
in B’s (green, blue) neighbor (and B2’s (red, blue) neighbor) B3. This provides the
desired contradiction: B3q)s has the same color combination as B and the same cost
as B3, which is of overall minimum cost. Thus (B)<-(B3), i.e., B can be made of
overall minimum cost through a uniform cost adjustment.

To prove the claim, we consider the regular (red, blue) swap sequence $1 that, by
Lemma 8, transforms B into B3. (The conditions of Lemma 8 apply by the inner and
outer inductive hypotheses, and the assumption about B .) Let ISI P. Note that every
base in the sequence of bases induced by B: and S is in D, and therefore every swap
in S is of zero cost. We establish by induction on p that s remains available in a base
B that is obtained from B2 as a result of performing a sequence of p zero-cost swaps
from a regular swap sequence.
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The basis case for p--0 is trivial. For the inductive step, let S--$2s2, where $2
is a regular (red, purple) swap sequence of length p- consisting of zero-cost swaps,
and s2 is a (purple, blue) zero-cost swap. By the inductive hypothesis, s is available
in B4 B20)$2, which is in D. Now suppose s is not available in B Bat s2. Then,
by Lemma 4, a (blue, blue) swap s and a (purple, green) swap s are available in B4.

SinceB4 D, it is of overall minimum cost. Therefore c(s’l)>=O. Since c(s’)+c(s’)=
c(s) + c(s2) O, c(s) <= O. Since n4s has the same color combination as B, it follows
that c(B)<= c(B4( s)<= c(B4) which is of overall minimum cost. By our assumption
about B1, this is impossible. Thus s is available in B3.

This completes the inductive step for k and the proof.
THEOREM 2 (Dominance). Let M be a matroid with elements of d colors, d > 1.

Let B; and Bp be constrained minimum cost bases with respect to c(. ), such that
j-dominates i’. Then every j-colored element in Br, is in B.

Proof If d 2, then the theorem follows from Lemma and the fact that each
constrained minimum cost base with respect to c(. is unique for its colors index. If

"+ 1 constrained minimum cost basesd > 2, we can construct a sequence of k--ij- j
Br,..., Br,, such that each base in the sequence is a j-negative neighbor of its
predecessor. Consider any two bases B and B2 that are consecutive in this sequence,
with B2 the j-negative neighbor of B. By Theorem 1, every constrained minimum cost
base can be made of overall minimum cost by a uniform cost adjustment. By Lemma
7, B and B2 are connected by a regular swap sequence S. Since S is regular, it is
acyclic, which implies that every element of color j in B2 is in B. The theorem then
follows by induction on k.

To illustrate the properties of Theorems 1 and 2, we give an example of a graphic
matroid. The edges of the graph will be of three different "colors," solid, dotted, and
dashed. Figure 1 gives the graph in terms of the three subgraphs of each color. Each
edge is labeled with its cost. In Fig. 2 we list the solutions to all possible subproblems,
each labeled with its cost. For example, the solution with one solid, one dotted, and
two dashed edges is the third solution in the fourth row, and is labeled with the cost

(b)

(a) (c)
FIG. 1. Subgraphs ofa weighted graph with edges of three colors: (a) subgraph ofsolid edges; (b) subgraph

of dotted edges" (c) subgraph of dashed edges.
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FIG. 2. Solutions to all minimum spanning tree problems from Fig. 1: the tree with solid edges, j dashed
edges, and 4-i-j dotted edges is the (j + 1)st tree in the (i+j + 1)st row from the top.

16. We illustrate the overall minimum cost property by making base B be the uncon-
strained minimum-cost base over all bases, where is, for example, (1, 1, 2). This can
be done if we add 6 to the cost of every dotted element, and 4 to the cost of every
solid element. To illustrate dominance, consider the solutions for =(0, 1, 3) and

-’ (1, 2, 1). (We assume that solid is color 1, dotted is color 2, and dashed is color
3.) Here j 3, i.e., there are fewer dashed elements in B;, than in B;, and at least
as many elements of every other color. Thus the one dashed edge (of cost 5) in By,
is in Br.

Next we examine the impact of changing the cost of a single matroid element on
a constrained minimum cost base. We begin as before with an earlier 2-color result,
and proceed to generalize the result to d > 2 colOrs using the characterizations just
developed.

LEMMA 9 [FS, Thm. 2]. Let M be a matroid of red and green elements, with COSTS
extended lexicographically to break ties. Let B_a B, andB+ be the constrained minimum
cost bases with i- 1, and i+ 1 red elements, respectively. If one element in M changes
cost, then B I, the new minimum cost base with red elements, will resultfrom either Bi_,
B, or B+I, with at most one element replaced in. the appropriate base. Specifically, if a
red element rt increases in cost, then B is the minimum cost base among the following
three bases"

(0) (or 3) B.
(1) B- r, + r,, where r is the smallest cost red element that can replace r, in Bi.
(2) B+ r, + g, where g, is the smallest cost green element thatcan replace rt in B+.
If a red element rt decreases in cost, then B is the minimum cost base among the

following three bases"
(0) (or 3) B.
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(1) Bi-ra + rt, where ra is the red element of greatest cost that r, can replace in Bi.
(2) Bi-1- ga + rt, where g, is the green element of greatest cost that r, can replace

in Bi-l.
The cases for a green element changing in cost are analogous.

We now give the generalization of the above result from two colors to d colors.
THEOREM 3. Let M be a matroid with elements of d colors, d > 1. Let B? be a

constrained minimum cost base with respect to cost function c(. ). If one element in M
changes cost, then the new minimum-cost base B; will result from either B? or one of its

neighbors, with at most one element replaced in the appropriate base. Specifically, if a
basic (respectively, nonbasic) element e (f) of colorj increases (decreases) in cost, then
one of the following cases holds:

(0) The new base B= BT.
(1) B= B?- e +f, where e, f both have colorjl andf (e) is the least (greatest) cost

element of colorj that can replace e (be replaced by f) in BT.
(2) There is a colorj2j such that B= Br,- e+f, where ’ is a (color(f), color(e))-

neighbor of andf (e) is the least (greatest) cost element of color j2 that can replace e

(be replaced by f) in B,.
Proof. We first consider the case where a basic element e of color j increases in

cost. By Theorem we can make Br the unconstrained minimum-cost base, and
therefore also the minimum-cost base over all bases with exactly ij elements of color
j, by uniformly adjusting the costs of all elements of colors j j. Temporarily change
the color of all j-colored elements to red and all other elements to green, so that Br
corresponds to red-green base B!j. We can then apply Lemma 9 with e in the role of
r,. If case (0) or (1) of Lemma 9 holds, then the corresponding case of our theorem
holds. If case (2) of Lemma 9 holds, then there is a red-green base B!j,/ that differs
from BI by one element, ga. Let f be the element corresponding to g in the original
matroid, and let j2 color(f). Since g, is the least cost replacement element over all
green elements, f is certainly the least cost replacement element of color j.

The symmetric case of a nonbasic element f decreasing in cost is handled
similarly.

Note that Theorems 1, 2, and 3 hold if cost function cL( replaces cost function
c( in the statement of the theorem. The use of c/( has the advantage that arbitrarily
many updates can be performed. This is not true for c(. ), since changing the cost of
one element can affect the value of ce, which will alter the cost of every element.

4. Efficient solution of the static problem. We show how to find the constrained,
lexicographically minimum cost base B consisting of qj elements of color j, for
j 1, 2, , d, along with a uniform cost adjustment vector 8 that makes Bo of overall,
unconstrained minimum cost. For matroids satisfying certain desirable properties, the
time to do this will be O(dTo(m, n)+(d!)2T(n, 2)), where To(m, n) is the time to solve
an uncolored, or monochromatic, problem, and T(n, 2) is the time to solve a 2-color
problem, given the constrained minimum cost bases for each color. Our algorithm
DCOLOR first augments the set of elements with elements of large cost as necessary
so that there is a base of each color, and finds monochromatic minimum cost bases
for each color. This step accounts for the first term of the running time expression.
Algorithm DCOLOR then calls a recursive routine DREC that is supplied with the d
monochromatic bases and finds the desired base and associated vector 5. The call to
DREC accounts for the second term in the running time expression.

Our presentation is organized as follows. We first review the 2-color algorithm of
[GT], and explain how 8 can be computed in this case. We then augment the 2-color
algorithm of [GT] with lexicographic cost comparisons to help handle calls from our
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d-color recursive routine. We finally present our recursive routine DREC to find a
d-color base.

The 2-color algorithm in [GT] is designed to find a minimum cost base constrained
to have exactly s red elements, for some s. The algorithm calls a recursive routine to
identify what is called a restricted swap sequence, which transforms a constrained
minimum cost base of green elements to a constrained minimum cost base of red
elements. The restricted swap sequence contains swaps in order of nondecreasing cost
of the red element in each swap. The algorithm then sorts the swaps in order of
nondecreasing cost of the swaps to yield an optimal swap sequence. The algorithm
forms the desired base by taking the first portion of the swap sequence and applying
it to the green constrained minimum cost base. Since the cost of a minimum cost base
with red elements is a convex function of i, the vector 6 can be readily determined
by comparing the cost of swaps adjacent to the desired base.

We augment the algorithm to enforce a lexicographic tie-breaking scheme. In
addition to its color, let each element have a unique index. Assign a tag to each element
consisting of the pair (j, index), where j is the original color of the element. Ties in
element costs are broken lexicographically using element tags. Ties in the costs of
swaps are broken lexicographically as follows. Consider two swaps (e,f) and (e’,f’)
of equal cost. Swap (e, f) will be lexicographically less than (e’,f’) if and only if either

f or e’ has the lexicographically smallest tag from among e, f, e’, and f’. We can
incorporate this lexicographic tie-breaking scheme into the 2-color algorithm of [GT]
at constant cost for any comparison of two elements or two swaps.

We now describe our recursive routine DREC to find a d-color base. The input
to this routine is a vector t] and the set of dn elements that is the union of the d
monochromatic bases. The routine uses a divide-and conquer approach, recursing first
on fewer colors, and then again on fewer elements. The basis cases occur when either
d 2 or n <2d2(d-1). If d 2 we use the augmented 2-color algorithm. We will
discuss the other basis case later. If d > 2 and n >-2d2(d- 1), we do the following.
Order the colors so that qj =< qj/l, forj 1, 2, , d 1. Find the constrained minimum
cost base Br, where ij qj + [(qd +j- 1)/(d- 1)J forj 1,2,. ., d- 1, and icl -’0. This
is a problem in d-1 colors, and is solved recursively by our routine. Note that is
defined so that for each color j d, B has at least [n/(d(d- 1))J more elements of
colorj than Bo. Along with determining By, the recursive call will supply the correspond-
ing values 6(j), for j 1, , d -2 that make Bv of minimum cost among bases with
no elements of color d.

Once B-. and 6 have been determined, temporarily add 6(j) to the cost of each
element of color j in Br, for j 1,..., d- 2. Define f such that for any d-tuple t,

f(() [i-i[, for j 1,..., d. Note that by their definition the functions f(. are
convex. For any choice of zr, B will be the minimum cost base among those with no
elements of color d, with respect to the adjusted version of the cost function c(. ),
defined earlier.

Relabel the elements of base Br with the color green, and label with the color red
the elements in the constrained minimum cost base of color d. Now use the 2-color
algorithm of [GT], augmented to use tags lexicographically to break ties in the costs
of elements and swaps, to find the constrained minimum cost base B’ that has
[qa/(d- 1)J -1 red elements and the rest green. Even though colors are reordered to
satisfy qj <- q+l, a permutation zr can be chosen that undoes this reordering, and hence
makes the use of the tags enforce c(. ). Thus any base generated by the augmented
2-color algorithm will be a constrained minimum cost base with respect to c( ), and
thus also c(. ), in the original d-color matroid.
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If we switch the elements in B’ back to their original colors, we get a base B in
which kd [qd / (d 1)J 1 and kj => qj + 1 for j 1, 2, , d 1. It is clear that the set
of color vectors consisting of t] and its immediate neighbors dominate k with respect
to color d. By our dominance theorem, every element of color d in B is in B, and
also in every constrained minimum cost base that is an immediate neighbor of Bo. Let
D be the set of these elements of color d. Contract the matroid on set D, and decrease
qd by IDI. Since qd >= [n/d], the number of elements is reduced by at least
(d-1)J-1, which is at least [n/d2] if n>=2d2(d-1). For d>2 and n>=2d2(d-1),
note that the new value of qd will be greater than 0. Solve the resulting smaller d-color
problem recursively, yielding/ and - Form/ U D, and return this set with g as the
solution to the call on DREC.

We justify the contraction and union steps in the previous paragraph as follows.
Let M/D be the contracted matroid. Note that D c Bo, and B- d is a base in M/D.
Let B be a base in M/D with the same index vector as B D but not equal to B D.
Now c(B) > c(B D), since otherwise B U D would be a base of M with index vector
t] but of smaller cost than B, a contradiction to the definition of B. We make use of
the requirement that D be a subset of each neighbor of B in the following way. If/’
is a neighbor of B-D in M/D, then/’t.J D will be the corresponding neighbor of

Bo. in M. This guarantees that the uniform cost adjustment that makes B-D of
overall minimum cost in M/D will also make B of overall minimum cost in M.

We now discuss the other basis case, when n < 2d2(d 1 ). Here we use the weighted
matroid intersection algorithm [BCG1] to find B directly. We also need to determine
the (j) values. This can be done by considering each of the elements not in Bo. For
each such element f, find the best swap in Bo for each color j color(f). We infer the
values of (j) from the thresholds of these swaps as follows. Each best swap (e,f)
yields a constraint t(color(e))- (color(f)) <= c(f)- c(e). Choosing the (j)’s then
reduces to the following shortest path problem. Consider a graph with d vertices
labeled from 1 to d. For each constraint (jl)- (j) -< c12 there is an edge from j: to
jl of cost c2. In the case of multiple edges, only the shortest edge is retained. Then
choosing (j) to be the shortest distance from vertex d to vertex j, for all j, will give
a consistent set of deltas. The shortest distances can be determined in O(d3) time using
the Bellman-Ford algorithm in ILl]. This completes our presentation of the recursive
routine DREC for the d-color algorithm.

LEMMA 10. Let M’ be a matroid of elements of d > 2 colors, that is comprised of
the union of d monochromatic bases. Let gt be a valid index for a base in M’. Routine
DREC correctly computes a minimum cost base Bc and a uniform cost adjustment that
makes Bc of overall minimum cost in M’.

Proof. Correctness can be established with a proof by induction. That the two
basis cases are correct follows from the correctness of the algorithms in [GT], [BCG1]
and the additional comments in the text. The correctness of the routine for the nonbasis
case follows from the arguments that the set D of elements contracted is,, n_onempty
and is contained in Bo and each of its neighbors. T_hus the solution (B, 3) to the
contracted problem can be augmented to (Bt, D, ), the solution to the given
problem.

We next discuss the running times of DREC and DCOLOR. The efficiency of
DREC (and thus DCOLOR) depends on whether the matroid M under consideration
possesses certain nice properties. Let T(n, 2) be the time to solve the 2-color problem
in M with elements recolored to just two colors, when the minimum-cost bases of
each of the two colors are given. We identify the following properties as desirable.

(1) Independence testing in M is polynomial.
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(2) The time to contract dn elements in m is O(dT(n, 2)).
(3) For 8/9-<a<1 and n>=4/(1-a), T([anJ,2)<-aT(n, 2).
We note that the matroids handled in [GT], [G] possess the desirable properties.

In particular, we discuss the motivation for assuming the bound of dT(n, 2) on the
time to contract O(dn) elements in a matroid. By assigning color d + 1 to each element
to be contracted and solving d 2-color problems involving color d + 1 and each original
color, we can determine the elements in each monochromatic base in the contracted
matroid. The correctness of this reduction follows from the definition of matroid
contraction. It is also necessary to determine the new attributes of each element (e.g.,
endpoints of an edge in the case of a graphic matroid) in the contracted matroid. For
all the matroids discussed in [GT], this can be done for each new base within time
proportional to T(n, 2).

THEOREM 4. Let M be a matroid of rank n with m elements of d > 2 colors. Let
To(m, n) be the time to solve the uncolored (monochromatic) problem in M. Let T(n, 2)
be the time to solve the 2-color problem in M with elements recolored to just two colors,
when the minimum-cost bases of each of the two colors are given. IfM has the desirable
properties, then the time to solve a d-color problem in M is O(dTo(m, n)+(d!)T(n, 2)).
The space required is O(d3n).

Proof Let T(n, d) be the time to solve a d-color problem in a matroid of rank n,
given that the monochromatic bases are provided. The intersection algorithm in [BCG1
uses O(nm(n+I(m)+log m)) time, where I(m) is the time to test independence. By
assumption, I(m)=m k for some k. Since m=nd, this takes O(dan(d3+dak)) time,
which is O(d4(d3+dak)T(n, 2)), since T(n, 2)-> n. Finding the swaps to identify (j)
values involves examining O(d4) elements f, at O(d3) time per element f, or O(d7)
time altogether. For n >-2d2(d 1), all work except for the recursive call on d-1
colors and the recursive call on fewer elements is O(dT(n, 2)). Thus for d > 2 we have
the following recurrence:

T(n,d)<=cl(d7+dn+4k)T(n, 2) forn<2d2(d-1),

T(n,d)<-c2dT(n, 2)+ T(n,d-1)+ T(tn(1-1/a2)J,d) for n>=2a2(d-1)

where the ci’s are constants. We claim that

T(n, d)<-_(c(d!)-c4d)T(n, 2)

for C4--2C2 and c3=(c+c2)c5, where c5 is the maximum value of (d7q-d4+4k)/(d!)2

when d is chosen over the positive integers.
The proof is by double induction, with the outer induction on d, and the inner

induction on n. For d 3, we prove the claim by induction on n. For n < 2d(d- 1),
T(n, 3)<-_cl(37 q-34+4k)T(n, 2)<=(c3(3!)-3c4)T(n, 2), for the choices of c3 and C4. For
n>-2d(d-1),

T(n, 3)<=3c2T(n, 2)+ T(n, 2) + T([8n/9J,3)

which by the induction hypothesis is

_-< (3c+ 1)T(n, 2)+(c3(3!)-3c4)T([8n/9J,2)
-< (3c2+ 1)T(n, 2)+(36c3-3c4)(8/9)T(n, 2)

(36C3 3c4) T(n, 2)

for the choices of c3 and C4o
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For d > 3, we assume as the outer induction hypothesis that the claim is true for
all d’, 3<-d <d. We prove the claim by induction on n. For n<2da(d-1), T(n, d) <-

c(d7+d4+4k)T(n, 2)<-(ca(d!)a-c4d)T(n, 2), for the choices of Ca and c4. For n >-
2da(d- 1), we assume as the inner induction hypothesis that the claim is true for all
n’ n. We have

T(n, d)<-cadT(n, 2)+ T(n, d-l)+ T([n(1-1/da)J, d)

which by the inner and outer induction hypotheses is

<- c2dT(n, 2)+ (c3((d- 1)!)2- c4(d- 1))T(n, 2)

+(c3(d !)2_ c4d) T( In(1 1/d2)], 2)

<= cdT(n, 2) + (c3(d !/d)- c4(d 1)) T(n, 2)

-+- (C3( d !)2_ c4d) 1 1/da) T( n, 2)

<=(c3(d!)2-c4d + cad + c4-c4d(1-1/d2))T(n, 2)

-< (c3(d !)2 c4d) T(n, 2)

for the choice of c4. This completes the inner induction, and then the outer induction.
As for the space required, either basis case will take O(dn) space. For the nonbasis

case, the space will satisfy the recurrence

S(n, d)<_-max{n, d + S(n, d- 1), dn+ S([n(1-1/d2)j, d)}.

The second term represents the space to store the color requirements for the base with
d-1 colors and then to compute the base. The third term represents the space to
represent the contracted matroid and then to compute a base in it. The solution to this
recurrence is O(d n). 1-]

Even though the running time involves factorials in terms of d, it is better than
the running time for the weighted matroid intersection algorithm of [BCG1 whenever
d is o((log n)/(log log n)).

We suggest a modification to the algorithm that may yield a faster algorithm in
practice. The 2-color algorithm in [GT] generates in succinct form the sequence of
constrained minimum cost bases between the base of all one color and all the other
color. Instead of specifying the number of elements of color d that we want in B’, we
take the swap sequence generated, switch back to original colors and find the furthest
base B represented in the swap sequence such that kj >- qj + 1, for j 1, , d 1. At
least as many elements will be contracted as before.

Finally, as an illustration, we apply the above algorithm to graphic matroids. Here
To(m, n) is O(m log/3(m, n)) by the algorithm of [GGST], where/3( .,. is a certain
slowly growing function [FT]. T(n, 2) is O(n log n) bythe algorithm of [GT]. Indepen-
dence is equivalent to acyclicity, and thus independence can be tested in O(m) time.
Contracting O(dn) elements can be implemented in O(dn) time. Therefore the time
to find a constrained minimum cost spanning tree is O(dm log fl(m, n)+(d!)2n log n).

5. Basic on-line update strategy. In this section we give a basic description of our
data structures for on-line updating of a constrained minimum cost base in a d-color
matroid. This work is an extension of the updating approach in [FS] that handled
2-color problems. Let Brh represent the minimum cost base for colors vector -after
h element cost updates have been performed. We first discuss data structures that
allow us to find quickly base Brh+) given B<rh and all of its neighbors after h updates.
This operation, which relies on Theorem 3, is crucial to our on-line update technique.
However, to compute Br+a by this method, we need to have B=h+) and its neighboring
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bases after h + 1 updates, which in the worst case means we must have B’), its neighbors
after h updates, and also the neighbors’ neighbors after h updates. We therefore discuss
how to maintain larger groups of neighboring bases, and introduce the notion of an
arrangement of bases, generalizing the sequences employed in the 2-color algorithm.
Since updating large groups of bases directly would be quite inefficient, we then discuss
maintaining arrangements in an implicit form, which allows for efficient updating.
Finally, we illustrate the technique with the example of a graphic matroid. Although
our presentation of the d-color update technique is sufficiently detailed to be self-
contained, familiarity with the 2-color update technique of [FS] will help greatly in
understanding the details.

We recall from [FS] the definition of an update structure for a base in a matroid
with uncolored elements. An update structure for a base B is a data structure that
Supports the following operations:

maxcirc(f, B)" finds the maximum cost element in the circuit C(f, B).
mincocirc(e, B)" finds the minimum cost element in the cocircuit C(e, B).
swap(e, f, B)" converts the update structure for B into an update structure for

B e +f (assuming that f B and e C(f, B)).

Let U(m, n) represent the maximum of the execution times of these three operations
for a particular matroid. Thus a minimum cost base in a matroid with uncolored
elements can be updated in time at most 2U(m, n) when the cost of a single matroid
element is modified. Let S(m, n) be the space required by the update structure.

In the case of a matroid with elements of d colors, the update structure is
generalized to allow the color of the appropriate element to be specified. Thus for
j 1, 2,. , d, the operation maxcirc(j, f, B) finds the maximum cost element of color
j in C(f, B), and mincocirc(j, e, B) finds the minimum cost element of color j in
C(e, B). The operation swap(e,f, B) is as before. The generalized update structure for
d-colored matroids can be derived from the corresponding structure for uncolored
matroids in a straightforward manner. For each field relating to costs in the uncolored
update structure, maintain d fields in the new structure, with the jth field accessed for
operations on color j. The values in the fields should be such that the cost of an element
not of colorj should be treated as - in handling a maxcirc(j, .,. ), and in handling
a mincocirc(j,.,. ). The space requirement of the generalized update structure is then
O(dS(m,n)).

Using Theorem 3, a generalized update structure can be used to find an updated
base Bh/l) from Bh) and its neighbors after h updates. For instance, if a basic element

h+l) would be the least cost base in the set consisting ofe increases in cost, then Bo
B(h) and B=h) e+ mincocirc(j, e, B(h) ), where either the color of e is not j, and B-is
a neighbor of B containing one element fewer of color j, or j is the color of e, and

<h+ would be the least costBg is B. If a cobasic element f decreases in cost, then Bo
base in the set consisting ofB) and B- maxcirc(j,f, B) +f, where either the color
of f is not j, and Br is a neighbor of B containing one more element of color j, or j
is the color off, and Br is B. The update is concluded by performing the appropriate
swap.

As stated at the beginning of the section, maintaining just Bh) and its neighbors
after h updates is not enough, since there is not sufficient information to compute
efficiently all neighbors of Bh+l after h + 1 updates. For l> 0, let R,I be the set of

tbases {Br,[t i + l- 1 j 1 2,.. d} We shall represent groups of bases in sets such
as Rr,, which we call arrangements. We say that arrangement Rg, is centered on and
has radius 1. Our update procedure is periodic with period z. By this we mean that for



MATROID INTERSECTION PROBLEMS 129

the hth element cost change the update procedure handles data in the same form (e.g.,
radius of arrangement) as the data during the (h + z)th element cost change, for any
h > 0. Here, z is a parameter that will be specified later, when we discuss the running
time. Our update procedure consists of three parts. For clarity, we will uncover the
parts one by one.

Consider h to be an integer in the range from 0 to z. Suppose after the hth update
we keep an arrangement Aoh) Rh) The superscript on R and on Ao indicates howgl, h

many element cost changes have been supplied, and will be omitted unless the context
demands it. As long as h < z, there is sufficient information to generate xo,__., no
matter what type of element cost change occurs. Thus z- 1 element cost changes can
be successfully handled, but when the zth update occurs, Bo is lost. This follows, since
Aoz-) is an arrangement consisting ofone base Bz-), so there is insufficient information
remaining in order to compute Bz. We say that Ao decays during this sequence of z
updates. Of course, for large z, explicitly maintaining and updating the arrangement
Ao requires considerable time per cost change. In due course, we will show how to
circumvent this problem by introducing an implicit representation for Ao.

When Ao has completely decayed, we need to replace it with an arrangement
containing many bases. But this means that certain work must be done in advance.
We therefore discuss the second part of our solution. Thus we now consider unrestricted
values of h. Whenever Ao is initialized, i.e., h mod z 0, we initiate a computation to
solve a number of d-color problems on the current matroid, in order to generate a
new arrangement of bases, given the minimum cost base after h updates containing
only elements of color j, for j 1, 2,..., d. Note that any constrained base after h
updates contains only elements from the union of these monochromatic bases. Let
P(n, d) be the time required to determine for a given d-color problem an arrangement
of bases in an appropriate form. Assume that copies of the d monochromatic bases
are maintained from one update to the next. Since just one of these monochromatic
bases changes, a cost of U(m, n) is charged to the update. Each static d-color problem
will be solved during the time in which Ao decays, by performing O(P(n, d)/z) work
over each of z update steps.

However, when all static d-color problems are completed, after h kz updates,
we cannot just reconstitute Ao with the appropriate bases. This is because each such
base will be out of date by z element cost changes, since the element costs used in
solving the static problems were extracted after (k 1) z updates, and z further element
cost updates have been applied to the matroid in the meantime. Thus we introduce
the third part of our update strategy. We use a second arrangement A, centered at

Bo and initially with l--3z, which is extracted from the out-of-date solution to the
static d-color problems. Thus when A is created after h kz updates have occurred,

(h-z)we have A])= Rc,z
az) will initially be out of date with respect to Ao by zSince the bases in

element cost changes, we need to bring them up to date over the next z update steps
of Ao, using the z element cost changes that have not yet been applied to A. These
previous element cost changes can be saved in a queue as the static d-color problems
are being solved. Thus, when A]) is created, the queue will contain element cost
changes numbered (k- 1)z + 1, (k- 1)z + 2, , kz. Consider the hth update step, that
transforms Ah-l to A, Let h= kz+ r, where 0<r<z.-- We first add the hth element
cost change to the rear of the queue. We then delete the two element cost changes
(namely, those numbered h-z+ r-1 and h-z+ r) for the front of the queue and
apply them both to A]-1) obtaining A]) Thus A]h) will be the arrangement Rgl,3z-2r

A will then become up to date with respect to Ao, and also be of the correct radius,



130 G. N. FREDERICKSON AND M. A. SRINIVAS

precisely when Ao has completely decayed. We then replace Ao by the current arrange-
ment A1.

We can view our three-part update technique as three concurrent processes going
on at once. Times at which h > 0 and h mod z 0 are regarded as renewal points for
Ao. At a renewal point, Ao has completely decayed, A1 has caught up with Ao and
can replace it, the static d-color problems have completed from which a new A1 can
be constituted, and new static problems can be initiated.

We now discuss how to avoid the expense of repeatedly updating each base in
the arrangements Ao and A1. We do this by maintaining an implicit representation of
each arrangement. An extremal base of colorj of arrangement Ro, is a base BT, where
ij qj (d 1)(1 1) and i, qj, + 1 for j’ # j. We denote this base as Bc,l,j. We also
use the base Bo,_I,.j and call this a near-extremal base ofcolorj. For g 0, 1 and 0 =< r < z,
let a g(z- r), and b z- r/ g(2z- r) For each arrangement z(h) with h kz + r,
0_-< r < z and g 0, 1, except for when, g 0 and r z 1, we maintain for each color

l(h -a) l(h-a)j, ,O,b, and its j-positive neighbors, and "-’O,b-l,j and its j-negative neighbors. For
d 3, this amounts to four bases near (and including) each of three extremal bases,
for a total of twelve bases. For d > 3, there will be 2d bases near (and including) each
of d extremal bases, for a total of 2d2 bases. We call the set of these bases the extreme
bases. For each extreme base we maintain its update structure. Using the algorithm
from the previous section, each of the 2d2 bases can be found in T(n, d) time, and
thus P(n, d) is O(d2T(n, d)). (We provide a better bound on P(n, d) in the proof of
Theorem 5.) A symbolic representation of solutions to all problems for a matroid with
d 3 and n 24 is given in Fig. 3. An arrangement centered at the base marked with
an "X" and with radius 4 is shown in bold, with the extreme bases shown as the
boldest. The extremal bases are the bases at the corners of the arrangement.

We now describe how the hth element cost change (involving an element of color
j) is applied to the implicit representation of an arrangement A(gh-l to obtain the
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FIG. 3. Symbolic representation of solutions to all problems in a matroid with three colors and rank 24.
An arrangement centered at the base marked with an "X" and with radius 4 is in bold, and the extreme

bases are the boldest of the bases.
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implicit representation of the updated arrangement A(gh). We first update the monochro-
matic base of color j, and suitably modify the update structures of the extreme bases
to reflect any change in this monochromatic base. We then compute new versions of
a particular set of d extreme bases, one corresponding to each color, that we call the
cardinal bases of the arrangement. We then compute a contracted matroid associated
with the cardinal bases that is significantly smaller than the original matroid, but one
that includes all the necessary elements. We finally extract and solve several static
d-color problems in the contracted matroid; each static problem generates one extreme
base in the implicit representation of the new arrangement.

The cardinal bases are chosen depending on the type of element cost change. For
each color j, either the extremal base B(0,hz)_r, and its j-positive neighbors, or the

(h)near-extremal base Bo,_r_la and its j-negative neighbors are used to compute the
cardinal bases. If the cost of a basic element of color j’ increases, then the cardinal
bases are generated using extremal bases and their j-positive neighbors. In this case

(h) and the (j’,j)-neighbor of B(h) j’the cardinal bases will be "-’O,-r,j’ O,z-r,,i for all j - We
u(h-1) and its j’-positivehave previously discussed how B(oh,)z_r,, may be obtained from o,z-r,r

neighbors. When j j’, let B denote Bo,z_,.,i, and B’ denote B’s (j’,j)-neighbor. Since
the complete, positive, tight set consisting of B’ and its j’-positive neighbors is identical
to the complete, positive, tight set consisting of B and its j-positive neighbors, the
sparse representation of the arrangement has sufficient information to generate the
updated version of base B’. If the cost of a nonbasic element of color j’ decreases,
then the near-extremal bases and their j-negative neighbors are used. In this case the

(h)
1_ for all j # j’cardinal bases will be /Ch and the (j,j’)-neighbor of Bo, ,juO,z--r--l,j’

The details of how the cardinal bases and their associated contracted matroids
are computed depends on the type of matroid. There are certain matroids (for instance,
graphic matroids) for which update structures for bases in a contracted matroid can
be maintained efficiently when elements are inserted into or deleted from its associated
contraction set (the set of elements contracted). In such cases, we can save both space
and time if we maintain a contracted matroid associated with the extremal bases of
each arrangement. The contraction set consists of the union, over all colors j, of the
j-colored elements in the extremal base of color j. Note that each element in the
contraction set is common to all bases in the arrangement. In the contracted matroid
associated with the cardinal bases, cardinal bases play the roles of extremal bases in
the above definition. Once the cardinal bases are determined, the contracted matroid
associated with the cardinal bases can be derived from the contracted matroid associated
with the extremal bases by performing, for each color j, insertions and deletions
corresponding to all elements of color j in the symmetric difference between the
extremal and cardinal bases of color j. The time to compute these elements is charged
to the cost of (subsequently) solving the static d-color problems. For matroids where
efficient maintenance of contracted bases is not possible, we instead explicitly maintain
the contraction set, and contract the elements each time the contracted matroid is
required.

We discuss further the case in which the contracted matroid is explicitly
maintained. If the update potentially involves a change in the contraction set, the
contracted matroid associated with the extremal bases must be modified before comput-
ing the cardinal bases. Suppose an element e of color j in the contraction set increases
in cost. If e remains in the monochromatic base of color j, then e should be deleted
from the contraction set (yielding a contracted matroid of rank one greater), and the
update structures for the extreme bases modified accordingly. If e is replaced by an
element e’ in the monochromatic base of color j, then e should be deleted from the
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contraction set, and then replaced by e’ in the contracted matroid, with the update
structures for the extreme bases modified accordingly at each step. When an element
e is removed from the contraction set, not only does e return to the contracted matroid,
but also one element of each other color, which were deleted in various previous
contractions. To facilitate identifying these other elements that should also return to
the contracted matroid, we maintain for each color j’ a base /,. The base /, is the
union of the contraction set with the elements of color j’ in the contracted matroid.
When element e of color j is removed from the contraction set, then for each j’j
perform a mincocirc(j’, e, B,) to identify the element of color j’ that should return to
the contracted matroid.

Suppose an element f of color j decreases in cost. If f is in the monochromatic
base of color j, but is in neither the contraction set nor the contracted matroid (such
an element would have been deleted when some element in the contraction set was
contracted), then there is some element e in the contraction set, which if deleted in
the contraction set would cause f to be in the contracted matroid. The element e is
found by performing a maxcirc(j,f, j), and is then deleted from the contraction set,
with the update structures for the extreme bases modified accordingly. Finally, if f is
not in the monochromatic base of color j and replaces an element f’ in the monochro-
matic base of color j, then we handle f’ as though it were an element that increases
in cost and was replaced byf in the monochromatic base of color j. The cardinal bases
can now be selected from the bases obtained by performing the appropriate update
operations on the extreme bases, and the associated contracted matroid obtained as
previously described.

Each extreme base in the new arrangement is then generated by extracting and
solving a d-color problem in the contracted matroid associated with the cardinal bases.
We also derive the contracted matroid associated with the extremal bases of the new
arrangement from the contracted matroid associated with the cardinal bases of the old
arrangement. As before, this is done by computing symmetric differences. The size of
the contraction set associated with the extremal bases of an arrangement of radius
is zjd=l(q-(d-1)(l-1))=n-d(d-1)(l-1). Since the contracted elements are
independent in the original matroid, the resulting contracted matroid will have rank
d (d 1)(l- 1). We also note that since the original matroid has a monochromatic base
of each color, so will the contracted matroid; thus the contracted matroid, like the
original matroid, can be viewed as the union of d monochromatic bases. In what
follows we will assume that, whenever appropriate, update structures are maintained
for these smaller monochromatic bases in the contracted matroid.

To summarize, each update step h, where h kz + r and 0=< r < z, involves the
following operations. The monochromatic minimum cost base is updated for the color
of the element whose cost has changed. The arrangement Aoh-l) is transformed to Aoh)

by applying the hth element cost change to it as follows. The cardinal bases are
computed. Either the contracted matroid or the contraction set is updated, and in the
latter case, the elements in the contraction set are contracted. Let the computation of
the cardinal bases and the appropriate contraction structures be completed in Q(n, d, z)
time. A total of 2d+ 1 static d-color problems of rank n’= O(d2z) are then extracted
in the contracted matroid and each solved in T(d2z, d) time, generating Bh and the
extreme bases for the new arrangement Aoh. For those matroids in which the update
structures for the contracted matroid can be maintained efficiently under element
insertion and deletion, the update structures for the extreme bases in Aoh-) are modified
via swaps to yield update structures for these new bases, respectively. We then have
the implicit representation for Aoh after the update step.
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Finally, Ah-l) is transformed to Ah). The hth element cost changeis added to
the rear of the queue of element cost changes that we maintain for A1. Two element
cost changes from the front of the queue are then deleted and each is applied to A]h-l)
in the same manner as the cost changes were applied to Ao, obtaining Ah).

THEOREM 5. Let M be a matroid of rank n with m elements of d colors. Consider
constrained minimum cost bases with respect to cost function Cl(" ). The on-line update
problem for such bases can be solved in O(d2U(m,n)+Q(n,d,z)+d2T(d2z, d)+
dT(n, d)/z+d2T(d2z, d)/z) time and O(dS(m, n)+d3(d:z+n)) space.

Proofi For each of the O(d) extreme bases of each arrangement, an update
operation will be performed. Then d cardinal bases in each arrangement are selected
from these O(d) updated bases. An updated arrangement Agh) is generated by solving
O(d2) static d-color problems. This can be done by finding the new extreme bases of
the arrangement for each color on a contracted matroid of rank n’= O(d:z). The space
required for computing one ofthese bases is O(d3(dz)), which is O(d5z) for computing
all of them, since they are computed one at a time. The space required for storing the
update structures for each of the extreme bases will be O(d3z), or O(dS-r) overall.
Solving the static d-color problems will take time O(d2T(d2z, d)). Thus each update
step in Ao or A1 will take O(d:U(m, n)+ Q(n, d, z)+d2T(d:z, d)), time.

In addition, O(d2) static d-color problems of rank n must be solved over z updates
in order to regenerate the arrangements. For each color j, compute the extremal bases
of colorj. Then contract the matroid to one of rank n’ O(d2z). The remaining extreme
bases can be found in the contracted matroid. Thus the time spent per update step on
solving these static d-color problems is O((dT(n,d)+d2T(d2z, d))/z). The static
d-color problems of rank n will be solved one at a time and thus require O(d3n) space
overall.

To illustrate the above technique, we describe the construction of update
structures for graphic matroids and analyze their efficiency. The update structure for
a minimum spanning tree uses dynamic tree data structures [ST] and two-dimensional
topology trees IF]. The former allows us to perform the operations maxcirc and swap
in time O (log n). The latter allows us to perform the operations mincocirc and
swap in time O(x/). Thus for this update structure U(m, n)= O(x/). The space
used by the structures is O(m).

A contracted matroid is maintained in the form of a contracted graph. A topology
tree IF] is used to maintain a heap of the edges incident on each vertex of the contracted
graph. Each such vertex corresponds to a tree-structured connected component of
contracted edges from the current constrained minimum spanning tree. Since topology
trees of size dez support insert, delete, split, and merge operations in O(log (d2z))
time, updating the contracted graph can be implemented efficiently. Given the
monochromatic bases, the time to solve a static d-color problem is T(n, d)=
O((d!)n log n). We therefore have the following theorem.

TrEOREM 6. Let G be a graph with n vertices, and with m edges ofd colors. Consider
constrained minimum spanning trees with respect to cost function cL(" ). The on-line
update problem for such spanning trees can be solved in O(dx/+ dS/(d !)v/-ff log n)
time and 0 dm + d n) space.

Proof. We have U(m, n)= O(v/--), T(n, d)= O((d!)2n log n) and Q(n, d, z) will
be O(dU(dz, z)+ d log (d2z)), which is O(d3zl/e). Each update step in the arrange-
ments will take O(dx/+ d4(d !)2z log (dz)) time. We must also replenish the second
arrangement by solving a number of static problems of rank n, which will cost
O((d(d!)n logn+d4(d!)zlog(dz))/z) time per update. We choose z=
(/,/1/2/d3/2). The space bound follows from our choice of z and S(m, n). l!
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6. A recursive representation of arrangements. We can achieve better update times
by using a more complex representation of arrangements. Consider the example in the
last section involving graphic matroids. We can use a two-level approach for represent-
ing Ao and A1. Consider update step h, where h kz/ r and 0_-< r < z. Recall that

otA(oh) Rq,z-h,(h) where R,! is the set of bases {B,I i / l- 1,j 1, 2, d}. Arrange-
ment Ao was represented implicitly by the extreme bases, their associated data struc-
tures, and either the contracted matroid or the contraction set corresponding to the
extremal bases. On an update step in Ao, d cardinal bases were determined, the
contracted matroid (or contraction set) was updated using them, and 2d2+ 1 static
problems of rank n’= O(d2z) were solved to find the new extreme bases.

In our modified method, a base at each extreme is computed as before. However,
instead of solving a number of static problems with respect to Ao on each update step
in Ao, we do the following. We maintain smaller arrangements Ao, j 2, 3, , d + 1,
centered near the extreme bases of Ao, and two smaller arrangements Aoo and Aol
centered at B0. We call these smaller arrangements subarrangements. Only when the
subarrangements Aoj, j 2, 3, , d + 1, decay to single bases are a number of static
problems solved with respect to Ao. Aoo and Aol are maintained to be able to access

B0 meanwhile.
Let loj be the radius ofsubarrangement Ao,j 0, 1, , d / 1. Forj 2, , d + 1,

Ao will be centered on (b, where qk qk --(d 1)(1o- lo) for k-j and qk qk + lo-- lo
for k j. Let y be a parameter to be specified subsequently. At a renewal point for
Ao, lo y if j 0, loj 3y if j 1, and lo 2y if j 2, 3,. , d + 1. Each subarrange-
ment is represented implicitly by its 2d extreme bases, their associated data structures,
and the contracted matroid (or contraction set). Ifthe contracted matroid is maintained,
the extreme bases are of rank n’= O(d:z); otherwise the bases are of rank n. After the
Ao, j=2,..., d/ 1, have decayed to radius 1, 2d static problems with n’-
d(d-1)(/-/o) will be initiated to determine the extreme bases for the new Ao,
j-2,...,d+l.

At a renewal point for Ao, Aoo will be up to date with respect to Ao, Ao,
j-1, 2,..., d + 1, will be out of date with respect to Aoo (and therefore Ao) by y
element cost changes. Times at which h mod z > 0 and h mod y- 0 are regarded as
renewal points for Ao,j 0, 1, , d + 1. At a renewal point for Aoo, Aoo has completely
decayed, Aol has caught up with Aoo and can replace it, arrangements Ao, j=
2,. ., d + 1, have caught up with Aoo but have decayed to single bases, the (d + 1)2d
static problems have been completed which yield the extreme bases for the new
arrangements Ao, j 1,. ., d + 1, and a new set of static problems can be initiated
using the single bases from the previous Ao, j- 2,..., d + 1. As before, two update
steps in an out-of-date arrangement will be performed for every update step in Ao.
We will assume that z mod y 0, so that Ao, j 1, l, , d + 1, will catch up with Ao
precisely when Ao reaches its next renewal point. Arrangement A1 is represented in a
similar fashion. Subarrangements AI.j, j 1, , d + 1, will initially be out of date with
respect to A by y element cost changes. Since A1 is itself out of date with respect to
Ao, four update steps will be performed in each of Alj, j--1, ...., d / 1, for every
update step in Ao.

We discuss how to perform an update in Ao. The update for A1 is similar. For
each of the extreme bases of Ao, an update operation is performed. Then the d cardinal
bases are selected from those O(d) updated bases. The contracted matroid (or
contraction set) corresponding to the cardinal bases is computed. In addition, for all
extreme bases ofAo that are not extreme bases of Ao, an update operation is performed.
For each group of d bases in this set, a cardinal base is computed. Then, for each
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j =0, 1,..., d + 1, the contracted matroid (or contraction set) corresponding to the
cardinal bases of Aoj is computed. A total of 2d:+ static d-color problems of rank
n’= 19(d:y) are solved for each of the d + 1 subarrangements of Ao. From the extreme
bases of the Aoj that correspond to extreme bases of Ao, swaps that transform the old
extreme bases of Ao into the new extreme bases can be inferred. The new contracted
matroids (or contraction sets) for Ao and its subarrangements can then be determined.

In addition, the following static problems must be solved over a sequence of
updates. To generate the extreme bases for A, O(d:) static d-color problems of rank
n must be solved over z updates. To generate the extreme bases for A, g 0, 1 and
j 1, 2, , d + 1, O(d3) static d-color problems of rank n’= O(d:z) must be solved
over y updates.

THEOREM 7. Let G be a graph with n vertices, and with m edges ofd colors. Consider
constrained minimum spanning trees with respect to cost function cL(" ). The on-line
update problem for such spanning trees can be solved in O(d:v/--+ dl/3(d!)2n /3 log n)
time and 0 dm + d n) space.

Proof. For each of the O(d:) extreme bases of arrangements Ao and A1, an update
operation will be performed. Then d cardinal bases in each arrangement are selected
from these O(d:) updated bases. The time required is O(d:U(m, n)). For each of the
O(d3) extreme bases of subarrangements Ao and A, an update operation will be
performed. Then d new extreme bases in each subarrangement are selected from its
O(d:) updated bases. The total time required is O(d U(daz, n)). An updated arrange-
ment Ak is generated by solving O(d:) static d-color problems. This can be done by
finding the extreme bases for each color on a contracted matroid of rank n’= O(d:y).
Thus solving the static d-color problems will take time O(d3T(d:y, d)). Thus each
update step in the arrangements and subarrangements will take O(d2U(m,n)+
Q(n, d, z)+d3U(d:z, n)/d3T(d2y, d)) time.

In addition, O(d:) static d-color problems of rank n must be solved over z updates.
As in the proof of Theorem 5, this will take O((dT(n, d)+ d:T(d2z, d))/z) time per
update step. Also, O(d3) static d-color problems of rank O(d2z) must be solved over
y updates. The time spent per update step on solving these static d-color problems
will be O((d3T(d2z, d))/y). The time spent handling each element cost change is
O(d2v/-+ d (d !)2((n log n)/z + d4(z log z)/y + d4y log y)). Choosing z O( n:/3/d 8/3)
and y O(nl/3/d4/3) yields the time claimed by the theorem.

For the space, proceeding in a fashion similar to that in the proof of Theorem 5,
we obtain a bound of O(dS(m, n)+ d3(n + d3z)), which is O(dm + d3n) for our choice
of z and S(m, n). [q

For fixed d, the time for the above approach is limited by the O(x/-) time to
update a minimum spanning base in an uncolored graph. Ifthe graph is planar however,
then the update time in an uncolored graph has been shown to be O(log n) in [GS],
and hence is not a limiting factor. We thus extend recursively the implicit representation
of arrangements. The representations will be of two types, centered and uncentered.
Let a(d) be a value depending on d, which we shall specify subsequently. An arrange-
ment, centered or uncentered, of radius at most a(d), is the set of extreme bases, their
associated data structures, and the contracted matroid (or contraction set) correspond-
ing to the extremal bases. Let f(. be a function to be defined subsequently. For an
arrangement A ofradius l initially equal to z > a (d), a centered representation consists
of the above items, in addition to the following:

(1) A centered representation of a subarrangement Axo, which is centered on the
same position as A, with radius lxo initially equal to f(z), and which is up to date
with respect to Ax.
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(2) A centered representation of a subarrangement A, which is centered on the
same position as A, with radius lx initially equal to 3f(z), and which is out of date
with respect to Aa by lx o element cost changes.

(3) Uncentered representations of subarrangements Axj, j 2, , d + 1, which
are positioned at the extremes of Aa, with radius lj initially equal to 2f(z), and which
are out of date with respect to A by lx o element cost changes.

(4) 2d 2 static problems that have just been initiated. Of these, 2d will be of
rank n’=O(d-z), and the remainder of rank O(d:f(z)).

An uncentered representation consists of all items in a centered representation
except items (1) and (2).

Let f()(x)= x and f()(x)=f(f(-l)(x)), for i>0. Then we choose the function
f(. such that f(+)(n)modf()(n) =0 for i>0. This can be done easily by forcing
f( to be a power of 2. This choice off( ensures that each (i + 1)st level arrangement
will have caught up with the appropriate ith level arrangement at an ith level renewal
point.

Let Tc (z) and Tu (z) be the update times for centered and uncentered arrangements
of radius z, respectively. The update times are described by the following recurrences"

Tu(z) cd3(d !)2(z log z)/f(z) + 2dTg(2f(z)),

Tc(z)= cd3(d!)2(z log z)/f(z)+2dTg(2f(z))+2Tc(3f(z))+ Tc(f(z))

where c is a constant. The first term in each recurrence represents the time spent per
update step on solving the static problems of rankO(d2z) and updating the data
structures. The remaining terms represent the time for recursively updating subarrange-
ments of radius O(f(z)), and reflect the fact that two update steps are required for
out-of-date subarrangements for each update step in the primary arrangement.

THEOREM 8. Let G be a planar graph with n vertices, and edges ofd colors. Consider
constrained minimum spanning trees with respect to cost function ct(" ). The on-line
update problem for such spanning trees can be solved in O(d3(d!)2(logd)-/
2(2g(Za)gn)/(log n)3/2) time and O(d3n) space.

Proof We have U(m, n) O(log n), P(n) O(n log n) and Q 0. If we choose
f(x) O(x/2(z og (2a)log x)l/) and observe that

/logf(x) x/ig x-x/ log (2d) log x < x/log X- x/(10 (2d))/2,

then both Tu(n) and Tc(n) are O(d3(d!)Z(log d)-/z2(zg(a)g")’/(log n)3/2), pro-
vided a(d) is small enough, so that the basis of the recurrences satisfies these bounds.

For the space, the recursive representation has at most (d + 2) subarrangements,
each using data structures of size (R)(f(i)(n)) at level i. With d + 2 =< 2d =< 2 (2 ig (2d) log n) 1/2,
the sizes of these structures sum to O(n) over all levels.

Solving for n in the above inequality suggests the choice of a(d)= x/-d. Since
arrangements of radius at most a (d) are represented explicitly, the space for represent-
ing arrangements is O(n), aside from the space for the static problems being solved.
At level i, there are O(d+) static d-color problems of rank O(f)(n)) and O(d2+i)
static d-color problems of rank O(f+)(n)) being solved. These static problems are
solved one at a time, and the space requirement for computing and recording their
solutions sums to O(d3n) over all levels.

If the general matroid intersection algorithm is used for updating arrangements
of radius at most a(d) in the centered and uncentered representations, then the basis
in the recurrences is polynomial in d. Thus the basis satisfies the claimed bounds on
Tu(n) and Tc(n). ll
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7. An application. The techniques of 4 can be used to solve the minimum
spanning tree problem when d vertices have degree constraints. Assume that the vertices
with degree constraints are indexed v, v2,’’ ", Yd. Label each edge incident on two
constrained vertices with color 0. Label each edge incident on exactly one constrained
vertex vi with color i. Label each edge incident on two unconstrained vertices with
color d + 1.

Since there are d constrained vertices, there are at most d(d- 1)/2 edges of color
0. In turn we consider every subset of edges of color 0 that is a forest, such that the
degree of each vi in the forest does not exceed its degree requirement r. We generate
a candidate solution for each such forest. The idea is to include all the forest edges
in the solution and then choose remaining edges so as to satisfy the degree constraints
in a minimum cost fashion. The minimum cost solution over all such forests is then
the minimum spanning tree satisfying the degree constraints.

For each forest, we generate a reduced graph as follows. Make a copy of the
graph, and initialize rl to be r for i= 1, 2,..., d. Delete from the graph all edges of
color 0 that are not in the forest. For each edge (vi, vj) in the forest, decrease by 1 the
degree requirements r and r. Then contract the remaining edges of color 0 in the
graph. To get the candidate solution corresponding to this farest solve a (d + 1)-color
static problem on the reduced graph, where r edges of color are desired, for

1, 2, , d, and the remaining edges are of color d + 1.
THEOREM 9. The time to solve a minimum spanning tree problem with degree

constraints on d of the vertices is O(To(m, n)+((d + 1)!)2dd-lT(n, 2)), and the space is
O(dan).

Proof For each forest, the set of edges of any color j > 0 in the corresponding
(d + 1)-color problem is the same. The only monochromatic minimum spanning tree
that cannot be inferred by definition is the one of color d / 1. Thus the first term reflects
the time to solve a minimum spanning tree problem on edges of color d + 1.

We next derive a bound on the number of undirected labeled forests, and thus
the number of (d + 1)-color problems that must be solved. We first count directed
labeled graphs in which each vertex has outdegree 1, with self-loops allowed. This
quantity is an upper bound on the number of directed labeled forests, and is a loose
bound since it allows directed cycles other than self-loops. The edge directed out of
each vertex can be any one of d vertices. Hence at most d d such graphs are possible.
To obtain a slightly tighter bound for undirected labeled forests, observe that at least
one vertex in a directed labeled forest is a root. In counting undirected labeled forests,
it makes no difference which vertex this is. So in generating the above directed labeled
graphs we arbitrarily choose vertex vl to be a root. Thus we choose from among d
possible edges out of each of the remaining d- 1 vertices, which means at most d d-1

undirected labeled forests are possible.
The space required is dominated by the space needed to find one (d + 1)-color

spanning tree. [3

Acknowledgment. We thank the referee for a careful reading of the paper and for
many helpful suggestions.
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OPTIMAL BIN PACKING WITH ITEMS OF RANDOM SIZES II*

WANSOO T. RHEE? AND MICHEL TALAGRAND

Abstract. Consider a probability measure/z on [0, 1] and independent random variables X1,’’ ", X,,
distributed according to/z. Let Q,,(XI, , X,) be the minimum number of unit-size bins needed to pack
items of size X,..., X,. In this paper it is proven that IE(Q,,(X,..., X))/n-c(tz)l<= K((log n)/n) /2,
where K is a universal constant and c(/x) depends on/z, c(/x)=lim,_. E(Q,,)/n.

Key words, stochastic bin packing, asymptotic occupancy, size distribution, compactness, weak conver-

gence

AMS(MOS) subject classifications, primary 90B05" secondary 05B99, 46A50, 28A33

1. Introduction. The bin-packing problem requires finding the minimum number
of unit size bins needed to pack a given collection of items with sizes X,..., Xn in
[0, 1]. This problem has many applications and has been shown to be NP-complete
[3], [4]. Recently, a number of authors have been interested in analyzing stochastic
models for bin packing. Coffman, Garey, and Johnson [1] gave an up-to-date survey
of results on this question. Most authors have analyzed approximation algorithms
under a model of elements drawn independently from the uniform distribution on
[0, 1]. The main results of this paper are deterministic. They are however connected
with a more general stochastic model. Consider a probability measure/x on [0, 1]. (No
regularity assumption is made on/z.) Consider n items, and the sizes of these items
X1, , Xn which are independent identically distributed random variables distributed
according to/x. (For simplicity, we denote by Xk both item names and item sizes.) We
let Q Q,(XI,..., x) denote the minimum number of unit-size bins needed to
pack X1,"" ", X. It is well known that Qn is a subadditive process (see [5]). So we
have lim Q,/n c(/z) almost surely for some constant c(/z) depending on /x, and
E(Q,)/n _-> c(/z) for each n. In 12], the authors have shown that Q, is very concentrated
around its expectation. More precisely, for all > 0,

Pr (IQn E(Qn)[ _-> t) -<2 exp (-t2/2n).
This however gives no information on the value of E(Qn). Among other results, we
will find a sharp bound for the difference E(Q)-nc(tx) (see Theorem D below). In
11], Rhee has given a complete description of the distributions/z for which c(/x)=
E(X). In order to state the full strength of our results, we need first to state an
extension of Rhee’s result. For k-> 1, let

Rk--{ (X’’ ’Xk)ERk" OXl" "Xk’ Ei<=k/i_-< 1}.
For xE [0, 1], we denote by 6x the probability measure concentrated at x, that is
x(G) 1 if x belongs to G and 6x(G)- 0 otherwise. For a compact metric space S,
we denote by M(S) the set of probability measures on S.

For u MI(Rk), we define (u) M([0, 1]) in the following way: for each Borel
set G of [0, 1],

( u)( G) (1/ k) f tx,(G) du (Xl,... ,Xk).
dR ink
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In short, this formula (and similar formulae) will be written

(,)=(1/) I, Z x, a,,(x, ,x,,).
ik

The simple, but essential, idea is that if v is the distribution of items X,..., Xk,
these items can always be packed in one bin and (v) is the distribution of Xi, where
i {1,..., k} is uniformly distributed independently of X,..., Xk.

THEOREM A. For tx in MI([0, 1]), there is a nonnegative sequence (ak)k>=O with

EkO Olk 1, and for each k >- 1, a lk in MI(Rk) such that

and that

oao+ Z a(v)

c(ix) ->__ E a/k.
kl

Here is the main result.
THEOREM I. Consider a nonnegative sequence (Olk)k>___ 0 with k_>-o Cek 1, and a

sequence Vk M Rk ). Consider the measure

(1.1) / aoao+ Z a(v).

For >-_ 1, let 3 >=/k. Consider a sequence s, , s, of items. Let

(1.2) W= W(s,. ., s,) Sup {card{i-<_ n; s->_ t}-nix([t, 1])}, and
o__<t_<_l

W+ Sup W, 0).

Then

(1.3) Qn(s"" "s")<= W++n Xk, (ak/k)+Kn’/2( 1+ (fl’/i)’/2)
where K is a universal constant (independent of Ix, n, and s,..., sn).

In particular,

(1.3’) Q.(s,,"’,s.) <=W++n Z (ak/k)+K(n(l+logn)) 1/2.
k>=l

Comments. (1) The packing procedure by which we obtain (1.3) is explicit and
fairly simple. However it requires complete knowledge of the decomposition (1.1). We
have not estimated its time complexity, since it is not clear what are realistic assumptions
about the effort needed to compute the quantities related to (1.1) that we need.

(2) Our proof shows that (1.3) actually holds for K 8, but we have used only
simple estimates and have made no special efforts to find a small value for K; this
would not be appropriate since we do not know what is the best possible order of the
error term.

The following theorems are two consequences of Theorem B.
THEOREM C. Let s1, s [0, 1]. Let v Ein s,/ n. Then

(1.4) nc( v) <= Q, sl ", sn <- nc( v) + K n( 1 + log n ))/2.
THEOREM D. There is a universal constant K such that for any distribution Ix,

(1.5) nc(ix <= E( Q,,(X1, X,,)) <= nc(ix + K(n(1 + log n)) 1/2.
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If, moreover, the series Z (i/ i) /2

Theorem A), we have
converges (where fli Zk=i ak/ k and (ak) is as in

(1.6) nc(iz <--_ E Qn) <= nc(tz + K (tx )n ’/2

where K (tz) depends on Ix only.
When tz is the uniform distribution on [0, 1], (1.6) is due to Kn6del [6] and

Lueker [7]. In this context, it is of interest to note the following, related to a theorem
of Lueker.

THEOREM E. Let I be a probability measure on [0, 1 ]. Let A be a measurable subset
of [0, 1] with/z(A) 1. Let 0< 0-< 1. The following are equivalent:

(a) c(/x) > 0.
(b) There exists a nonnegative continuous function f on [0, 1] such that fdtz > 0

and f(O) O, and that f satisfies the following condition:
(,) For any k >= 1, for each x, ., Xk [0, 1], Zi_<-_.k xi -< 1 Z<__kf(xi) <= 1.

(c) There exists a Borel function f on [0, 1] such that fdtz> 0 and f(O)<-O, and
that f satisfies the following condition:
(,) For any k >-_ 1, for each Xl," ", Xk A, Z=k x <--_ Z<=kf(xi) <= 1.

The paper is organized as follows" Section 2 contains all the proofs, except that
of Theorem B; Section 3 prepares the proof of Theorem B, which is done in 4.

2. Some simple facts. Let S be a compact metric space. We denote by C(S) the
class of continuous functions on S. Denote by M/(S) the set of all positive measures
on S and by M(S) the set of all bounded variation measures on S, so M(S) c M/(S)
M(S). The weak topology on M(S) is the coarsest topology such that for every
f C(S), the map/z sfdlz is continuous. Provided with the weak topology, MI(S)
is compact metric. Let 0_< 0 -< 1. We define the set Co as the set of/z in M([0, 1]),
for which there exists a sequence (Olk)k>=O such that Ek_>_._O Og. k 1 and Ek=>l Olk/k <- O, and
a sequence Uk Rk, for k--> 1, such that

PROPOSITION 1. Co is convex. If a sequence (0,) converges to 0 and tz, Co,,
converges weakly to Ix, then Iz Co. (In particular Co is weakly dosed.)

Proof The first assertion is obvious. The proof of the second needs only obvious
modifications from the proof of Lemma 2 in [11], to which we refer the reader.

We now prove Theorem A. The proof is very similar to part of the proof
of the main theorem of [11]. A well-known consequence of the Law of Large
Numbers is that (1/n)Yi 8x,la, almost surely in the weak topology. Also,
(1/n)Qn(X,’", Xn)- c(tx) almost surely, so we can find a sequence (x) such that
/zn (l/n)<=n 6xi converges weakly to /z and kn/n converges to c(/x), where k,
Qn (x, , x,). (We denote item sizes and item names by lowercase letters to emphasize
that they are not random.) We fix n and we consider a packing of items of size
Xl,’’’, x, in k, bins. In the jth bin, j =< k,, we have pj items of size yj,1,""", y,p with
y, <-_. -< yj,p. Let h (1/pj)(l<_p ty.h,). We have

(2.1) I, .i<__,, (p/n)Aj.

We have _k,. (p/n)/p k,/n. It follows from (2.1) that/z, Ck,,/,, SO /Z C(,) by
Proposition 1. This proves Theorem A.
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We postpone the proof of (1.3) to 3 and 4, and we deduce all the other results
from it. Since fli ,k>-i ak/k, we have >= k>- ak -< 1. From the Cauchy-Schwartz
inequality,

(fl,/i)’/2<-_ , 1/i
/2. i /2 i /2

Now ,,/ 1/iK(1 +log n) for some constant K. So, (1.3) implies (1.3’) (maybe
with a different constant K).

Proof of eorem C. We apply Theorem A to in order to get a decomposition
of as in (1.1), wherek ak/k C(). The right-hand side inequality of (1.4) then
follows from (1.3’), since W+ =0. To prove the left-hand side inequality, if we draw
items X, , XN distributed according to , for n, let N be the number of items
of size s and let a Sup N. We paition the items into as collections, where
each collection contains at most one item of each size and pack each collection
optimally. We need at most aQ,(s, , s) bins. The Law of Large Numbers shows
that lims E(aN)/N 1/n and this implies the result, since

c(v)= lim E(QN(X,," .,XN))/N

_-< lim E(aQ,(sl,...,s))/N=(1/n)Q(s,...,s).

Proof of Theorem D. The left-hand side of (1.5) follows from subadditivity. For
the right-hand side, if

W(XI,’." ,Xn) Sup {card{i<-_n, Xi >- t}- ntx([ t, 1])},

the Kolmogorov-Smirnov theorem implies that E(W/) <= Kn/ for some universal
constant K. So Theorem D follows from Theorem B.

Remark. The argument also shows that for/x Co, we have c(/x)_-< 0.
Proof of Theorem E. (ab). Consider the set C of all measures 3’ in M/([0, 1])

that can be written as a sum

k=>l

where Vk Mt(Rk), cei => 0 for each -> 0, and k>=l Ok/k <-_ O. It is clear that C is convex.
Moreover, for 3/in C, the probability y/y([0, 1]) belongs to Co/o,11. We show now
that/z does not belong to the weak closure of C. Otherwise, there is a sequence (yn)
in C that converges weakly to/. In particular, the sequence an 1/)’n ([0, 1]) converges
to 1, so the sequence 3,’ anyn converges weakly to/x. Moreover y’ Cano, so Proposi-
tion 1 shows that/z Co. The remark before the proof shows that this is a contradiction.

We can now use the geometric form of the Hahn-Banach theorem (in the space
M(S) of all bounded variation measures provided with the weak topology) to get a
continuous function g on [0, 1] such that g d/x > 0 but g dv <- 0 whenever v C.
Since ao C for all a->0, we have g(0)-<0. Now let X,’’’,Xk be in [0, 1] with
,i<-k Xi -< 1. Since v 0 Y.ik 8, belongs to C, we have g dv 0 <-k g(xi) <= O. NOW
define f= Max (0, g), so f is continuous, and fdlz > 0. Given Xl,’’’,Xk -< 1, let
J= {i <= k; g(x)>0}. Since xi<= 1, we have , g(x)=i<_kf(X)<--_ 1. This com-
pletes the proof.

(b=>c). The proof is obvious.
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(c=>a). Suppose, if possible, that c(/z) <- O. By Theorem A, we have /x Co. So
there is a sequence ak with k>-O ak <= 1, , ak/ k <-- 0 and Vk MI(Rk) such that /x

aoSo+k>-i (ak/k)(Vk). In particular, for each Borel set G of [0, 1], we have

tx(G)=aoto(G)+ (ak/k) f 6x,(G)du(x,...,x).
k>--I l Rk i<--k

Using this equality for G [0, 1 ]\A, we see that for each k such that ak > 0, each k,
we have 8x,(G)=0 for b’k almost surely. In other words, 8x,(A) 1 Vk almost surely.
So /k is concentrated on

Now, we have

It follows that

We then have

Pk {(Xl, ., Xk); O--<Xl <--’’ "--<Xk, Xl,""" Xk A}.

fd((vk))=(1/k) IR " f(xi) dVk(Xl,’’" ,Xk)
i<=k

(l/k) Ipk ,<-_k2 f(xi) dlk(X1,’’" ,Xk).

Ifd((k))<=Sup{ (1/k) Z (X’)’<--kePk} <-1"

fdtx <- aof(O) 2 ak/ k <- O.
k-I

This contradiction concludes the proof.

3. Preparation.
LEMMA 1. (Well known; used and proved in [11] in the ease q card U.) Let

q >- 0 and U be an index set. Consider twofamilies (a) i- q, (bu) v and 0 <= a, b <- 1. Let

(3.1) h Sup {card {1 _-< =< q; ai _-> t}-card {u e U; bu -> t}}.
0t=<l

Then there is a subset H
_

{ 1, , q} with card H >= q- h and , a one-to-one mapfrom
H to U with a <- b6( for H.

Note. We index the b’s by an abstract index set U because we find it is more
convenient to prove the next lemma.

LEMMA 2. Let p, q, n>0. Consider a family (ai)<_q, 0_-<ai_-<l and for l <-_j<=p,
left-continuous nonincreasing functions (f)j<=p on [0, 1]. Set

h= sup {card{l<-i<--q;a>--t}-n f(t)}.0--<_t_--<l j<=p

Then there are disjoint subsets (I-I)j<_p of { 1,. , q} with j<_p card >-_ q- h -p, and
for each j <- p, for each [0, 1 ],

(3.2) card {i ai >= t} <- nf(t).

Proof. The proof is easy, but very boring. For x R, let [x] be the integer part of
x. For l<-j<-p, let nj-[nf(0)]. For l<-l<-nj, let bld=Sup{t;O<-_t<-l, nf(t)>=l}.
(Since l-< nj, the set is not empty.) Since f is left-continuous, nfj(bt,j)_-> I. Note also



144 W.-S. T. RHEE AND M. TALAGRAND

that b,j is nonincreasing in l, i.e., b+l,j-<-bl, for 1-<_ l, + 1---n. We first prove the
following fact.

FACT. For 0 < < 1,

(3.3) card {1_<-/<- nj; bl,j>=t}> nf(t)- 1.

Proof of the Fact. Let r be the largest integer with r_-< nf(t), so r > nf(t)- 1. By
definition of bl,j, bl, for 1 =< 1_-< r.

We return to the proof of Lemma 2. Consider the index set U={(l,j); l<-_j<-p,
l<-l<=nj}. For u=(l,j)e U, let bu bid. By summation of the inequalities (3.3), we
get for each t,

card {u 6 U; b. -> t} > n Y’, f(t) -p.
jp

So, by definition of h,

sup {card{i--N_q; a,>-_t}-card {u6 U; b,>-t}}<h+p.
0t_-<l

Using Lemma 1, we get H {1, , q} with card H => q- h -p and a one-to-one map
from H to U such that ai =< b6(i)for e H. For j--< p, define

Hj={i H; th(i)is of the form (l,j) for some l<-_n}.
Since H U j_<p/-/, we have Y4_<p card -> q- h-p.

We now prove (3.2).
Fix -<j <- p and 0 -< _-< 1. Let r be the largest integer with br, -> t. Sof(t) >=f(brd) >=

r/n. Also, card {1-< nj; bid >- t} r <- nf(t). Since b is one to one,

card { 6 ai _-> t} _-< card { b4,( t}
_<- card { <= nj bl, >- } <- n(t).

Remark. The proof actually gives Y’.j=p card _-> q-m, where m is the largest
integer < h + p.

For two positive measures (not necessarily probabilities) r/, , on [0, 1 ], 11 shows
the relevance of the relation r/<< t, given for each t[0, 1], r/([t, 1])=< u([t, 1]). Before
we state Lemma 4, we explain its basic idea. There is a measure ,i on [0, 1] with
u([ t, 1 ]) =f(t) (sincef is nonnegative, nonincreasing, and left-continuous). Condition
(3.2) reads

(3.4) for each j -<_ p, (l/n) 6,,<< uj.
iEHj

Also

_
{1,..., nj} and we have nj bins. Bin number l, for 1-< nj, has occupancy

level al. Then (3.4) also reads

(1/n) Z 6,,<< n,j/nj.
leHj

So occupancy level of the bins is controlled by vj.
The basic idea of" the construction is as follows" The decomposition of/ as in

Theorem A contains (in an abstract way) directions on how to actually pack a given
sequence of items (see 11). We will try to follow these directions; the packing will
be done in about x/ steps; after each step, we want to make sure (to make further
steps possible) that the average level of bin occupancy is controlled (in the sense of
(3.4)) by some suitable distribution.

The following lemma is purely technical, and will be needed in the proof of the
basic Lemma 4.
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LEMMA 3. Let y be a positive measure on [0, ]2. Let p > O. Consider a sequence
(b,)i_<_.psuch that ,ip bi  ll. (ll" is the total variation norm. Since 3/>-_0, II ll- 3/(1)=
d3/(x).) Then there is a sequence 0 Up < Up-1 <" < Uo 1 andfor 1 < < p a positive

measure 3/i such that

(3.5) 3/-" %,
_<-_ p

(3.6) 3/i is supported by [ui, ui-1] x [0, 1], and

(3.7) I1%11 b,.

Proof Define for _-< _-< p 1,

ui=Sup{O<-_t<--1;y([t, 1]x[O, 1])>=, b./}.j<_i

Let Uo 1 and Up 0. We have for 1-<_i_-__ p- 1,

(3.8) y([ui, 1] [0, 1])>_-

If ui < 1, then for > ui, we have

3/(It, 1] [0, 1])_<-
j-

So,

(3.9) 3/(]Ui, 1] X [0, 1 ]) Z
This still holds if ui 1. We now construct 3/i by induction over such that (3.6) and
(3.7) hold, and also

(3.10) 3/- 3/./is supported by [0, ui] x[0, 1].
j-<_-

We first construct 3/1. Let b= 3/([Ul, 1Ix[0, 1]) and a 3/(]ul, 1]x[0, 1]). We have
a_-< b =< b. Denote by sc (respectively, r/) the restriction of 3/to ]Ul, 1] x [0, 1] (respec-
tively, {u,}x [0, 1]). So I1 11 a and I1, 11--b-a. we set y,= r/. Otherwise, we
take 3/l=s+[(bl-a)/(b-a)]. We suppose now that % has been constructed, for
< p, and we construct %+1. Let 3/’ 3/-./i 3/./. By (3.10), y’ is supposed by [0, u] x

[0, 1]. By (3.5), (3.7), (3.8), and (3.9),
b= T’([u,+,, u/] x [0, 1])= Tt([ui+,, 1] x [0, 1]) bi+l,

a T’(]ui+, ui] x [0, 1]) T’(]u+, 1] x [0, 1]) bi+
since y’(]u, 1Ix[0, 1])=0. Denote by (respectively, ) the restriction of Y’ to
]u,+, u,] x [0, 1] (respectively, {ui+} x[0, 1]), so I111 a and I111 b-a. If b= a, we
can take %+ . Otherwise, we take

Vi+l + {(b/+,- a)/(b- a)}n.
The proof is complete.

The basic lemma is as follows.
LMMA 4. Let 1 m n. Let y be a positive measure on [0, 1 ]2. Assume (m/n)

Y (m + 1)/n. Consider the three positive measures, given by, for each Borel set U:

r’(U) T( U x [0, 1 ]),

V"(U) V([0, 1] x U), and

(U) y({(x, y): x + y U})

(in other words, y’ and y" are the marginals of y, and is the distribution ofx + y).
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Consider two sequences (/i)i-<_,,, (Yi)i<-m of numbers, 0=< l, yi-< 1. Assume that

(3.11) for each [0, 1], card {i <- m; I >- t} <- ny’([t, 1]),

(3.12) foreach t[0,1], card { <- m y, >= t} <= n3""([ t, 1]).

Let =< k-< rn/4. Then there exist three subsets A, B, C of {1,. , m} such that
B
_
A, card B card C,

(3.13) card A >- m -x/m/ k, and

(3.14) card B >= rn -7v/mk,

and there exists a one-to-one and onto map b from B to C such that if we set zi l
for A\B and z l +y( for B, then

(3.15) foreach t->0, card{iA; zi >-_ t} <- nrl([ t, o[).

Interpretation. For simplicity, assume 11-- 1 and rn n. Consider a pair L, Y of
random variables such that the pair (L, Y) has distribution 3’. Then L is distributed
according to 3", Y is distributed according to 3’", and L+ Y according to r/. We are
now given the items L,..., Ln, Y1," ", Y,, whose distributions of sizes are nicely
controlled by 3" and 3’" as in (3.11) and (3.12). We try to pair the items by finding a
one-to-one map b: {1,..., n}- {1,..., n} such that the distribution of the sizes of
the pairs is controlled by r/, i.e.,

(3.16) for each t[0, 1], card{i=<n; l+y6(,>-t)<-nrl([t,o[).

(Elements that are paired will go to the same bin.) This is not quite possible, so we
have to settle for less, and dump some of the items. We will apply Lemma 4 to a
situation where the items Y are of size =<l/k, and the size of items Li is of order 1.
Since the items (Y) are smaller, we can afford to disregard more of them. We disregard
the items Y for i B, (at most 7x/mk of them) and the items L for i A (at most
x/-/k of them). If i A\B, L will not be paired with any element (and will go alone
to a bin). If A, L will be paired with Y,i. Formula (3.16) is then the appropriate
substitute for (3.15).

Proof. Set a=[v/m/k]. Since m/k>=4, x/m/k_->2, so a>-v/m/k/2. Let p=
[n[[yll/a]. We have

p<=nll3"[l/a<=2q’k/mnll3"l[<-2(m+l)x/k/m<-_4/-m--l (since m_>-l, m+l<_-2m).

For i<=p, let b,=a/n. Let bp+=ll3"ll-pa/n<-_a/n. We apply Lemma 3, to write
3’=_<,<__p+ 3’,, such that II,ll=b, and yi is supported by [u,, u_][0, 1], where
0--Up+l UpS’" .-<u_--<Uo= 1.

CLAIM. For 0--< t_--< 1, we have

(3.17) card {1-<_ i-<_p; u,>-_ t}>-_ (n/a)3"([t, 1])-1.

For t=O, this is equivalent to p>-(n/a)[[3"l]-l, which is true. Suppose now t>O, let
r be the largest integer with Ur >-- t, SO Ur+l < t. We have

’([t, 1])’(]u+,l])llyll- b<=(r+l)a/n.
i>r+l

On the other hand,

card {1-<_ i_-<p; ui>-_t}>=r

which proves the claim.



OPTIMAL BIN PACKING WITH ITEMS OF RANDOM SIZES II 147

Let W=((i,j); l<-i<=p, l<=j<-a}.Forw=(i,j) W, set vw=ui. ForO<-t<-l, we
have, by (3.17),

card { w W; Vw >- t} a card { 1 -< _-< p; ui _-> t}

>= ny’([ t, 1]) a.

So,

card {i _-< m; li >- t}- card {w 6 W; Vw >- t} <- a.

It follows by Lemma 1 that there is a set At_{1,..., m} with cardA>=m-a>=
rn -v/m k, and a one-to-one map 4" A W such that/ =< v+() for j A. For =< p, let
Ki {j A; v+()= ui}. The sets Ki, -<p form a partition of A. So, Y_<-i<__p card Ki ->

m a. Also card Ki =< a. For 1 =< -< p + 1, define

f(t)= yi([0, 1] It, 1]).

Since ’)/ 21i<_p+l ’)/i, we have for O_<- t_-< 1, y"([t, 1])=E,<=i<=p+,f(t). Since
bp+ <- a n, we have Y.-<_i=<p f(t) >= y"([ t, 1 ]) a n. It follows from (3.12) that

Sup {card{i<-m;yi>-t}-n f(t)}<-a.otl li<-p

From Lemma 2, there exist disjoint subsets (Hi)l_<___i._<__p of {1,...,m} such that
l=<i_-<p card Hi => rn a -p and such that

(3.18) for each <= p and for each 6 [0, ], card {j Hi y >= t} <= nf(t).

For -< _-< p, let M be a subset of Ki such that card Mi min {card Ki, card Hi}. Let
B U l<__i<_p Mi. For 1 _-< _-< p, since card K =< a, we have card (Ki\M) <- a -card Hi. So,

card (Ki\) <- ap card
i<=p ip

<-_ ap+ a m +p <- vii- m + a +p

Na+p+l,

since nllll-m-< 1 and p=[nllll/a]. So,

card B= card Mi (card K-card (Ki\Mi))>-m-2a-p-l>-m-7v/--m-.
i<=p i-<_-p

Since card Mi =< card Hi, there is a one-to-one map bi from Mi into Hi. Consider the
map b from B to {1,..., m} given by b(j)= bi(j) for j Mi. We define C= b(B).
We set z =/ for j A\B and zj =/ + y,) for j B. For j Mi, / =< v,.j)= ui. We have
for l<=i<-p,

card {j K, zg >- u,) <- card g a n ’)/i I1"
So, for -< ui, card {j Ki z _-__ t} -< nyi([0, 1 x ui, oe[). Now let > ui, j Ki, and

z>=t. Since z.>ui>=!i, we have jMi (otherwise zg =/). Moreover, z=l+y()>=t,
so y4)(j)>= t-lj >- t-ui. From (3.18), we have

So for any t,

card {j K; z >- t} -< card {l Hi y->- t- ui}

--<_ nyi([O, 1] x [t ui, [).

card {j 6 Ki z. ->_ t} ny([O, 1 x t/i, oo[).



148 W.-S. T. RHEE AND M. TALAGRAND

Since yi is supported by [ui, u-l] x R,

card {j 6 A; zj >- t} <_- Y nTi([0, 1 ui, oo[)

n’)//([l/i, 1,/i_1] u,, o0[).
i<-_p

Let r/i be the image of 3’ by the map (x, y)-+ (x + y), that is, for each i<=p

r/i([ t, oo[)= ’)/i({(x, y); (x + y)_--> t})

--> vi ([ ui, ui_, x ui, oo[ ).

nr/([t, oo[)--> n E r//([t, oo[)-->n E "/i([Ri, R,_i]X[t--ui, (30[)
ip i<-_p

>_- card {j A; zj => t}.

The proof is complete.
We finish the section with an obvious and well-known fact.
LEMMA 5. A collection yj)j<=, of items of sizes yj <- 0 < can be packed in at most

l +jm yj/(1-O) bins.

Proof In an optimal packing, at most (1 0) of each bin (except for the last one)
is wasted.

4. Proof of Theorem B. We have the decomposition of

I aoSo+ a’(v).
kgl

As was shown by the proof of Theorem A in [11], the natural interpretation is as
follows: ak is the proportion of items packed in bins that contain k elements, and Vk
is the distribution of sizes inside such bins. We need some distributions associated
with/,. For 1-> 1, consider the positive measure , such that

a/= 2 (ak/k) f 8Xk_,+l dVk(Xl,’’" ,Xk)
kl d Rk

so libel[ =YkI ak/k= ill, and aoS0+Y_>l hi. Since Xk-+I is the/th largest element
of (xl, , Xk), it is less than or .equal to 1/l, so h is supported by [0, 1/l]. The natural
interpretation is to say that (after normalization) At is the distribution of the/th largest
element in the bins that contain at least elements. For x Rk, k>-l, let Uk,(X)=
Ek_l+.li<=k Xi. We note that Uk, I(X)--<-- 1. Consider the following two positive measures"

Tl-- E (Oek/k) [- 8Uk,,(x) dVk(X,’’" ,Xk), and
k! dR

,,= (ak/k) [ 8,,.,(x) dye(x,,.",
kl+ d Rk

We note that r/, a,, IIn, II-/,, and I1,11- ,+,, and that r/, and , are supported by
[0, 1]. The natural interpretation of (respectively, ) is as follows. After normal-
ization, r is the distribution of __<. X in bins that contain elements X >-...->-Xk,
k -->_ (respectively, k >- + 1).

We also need the distribution 3’ on [0, 1]2 given by

Y’,= E (Oek/k) f 8,(x) dvk(Xl,’’’,Xk)
kl+l ,J Rk



OPTIMAL BIN PACKING WITH ITEMS OF RANDOM SIZES II 149

where v(x)= (Uk,(X), Xk-l). After normalization, Yl expresses the joint distribution of
(Uk.l(X), Xk-l) in bins that contain at least l+ items. Note that I1,11 ,/, Using the
fact that Uk.(X)+ Xk-I Uk.l/l(X), we have immediately the following lemma.

LEMMA 6. (a) The first marginal of y is l, the second is

(b) The image of yl under the map (x, y) x + y is
We now set q [v/-]. For each i, let f( t) hi([ t, 1]), for t>0. So, Yif(t)=

/x([t, 1]). For t>l/i,f(t)=O, so for t>=l/q, we have Y,<__qf(t)=lx([t, 1]). We note
also that f(0)--

We now prove Theorem B. Consider a sequence sl, , sn of items. Let Co =< n;
si < 1 / q}. Let C { =< n; s >- / q}. We have for each 1/q -< -< 1, card { C; si t} =<
n Y<__qf(t)+ W/. We now use Lemma 2 (on the interval [l/q, 1] instead of [0, 1]).
Then we find disjoint subsets (Ci)<_q of ( with Y=q card C => card -q- W/ such
that for each i-< q, for each 1/q =< =< 1, card {j Ci; sj >-_ t} <= nf(t). Now let C’=
t\ LI <_q Ci, so card C’<- q + W/. Since sj >-l!q for j , we get for each i<= q, for
each [0, 1 ],

(4.1) card {j Ci sj >- t} <= nf( t).

We note that if we set n [ntis], this implies card C _-< n. We first pack the elements
of C’. It can be done with card C’_-< q + W+ bins. To pack the elements of Co, Lemma
5 shows that we need at most 1 + (n/q)(1/(1 1/q)) bins. For n >_- 4, a simple computa-
tion shows that this number is less than or equal to 5x/-ff/2. If 1 _-< n-<_3, we need at
most n bins, and n _-< 3x/. Since 3x/ <-5x//2, we need at most 5x/-ff/2 bins for any n.

We now proceed to the main construction, the packing of the families (Cl)lqo
This is done in q steps. At step l, l_-< q we will pack the collection CI. After the /th

step is performed, we have two sets of bins. The first set Di of bins is "dead." No
elements will be added to these bins at further steps of the construction. The second
set of bins (called live bins) has a cardinality nl+l =[nfll+], so for convenience we
index it by {1,..., hi+l} and denote these bins by B1,"’ ", Bn,+,. These bins already
contain items. If L is the sum of the sizes of the items contained in bin Bi (i.e., level
occupancy), we have the following condition (that allows us to continue the induction):

(4.2) for each in [0, 1 ], card {i -<_ nt+l L >_- t} _-< net([ t, 1 ]).

Before we start the construction, we have no dead bins and a set of nl empty live
bins. To pack C1, we put each item in a different bin. Since 71 A, r/l([t, 1])=f(t),
(4.1) implies

for each in [0, 1], card {i -<_ nl L, >= t} <= nrll([t, 1]).

We note that r/l([t, 1])=< l([t, 1])+ al. We use Lemma 2 (with p= 1) to find a subset
E1 of {1, , nl} with card E1 >= nl- nal- 1 such that

(4.3) foreachtin[0,1], card{iE1,L>-_t}<=nl([t, 1]).

The bins of index which are in {1,..., nl}\E become "dead," so our collection D1
of dead bins has now at most hal + elements. From (4.3), since 1([0, 1])=/32, we
have card E1 =< n2 [nfl2]. By adding n2-card E bins to our collection of live bins,
we can suppose that it has now n2 elements and that (4.2) holds with 1.

We suppose now that step has been completed where < q. So, the collections
Cl,. C are already packed and we pack Ct+l. We have hi/ live bins B,. ., Bn,+,
such that if L is the level of bin occupancy of B, (4.2) holds. Let us enumerate the
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items of C1+ as Y1," ", Yr. From (4.1) we have

(4.4) for each in [0, 1], card {j _-< r; Y -> t} _-< nf+(t).

When we take =0, this shows r-<[nf/l(0)] nt/l. By adding nt+-r items of size
zero to Y,..., Yr, we can assume that r= nl/ and that (4.4) still holds.

If nl/ -< 4(I + 1), we can pack the nl/ items into four new bins, since they are of
size at most 1/(l+ 1). These bins become dead. (Each of the collections Ci, i=> l+ 1,
can also be packed in four bins.) If (1 + 1)4-< nl/l, we can use Lemma 4 with y 71,

m--nt+l and k= l+ 1; we note that 7’=/and y"=A/+l, so (3.11) and (3.12) follow
from (4.2) and (4.4), respectively. So, we can find three subsets A, B, and C of
{1,’",nt+l} such that B_A with cardA>-nl+-v/nt+l/(l+l); card C=cardB_->

nl/l- 7v/n//(1 + 1), a one-to-one map th from B to C such that if we set Zi L for
A\B and Z L + Y6(i) for e B, then for each >= 0,

(4.5) card {i A; Zi >= t} <= nrtl/([t, [)= nrtl+([t, 1]).

If i A, the bin B becomes dead. That creates at most v/nl/l/(l+ 1) new dead bins.
If A\B, the bin B stays alive but we add no new element to it. If B, we put
into B, and the bin B stays alive. At this point, the bins B, for in A, are alive, and
their level occupancy satisfies (4.5). We have packed all the (Y)__<n,+, except for j C.
This is at most 7x/nl/(l+ 1) elements. Since these elements are of sizes -<1/(/+ 1), we
can pack them into 7x/nl//(l+ 1)+ 1 empty bins. These bins become dead. We now
note that

r/l+([t, 1])-< /+([t, 1])+ce,+l/(l+ 1).

Using (4.5) and Lemma 2 (with p=l) we can find H_A, with card(A\H)-<

nal+/(l + 1)] + 1 such that

(4.6) for each tin[0, 1], card {i H; Z > t} <= nl+l([ t, 1]).

The bins of A\H become dead. Taking into account the case ni/<-4(l+ 1), at
this step, we have created at most [nal+/(l+ 1)]+4+8v/nl+/(l+ 1) dead bins. From
(4.6), we have card H_-<[nfl/2] nl+2. The bins Bi, i6 H stay alive, and we add to
this collection n//2- card H new empty bins. This gives us a collection of nl/2 live bins
that we relabel B,..., Bn,+2. Obviously, their occupancy level that we call Li again
satisfies the following:

for each in [0, 1], card {i<_- nt+2; L >-- t} <= nl+([t, 1]).

This completes the induction. After the q steps are completed, we have created at most, nab 2 8nx//i+4q
liq

dead bins. From (4.2), our collection of live bins has at most nfl+ bins; since n <-nfl
and flq+ ,i>q ai/ i, we have succeeded in using n i>= ai/ + 8x/-ff(=i<__q x/i/ i) + 4q
bins to pack C,..., C. To pack the whole family {s,..., s,}, we thus have used
at most

i.-->_l q

bins. l-1



OPTIMAL BIN PACKING WITH ITEMS OF RANDOM SIZES II 151

Acknowledgments. The authors thank the referees for their careful reading and
helpful suggestions.

REFERENCES

E. G. COFFMAN, JR., M. R. GAREY, AND D. S. JOHNSON, Approximation algorithmsfor bin-packingm
an updated survey, in Algorithm Design for Computer System Design, G. Ausiello, M. Lucertini,
and P. Serafini, eds., Springer-Verlag, Berlin, New York, 1984, pp. 49-106.

[2] D. L. COHN, Measure Theory, Birkhiuser, Boston, 1980.
[3] M. R. GAREY AND D. J. JOHNSON, Computers and Intractability; A Guide to the Theory of NP-

Completeness, W. H. Freeman, San Francisco, 1979.
[4] R. M. KARP, Reducibility among combinatorial problems, in Complexity of Computers Computations,

R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-104.
[5] J. F. C. KINGMAN, Subadditive Processes, Lecture Notes in Mathematics 539, Springer-Verlag, Berlin,

New York, 1976, pp. 168-222.
[6] W. KNDEL, A bin-packing algorithm with complexity O(n log n) and performance in the stochastic

limit, in Proc. 10th Symposium on Mathematical Foundations in Computer Science, 1981; Strbske
Pleso, Czechoslovakia, Lecture Notes in Computer Science 118, Springer-Verlag, Berlin, New York,
1981, pp. 269-278.

[7] G. S. LUEKER, An average-case analysis of bin packing with uniformly distributed item sizes, Tech.
Report # 181, Department of Information and Computer Science, University of California, Irvine,
CA, 1982.

[8] G. LUEKER, Bin packing with items uniformly distributed over intervals [a, b], in Proc. 24th Annual
Symposium on Foundations of Computer Science, Tucson, AZ, 1983, pp. 289-297.

[9] K. R. PARTHASARATHY, Probability Measures on Metric Spaces, Academic Press, New York, 1967.
[10] P. REVESZ, The Laws of Large Numbers, Academic Press, New York, 1968.
[11] W. RHEE, Optimal bin-packing with items of random sizes, Math. Oper. Res., 13 (1988), pp. 140-151.
[12] W. RHEE AND M. TALAGRAND, Martingale inequalities and NP-complete problems, Math. Oper. Res.,

12 (1987), pp. 177-181.
[13] W. RUDIN, Functional Analysis, McGraw-Hill, New York, 1973.



SIAM J. COMPL1T.
Voi. 18, No. 1, pp. 152-165, February 1989

1989 Society for Industrial and Applied Mathematics
010

MINIMAL THRESHOLD SEPARATORS AND MEMORY
REQUIREMENTS FOR SYNCHRONIZATION*

EDWARD T. ORDMANt

Abstract. Suppose that in a system of asynchronous parallel processes, certain pairs of processes
mutually exclude one another (must not be in their critical sections simultaneously). This situation is modeled
by a graph in which each process is represented by a vertex and each mutually excluding pair is represented
by an edge. Henderson and Zalcstein have observed that if this graph is a threshold graph, then mutual
exclusion can be managed by simple entrance and exit protocols using PV-chunk operations on a single
shared variable whose possible values range from zero to t, the minimal threshold separator number of the
graph. A new expression is given for this separator ofa threshold graph in terms of the normal decomposition
of the threshold graph given by Zalcstein and Henderson. It is shown that + values would be needed in
the shared variable even if the mutual exclusion were being managed by the Fischer-Lynch test-and-set
operator, which is considerably less restrictive than PV-chunk.

Key words, mutual exclusion, threshold graphs, synchronization primitives, test-and-set, PV-chunk
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1. introduction. Concurrent processing by several asynchronous processes pre-
sents control problems that have been widely studied [1], [2], [4]-[6], [9], [11], [14].
it may be, for instance, that due to a need to access shared resources, such as a printer
or shared data, certain events must be prevented from happening simultaneously in
two (or more) processes. One approach is to have a designated section of code in each
process identified as a critical section and to have the processes execute a joint algorithm
that controls access to the critical sections. This algorithm is typically represented
within each process by two protocols" the entry protocol, which is a section of code
executed by a process before it is admitted to its critical section (and in which it may
loop for some time, if the shared resource is in use by other processes); and the exit
protocol, which is executed when the process leaves its critical section and makes the
shared resource available to other processes. See [2] for a more precise discussion.

The processes may communicate by sending and receiving messages or by manipu-
lation of one or more shared variables. A large number of ways of accessing shared
variables have been studied, such as elementary read and write operations [5], P and
V operations [6], PV-chunk operations [9], and test-and-set operations [2], [14]. In
this paper we will implicitly be using the model of critical sections and of test-and-set
operations laid out in [2], which provided one of the principal motivations for this
paper. One of our goals is to compare the PV-chunk and test-and-set operations in a
certain context; we describe them further in 4.

Many of the papers cited above study a form of the mutual exclusion problem in
which only one process can be in a critical section at one time. In fact, there are
problems of interest in which more than one process can be in a critical section at a
time. An early example of such a problem in the literature is called the dining
philosophers problem (see 10] and some earlier references cited therein); a very practical
problem of this type is the readers-and-writers problem (see [17] and the references
therein) in which several processes may be allowed to read a data item simultaneously,
but a process may change the item (write it) only at a time when no other process is

* Received by the editors January 30, 1985; accepted for publication (in revised form) April 12, 1988.
This work was partially supported by National Science Foundation grant DCR-8503922.

t Department of Mathematical Sciences, Memphis State University, Memphis,’Tennessee 38152.

152



MEMORY REQUIREMENTS FOR SYNCHRONIZATION 153

accessing it. A set of processes, some of which may not enter critical sections simul-
taneously, is sometimes called a generalized dining philosophers problem; one study
of such problems is given in [12]. A second principal motivation for this paper was
the hope that the sort of analysis done in [2] could be extended to generalized dining
philosophers problems. Only a small start is made on that here: we discuss memory
requirements for mutual exclusion (although not lockout prevention, starvation avoid-
ance, etc.) for a limited class of problems, which do include some forms of readers
and writers problems. We find that, for this very limited goal, PV-chunk operations
are as powerful as test-and-set operations, although they appear not to be as memory-
efficient in some other cases.

Some generalized dining philosophers problems correspond in a natural way to
graphs. Suppose each vertex of a graph represents a process, and two vertices are
adjacent (connected by an edge) if and only if the two corresponding processes cannot
be executing their critical sections simultaneously. In this way each finite undirected
graph without self-loops (we describe this more formally below) corresponds to a
generalized dining philosophers problem. On the other hand, not every generalized
dining philosophers problem corresponds to a graph. Consider four processes, each
of which requires two tape drives, in an environment where four tape drives are
available. Clearly any two processes can (if all goes well) obtain two drives each and
proceed, so the corresponding "graph" would have no edges. However, three processes
can never acquire enough tape drives (and enter their critical sections) at once, so a
hypergraph would be required to model this situation. For some further discussion of
this analogy see [9], [13]. We will be considering mutual exclusion in systems of
processes represented by a certain class of graphs, the threshold graphs. Graph theory
background is given in the next section.

2..Graph theory preliminaries. By a graph G (V, E) we mean a finite set of
vertices V together with a finite set of edges E, each of which is a different unordered
pair of distinct vertices: that is, a finite undirected graph without self-loops or parallel
edges. If a and b are vertices we say that they are adjacent if (a, b) (or equivalently
(b, a)) is an edge of G; we also say that this edge connects a and b.

Threshold graphs were introduced in [3] and have been studied extensively [9],
[11], [13], [15], [16]; we will rely very heavily on [9]. A graph G=(V, E) is a threshold
graph if there is an integer called the threshold (or sometimes the separator), and
with each vertex x in V is associated a nonnegative integer label, a(x) such that a
subset S of N is stable (no two nodes in it are connected by an edge in E) if and only
if the sum of the a(s) for all s in S is less than or equal to t. (We will call such a
labeling, including knowing t, a threshold labeling). A great many other character-
izations of threshold graphs are known (see, for example, [3], [9], [13]); some that
we need are recalled at the start of 4.

A graph is a threshold graph if and only if it has a thresholdlabeling. The labeling,
however, is not unique. In [16] Orlin has given an algorithm for determining the
minimal separator (and an associated labeling) that will work for a given threshold
graph. In 4 we use a slight modification of the normal form for a threshold graph
(implied in Corollary 1B, [3, p. 151] described in detail and named in [9]) to give a
more closed form for the minimal value of t, and to see that this minimal value of
is important in determining the minimum amount of shared memory to do mutual
exclusion.

In 5 we study a mutual exclusion problem (Example 5..2) for a generalized dining
philosophers problem that corresponds, in the sense described in 1, to a threshold
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graph. The connection between threshold graphs and PV-chunk operations has already
been discussed in [9]. We find that the minimal separator is a measure of the amount
of memory needed to enforce mutual exclusion (without lockout prevention) in a
system of processes represented by a threshold graph, using PV-chunk operations; we
further see that at least this much memory is required, even if test-and-set operations
are used instead. We see that test-and-set is, in cases other than threshold graphs, less
demanding of memory than PV-chunk. We also look at a simple application to
concurrent accesses of data bases.

3. The minimal separator of a threshold graph. We review some graph theory
terminology. If G V, E) is a graph and V’ is a subset of V, the subgraph of G induced
by V’ is the graph whose vertices are the vertices of V’ and whose edges are all edges
of E which connect points in V’. A graph is a clique if every two points in it are
adjacent; a subgraph of another graph G is a clique if it is a clique considered as a
graph by itself, and is a maximal clique in G if it is not contained in any larger
subgraph of G which is a clique. The clique with n vertices is denoted Kn.

The degree of a vertex is the number of vertices adjacent to it. We call a vertex
isolated if it has degree zero, and nonisolated otherwise. We will call a vertex dominating
(this is not a standard notation) if it is adjacent to every nonisolated vertex. By the
neighborhood N(x) of a vertex x we mean the set of vertices adjacent to x, together
with x itself.

By way of making these terms clearer, we restate a well-known fact [3] about
threshold graphs: no threshold graph may have as an induced subgraph any of the
graphs shown in Fig. 1. These are the path on four vertices, P4; the cycle on four
vertices, C4; and the union of two disjoint edges, 2K2 (note that a single edge is a
clique on two points, K2).

FIG. l. Graphs C4, P4, and 2K2.

To prove that none of these graphs can be an induced subgraph of a threshold
graph G, suppose that one of them is and label the four vertices w, x, y, and z. Suppose
also that (w, z) and (x, y) are edges, but that (w, y) and (x, z) are not (e.g., label the
vertices in each graph in Fig. 1 clockwise from upper left.) We.will consider the
labelings from a threshold labeling of G. Clearly, a(w)+ a(z)> and a(x)+ a(y)> t,
since these pairs of vertices induce edges; clearly, a(w)+ a(y) <- and a(x)+ a(z) <- t,
since these pairs do not. Adding the two pairs of inequalities produces a contradiction.

We also recall that an induced subgraph of a threshold graph must be a threshold
graph; one simply restricts the threshold labeling to the subset of vertices and retains
the same separator t.

Given a set of vertices V there may be various labelings a(x) of the vertices and
various separators associated with them that lead to the same threshold graph G.
For a given G, we want to determine the smallest possible t. This has been done in
[16], which gives an algorithm to compute the smallest possible t; we approach the
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problem slightly differently to get in a more explicit form we can apply later in the
paper. To this end, we need to recall and modify slightly the definition of "normal
form" of a threshold graph given in [9].

LEMMA 3.1. Let G be a threshold graph with an associated threshold labeling. Let
x be a vertex with a label as large as any other label in G. Then x is a dominating vertex

of.
Proof Let z be any nonisolated node. Then it is connected to some node y and

a(z)+a(y)> t. But a(x)>-a(y), so a(z)+a(x)> and z is adjacent to x.
In [3] threshold graphs are characterized by the fact that the three graphs of Fig.

1 cannot occur as induced subgraphs. We will need an additional characterization.
THEOREM 3.2. For a graph G, the following are equivalent:
(a) G is a threshold graph.
(b) Every induced subgraph of G (including G itself) has a dominating node.
(c) G does not have as an induced subgraph the graphs P4, 2K2, or C4.
Proof Items (a) and (c) have been proved to be equivalent in [3]. Item (a) implies

(b) by Lemma 3.1, since every induced subgraph of a threshold graph is threshold.
Item (b) implies (c), since none of P4, 2K2, or C4 has a dominating vertex. [3

The fact that (b) implies (a) is already implicit in [3]. That paper also contains
the following Corollary lB. A graph G (V, E) is threshold if and only if there is a
partition of V into disjoint sets A, B, and an ordering a, a2,..., ak of A such that
no two vertices in A are adjacent; every two vertices in B are adjacent; and if j =< k,
then N(a)_ N(ak). This fact is developed considerably in [9]; we will expand on it
further here.

.Given a threshold graph, we construct the normal form as follows. Choose all
isolated vertices and put them in class Do; take all dominating vertices and put them
in class C. The subgraph of G induced by the remaining vertices we call G. For
each consecutive subgraph Gk, place the isolated vertices in Dk, and the dominating
vertices in Ck+. Continue until G,+ is empty.

Note the following:
(a) No vertex in any Dk is connected to any other vertex ofany D./(including k =j).
(b) Every vertex of every Ck is connected to every vertex of every C (including

k =j).
(c) Every vertex of D is connected to every vertex of Cj for j-<_ k, but to no other

vertices.
We may need to rearrange the last sets slightly to guarantee that both C, and Dn

are nonempty and that both Cn+ and D,+ are empty. We distinguish, temporarily,
two cases. If C,+ is empty, D, is nonempty (in fact it has at least two vertices, since
if there were only one it would have been in C) and C, is nonempty (else the
construction would have stopped sooner). In the second case, C,+ is nonempty. Then
C,+ must contain at least two vertices; otherwise the one vertex would have been in
D,. In this case we arbitrarily choose one vertex of C+, move it to D,+ (previously
empty), and increase n by one. Thus we also have C and D both nonempty, and
proceed with further analysis.

It is easy to see that all Ck and Dk are nonempty for 1 --< k-< n, since before each
removal there are dominating vertices by Theorem 3.2 and their removal must leave
some vertices isolated or else each dominating vertex of the newly reduced graph
would have been already dominating prior to the reduction.

We call the resulting decomposition of G into (D0, D,..., D,, C, C,. ., C,)
the normal form of G. It is unique except perhaps for the choice of one node when
we combined the two cases above; we tolerate that since it simplifies calculations below.
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In Fig. 2 we illustrate the normal form, and the labeling that will be introduced
below. On the left we show the graph G; the right shows the same graph with the
vertex in C labeled 11, that in C2 labeled 8, those in D labeled 1, and those in D2
labeled 4. For this graph and labeling, 11. To convince ourselves that lower labels
will not work, note that (once r, s, and u are labeled and the separator is t) vertex
x must have label at most t-3 since x, r, s, u induce no edges; now x and w induce
an edge so w and similarly z must have label at least 4. Since r, s, u, z, and w induce
no edges, must be at least 11. The reader may find it helpful to delete vertex w from
G and find the normal form and a labeling.

THEOREM 3.3. Let G be a threshold graph and (Do, D1, ", D,, C, C2, ", C,)
its normal form. Let dk denote the number of vertices in Dk. Then the vertices can be
labeled so as to give a threshold labeling with separator satisfying

t+l=l-i(dk+l), k=l,...,n.

Proof Our labeling method is the same as that of [9] and [16]. For simplicity of
formulas we define gi I-I (d. + 1) 1, where the product is forj 1, , i; by definition
go=0. Assign each element of Do the label 0 (they lie on no edges). Assign each
element of D the label 1; the total of all the labels assigned so far is d, which is
equal to g. Assign each element of O2 the label d + 1; the total of the labels in O2 is
d:(d + 1) and the grand total so far is g. We show by induction that when we assign
each element of Dk the label gk- + 1, the labels in Dk will total dk(gk- + 1) and the
sum of the labels to this point will be gk. The induction step is to observe that
gk + dk+(gk + 1) gk+l, that is,

I] (d.i+ l)- l + dk+, l-I (d/+1) (j= 1,... ,k)

(d+, + 1) H (dj + 1)- (j= 1,’’ .,k)

=[I (d+ 1)- 1, (j= 1,..., k+l)

as desired.
Now we let gn, and for each k we assign each element of Ck the label gn -gk-1.

We must show that this gives a threhold labeling of G. Note the following:
(a) No two vertices of any two Ok are connected, since the labels in all the Ok

total g.
(b) Any two vertices in any Ck are connected, since each such point has label at

least g,- g,_. This must exceed half of g, since gn (gn- + 1)(dn + 1)-1 and d, is
at least 1.

11 8w x

x

z w
4

z 4

Graph G Graph G with threshold labelling

FIG. 2.
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(c) To test if a vertex in Dk is connected to a vertex in C, note that their labels
total (gk-1 d-1)+(gn-g-i). This exceeds exactly if k exceeds j, as required.

This completes the proof of Theorem 2.3.
It can be shown that this is the same labeling as that in [16]. We could then rely

on the proof there that the resulting is minimal. However, a distinctly different proof
of minimality will follow from the results of 4 below.

4. Process synchronization. Now we turn to the problem of managing asychronous
processes. We are motivated primarily by the considerations in [9] and in [2]; the
reader is referred to [2] for a more complete background and terminology. Suppose
we have a number of processes, some of which conflict with each other (e.g., they
demand access to the same resources that cannot be shared simultaneously by all
processes wanting them). We connect this to the considerations above by supposing
that each vertex of the graph G represents a process, and that two processes conflict
precisely if there is an edge connecting those vertices.

For example, suppose there is a record in a file consisting of two fields, a name
(the key) and an address. Suppose there are five transactions in the system, each
wanting to locate the same record, and then carry out the following tasks:

Process A: Read the name (that is, locate the record and confirm that it exists, no
further use of it).

Processes B and C: Read the address.
Process D: Change the address in the existing record.
Process E: Change the name (key) and address.

This is a slight generalization of a conventional readers-and-writers problem.
Processes A, B, and C are "readers" and all can access the record at once and still
produce consistent results. Process D can proceed simultaneously with Process A but
not with B or C; Process E cannot proceed at the same time as any of the others.
Drawing a graph with vertices A through E and drawing the appropriate edges yields
the graph of Fig. 3(a); this graph is, in fact, a threshold graph, with a threshold labeling
as shown in Fig. 3(b). This example is further expanded in 5.

E D

A B C

5 4

2 2

FIG. 3(a) FIG. 3(b)

Suppose we are given a system of asynchronous processes and a set of pairs of
these processes such that two processes in a pair cannot proceed simultaneously; i.e.,
members of each pair mutually exclude each other in the sense discussed in 1 above
and defined carefully in [2]. Each process has a piece of code called a "critical section";
we must provide entry and exit protocols for all processes in the system such that
execution of these protocols will guarantee that two processes in a given pair will
never be in their critical sections simultaneously. The graph G, with one vertex
corresponding to each process and one edge for each mutually excluded pair of
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processes, will be called the exclusion graph of the system. (For other work with this
graph, see [15].)

Our treatment is much weaker than that in [2] in that we do not consider lockout
prevention or any sort of fairness condition (e.g., bounded waiting). However, the
treatment in [2] assumes that only one process out of the N processes in the system
can be in its critical section at once: that is, the exclusion graph is a clique. Here we
deal with an exclusion graph that is a threshold graph, and any set of processes
corresponding to a stable set of vertices in the graph can be in their critical sections
at the same time.

For communication between the processes, we will assume that there are one or
more shared variables V1,’ ", Vk, each of which can be accessed by more than one
process, perhaps by all the processes. One thing we are seeking is bounds on the
storage necessary for these variables. We denote the size of the set of values assumable
by Vk by ]Vk[; thus if Vk can assume values from 0 to N, ]Vkl-" N + 1.

The processes access these shared variables only by specified operations called
synchronization primitives (see [1], [2], [5], [6], [9], [11], [14] for some guides to this
rather extensive literature). In this paper we will have occasion to use two distinct
synchronization primitives: PV-chunk [9] and test-and-set [2], [14].

The syntax of the test-and-set operator, given in more detail in [2], may be
summarized as follows: a test-and-set operator allows a process to test a shared variable
until it reaches a fixed (set of) values and then perform certain actions, including
resetting the shared variable to a value, which may be determined by the process using
its knowledge of the shared variable value. The statement may be written as follows:

test V until V x or x or. or x.
then V := function (V).

If V is not one of the indicated values then the statement is reexecuted from the
beginning (busy waiting). As soon as V assumes one of the indicated values, func-
tion (V) is computed, V is set to the new value, and control passes to the next statement.
(The computation and substitution is an atomic action; that is, if several processes are
attempting to access V, only one at a time will actually change the value of V.) Note
that V:= function (V) is an acceptable form of the test-and-set statement, since by
implication it tests V first and sees that it has any one of its finitely many possible
values. In each case, the function in function (V) is an arbitrary programmable function;
it may take significant computation time or space. It is this feature that makes the
general test-and-set operator both extremely powerful and difficult to implement
efficiently.

A PV-chunk operator [9] can be implemented as a special case of a test-and-set
operator but, being much more restricted, is usually written rather differently. Essen-
tially, it restricts the test to testing for a certain one-sided inequality and the function
to incrementing or decrementing by a (freely user-chosen) constant. The syntax we
will use is the following:

Test V until V-> c then V:= V-c.
Note that c can vary from one occurrence of this statement to another. V is

initialized to some positive integer at the start and will never become negative; it can
be increased by any process by executing the statement with Cl negative, in which case
the test condition is met automatically.

Variations of both test-and-set and PV-chunk can be specified in which a "failure"
message is returned if the condition is not met, instead of busy waiting until it is met.
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An operation very much like PV-chunk is available as a system call "SEMOP"
in UNIX System V. The operation there increments or decrements a variable (or even
several variables) by varying amounts as an atomic operation, provided that the change
does not carry the variable(s) below 0 or above 25-1. Thus, there is real motivation
for finding methods that coordinate large time-shared or networked systems using
PV-chunk which require a limited range for the shared variable(s). In addition,
hardware experimenters, such as those designing the New York University Ultra-
computer, have been experimenting with parallel hardware designed to perform N
changes on a variable in less than time proportional to N (e.g., time proportional to
log N). The operations proposed seem not inconsistent in complexity with PV-chunk,
but are surely less complex than the general test-and-set. Test-and-set requires that an
individual process receive a value from the shared memory, compute, and return a
value to shared memory; PV-chunk allows a value to be sent to special hardware
serving the shared memory, which can do the calculation internally and needs to pass
very little back to the calling process (in the model given here, the calling process
sleeps until V is large enough, then V is decremented and the process awakens; in an
alternative model, a single-bit message "fails" or "succeeds" and may be returned to
the caller by the special hardware.

A principal result of[9] is that given a collection of processes and conflicts forming
a threshold graph, conflict avoidance (mutual exclusion) can be achieved by using
PV-chunk operations on a single shared variable with range 0 to t; each process can
enter its critical section if and only if it can decrement V by an amount given by the
label of its node in the graph. Further, the threshold graphs are precisely the graphs
for which PV-chunk operations on a single shared variable will achieve conflict
avoidance.

The results in [2] assume that all processes in the system are deterministic and
impose a technical requirement "No Memory": each process knows nothing about the
state of the system other than what is in the shared variable(s). That is, each time a
process enters or leaves its critical section when the shared variable(s) have a particular
value, it makes the same change in the shared variable(s). We do require this in the
proof of Theorem 4.2 below.

Our main result in this section is that managing mutual exclusion in a system
where the exclusion graph is a threshold graph, both test-and-set and PV-chunk
operations require the same amount of shared memory and that is the amount deter-
mined by Theorem 3.3.

THEOREM 4.1 [9]. Let a system ofprocesses have the exclusion graph G= V, E),
which is a threshold graph with separator t. Then there are entry and exit protocols that
achieve the desired mutual exclusion by using PV-chunk operations to access a single
shared variable whose range includes the integers 0 to t.

Proof [9]. It suffices to start the shared variable V with the value t. The entry
protocol for a process whose corresponding vertex has label a is simply the following:

Test V until V-< a then

V:= V-a

and the exit protocol is simply

V:= V+ a

(as noted, the prefix "Test V until V =>-a" would add nothing). It is easy to see that
a collection of processes can be in their critical sections at the same time if and only
if their corresponding vertex labels total no more than t, i.e., if and only if there are
no edges between their corresponding vertices.
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Clearly, the same theorem holds if the term PV-chunk is replaced by test-and-set,
since PV-chunk is a special case of test-and-set. The main result of this section is that
the range 0 to in Theorem 4.1 is the best possible, even if we use several shared
variables and the more general test-and-set operations.

THEOREM 4.2. Let a system ofprocesses have the exclusion graph G V, E ), which
is a threshold graph with separator as above. If there is a collection of entry and exit

protocols that enforces the mutual exclusions in G, using test-and-set on a collection of
shared variables V1,"’, Vk with Vjl--vj, then the number of different sets of values
assumable by the Vj (and hence the product of the vj) must be at least + 1.

Proof. Suppose our synchronizing method stores adequate information in V
through Vk SO that a process can determine from them if it can enter its critical section,
and suppose the set of V assume no more than values. We will obtain a contradiction.

Put G in normal form as in 3, so that

+ l I-I (dk + l), (k=l,...,n).

We will select t+ 1 distinct collections Rp of vertices from the union of the
Dk, k 1,..., n, and arrange them in order such that we have the following:

(a) Any two Rp and Rq differ, but their intersections with each Ok have one
containing or equal to the other.

(b) Rp and Rp+I differ by only one vertex.
We do this by a process suggestive of Gray codes for numbers of mixed base. First,
order each Dk. For each sequence of integers (al, a2, ’, an) with 0 =< ak < dk, select
a set consisting of the first ak elements of Dk for each k. This yields rI (dk + 1) / 1
sets meeting the conditions of (a). We must now order them to obey condition (b).
We do this by starting with the set determined by (0,. , 0), then going to (1, 0,. , 0),
(2, 0,. ., 0),. ., (d, 0,. ., 0). On "filling" each position change the next position
by one and then step "down" through the previous cases: (dl, 1,..,, 0), (d-
1, 1, 0,...,0),..., (1, 1, 0,...,0), (0, 1,0,...,0), and then (0,2, 0,..., 0) and so
on. The resulting list includes all + 1 sets and consecutive sets differ in just one element.

Start the system G with all processes outside their critical sections. Clearly, the
first element of D can enter its critical section; let it do so. Now go through
the sequence of starts and stops (entries and exits of critical sections) dictated by the
sequence Rp above: each element of D starts (enters its critical section), the first
element of D2 starts, each element of D stops (exits its critical section), and so on.
Each step involves one element of a Di entering or exiting its critical section. At each
stage some change may be made in one or more of the Vk. There are t+ 1 stages
(starting with no processes in critical sections and going through all the Rp). By
hypothesis, the collection of Vk can assume only distinct values, so there are two
stages, Rp and Rq, of the above process when the Vk are in identical states. We must
now get from this to a contradiction.

Suppose the set Rp of processes in critical sections is represented by the n-tuple
(a, , an) and the set Rq by (b, , bn). These must differ; without loss ofgenerality
suppose bj < aj and bi ai for i>j. Now, one at a time, stop each process (if any)
represented by bj+ through bn and the corresponding process in aj/l through an. Note
that in each case we make the same process in each group leave its critical section,
and the V have the same values afterward. Next we stop elements of Dj, one at a
time, in both sets of processes (the same element in each) and do this bj times so that
one set has no elements of Dj left in its critical section and the other has one or more
still in critical sections; the values of the V are still the same. But now we have our
contradiction; i.e., a process from Cj can enter its critical section with the remnant of
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the set Rq (where now no process in D or any later Dk is in its critical section) but
cannot do so with the remnant of Rp, despite the fact that the Vk values are identical
and no process in Ck can tell one situation from the other. This completes the proof
of Theorem 4.2. l-1

Since this shows that + 1 values of shared variables are needed for a protocol
using the test-and-set operation, it follows that at least + 1 values are needed using
the more restrictive operation PV-chunk. From the fact that 1-I (dk + 1) values are needed
we also obtain Corollary 4.3.

COROLLARY 4.3. The value of found in Theorem 3.3 is the smallest value of
allowing G to be labeled as a threshold graph.

Proof If the graph had a threshold labeling with a separator s< t, then by
Theorem 4.1, mutual exclusion could be managed with a shared variable with s+ 1
distinct values. [3

This is the minimality result of Orlin 16], proved in a quite different fashion. We
also obtain a proof of a theorem on graph coverings [15].

COROLLARY 4,4. Let G be a threshold graph and let G, G2, ", Gn be subgraphs,
which are threshold graphs and whose union covers G (i.e., includes all vertices and edges
of G). Let G have separator and let each Gk have separator tk. Then I] tk + 1) >= + 1.

Proofi The system of processes whose exclusion graph is G can have mutual
exclusion enforced by enforcing it within each subgraph Gk. Each process will, in its
entry protocol, attempt to decrement shared variables V through Vn by the amount
of its associated label in the respective Gk. While this approach is definitely lockout-
and deadlock-prone, it does enforce the needed exclusions since every edge of G is
in a Gk; hence the shared variables are capable of at least + 1 distinct values. (The
tendency to deadlock can be overcome by having the set of PV-chunk operations be
a single atomic action, as is the case in the UNIX System V implementation.)

We have now seen that for threshold graphs, I-I (dk + 1) + 1 is a necessary and
sufficient measure of the shared values needed to enforce mutual exclusion, both for
PV-chunk and for test-and-set.

In the special case of a clique (all nodes connected), we have a threshold graph
with (after adjustment for our normal form) one element in D, the rest in C1, 1,
and a shared variable with two values is necessary and sufficient. This special case is
Theorems 3.1 and 4.4 of [2].

5. Some examples. Section 4 shows that for processes whose conflict graph is a
threshold graph, PV-chunk and test-and-set operations require similar storage to avoid
conflicts. In Example 5.1 we show that when the conflict graph is not a threshold
graph, test-and-set may require less storage.

Example 5.1. We consider a system S consisting of four processes A, B, C, and
D (Fig. 4), such that each of A and C conflict with each of B and D. (This is the case
n =4 of the famous dining philosophers problem. See, for instance, [10].) We can
avoid conflict using test-and-set with one shared variable, values 0 through 3; to avoid

A B

C D
FIG. 4
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conflict using PV-chunk requires at least two shared variables and four bits to store
the shared variables.

We first give a solution for test-and-set. Let A and C each incorporate the entry
protocol:

test Vuntil V=0orl then V:=2. V+I

(i.e., change 0 to 1 or change to 3) and the following exit protocol:

V:=(V-1)/2.

Let B and D have the following entry protocol:

test Vuntil V=0or2then V:=V/2+2

(i.e., change 0 to 2 or change 2 to 3) and the following exit protocol"

V:= 2. (V-2).

The effect is that V is 0 if no process is in its critical section (or entry or exit
protocols), 1 if A or C is in its critical section, 2 if B or D is, and 3 if both A and C
or both B and D are in critical sections. This shows that four possible shared values
(one variable, occupying two bits of storage) enable test-and-set to enforce mutual
exclusion in this system.

It is harder to show how many values are needed to control this system using
PV-chunk. We use a method developed more fully in [15]. Suppose there are shared
variables V1,’", Vn which control the system S. Each of A, B, C, and D, while
executing its entry protocol to enter its critical section, changes one or more of
V1,’", V,; it fails to enter its critical section if some Vk cannot be sufficiently
decremented at this time. Denote by ak through dk the decrements that A through D,
respectively, apply to each Vk and by tk the maximum permissible value of each Vk.
NOW for each k, the labels ak through dk and maximum tk induce a graph on the four
vertices (possibly with no edges) showing the processes prevented from running at
once by that Vk; in [9] it has been shown that each graph induced in this fashion is
a threshold graph. The square denoting the system S is the union of these graphs.
Since the square is not itself a threshold graph, there must be at least two Vk’S:
PV-chunk operations cannot control S with just one shared variable.

Here is a simple solution using two shared variables, both initialized to 2 before
the processes begin execution. Note that it does enforce the necessary mutual exclusion,
is deadlock-free, but is not lockout-free and does not have bounded waiting.

A’s Entry Protocol:
A’s Exit Protocol:
B’s Entry Protocol:

B’s Exit Protocol:

C’s Entry Protocol:
C’s Exit Protocol:
D’s Protocols are the

Test V1 until V1>--2 then V1 := Vi-2;
V:= Vl+2;
Test V1 until V1 --> 1 then V1 := V- 1;
Test V2 until V2 > then V2 := V2-1;
Vl: VI+I;
V2: Vz+ 1;
Test V2 until V2 => 2 then V2 := V2- 2;
V:= V+2;
same as B’s.

In fact, the square can be a union of threshold graphs in very few ways: the
threshold graphs that are subgraphs of the square are (i) the single edge, which we
can take as having and each vertex labeled 1; and (ii) the union of two adjoining
edges, which we can take as having the central vertex labeled 2, each end vertex 1,
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and 2. Thus the minimal sets of V associated with the square, up to some reasonable
notion of equivalence, must be one of (i) V1 and V2, each with values 0 to 2, each
controlling two edges; (ii) V to V4, each with values 0 to 1, each controlling one edge;
or (iii) one variable with values 0 to 2, controlling two edges, and two variables with
values 0 to 1, each controlling one edge. Since a variable with values 0 through 2
requires two bits to store the shared variables, this means at least two shared variables
and at least four bits of shared memory are needed to control this system. This completes
Example 5.1. Some arguments very similar in philosophy to those in the latter part of
this example have been given in [7] and [8].

Example 5.2. Here we illustrate a natural way in which threshold graphs arise in
accessing data base management systems. The reader-writer problem is a well-known
problem concerning synchronization of accesses to a data base; I was motivated to
think about it in this context by 17], and other references may be found therein. This
example is an expansion on this problem in the spirit of the example at the start of

4. In the standard problem, there are in a system several transactions wishing to
access the same record: some (readers) want to read data from it without changing it;
others (writers) want to change the data (we oversimplify here by not distinguishing
update or read-and-write transactions from simple writes). Any number of readers can
proceed at once; a writer cannot proceed unless it has exclusive use of the record (a
lock on the record), since simultaneous writes might produce nonsense and a read
overlapped with a write might return, e.g., a partially changed, not internally consistent,
record.

Suppose a database record contains keys with several parts. For example, the
fields in a record might be

i: OFFICE# 2: SALESN# 3: ACCOUNT## 4: AOUNT

where the first three are keys, that is, jointly they uniquely identify the customer’s
record so we can find the amount due from the customer; this amount is stored in
field 4, "AMOUNT." It is possible that one or more of the keys, as well as the amount
due, might change because of, e.g., the customer moving to a region served by a
different office, the salesman being replaced, or two customer firms merging. Thus, for
each of the four fields, we can image a transaction to read the record as far as that
field, or to write the record from that field onward.

For example, a transaction of type 2R (read fields to 2) would answer a query of
the form "Does salesman 3057 serve any accounts at office 1037" and a 3W (write
from field 3) would serve a transaction of the form "Open account number 566 for
salesman 3057 in office 103." Note that, in fact, these two transactions could proceed
at the same time, if it is understood that the second will fail if there is no salesman
3057 in office 103. The second transaction could not proceed simultaneously with a
2W ("delete all records for salesman 3057 in office 103") or a 4R ("what is the balance
due from account 566, office 103, salesman 3057?").

Interestingly, a set of transactions consisting of transactions of types
1R, 1W,. ., 4R, 4W (and similarly for longer sets of multiple keys) has an exclusion
graph that is a threshold graph. The transactions of type 1W,..., 4W correspond to
vertices in the sets C1,. ., C4, respectively, and those of type 1R,. ., 4R correspond
to vertices in the sets D,. , D4 in the normal form of a threshold graph. (All writes
conflict with each other; no reads conflict with each other; jR conflicts with kW ifj _>- k.)

Thus, if we have an upper bound on the number of transactions of each type
which might appear in the system at one time, we could manage record locking
including the indicated partial record lockingwith PV-chunk operations on a single
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shared variable. If we knew there would be at most four operations of each of the
"read" types, the labels of the corresponding vertices would be 1 for 1R, 5 for 2R, 25
for 3R, 125 for 4R, and the separator would be t=624. Mutual exclusion could be
managed using a single shared variable capable of assuming 625 distinct values.

Interestingly, changing the number of writers--the transactions that appear to
require the most extensive locksudoes not change these numbers; to reduce we must
reduce the number of readers, not the number of writers. This is consistent in a broad
sense with the observations in [17] where the added memory to avoid delays is
determined by the number of potential readers (there, only one writer is considered).
By contrast, changing reader transactions from one subtype to another does change
t: if there were at most two transactions of types 1R and 2R, and at most six each of
types 3R and 4R, then we would have

t= (2+ 1)(2+ 1)(6+ 1)(6+ 1)-1=440.

6. Conclusions and additional problems. Earlier papers such as [2] present a careful
analysis of the amount of shared memory required to solve the problem of mutual
exclusion when all processes exclude all others. In real applications, it may be possible
for some sets of processes, but not others, to enter critical sections simultaneously.
A major step in this direction appears in [12], which bounds the delays occurring in
the mutual exclusion algorithm by imposing a "locality" condition: particular processes
are constrained to share resources only with a limited number of other "nearby"
processes. It would be desirable to have efficient solutions, and bounds on possible
solutions, for other more general cases. This paper considers systems of asynchronous
parallel processes in which the desired mutual exclusions can be modeled by a threshold
graph. These differ strongly from the cases concentrated on in [12], since threshold
graphs always have a vertex that is adjacent to all other (nonisolated) vertices. In our
limited case, simple mutual exclusion (without lockout prevention or other desirable
features) can be managed by a single PV-chunk operation in the entry protocol
preceding the critical section in each process, using a single shared variable with range
from 0 to t, with denoting the minimal separator ofthe corresponding threshold graph.

Establishing this requires giving a new algorithm for the minimal separator
previously calculated by Orlin, and allowing the separator to be written as a product
formula in terms of the numbers of vertices in certain classes in the graph (this could
also be expressed in terms ofvertex degrees orthe size ofmaximal cliques; see also 15]).

For controlling mutual exclusion in this limited case, PV-chunk requires no more
shared memory than the Lynch-Fischer test-and-set operation. An example suggests
that for more general graphs, test-and-set will manage exclusion with fewer shared
variables and fewer bits of shared variables than PV-chunk. A final example suggests
that PV-chunk may, in fact, provide an efficient tool for certain kinds of partial-record
locking and certain kinds of reader-writer management problems in data base systems.

This leaves a great many open problems. What are efficient ways of managing
mutual exclusion situations modeled by more complex graphs than threshold graphs,
or indeed, not modeled by graphs at all? (Surely the different form of graph models
provided in [12] carry different information than the models here.) Can we find
algorithms that incorporate lockout prevention or fairness as well as mutual exclusion,
while still using PV-chunk operations or other operations that seem easier to implement
in efficient hardware than the general test-and-set operation? Does test-and-set solve
these other problems with significantly less memory, or significantly faster algorithms,
than simpler synchronization primitives ? A referee suggests that in some sense Theorem
4.2 does not appear to depend on the synchronization primitive used. The number



MEMORY REQUIREMENTS FOR SYNCHRONIZATION 165

t+ 1 is in some sense a measure of the space needed to synchronize the processes
represented in the graph, without regard to exact method. Can this be formalized? In
Example 5.1, it appears that test-and-set needs less memory than PV-chunk; how can
this be measured more systematically? Finally, is it connected to Lipton’s concept of
using one primitive to "simulate" another [11]?

Acknowledgments. The author had numerous helpful discussions with Y. Zalcstein.
The referees suggested extensive revisions to improve clarity of the presentation; the
remaining awkwardness is due to the author.
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ALGORITHMS FOR PACKING SQUARES: A PROBABILISTIC ANALYSIS

E. G. COFFMAN, JR.5" AND J. C. LAGARIAS?

Abstract. This paper gives a probabilistic performance analysis of simple algorithms for packing lists
L, of n squares into a strip or a set of bins. It is assumed that the square sizes are drawn independently
from the uniform distribution on. J0, 1]. The strip-packing problem is to pack the squares into a strip of
width so as to minimize the height of the packing. Let OPT(L,,) denote the height of an optimal strip
packing for list L,,. A simple O(n log n) approximation algorithm, called Algorithm A, is described and it
is proven that the height A(Ln) of a packing of list Ln satisfies A(Ln)-OPT(L,,)_<-_ with probability
1-O(e-’0) for a positive constant Co. It is also shown that E[OPT(L)]= 3n/8 +O(n/3).

The bin-packing problem is to pack the squares into square bins of size so as to minimize the number
of bins. Let OPT,(L) denote the number of bins in an optimal packing of list L,,. The authors present
another O(n log n) approximation algorithm and show that the number of bins it needs to pack a list L,,
is precisely OPT.(L) with probability 1-O(e-q") for a positive constant c. Finally, it is shown that
E[OPTB(L,)]= n/2+O(1). These bounds for packing squares into strips and bins are much tighter than
those that have been obtained for packing rectangles.

Key words, packing squares, strip packing, two-dimensional bin packing, asymptotic probabilistic
analysis

AMS(MOS) subject classifications. 05B40, 68Q30

1. Introduction. Probabilistic analysis of packing algorithms has yielded important
and unexpected insights into a number of NP-complete packing problems. For example,
it has often been shown that the average-case behavior of a simple approximation
algorithm is extremely good, even though its worst-case behavior is relatively poor. In
this paper, where the two-dimensional problem of packing square objects is considered,
we find further instances of such algorithms. The results are distinguished by the fact
that, in a strong probabilistic sense, our square-packing algorithms provably obtain
packings much closer to optimal than algorithms previously considered for rectangle
packing.

Two principal variations of square packing will be studied: strip packing and bin
packing (in two dimensions). In the former, squares no larger than w x w are to be
packed into a semi-infinite strip of width w so as to minimize the height or span of
the packing, i.e., the maximum height reached by the top of any square in the packing.
As illustrated in Fig. 1, the packing must be orthogonal, i.e., the sides of the squares
must be parallel to the sides or the base of the strip, and the squares must not overlap
each other or the strip boundaries. The squares are provided in a list Ln (X1, , Xn),
where 0 < Xi <= w, 1 <= <-n denotes the dimensions of the ith square. In what follows
Xi refers to the name of the ith square as well as to its size.

We let ALG(L) denote the height of the packing of list L produced by algorithm
ALG. OPT(L) denotes the height of an optimal packing of L.

We adopt the normalization w 1 and consider the situation where X1,. ., X
are independent uniform random draws from [0, 1]. In 2 we devise an efficient
n log n-time algorithm, called Algorithm A, and prove that for n large, A(L)-
OPT(L)-< with very high probability, i.e., with a probability that approaches as
1-O(e-) for some constant c>0. Our next result, in 2, is a very strong
characterization of the height of optimal packings, and hence of A-packings, viz.,
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OPT(Ln 2_.55

0.4

0.55

0.45

0.45

0.9

FIG. 1. An optimal strip packing,; L, (0.9, 0.7, 0.55, 0.45, 0.45, 0.4, 0.25, 0.2).

OPT(L,) 3n/8 + 0(nl/3), and hence A(L,) 3n/8 + O(n/3), with very high prob-
ability. In addition, we prove the following average-case performance bounds"

E[A(L.)] E[OPT(L,)] + O(1),

3/1
E[OPT(L.)] =-+ ((n’/3).

Now consider the bin-packing version of square packing, and let OPTB denote
an optimal algorithm. Here, the strip of Fig. is partitioned into unit squares called
bins, BI, B2,’’’, as shown in Fig. 2. Packings are as before but with the added
requirement that squares must not overlap the boundaries between bins. The packing
height is now measured as the index of the highest occupied bin, i.e., as the number
of bins required by the packing of L,. In 3 we introduce an n log n-time Algorithm
B and prove that B(L,)=OPTB(L,) with very high probability. In other words, with
probability 1- O(e-C") for some c > 0, B is optimal. We also prove

E[OPT.(L,,)] -+ (R)(1),

and similarly for E[B(L,,)]. Note that n/2 is the expected number of squares with
sizes larger than 1/2, and is therefore an obvious lower bound.

We conclude this section with a brief discussion of background results. Packing
squares has long been a source of intriguing combinatorial problems. Numerous
references to worst-case analysis can be fOund in [BCCL] and [CGJ]. However, we
know of only two probabilistic studies, and these are briefly described below.

A probabilistic analysis of next-fit (NF) strip packing has been worked out by
Hofri [Ho] for the general case of rectangles, where each dimension of each rectangle
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B5

0.55 0.45

B2

Bt 0.9 //
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/
/

FIG. 2. An optimal packing of L,, in three bins (see Fig. 1).

is an independent uniform random draw from [0, 1]. According to NF, rectangles
X1, X2," are taken from L, and placed left-justified along the bottom of the strip
until a rectangle, say Xi, is encountered that will not fit in the remaining space.
A baseline is then extended across the top of the tallest rectangle, and the process is
repeated with rectangles from the list (Xi,’’ ", X,) placed along the new baseline.
New baselines are created until all rectangles are packed.

An obvious shortcoming of NF is that a rectangle small enough to be packed on
an earlier baseline is not so packed. For the special case of squares this leads to a
performance substantially inferior to Algorithm A presented in 2. Indeed, it is not
difficult to show that E[NF(L,)]-E[OPT(L,)] cannot be bounded by a constant
independent of n (see [Ho]).

With the above model of rectangles, Karp, Luby, and Marchetti-Spaccamela
[KLM] have devised an efficient algorithm for two-dimensional bin packing based on
planar matching. Their results combined with recent results by Leighton and Shor [LS]
show that this algorithm produces packings using n/4+)(x/log3/4 n) bins on the
average. They also showed that no algorithm could pack L, in fewer than n/4+
bins on the average.

2. The strip-packing problem. In this section we first derive a useful lower bound
for optimal packings. Then we present Algorithm A and prove that, if the sizes of the
squares in L, satisfy a certain condition, then the height of the A-packing exceeds the
lower bound by at most 1/2. A probabilistic analysis then shows that with very high
probability the above condition holds. Finally, we prove that the expected optimal
packing height is 3n/8 +O(nl/3).

In what follows we often simplify the presentation by ignoring the distinction
between the notions of "square" and "square size." Thus, for example, when we say
"a square in [a, b]" we mean the obvious "a square with a size in [a, b]."



PACKING SQUARES 169

The height of a packing cannot be less than the total area of the squares (since
the strip width is 1), or less than the sum of the square sizes exceeding 1/2:

H1/2 H1/2(Ln)-- E Xi.
X 1/2

The average total square area is

Io’nEXZi n x2 dx
n

3

but EH1/2= n/2 3/4= 3n/8. Thus,

(2.1) OPT(L,,)>=H,/
is a better bound for our purposes.

Note that the above observations imply that no algorithm can waste less than
3n/8-n/3 n/24 space on the average. In this sense, packings of squares drawn
uniformly from [0, 1] are not particularly efficient. A more detailed explanation of this
property is easy to find. Opposite each square X in [l-a, 1], we can pack [(1-a)/aJ
squares no larger than a without extending beyond the bottom or top of X. However,
in our probabilistic model the expected numbers of squares in [0, a] and in [1- a, l]
are equal. Thus, for a moderately smaller than we can expect to have more space
than we need for the efficient packing of squares in [0, a], even when we allow for
probable variations in the square sizes of L Indeed, we prove later that if all squares
in L, with sizes in [0, 1/2] are removed, then with a probability that quickly approaches
1 as n- o, the optimal packing height remains unchanged.

Thus, let us concentrate on squares in (, 1]; because of their relatively large size
it will be easier to characterize the packings of these squares. To obtain a more useful
deterministic lower bound based only on the subset of squares in L with sizes in
(, 1], it is helpful to define the following function. Let (y) denote the total height of
squares in [1/2-y, 1/2] minus the total height of squares in (1/2, 1/2+ y], i.e.,

1
(2.2) 6(y)= E Xi- E Xi, 0<y<=,

1/2-y<=Xi 1/2 1/2<Xi<= l/2+y Z

with 6(0) 0. We note immediately that if 6(y) > 0 for any y in (0, ) then the packing
of Ln must extend beyond the region occupied by squares in (1/2, 1]. This follows from
the fact that at most one square in (, 1/2] will fit abreast of a square in (1/2, 1]. We also
note that the squares in (, 1/2] not packed with squares in (1/2, 1] can be packed at most
two abreast.

To make use of these observations let

(2.3) A= A(L,)= max 6(y).
0yl/2

If A > 0, then we let X*_-< denote a largest square size in L such that A 6(1/2-X*),
i.e.,

(2.4) A E Xi E X;
X*<=Xi I/2 1/2<Xi <= -X*

but if A 0, then we define X*= , which may not be a square size in Ln.
We have the following deterministic bound.
THEOREM 1. For any list Ln such that X*> 3, the optimal packing height satisfies

(2.5) OPT (Ln) H,/2+-.
2
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Proof. If A 0 the result follows from (2.1), so suppose A > 0. Consider an optimal
strip packing of Ln. We may uniquely partition the packed strip into four disjoint
collections R1, R2, R3, R4 of horizontal slices (or slabs) such that all squares hit by
a horizontal cut in R1 are in [0, X*); any horizontal cut in R2 hits a square in IX*, 1/2]
but no square in (1/2, 1]; any horizontal cut in R3 hits a square in (1/2, 1- X*]; and any
horizontal cut in R4 hits a square in (1- X*, 1]. We assign to each Ri the total vertical
height, height(Ri), of the slices in its collection.

By definition,

(2.6) height (R3)+ height (R4)----- H1/2

and

(2.7) height (R3)= Xi.
1/2<XiI-X*

It is also obvious from the definitions that the squares in [X*, 1/2] can be packed only
in the regions covered by R2 and R3. Since X*> , at most two such squares can fit
side by side in R2, and in R3 a horizontal cut can hit at most 1. Thus,

(2.8) 2 height (R2) + height (R3) >= X,.
X*XiI/2

Subtracting (2.7) from (2.8), then using (2.4), yields

2 height (R2) => A.

Finally, this inequality and (2.6) yield

OPT (L,) ->_ height (R2)+ height (R3)+ height (R4)

>- H1/2 + A/2. 1-]

The development leading to Theorem 1 suggests the following algorithm. We say
that a sequence of squares is packed bottom-up if, when each square is packed, it is
placed at the lowest height where it will fit. It is convenient in describing and analyzing
the algorithm to use the terms "big square" and "small square" when referring to
squares greater than and less than or equal to 1/2, respectively.

ALGORITHM A.
(1) Stack the big squares of L, bottom-up in decreasing order of size along the

left edge of the strip.
(2) Then pack the small squares bottom-up in increasing order of size along the

right edge of the strip, placing each square as low as it will go, until all are
packed. The algorithm then stops if at most one square extends above H/;
otherwise, step (3) is performed.

(3) Starting with the highest small square and working down, successively remove
squares from the right edge of the strip and place them in a stack starting at

H1/2 along the left edge of the strip, until the heights of the two stacks agree
to within the size of the top square in one of the two stacks.

Figure 3(a), (b) illustrates corresponding packings just after steps (2) and (3), respec-
tively.



PACKING SQUARES 171

A=(/a-X2)

H/2

A’(Ln)=Hvz+A

A(Ln)

hl

t5 t5

a A’- PACKING (b) A PACKING

FIG. 3. Examples for Theorem 2.

The running time of Algorithm A is clearly dominated by the O(n log n) time
required to sort the squares.

We let Algorithm A’ denote the first two steps of Algorithm A. It is clear that an
A’-packing is never better and sometimes worse than an A-packing.

Our next result shows that Algorithm A is close to optimal when X*> .
THEOREM 2. For all L. we have

(2.9) A’(L,,)=H,/e+A
and

A 1
(2.10) A(L.) <= H,/2 +-+-.

Remarks. (1) As illustrated in Fig. 3(a), the relation (2.9) gives a geometric
interpretation of the quantity A.

(2) The bound (2.10) is tight. For example, consider any list L, where n is odd
and all squares are of size 1/2. It is easy to see that A(L,)= OPT (L,)= (n+ 1)/4. Also,
HI/2--0 and A= n/2, so A(L,)=A/2+1/4=(n+ 1)/4. Similar examples for n even are
obtained by adding a single big square to the above lists.

Proof The main difficulty is (2.9); once (2.9) is proved, an easy analysis of step
(3) of Algorithm A will then yield (2.10).

To prove (2.9) it is convenient to consider another algorithm, Algorithm A", which
packs the big squares as in step (1) and then packs the small squares in decreasing
order, placing the largest small square along the right edge of the strip with its top
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edge at height H1/2+A, and then successively placing each small square along the
right edge of the strip with its top edge flush against the square above it (see Fig. 4,
which corresponds to Fig. 3). We claim that Algorithm A" actually produces a packing,
i.e., that all of the small squares can be packed in this way without ever encountering
a small square that does not fit. To establish the claim, we may suppose without loss
of generality that the list Ln is in decreasing order:

When the small square Xk+m is to be packed, its bottom edge will be at height

h. HI/2 q" A- ,, X+j.
d=l

In order for Xk+ to fit, it is necessary and sufficient that the big square Xt placed
opposite it during step (1) (the big square intersected by the line y hm) satisfy

Xt Xk+

Next, note that the set of big squares with sizes at most 1- Xk+m are placed by step
(1) at vertical heights that occupy the interval [h*.,, H1/2], where

h H,/2- 2 Xi.
1/2<Xil-Xk+

An equivalent necessary and sufficient condition for square Xk+,. to fit is

(2.11) h <-h,,,.

Xi3

//

//

FG. 4. The A"-packing for Fig. 3.
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Now by definition of A we have

Xi Xi
xk xi<= 1/2 1/2<xi <= -Xk

.j---- 1/2<Xi-_--_ -Xk+

(n/2+ A- hm)-(nl/_- h’m)

=h*-hm+A
This inequality implies (2.11), which proves the claim.

It is clear that

A"(L, H/:+ A.

The A’-packing is obtained by successively sliding the small squares packed along the
right-hand side of the strip down as low as they will go, proceeding from the smallest
to the largest (e.g., Fig. 3(a) is produced from Fig. 4). Hence

A’(Ln)H/+A.
To establish (2.9) it suffices to show that equality holds here. We do this by contradiction.
Suppose equality did not hold; then the right side of the A"-packing in step (2) could
be shifted down vertically by a positive amount re, and we would still have a packing.
Then the lowest edge of each square Xk+m would be placed at height/,, h,,-a in
the new packing. However, by definition of A there is some value mo for which

Then we obtain, as in the proof above,

=a(-X/o)
h*o- h,+A- ce

which shows that

hmo < h*mo
This violates (2.11), contradicting the assumption that we had a packing. So (2.9) is
proved.

To prove (2.10), we first observe that if at most one square extends beyond
in the A’-packing of L,, then A(L,)= A’(L,)= H1/2+ A and A<_-1/2. But then

A 1
A(L,) H/+ A <-_ H/z++-4’

so it remains to consider cases where step (3) is performed. Let h and h be the heights
of the higher and lower stacks, respectively, as measured from H/z in the A-packing
(see Fig. 3(b)). By (2.9) we have easily h + hz A, and by the definition of step (3),
we have h-h2 1/2. These two relations imply that h =<A/2+1/4, and hence that

a
A(L,) H/2+ h <-___ H1/2 ++-’4 13

It is easy to verify that, if at most one square extends above H1/2 in an A-packing,
then OPT (L,)= A(L,) A’(L,,)= H/z+Z. A proof of optimality for this special case
can be patterned after the proof of Theorem 1.
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So far the analysis has been deterministic, with Theorems 1 and 2 combining to
show that if X*> then

OPT (L,) -_< A(L,) OPT (L,)

We now begin a probabilistic analysis under the assumption that the squares are
drawn independently from the uniform distribution on [0, 1]. Our objectives are
estimates of the probable performance of the algorithms. As our first objective we
prove Theorem 3.

THEOREM 3. There is a constant c>0 such that Pr{X*<-l/3}=O(e-C"), and
consequently

Pr{A(L,)-OPT(L,)<=1/4}= 1 O(e-C").

Furthermore,

E[A(L,)] E[OPT (L,)] + O(1).

Our second objective is a proof of the following bound.
THEOREM 4. There is a constant c > 0 such that for all x >-_ 1,

Pr {A(L) > xn 1/3} ce-’//.

Moreover,

E[OPT (L)] =-3--n+ O(nl/3).
8

Before getting into the proofs of these results we need a more detailed discussion
of the function 8(y) and the tools needed for our probabilistic arguments.

We view 8(y) as a random process on [0, ]. To better understand this process,
it is helpful to represent it as shown in Fig. 5. The points (square sizes) selected in

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1.0

Ln (0.t5, 0.2, 0.55, 0.45, 0.6, 0.7, 0.95)

FOLDING
’112 .

TRANSLATION

FIG. 5. Thefinction 6(y).
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[0, 1/2) are reflected about the midpoint 1/2 onto the interval [1/2, 1]. These "events" are
labeled with a plus, while those falling originally in (1/2, 1 are labeled minus. The pluses
and minuses are then mapped by a simple translation onto [0, 1/2]. Sample functions
for {6(y), 0<y =<1/2} are step functions as illustrated in Fig. 5. A square X [0, 1/2]
becomes a plus at y 1/2-X and creates a positive step of size X -< 1/2 in 6(y). A square
X (1/2, 1] becomes a minus at y X-1/2 and creates a negative step of size X => 1/2 in
(y). The event locations comprise n independent uniform random draws from the
interval 0 -< y -< 1/2 in Fig. 5 (i.e., the mappings y 1/2- X for X -< 1/2 and y X -1/2 for X > 1/2
produce uniform random draws from [0, 1/2], since X is a uniform random draw from
[0, 1 ]). The sign of each event is equally likely to be + or -, independent of its location.

In the analysis of 6(y) we need bounds on the tails of the distribution of a sum
of bounded, independently and identically distributed random variables. We use the
following bound of Bernstein (see [Be] for a proof).

LEMMA 1 (Bernstein). Let Sn denote the sum ofn independent samples ofa bounded
random variable X, and let o.2 Var [S,] n Var [X] and M max IX E[X]I. Then
for any >= 0

(2 12) Pr{S-E[S]> to-}<exp -t 2+-
3

We will apply this lemma to several different random variables, each representing
a weighted count of the independently and identically distributed random variables

X on [0, 1]. For example, with y fixed, we define the random variable N(y) counting
the number of squares in [1/2-Y, 1/2+y] by N(y) =i= Y, where

y={1 ifXi[1/2-Y, 1/2+y],

0 otherwise.

Similarly, for a fixed y the process 6(y) is a random variable, which can be
expressed as 6(y)= ZT= Zi, where

(2.13)

A routine calculation yields

(2.14)

Xi if Xi [1/2- y, 1/2],
Zi=-X ifX(1/2,1/2+y],

0 otherwise

E[Z] _y2, E[6(y)] -y2n,

y2y ( 2 )n,(2.15) Var [Zi] -t- _y4, Var [6(y)] + Y _y4

(2.16) max IZ-E[Zi]I 1+ <3
=2 y(1-y) =.

As our last item of preparation we introduce a standard inequality to be used
several times. In some probability space suppose the occurrence of event e implies
that at least one of the events e,. ., ek must occur. Then by Boole’s inequality,

k

(2.17) Pr {e}-<_ Y Pr {e}.
i=1

We are now in position to prove Theorems 3 and 4.
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Proof of Theorem 3. To prove that X*> g with probability 1- O(e ), for some
c > 0, it is obviously sufficient to prove that 6(y)<-0 for all --<_ y-<_ 1/2, with probability
1- O(e-Cn). For this purpose we begin by considering those samples Ln that satisfy

(2.18) 6() < -an, N() <= n
for any fixed choices of a,/3 satisfying 0 < a < 6, ] </3 < 1. (We verify later that these
inequalities hold jointly with very high probability.) For any such list we divide up
the at least n(1-/3) events with -<=y_-<1/2 into [1/2a] blocks containing either k or
k + events, where

[1/2aJ

With no significant loss in generality, assume that 1/26 is an integer and consider
n> 1/a. Then O<-N()<=n implies that 2a(1-)n-l<=k<=2an<-3an-1.

Let 6 denote the value of 6(y) just after the last event of block j, 1 _<-j <_- 1/26,
and let go 6(). The sizes of positive steps are at most and are decreasing as y varies
from g to . Therefore, no block of at most 3an- 1 events starting at 6_1 <-an can
include a zero crossing, where 6(y) would become positive. Thus, for 6(y) to become

1< <21positive in g= y there must be at least one j--- such that 6j_1 < -an and 6 _>- -an.
But at any y in [, 1/2] the magnitude (1/2+y) of a negative jump is at least twice the
magnitude (1/2-y) of a positive jump. Hence for any j=> 1, the final value 6 can be
greater than the starting value 6_1 only if the number of pluses, N, was greater than
twice the number of minuses, N-f, in the jth block. Hence, if 6() < -an and Nf <- 2N-[
for all j => 1, then 6(y) <- 0 for = y

If p denotes the probability that an arbitrary L, satisfies both inequalities in
(2.18), then by the above argument and (2.17) we have

Pr {X* <- } <= Pr{6 (y) <- 0, -< y --< 1/2}
1/26

=<(1-p)+ Z Pr{Nf.>ZNf},

and

(2.19) Pr X*<-_ <-_(1-p)+z-ymaxPr{N->2N-f}.

To bound the first term in (2.19) we use Lemma 1. Consider first the inequality
6()<-an in (2.18). Since E[6()]=-n/36 (see (2.14)), we write

Pr{6()>-anI=Pr{6()+;-6>(6-c)n},
so that, in the notation of Lemma with S,=6(), we can put to’=(1/36-a)n.
Then by (2.15), t/cr is a positive constant and 2 increases linearly with n for any
0< a < 1/36. Since M is bounded as in (2.16), we conclude from Lemma that for
any 0 < a < 1/36, there exists a constant cl > 0 such that

(2.20) Pr {6() > -an} < e-q".

For the second inequality in (2.18) the random variable N(-) is also governed by
Lemma 1 with E[N()]=n/3, M<-I, and o2=Var[N()]=(2/9)n. Thus, for any
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] </3 < 1, we have after substitution in (2.12)

Pr{N()>n}<=Pr{N()>(3-)n}
-<_ Pr{N()->}
<= e-n/6.

It is easy to check that the c in (2.20) must be less than for all 0<c<1/36.
Consequently, for any c and/3 in (0, 1/36) and (, 1), respectively, we have

(2.21) 1-p=O(e-’"),
where c > 0 is the constant determined by a in (2.20).

For the second term in (2.19), we observe that there will be more than twice as
many pluses as minuses in a block if the number of pluses exceeds the total of k or
k + signs. Our asymptotic results are independent of whether we choose k or k + 1,
so for simplicity we assume a total of exactly k signs. Then the distribution of the
number of pluses is the binomial distribution for k tosses of a fair coin, i.e., N], where ifX> and =0 otherwise. By Lemma 1 with E[N]]= k/2i=1

M 1, and 2 Var N] k/4, we have for all j 1

Pr{N>2N}=Pr{N?-k } _/> N

whereupon k 2 (1 )n implies that there exists a c > 0 such that

(2.22) Pr {N.[ > 2N?} < e-, jel

Substituting (2.21) and (2.22) into (2.19), we obtain as desired

Pr {X* N } O(e-),
where c min {c, c} > 0.

The expected-height result is easy. We need only use the trivial bound A(L) n
in order to write

[(-o(][-O(e-C]+ o(n e-
=o(.

Proofofeorem 4. To find an upper bound on Pr {> xn/3}, we use an approach
analogous to the proof of Theorem 3. For simplicity we assume that n /3 is an even
integer; we leave to the interested reader the trivial modifications of the arguments
below that account for values of n other than cubes of even integers. We partition the
interval 0N y N in Fig. 5 into n 1/ subintervals of length n -1/3, The initial value of
(y) in the subinterval [in -1/3, (j+ 1)n-/3], ONjNn/3-1, is denoted by

6j 6(jn -1/3) 2 Xi- 2 Xi,
1/2-jn--/3Xi 1/2 1/2<Xi 1/2+jn-l

and the maximum value is denoted by

=max {6(y);jn -’/3 y (j+ 1)n-/3}.
Clearly,

a max { 6(y); 0 y } max {; 0j n/3 1 },
so by (2.17) we can write

nl/3/2--1
(2.23) Pr {a> Xn /3} E Pr {j > Xn/3}.

j=o



178 E. G. COFFMAN, JR. AND J. C. LAGARIAS

Our next objective is an upper bound on Pr {Aj > xrt 1/3} for any x-> 1. First, we
define N(y) as the number of pluses in [jn -/3, y] less the number of minuses in
[jn -/3, y], and let

N max {N(y);jn-/3<=y<=(j+ 1)n-/3}.

Next we observe that, for any fixed constant zj, the maximum value satisfies zXj > xn 1/3

only if either the initial value satisfies 6j > (x- zj)rt /3 or the value of the function has
a net increase exceeding Zjrt

/3 in some initial subinterval, i.e., 6(y)-6.j> girl
1/3 for

some jrt -/3 <= y <= (j + 1)n -/3. Since the sizes of all positive jumps in are at most the
size of any negative jump, the latter condition can occur only if in some initial
subinterval [jn -1/3, y], the number of pluses exceeds the number of minuses by more
than zjn /3, i.e., only if/Q > zjn /3. Therefore, by (2.17),

(2.24) Pr {Aj > xn /3} <_ Pr {6 > (x- 2j)n/3}-t Pr{> zjn/3},
for O <-j <= 1/2n /3 -1. We will bound the right-hand side of this inequality, making the
choice

We start with the first of the probabilities on the right-hand side of (2.24). For
j 0 and any x-> 0 we have

(2.25) Pr{8o>(X-Zo)nl/3}=pr{6o>1/2xn/3}=O.

For the case 1 <=j <=1/2n /3- 1, X >--1, we now prove the bound

(2.26) Pr {6j > (X-- zj)n /3} < e--(x+j2)/3j.

We obtain (2.26) from Lemma using the definition of 3(y), with y =jn -/3, as a sum
of independently and identically distributed random variables Zi, 1 =< _-_ n. By (2.14),
(2.15), and j<-_1/2n/3-1, we have

E[6j] -j2n ’/3,

Var[6j]=1/2jn2/3 .3 2 -/3]+J [3-jn < jn2/3

We apply Lemma 1 with to-= zjgl
1/3-- ((x +j2)/2)n1/3, 0

-2 <jn2/3, and M <-]= (by (2.16))
to conclude that

(2.27) Pr {6 > (x- z)n/} Pr (6 +j2n/3:> zjn ’/3}

<exp{ -(- tz)-2 /
20-2 + }Mt0-J

_2.,.2/3

< exp
-Jjn /3 + 1/2zn /3

Since l<-j<-1/2nl/3-1 and x_->l imply that z_-> 1 and jn/3>=4, the magnitude of the
exponent is bounded by

zn2/3/(4 2/3 ZJ21 ) Zj{ /(3@j )} 2Zj+ =7 + ’>=--"
3j

Substituting this bound into (2.27) and then setting z./= (x +j2)/2 yields (2.26).
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Next we turn to an estimate of the second probability on the right-hand side of
(2.24). For given j and for -< _-< n define the independently and identically distributed
random variables

+ if Xi 6 [1/2- (j + 1)n -1/3, 1/2-jn-/3],

(2.28) V -1 if Xi [1/2+jn -1/3, 1/2+ (j + 1)n-/3],
0 otherwise,

and note that

N N((j + 1)n -1/3) V/.
i=1

We claim that

(2.29) Pr {N > zjn 1/3} _< 2 Pr {N > zjn’/3}.
To prove the claim we consider the conditional joint probability distribution of the
V’s given that exactly k of them are nonzero, i.e., k i=] VI. For each sample drawn
from this conditional distribution, reorder the k nonzero V’s in order of increasing
value of the parameter

{1--X if0< Xi_-<,u= xi-1/2 i<Xi<l,
to obtain an ordered sequence { W" 1 k} with each 1. The joint probability
distribution of the ’s induced from that of the E’s is easily seen to be that of a set
of Bernoulli trials (coin flips). (Indeed the joint probability distribution of the Xi’s is
invariant under any subset of the reflections X 1-X for 1i N; each of these
leaves all unchanged but changes the sign of E, which shows that all sign patterns
of {" 1 k} are equally likely.) The quantities and are expressed in terms
of the random variables by

k

=max E , = E .
li6k /=1 /=1

A well-known result for Bernoulli trials [Fel, Thm. 1, p. 88], proved using the reflection
principle, is that for all w,

Choosing w zjn /3, this gives

Pr .>zn/3 l=k N2Pr >zn/ =k
i=1 i=1

Hence, removing the conditioning, we obtain (2.29) as claimed.
Now we bound Pr{ > zjn /3} using Lemma applied to the random variables, 1 N N n. In this case [ E] 0, 2n/3, and M 1, so if we set t zn/ we

obtain

Pr {N > 21/3} < exp -2
(2.30)

/

<exp 4n/ + zjn l/3
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Since O<-j<=1/2n 1/3-1, x-> 1, and hence zj_->, the magnitUde of the exponent in (2,30)
is bounded by

/(4
4n2/ + zjn 1/3 Zj + f/"3 >

/\zj 3n =-- zj-
17

Thus, (2.30) implies the simpler bound

(2.31) Pr {N> zn/3}< e

for x 1, Ojn/3-1. Combining (2.31) with (2.29), we obtain

(2.32) Pr > zjn /3} 2e-(+)/17,
for x 1, Ojn1/3- 1.

Returning to (2.24), we substitute (2.25), (2.26), and (2.32) to obtain

Pr {A0> xn /3} 2e-/17,
Pr {Aj > xn 1/3} 2e-(+J:/7 + e-(+:)/3 j > 1

and hence by (2.23)

Pr {A> xn /3} 2e-/7 + (2e-(+/7 + e-(+)/3).
j=l

Clearly, e-(X+j2)/7 e-(x+j2)/3j for 1 j 5, whereas the opposite inequality holds for
j 6. Hence,

Pr {A> xn/3}< 17e-/7 +3 e-(+J)/aJ.
j6

It is easy to verify that (x +j2)/3j is decreasing for 1 j
Then using (x+j2)/3j2/3, lj, and (x+j2)/3jj/3, j>, we obtain

Pr {A> xn /3} < 17e-/7 +3e-2/ + 3 e-/3

>
17e-x/7 +3e-/3+ 11 e-/3.

At this point it is easy to see that there exists a c > 0 such that for all x 1,

(2.33) Pr {A> xn /3} ce-/3.
It remains to prove the expected value result. Applying Theorems 1 and 2 and

the fact that Pr{X*}= O(e-"), we have

3n 1
 [oPv <

8 2

Hence, it suffices to prove

(2.34) E[A]=O(nl/3).
To prove the upper bound implied by (2.34) we write

E[A]= n 1/3 Pr {A> xn /3} dx.

Then E[A]= O(rt /3) follows directly from (2.33) and o e-47x/3 dx--O(1).
To prove the lower bound implied by (2.34) we show that there exists a constant

3’ > 0 such that

(2.35) E[A] => vn 1/3
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for all n sufficiently large. Since A > 6(y) for any fixed y, it suffices for each n to select
a suitable value yn and show that for all n sufficiently large,

(2.36) Pr {6(y,) > n 1/3} > y,

since (2.35) easily follows from this.
We choose Yn r/-1/3, SO that from (2.14) and (2.15)

n2/3 2 1
E[6(y,)] -n ’/3 Var [6(y,)]

2
+ 1/3"3 n

The normalized sums

g(y,) [6(y,)- E[6(yn)]]/x/Vr[6(yn)],
/3have mean zero and variance 1, and it is easy to see that for all n >-1 if 6(y,)_<--n

then 6(yn) <= 5, and hence

(2.37) Pr {6(y,)> n /3} >= Pr {g(y.) > 5}.

Thus to prove (2.36) it suffices to show that

Pr {6(y,) => 5} => 3’

for a positive 3’ independent of n.
Now limit theorems on sums ofindependently and identically distributed random

variables do not apply directly to {6(y), n => 1}. To get a corresponding limit theorem
for this sequence we consider n as fixed and examine the random variables

i=1

where

(2.38)

X ifX [1/2- n -/3 1/2]

Zi -Xi if X [1/2, 1/2-- n-l/3],
0 otherwise.

The choice rn n gives 6",, 6(y,). There are classical limit theorems with error terms
that apply to 3,, as rn varies. One such result, the Berry-Essen theorem [Fe2, p. 515],
asserts that for any distribution of the Z’s, which for some constant p satisfies

E[IZ, E[Z,]I3] < p, i>= 1,

we have for the normalized sums " (3,. E[6,.])/x/var[6,.] that for all x and all m

33 p
(2.39) IPr {g,. =< x}-(x)[ =<

4 r3x/

where (x) is the normal distribution function with zero mean and unit variance, and
where

or2= Var [Z E[Z]] Var [Zi].

For the random variables in (2.38) we have E[Z] n -2/3. Then IZ E[Z][ < 1/2+ n -1/3

when Zi Xi or Zi =-Xi, and IZi-E[Z]I rt -2/3 when Z =0. Hence,

E[IZ E[Zi]l3] [1/2+ r/-/3]3. 2n -1/3-b n-2[1-2n -/3]
O(n-’/3).
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Using (2.15) we also obtain

r2 Var [Zi- E[Zi]] n -1/3 + O(//-1).

Choosing m n in (2.39), we have

g(y.)= g(n-/3),

and

[Pr { g(n --1/3) X} (I)(X)l O( (//
//-1/3 )-1/3)3/2//1/2

O(n-’/).

Thus,

Pr {g(n-/3) > 5}= 1--dP(5)--O(n-1/3),

so that for any 3,< 1-(5), Pr {(n-1/3))nl/3}> 3, for all n sufficiently large, and
hence E[A] _--> 3,n 1/3. ["]

3. Two-dimensional bin packing. The methods of the preceding section can be
modified to prove similar results for packing squares into bins (unit squares). Since
the analysis is rather simpler, we content ourselves here with stating the results obtained
and briefly pointing out the basic observations used in their proofs. We use the subscript
B to distinguish quantities in this section from the cognate quantities of 2.

In the bin-packing problem it is the number of bins that is to be minimized.
Consequently, the relevant quantities in the analysis turn out to be the numbers of
squares within given ranges, rather than their cumulative heights. Specifically, the
appropriate analogue 6n(y) of the basic quantity 6(y), studied in 2, is defined as

(3.1) 6n(y) Y, 0<y-<,
i=1

where Y Y/(y) is defined in terms of independently and identically distributed
uniform random variables on [0, 1] by

(3.2)

X/ [1/2- y, 1/2],

Y I-3 X, (1/2, 1/2+y],

0 otherwise.

In other words, 6n(y) counts the number of squares in [1/2-y, 1/2] minus three times the
number in (1/2, 1/2+y]. The factor of three comes from the fact that for all 0=< y < 1/2 at
least three squares of size 1/2-y can be packed into a bin along with a square of size
1/2+ y. As before, 3n(0)=0, An maxo_<_y___l/2 6n(y), and X* is a maximum square size
such that AB 6n(1/2-X*).

Our initial lower bound is now

(3.3) OPTn (L.) _>- N/2,

where NI/2 is the number of squares in L, with sizes in (1/2, 1], and has the expected
value EN1/2 =///2. The following more useful bound corresponds to Theorem 1 and
is based on the simple observation that at most four of the squares in (., 1/2] can be
packed in a single bin.
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THEOREM 5. For any Ln such that X* > there holds

OPT (L)>- N/+ [].
Next, we define an algorithm similar to Algorithm A.

ALGORITHM B.
(1) Pack the squares Xi (1/2, 1] bottom-up in descending order of size in bins

B1," ", BN,/2, one per bin and against the left edge of the bin.
(2) Pack the remaining squares bottom-up in ascending order, placing each as

far to the left as possible in the first (lowest indexed) bin where it will fit.

As in Theorem 2 it is easily verified that the squares in [0, X’z) are all packed by
Algorithm B in bins B1, , BN,/2. Also, if X* > then the squares in [X*, 1/2] will be
packed four per bin, except possibly for the last bin. We obtain Theorem 6.

THEOREM 6. For any Ln there holds

It follows from Theorems 5 and 6 that if X* > then Algorithm B produces an
optimal packing. The object of the probabilistic analysis is then to show that X* >
with very high probability. As before, this entails an analysis of 6B(y), for which a
calculation yields

(3.4) E[6B(y)] -2yn,

(3.5) Var 6(y) 10y 4y2) n.

The following lemma applies a result in [Fe2, Example (c), p. 393].and provides the
basis of the analysis.

LEMMA 2. Let Zi, i= 1, 2,... be independently and identically distributed random
variables, each being + 1 or -3 with equal probability. There exists a C > 0 such that

Pr max Y Zi>x ---Ce asx->oe,
[. m-->l i=1

where 0.61 is the unique root ofE[ez,] =1/2[e + e-3 1.
Let Z, 1 -< -< n N(), denote the jumps in 6(y) in the interval _-< y _-< 1/2, indexed

in order of increasing y. Now 0 <_- X* _<- implies that 6(y) > 0 for some < y -< 1/2, which
in turn implies that either 6(-)>-n/6 or

n
max Y .Z/>-

l--m<=n-N(1/6) 1"= 6

or both, whence

Pr 0_<-X*<_- _-<Pr 6 >- +Pr max Y Z>
l<--m<--n t’=

Using (3.4) and (3.5), we apply Lemma 1 to the first probability on the right, and then
apply Lemma 2 to the second probability on the right to obtain Theorem 7.

THEOREM 7. There is a constant c > 0 such that

Pr {0-< X*_-<} O(e-C"),
and hence

Pr {B(L.)=OPTB(L.)}= 1-O(e-cn).
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Finally, we can develop an analogue to Theorem 4 that describes the expected
performance of an optimal algorithm. For this we again analyze the random variables
6(y) and AB. In particular, let us consider a lower bound analysis such as that at the
end of the proof of Theorem 4.

As before E[6I(y)] < 0, and hence in order that ElAn] > 0 we must have for some
y a positive probability of positive swings in 6(y) that are proportional to the absolute
value of the mean. By the normal limit law, if the probability of such deviations is to
remain bounded away from zero as n oo, we need a standard deviation for each n
that is proportional to the absolute value of the mean. In the strip-packing case this
was obtained by the choice yn n -1/3, where in absolute value the mean and standard
deviation became (n1/3) (see (2.14) and (2.15)). In the present case, an inspection
of (3.4) and (3.5) shows that this requirement leads to yn O(1/n). But for y, propor
tional to 1In the mean and standard deviation become constants. Thus, there is a
constant c > 0 such that E[A]> c for all n sufficiently large.

Obtaining an upper bound is fairly easy. An application of Lemma 2 leads to an
upper bound on the tails ofA and shows that ElAn] is bounded. The following result
is obtained.

THEOREM 8. For all n sufficiently large

Pr {AB > x} O(e-x)

with a as defined in Lemma 2. Moreover,

E[OPT, (L,)] =+O(1)..
4. Final remarks. The performance of square-packing algorithms is sensitive to

the probability distribution of the sizes of squares to be packed. How well Algorithms
A and B perform for size distributions other than the uniform distribution on [0, 1 is
an interesting question.

Roughly speaking, Algorithms A and B produce near optimum packings for any
distribution that provides a sufficiently large number of squares greater than 1/2, and
allows us to effectively ignore small squares (e.g., squares smaller than in strip
packing). As one example, Algorithms A and B perform well for distributions that are
strictly positive on [0, 1] and symmetric about 1/2. As a second example, consider a
distribution uniform over [0, 0], for some 0. Here, we claim that, except for the
adjustment of certain constants, our strip-packing analysis on a strip of width 1 applies
to any 0 large enough to ensure that the expected total height of squares greater than
is greater than the expected total height of squares smaller than 1/2. A simple calculation

shows that this holds for 0 > //2 and that

E[H1/2(Ln)] 20 n

in this case. For the bin-packing case the corresponding requirement is that 0 be large
enough to ensure that the expected number of squares larger than is greater than
one third the expected number of squares smaller than 1/2, and a simple calculation
shows that this holds for 0 > . The analysis of previous sections Can be adapted to
cover such distributions.

The methods of this paper do not apply to probability distributions producing a
preponderance of small squares. Indeed, in that situation the approximation algorithms
analyzed in this paper will not perform well. It is an interesting problem to devise
approximation algorithms that work well for such probability distributions.
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THE KNOWLEDGE COMPLEXITY OF
INTERACTIVE PROOF SYSTEMS*
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Abstract. Usually, a proof of a theorem contains more knowledge than the mere fact that the theorem
is true. For instance, to prove that a graph is Hamiltonian it suffices to exhibit a Hamiltonian tour in it;
however, this seems to contain more knowledge than the single bit Hamiltonian/non-Hamiltonian.

In this paper a computational complexity theory of the "knowledge" contained in a proof is developed.
Zero-knowledge proofs are defined as those proofs that convey no additional knowledge other than the
correctness of the proposition in question. Examples of zero-knowledge proof systems are given for the
languages of quadratic residuosity and quadratic nonresiduosity. These are the first examples of zero-
knowledge proofs for languages not known to be efficiently recognizable.

Key words, cryptography, zero knowledge, interactive proofs, quadratic residues
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1. Introduction. It is often regarded that saying a language L is in NP (that is,
acceptable in nondeterministic polynomial time) is equivalent to saying that there is
a polynomial time "proof system" for L. The proof system we have in mind is one
where on input x, a "prover" creates a string a, and the "verifier" then computes on x
and a in time polynomial in the length of the binary representation of x to check that
x is indeed in L. It is reasonable to ask if there is a more general, and perhaps more
natural, notion of a polynomial time proof system. This paper proposes one such notion.

We will still allow the verifier only polynomial time and the prover arbitrary
computing power, but will now allow both parties to flip unbiased coins. The result
is a probabilistic version of NP, where a small probability of error is allowed. However,
to obtain what appears to be the full generality of this idea, we must also allow the
prover and verifier to interact (i.e., to talk back and forth) and to keep secret their coin
tosses. We call these proof systems "interactive proof systems." This notion is formally
defined in 2, where we also define what it means for a language to have an interactive
proof system.

It is far from clear how to use this power of interaction. Languages with non-
deterministic polynomial time algorithms or with probabilistic polynomial time
algorithms have proof systems with little or no interaction. We would therefore like
examples of languages that appear to have neither nondeterministic nor probabilistic
polynomial time algorithms, and. yet have interactive proof systems. Although we do
not present any such examples here, there are now examples in the literature. Using
ideas from an initial version of this paper [GMR] Goldreich, Micali, and Wigderson
[GMW] have shown that the "graph nonisomorphism" language has an interactive
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proof system. Independently of this paper, Babai and Szemeredi [BS] show that certain
matrix group problems have what they call "Arthur-Merlin" proof systems, which
immediately implies that they have interactive proof systems. In fact, the notion of an
Arthur-Merlin proof system consists of a restricted interactive proof system in which
the prover sees the coin flips of the verifier. Nevertheless, Goldwasser and Sipser [GS]
have shown that a language has an interactive proof system if and only if it has an
Arthur-Merlin proof system.

It appears, however, that our notion of interactive proof systems generalizes in
the right way to attack a novel problem. The main purpose of this current paper, in
fact, is to use interactive proof systems to investigate a natural question; how much
knowledge is transmitted to the verifier in an interactive proof system for L? For
example, consider SAT, the NP-complete language of satisfiable sentences of the
propositional calculus. In the obvious proof system, to prove F e SAT, the prover gives
a satisfying assignment I for the formula F, which the verifier then checks in polynomial
time. This assignment gives the verifier much more knowledge than merely the fact
that F e SAT; it also gives a satisfying assignment. At the other extreme, every language
that can be accepted in probabilistic polynomial time has a proof system in which the
prover does nothing, and hence gives no knowledge to the verifier.

We say an interactive proof system for L is zero-knowledge if for each x e L, the
prover tells the verifier essentially nothing, other than that x e L; this should be the
case even if the verifier chooses not to follow the proof system but instead tries (in
polynomial time) to trick the prover into revealing something. The notion of zero-
knowledge is formally defined in 3. This definition is an important contribution of
this paper.

The main technical contributions of this paper are the proofs in 5 and 6 that
the languages QR and QNR (defined below) both have zero-knowledge interactive
proof systems. These are the first zero-knowledge protocols demonstrated for languages
not known to be recognizable in probabilistic polynomial time. To understand the
languages QR and QNR, it helps to read the (brief) number theory background given
in 4. However, for now, let x, y be integers, 0< y <x, such that gcd (x, y) 1; we say
that y is a quadratic residue mod x if y z2 mod x for some z; if not, we say that y is
a quadratic nonresidue mod x. We define

QR= {(x, Y)IY is a quadratic residue mod x}, and

QNR= {(x, Y)IY is a quadratic nonresidue mod x}.
(Actually, QNR will be defined slightly differently in 4.) Both QR and QNR are in
NP, and thus possess an elementary proof system. For instance, to prove membership
in QNR, the prover just sends x’s factorization. But looking ahead to zero-knowledge
proof systems, let us discuss a more interesting example of a proof system for QNR.

Example 1. Let us call the prover A and the verifier B. Say that the input is (x, y).
Let n Ixl, where ]xl is the length of the binary representation of x. We will now
describe (omitting some details) an interactive proof system for QNR. B begins by
flipping coins to obtain random bits bl, b2,’" ", b,. B then flips additional coins to
obtain a string a, from which B computes zl, z2,. , zn such that each zi is a random
z, 0< z < x, gcd (x, z)= 1. B then computes wl, w,..., wn as follows" for each i, if

2bi=0thenw zimodx;ifb lthenw=(zy) modx. Bthensendsw,w2, .,w,
to A. For each i, A computes (somehow) whether or not wi is a quadratic residue
mod x, and sends B a sequence of bits c, c2," ", cn, where c 0 if and only if wi is
a quadratic residue mod x. B checks if b c for every i, and if so is "convinced" that
(x, y) QNR.
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It is not hard to see that if (x, y) QNR and both parties follow the protocol,
then B will become "convinced." On the other hand, if y is a quadratic residue mod x,
then so is each wi, and every value for wi is equally likely; since A does not see the
sequence {b}, the probability that every c b (and hence that B will be convinced)
is 2-n. So this is an interactive proof system for QNR. Let us now address the question
of how much knowledge A may release.

It is an interesting question how zero-knowledge should be defined. If the prover
is trying to prove to the verifier that y is a quadratic residue mod x, then certainly the
verifier should not be able to trick the prover into revealing a square root of y mod x,
or the factorization of x, or any information which would help the verifier to compute
these things much faster than before. In fact, the prover should not reveal anything
which would help the verifier compute anything much faster than before. The way to
state this formally seems to be that what the verifier sees in the protocol (even if he
cheats) should be something which the verifier could have computed for himself,
merely from the fact that (x, y) QNR. Of course, what the verifier sees in the protocol
is really a probability distribution. Thus, zero-knowledge means that one can compute
in polynomial time, from (x, y) QNR, without a prover, the same (or almost the
same) probability distribution that the verifier would see with the prover. This is defined
formally in 3. Here, let us informally discuss whether the above interactive proof
system for QNR is zero-knowledge.

Consider a pair (x, y) QNR, and say that A follows the protocol. Can B obtain
any additional knowledge? For the moment, assume that B follows the protocol. B
"sees" [{b}, a, {wi}, {c}] distributed according to a particular distribution. Without
any help from a prover, we can quickly generate a random string according to this
distribution: just choose {b} and a randomly, and then compute {w} from them; then
compute c bi for each i.

Now what if B were to cheat? B could begin by setting wl 42, and then behave
correctly. Consider now the induced distribution on [{bi}, c, {wi}, {c}]; in order to
compute a random member of it (without help from a prover), we must compute
whether or not 42 is a quadratic residue x, given x and a quadratic nonresidue y. At
this time it is not known how to compute this in polynomial time, so this proof system
may not be zero-knowledge.

A zero-knowledge proof system for QNR is given in 6. The ideas of this proof
system partially come from the secret exchanging protocol of Luby, Micali, and Rackoff
[LMR] and are useful there as well. They have also proved useful in the oblivious
transfer protocol of Fischer, Micali, Rackoff, and Witenberg [FMRW] and for the
identification scheme of Feige, Fiat, and Shamir [FFS]. These ideas have also helped
Goldreich, Micali, and Wigderson [GMW] to show that the languages of "graph
isomorphism" and "graph nonisomorphism" have zero-knowledge interactive proof
systems.

Although we find the idea of a zero-knowledge interactive proof system fascinating
in itself, the main motivation for it and the main applications of it are in the area of
cryptographic protocols. For example, in the secret exchanging protocol in [LMR],
one person wishes to exchange a secret with another without giving away any additional
knowledge. Ideas similar to those here must be used to even define this concept.

More generally, however, it often arises at some point in a protocol that A wishes
to convince B of some fact. Say that we know that the protocol would be secure if at
this point an angel or someone B trusted were to tell B (truthfully) if A is telling the
truth. We want the notion of zero-knowledge to be such that an appropriate zero-
knowledge interactive proof system could be inserted at this point instead of the trusted
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party, and the whole protocol would remain secure. (Of course, A would have to
possess some additional information enabling her to implement the part of the prover
efficiently.) In particular instances, we can prove that such substitution works, but a
general framework for discussing protocols must exist before the general theorem can
even be stated. However, based on intuition and experience, the authors (and many
others who have studied these ideas since their initial appearance) believe that the
definition of zero-knowledge proposed here has the required properties.

The most important development since these results first appeared is the proof
by Goldreich, Micali, and Wigderson [GMW] that, subject to a common complexity
theory assumption, every language in NP has a zero-knowledge interactive proof
system. These proof systems for NP languages appear to have applications in just
about every protocol problem. It is almost certain that these results will vastly simplify
distributed cryptographic protocol design in the future, as demonstrated by the powerful
results of [GMW2].

2. Interactive proof systems. Intuitively, what should we require from an efficient
theorem-proving procedure ?

(1) That it should be possible to "prove" a true theorem.
(2) That it should not be possible to "prove" a false theorem.
(3) That communicating the "proof" should be efficient. Namely, regardless of

how much time it takes to come up with the proof, its correctness should be
efficiently verified.

The NP formalization of the concept of an efficient proof system captures one way of
communicating a proof. In this section, we will generalize the NP proof system to
capture a more general way ofcommunicating a proof. The verifier will be a probabilistic
polynomial time (in the length of the common input) machine that is able to exchange
messages (strings) with the prover.

At the same time that we introduce probability into the proof system, we relax
the classical notion of a "proof." Our verifier may erroneously be convinced of the
truth of a proposition with a very small probability of error (less than n -k for each
positive constant k and all sufficiently large input-sizes n).

We proceed to formally define the new system.

2.1. Interactive Turing machines and protocols.
DEFINITION. An interactive Turing machine (ITM) is a Turing machine equipped

with a read-only input tape, a work tape, a random tape, one read-only communication
tape, and one write-only communication tape. The random tape contains an infinite
sequence of random bits, and can be scanned only from left to right. We say that an
interactive machine flips a coin, meaning that it reads the next bit in its own random tape.

[RANDO,M TAPE [INPUT[ [RANDOM TAPE

R ..R R R

FIG. 1. An interactive protocol. denotes a read write head, R a read-only head, W a write-only head.
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DEFINITION. An interactive protocol is an ordered pair of ITM’s A and B such
that A and B share the same input tape, B’s write-only communication tape is A’s
read-only communication tape and vice versa. Machine A is not computationally
bounded, while machine B’s computation time is bounded by a polynomial in the
length of the common input. The two machines take turns in being active, with B being
active first. During an active stage machine A(B) first performs some internal computa-
tion using its input tape, work tapes, communication tape and random tape; and,
second, it writes a string (for B(A)) on its write-only communication tape. The ith
message of A(B) is the entire string that A(B) writes on its communication tape during
its ith active stage. As soon as machine A(B) writes its message, it is deactivated and
machine B(A) becomes active, unless the protocol has been terminated. Either machine
can terminate the computation of the protocol by not sending any message in an active
stage. Machine B accepts (or rejects) the input by outputting accept (or reject) and
terminating the protocol. The computation time of machine B is the sum of the B’s
computation time during its active stages, and it is this time that is bounded by a
polynomial in the length of the input, denoted Ix I.

2.2. Interactive proof systems.
DEFINITION. Let L be a language over {0, 1)*. Let (A, B) be an interactive protocol.

We say that (A, B) is an interactive proof system for L if we have the following:
(1) For each k, for sufficiently large x in L given as input to (A, B), B halts and

accepts with probability at least 1-Ix[ -k. (The probabilities here are taken over the
coin tosses of A and B.)

(2) For each k, for sufficiently large x not in L, for any ITM A’, on input x to
(A’, B), B accepts with probability at most Ix] -k. (The probabilities here are taken over
the coin tosses of A’ and B.)

Remark 1. The above probability of error can be decreased, say to smaller than
2-Ixl, by the standard technique of repeating the protocol many times and choosing to
accept by majority vote.

We now argue that this definition captures what we intuitively want from an
efficient proof system. Condition (1) essentially says that, if x L, B will accept with
overwhelming probability. Condition (2) says that, if x is not in L, there exists no
strategy that succeeds with nonnegligible probability for convincing B to accept. In
fact, B needs not to trust (or know the program of) the machine with which it is
interacting. It is enough for B to trust the randomness of its own coin tosses.

Similar to the NP proof system, note that the definition of an interactive proof
system for a language emphasizes the "yes-instances": when a string is in the language,
B must be led to acceptance with high probability, but when a string is not in the
language A is not required to convince B of the contrary.

A more general version of the above definition is where A is not a Turing machine,
but an infinite state machine. However it has been shown by Feldman in IF] that this
adds no extra power to the model. In fact, he shows that with respect to language
recognition it is sufficient for A to be a deterministic PSPACE machine. The fact that
A is probabilistic is of importance to the more subtle definition of zero-knowledge,
which is given in the next section.

We define IP, Interactive Polynomial time, to be the class of languages for which
there exists interactive proof systems.

The first examples of a language in IP but not known to be in NP have been
exhibited by Babai and Szemeredi [BS]. Their examples are "matrix group
nonmembership" and "matrix group order," where the matrix groups over finite fields
are represented by a list of generator matrices. The other, more well-known example
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of "graph nonisomorphism" is due to Goldreich, Micali, and Wigderson [GMW].
They have shown that the language of pairs of graphs that are nonisomorphic to each
other is in IP.

2.3. Arthur-Merlin games. Babai independently conceived the notion of an
"Arthur-Merlin Game," an interactive proof system in which Merlin plays the role of
A and Arthur that of B. The interaction, though, is less "liberal" than in our model
since Merlin sees all the coin tosses of Arthur. A message from Arthur to Merlin can
only consist of a randomly selected string. In an interactive proof system, instead, the
verifier is allowed, given a polynomial time computable function f, to secretly select
a random string R and transmit only f(R) to the prover (as in the interactive proof
system for QNR of Example 1).

This restriction immediately implies that the languages recognized by an Arthur-
Merlin game are a subset of those having an interactive proof system. Interestingly,
Goldwasser and Sipser [GS] show that they are not a proper subset. However, there
is value in having both definitions around. It is easier to design protocols using the
interactive proof systems definition, and it is easier to prove complexity results using
the Arthur-Merlin definition.

Though the ability to make secret random choices does not help us to recognize
more languages, we believe that it is crucial for recognizing languages in zero-knowl-
edge. We make precise this belief in the conjecture of 3.7.

An Arthur-Merlin type of interactive proof system was already implicitly used in
a paper by Blum [B1]. He showed an interactive protocol for recognizing the language
of the Blum integers:

BL {n IP divides n and p+ does not, where p 3 mod 4 is prime and a is odd}.
The prover’s goal was to demonstrate membership in BL without having to send n’s
prime factorization. In this proof system, the verifier talks only once and his message
consists of sending the sequence of his coin tosses. Protocols of this type were also
found by Goldwasser and Micali [GM1] to prove, without releasing the prime
factorization membership in the languages:

GM1 {n In has exactly two distinct prime divisors} and

GM2= {(x, n)[gcd (x, 4(n))= 1} where 4(n) is the number of positive
integers smaller and relatively prime to n.

3. Zero-knowledge. Rather than giving the definition of zero-knowledge only for
interactive proof systems, we will give a more general definition. We will define what
it means for any interactive protocol (A, B) to be zero-knowledge for a language L,
whether or not (A, B) is a proof system for L. Actually the definition will not depend
on B at all; as we shall see, it says that for every polynomial time B’, the distribution
that B’ "sees" on all its tapes, when interacting with A on input x L, is "indistinguish-
able" from a distribution that can be computed from x in polynomial time. We thus
first focus on the notion of indistinguishability for random variables.

3.1. Indistinguishability of random variables. Throughout this paper, we will only
consider families of random variables U { U(x)} where the parameter x is from a
language L, a particular subset of {0, 1}*, and all random variables take values in
{0, 1}*. LetU= { U(x)} and V= {V(x)} be two families of random variables. We want
to express the fact that, when the length of x increases, U(x) essentially becomes
"replaceable" by V(x). To do this, we consider the following framework.

A random sample is selected either from U(x) or from V(x) and it is handed to
a "judge." After studying the sample, the judge will proclaim his verdict: 0 or 1. (We
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may interpret 0 as the judge’s decision that the sample came from U(x); 1 as the
decision that the sample came from V(x).) It is then natural to say that U(x) becomes
"replaceable" by V(x) for x long enough if, when x increases, the verdict of any judge
becomes "meaningless," that is, essentially uncorrelated to the distribution from which
the sample came.

There are two relevant parameters in this framework: the size of the sample and
the amount of time the judge is given to produce his verdict. By bounding these two
parameters in different ways we obtain different notions of indistinguishability for
random variables. We focus on the three notions we believe to be the most important:
equality, statistical indistinguishability, and computational indistinguishability.
Roughly speaking, these notions correspond to the following restrictions on the relevant
parameters. If the two families of random variables { U(x)} and { V(x)} are equal, then
the judge’s verdict will be meaningless even if he is given samples of arbitrary size
and he can study them for an arbitrary amount of time. We will define the two families
to be statistically indistinguishable if the judge’s verdict becomes meaningless when
he is given an infinite amount of time but only random, polynomial (in Ixl) size samples
to work on. We will define the two families to be computationally indistinguishable
if the judge’s verdict becomes meaningless when he is only given polynomial (Ixl)-size
samples and polynomial (Ixl) time. Let us now proceed to formalize these notions.

DEFINITION (Statistical indistinguishability). Let Lc {0, 1}* be a language. Two
families of random variables { U(x)} and { V(x)} are statistically indistinguishable on
L if

Z [prob (U(x) a) prob (V(x) a)l < Ixl
tee{0,1}*

for all constants c > 0 and all sufficiently long x L.
Notice that, for U and V as above, if a "judge" is handed a polynomial (in [xl)

size sample, having infinite computing power will not help him to decide whether it
came from U(x) or V(x). His answer will be essentially useless, as he will say "1"
with essentially the same probability in both cases.

Example 2. Let U(x) assign equal probability to all strings of length Ixl, and let
V(x) assign probability 2-Ixl to all strings of length Ixl, except for 0Ixl, which is given
probability 0 and for 1 -I’l, which is given probability 2-I’l+. Then { U(x)} and { V(x)}
are two families of random variables statistically indistinguishable on {0, 1}*.

To formalize the notion of computational indistinguishability we make use of
nonuniformity (the reasons for this choice can be found in 3.4). Thus, our "judge,"
rather than being a polynomial time Turing machine, will be a poly-size family of
circuits. That is a family C {C} of Boolean circuits C with one Boolean output
such that, for some constant e > 0, all Cx C have at most Ixl gates. In order to feed
samples from our probability distributions to such circuits, we will consider only
poly-bounded families of random variables, that is, families U { U(x)} such that, for
some constant d > 0, all random variable U(x) U assigns positive probability only
to strings whose lengths are exactly Ixl d. If U { U(x)} is a poly-bounded family of
random variables and C { Cx} a poly-size family of circuits, we denote by P( U, C, x)
the probability that C outputs on input a random string distributed according to
U(x). (Here we assume that strings assigned positive probability by U(x) have lengths
equal to the number of Boolean inputs of C.)

DEFINI’rION (Computational indistinguishability). Let Lc {0, 1}* be a language.
Two poly-bounded families of random variables U and V are computationally indistin-
guishable on L if for all poly-size family of circuits C, for all constants e > 0 and all
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sufficiently long strings x L,

IP( U, C, x)- P( V, C, x) < Ixl -c.
This notion of computational indistinguishability was already used by Goldwasser

and Micali [GM] in the context of encryption and by Yao [Y] in the context of
pseudorandom generation. It is trivial that if U and V are identical, then they are
statistically indistinguishable. It is also not hard to see that if U and V are statistically
indistinguishable, then they are computationally indistinguishable, as follows. Let Cx
be a circuit and let S be the set of inputs on which Cx outputs 1. Since U and V are
statistically indistinguishable, the value of U(x) will be in S with almost exactly the
same probability that the value of V(x) will be. Hence P(U, C, x) will be very close
to P(V, C,x).

Example 3. Consider a probabilistic encryption algorithm that is secure in the
sense of Goldwasser and Micali [GM]; for n integer, let U(1 n) and V(I") be the
random variables taking as values the possible encryptions of 0 and 1, respectively,
on security parameter n. Then U and V are computationally indistinguishable on
L={I}*.

We believe that the notion of computational indistinguishability for random
variables achieves the right level of generality. Thus we will call indistinguishable any
two families of random variables that are computationally indistinguishable.

Remark 2. Let us point out the robustness of the last definition. In this definition,
we are handing our computationally bounded "judge" only samples of size 1. This,
however, is not restrictive. We note that two families of random variables { U,} and
{ V,} are computationally indistinguishable (with respect to samples of size 1) if and
only if when C, is given a polynomial in Ixl number of input strings, each independently
generated according to the distribution Ux, then the probability of accepting is close
to the probability of accepting when V, is used.

3.2. Approximability of random variables. We now formalize the notion that a
random variable U is essentially easy to generate. That is, there exists an efficient
algorithm that randomly outputs strings in a way that is indistinguishable from U.

DEFINITION. Let M be a probabilistic Turing machine that on input x halts with
probability 1. We denote by M(x) the random variable that, for each string c, takes
on c with exactly the same probability that M on input x outputs c.

DEFINITION. Let Lc {0, 1}* be a language and U={U(x)} a family of random
variables. We say that U is perfectly approximable on L if there exists a probabilistic
Turing machine M, running in expected polynomial time, such that for all x L, M(x)
is equal to U(x). We say that U is statistically (computationally) approximable on L
if there exists a probabilistic Turing machine M, running in expected polynomial time,
such that the families of random variables {M(x)} and { U(x)} are statistically (compu-
tationally) indistinguishable on L.

In what follows, we will use approximability to mean computational approximabil-
ity. We are now ready to define the notion of zero-knowledge.

3.3. Zero-knowledge protocols and proof systems. We first address the issue of a
"cheating verifier," B’, who is allowed not to follow the protocol.

DEFINITION. Let (A, B) be an interactive protocol. Let B’ be an interactive Turing
machine that has as input x and on an extra input tape H, where the length of H is
bounded above by a polynomial in the length of x. (Figure 1 must be emended to
allow B’ this extra tape.) When B’ interacts with A, A sees only x on its input tape,
whereas B’ sees (x, H). A good way to think of H is as some knowledge about x that
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the cheating B’ already possesses. Alternatively, H can be considered as the history
of previous interactions that the cheating B’ is trying to use to get knowledge from A;
this is .discussed in more detail in the next section. We assume that the total computation
time of B’ when interacting with A will be bounded above by a polynomial in the
length of x.

For a run of the protocol on common input x and extra input H, we define the
view of B’ to be everything that B’ sees. Namely, let tr (and p) be the strings contained
in the random tapes of A (and B’). Say the computation of A and B’, with these
random choices, consist of n turns with B’ going first, where ai (and hi) are the ith
messages of A (and B’), respectively. Then, we say that (p, bl, al," ", bn, an) is the
view of B’ on inputs x and H, and let ViewA.B, (X, H) be the random variable whose
value is this view. (Note that it would make no difference if we included in the view
the material written by B’ on its private tape, or excluded the strings that B’ sends to
A, since these bits can be efficiently computed from the other bits of the view.) For
convenience, we consider each view to be a string from {0, 1}* of length exactly [x]
for some fixed c > 0.

DEFINITION. Let L c {0, 1}* be a language and (A, B) a protocol. Let B’ be as
above. We say that (A, B) is perfectly (statistically) (computationally) zero-knowledge
on L for B’ if the family of random variables Viewa,B, is perfectly (statistically)
(computationally) approximable on

L’= ((x, H) lx L and Igl-

We say that (A, B) is perfectly (statistically) (computationally) zero-knowledge on L if
it is perfectly (statistically) (computationally) zero-knowledge on L for all probabilistic
polynomial time ITM B’.

Note that the definition of (A, B) being zero-knowledge (in some manner) for B’
only depends on A and not at all on B. It might be less misleading to think of A as
being zero-knowledge for B’. A similar issue arises in the definition of an interactive
proof system in 2.2. Part (2) of this definition depends only on B, and not at all
on A.

Computational zero-knowledge is certainly the most general of the above notions,
and we will refer to it simply as zero-knowledge. Zero-knowledge really captures any
information, which could not have been obtained efficiently in polynomial time, about
members of L. That is, if (A, B) is zero-knowledge, it is not possible, in probabilistic
polynomial time, to extract any information about members of L by interacting with
A, not even by "cheating."

DEFINITION. Let Lc {0, 1}* be a language. We say that (A, B) is a perfectly
(statistically) (computationally) zero-knowledge proof system for L if it is an interactive
proof system for L and a perfectly (statistically) (computationally) zero-knowledge
protocol on L.

We will refer to computationally zero-knowledge proof systems (the most general
notion of the three) simply as zero-knowledge proof systems. This notion is totally
adequate in the real world. That is, if (A, B) is a zero-knowledge proof system for L,
it is not possible in polynomial time (not even for a "cheating" B’) to interact with A
and extract anything else besides proofs of membership in L.

3.4. Some remarks about the above definitions. First, let us stress that the coin
tosses of B are an essential part of the notion of a view in the definition of zero-
knowledge for B. Consider the language L of all composite integers and the following
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protocol (A, B). On input an integer n, B randomly selects an integer x between 1 and
n and relatively prime with n. It then sends A the number a x2 mod n. A responds
by sending y, a randomly chosen square root of a mod n. Should the view consist only
of the text of the interaction between A and B, then the above-mentioned protocol
would be perfectly zero-knowledge on L. However, we define the view so as to contain
also the coin tosses of B. Thus, if (x, a, y) is randomly selected in VieW(A.B) (n), then
gcd (x 4-y, n) is not 1 or n with probability at least 1/2. Thus, if factoring is not in
probabilistic polynomial time, the above protocol is not zero-knowledge for B. (It
should be noted, however, that in the definition of zero-knowledge (for all B’), it is
not necessary to include the random bits of B’ in the view; this is because we have
included in the view the messages sent by B’, and for every B’ there is a B", which is
like B’ except that it sends its random bits as part of its last message.)

Second, it should be explained why B’ sees an additional string H. (The need for
this was independently discovered by the authors of this paper, by Oren [O], and by
Tompa and Woll [TW].) H may be thought about in a number of different ways; H
may be some extra information that the verifier (cheating or not) happens to know.
For example, a zero-knowledge protocol for graph isomorphism should remain zero-
knowledge even if the verifier happens to know colorings for the graphs. It is also
possible that the protocol will be inserted in the middle of another protocol, where
the verifier has seen some history H. There is the fear that this H was generated perhaps
by interacting with a machine of unlimited power; we want to rule out the possibility
of the verifier then obtaining knowledge by using H when interacting with A. It is for
a similar reason that the distinguishing circuits in the definition of" computational
indistinguishability are allowed to be nonuniform. We want to say that two families
of random variables can be computationally distinguished if there are circuits that tell
them apart, where the circuits may have wired in some information about x or some
information obtained from the history of some protocol in which the protocol of
interest is immersed. In other words, the view B’ obtains on inputs (x, H) should look
like the simulated distribution M(x, H).

One test of a definition is that we should be able to prove those facts that intuition
dictates must be true. One such fact is that the repetition of a zero-knowledge protocol
a polynomial number of times is still zero-knowledge. We can prove this with our
current definitions, but we cannot prove it if, for example, we do not give B’ the extra
string H. We can also prove that if B’ wants to decide a special predicate P(x) for
x L, it does not help B’ to engage in a zero-knowledge proof system for L. We can
prove all the intuitively obvious "facts" we have tried to prove, but only time will tell
if these definitions are the right ones, or if they need some further modifications. We
feel (and hope) that these definitions capture exactly the intuitive ideas we have tried
to capture.

Last, there is the peculiar fact that the machine M simulating the view is allowed
to operate in expected polynomial time. This appears to be necessary for the zero-
knowledge proof system for QNR given in 6. To see why this is necessary in general,
consider a pair (A, B), where B (on input of length n) sends n random bits a to A;
if the predicate P(a) holds, then A sends a random fl of length n such that P(fl)
holds. Imagine that the predicate P is easily computable, but the number of strings
of length n for which P holds is small--maybe a fraction n-1 or maybe n-2--but
we do not know exactly which; imagine that the only way we know to find a string
for which P holds is to select random strings until one satisfying P is found. The only
way we know how to simulate the view of B statistically closely (or even computationally
indistinguishably) is to choose a random a ;.if P(t) holds, look through random n-bit
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strings until a/3 is found such that P(fl) holds. This process is only expected polynomial
time.

3.5. Examples of zero-knowledge languages. Trivially, all languages in BPP have
perfect zero-knowledge proof systems. (A language is in BPP if there is a probabilistic,
polynomial time machine which on each input computes membership in the language
with small probability of error.)

The first nontrivial zero-knowledge proof systems (i.e., for recognizing languages
not known to be in BPP) are the perfect zero-knowledge proof systems for the quadratic
residuosity language QR given in 5, and the statistically zero-knowledge proof system
for QNR given in 6.

Recently, Goldreich, Micali, and Wigderson have shown in [GMW] that the
graph isomorphism language has a perfect zero-knowledge proof system, that
the graph nonisomorphism language (though not known to belong to NP) has a
statistically zero-knowledge proof system, and that all languages in NP possess
computationally zero-knowledge proof systems if secure encryption schemes exist. In
[BGGHKMR] it is proved that all languages in IP possess zero-knowledge proof
systems.

Results by Boppana, Hastad, and Zachos [BHZ] and Fortnow [Fo] show that if
an NP-complete language had a perfect or statistically zero-knowledge proof system,
the polynomial time hierarchy would collapse. Thus it may not be surprising that the
interactive proof systems in [GMW] for graph coloring were zero-knowledge only in
a computational sense. A more immediate reason for their being computationally
zero-knowledge is that they make use of probabilistic encryption [GM] (see Example
3). This may tempt us to interpret Fortnow’s result as saying that encryption is crucial
in any zero-knowledge proof system for NP-complete languages. (Further discussion
on Fortnow’s result can be found in 7.)

3.6. A study of earlier proposals. Having reached the notion of a zero-knowledge
proof system, let us now have a second look at the earlier, Arthur-Merlin type, proof
systems of Blum [B1] and Goldwasser and Micali [GM1] that we have already
mentioned in 2.3.

The Proof System for BL (defined in 2.3). In his beautiful paper, assuming that
integer factorization is computationally hard, Blum proposes a protocol for flipping a
coin over the telephone. For "fairly" flipping a coin, Alice and Bob need an integer
n whose prime factorization is known to Alice but not to Bob, and has a special
property, namely, n BL. Alice is sure that the coin flip is fair because she computes
n by multiplying two randomly selected primes both congruent to 3 mod 4, and because
she trusts that factoring is hard. Bob, after the coin has come up Head or Tail, checks
that the flipping was fair by requesting n’s factorization from Alice. Thus a different
n should be selected for each coin flip. To make coin flipping more efficient, Blum
proposed to test that n BL, by means of a protocol that does not give away n’s
factorization in any obvious way. After slightly modifying it, Blum’s protocol can be
proved to be perfect zero-knowledge on BL. However, without this modification, it is
not clear how much knowledge about n’s factorization it releases.

The Proof Systems for GM1 and GM2 (defined in 2.3). The cryptographic
protocols of Goldwasser and Micali use the inefficient version of Blum’s coin-flipping
protocols, and thus assume that factoring integers is computationally difficult. Based
on this assumption, they showed that their proof systems do not give away the prime
factorization of an input n. That is, no cheating polynomial time verifier can, after
participating in the protocol, compute n’s factorization much faster than it could before.
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More generally, their same protocols can actually be proved to be computationally
zero-knowledge on, respectively, the languages GM1 and GM2. Thus, in particular,
their protocols do not even give away whether or not, say, 3 is a quadratic residue mod n.

3.7. Interactive proof systems versus Arthur-Merlin games for zero-knowledge. We
are now ready to formally express our belief that interactive proof systems are more
appropriate than Arthur-Merlin games for recognizing languages in zero-knowledge.

CONJECTtRE. There exist languages L that have perfect or statistical zero-knowl-
edge proof systems, but do not have any Arthur-Merlin proof system that is perfect
or zero-knowledge on L.

4. The quadratic residuosity problem. In this section we describe the necessary
number-theoretic background and notation needed for the proofs in 5 and 6.

Let N denote the natural numbers, x N and Z* {yl 1 -< y <x, gcd(x, y) 1}. We
can determine in time polynomial in [xl and lyl whether or not y Z*.

We say that y in Z* is a quadratic residue rood x if there exists a w in Z* such
that w2=-y mod x. Otherwise, we call y in Z* a quadratic nonresidue mod x.

FACT 1. Let x 6 N and y 6 Z*. Then, y is a quadratic residue rood x if and only
if it is a quadratic residue mod all of the prime factors of x.

Define the quadratic residuosity predicate to be

Qx(Y) { 01 if y is a quadratic residue mod x,
otherwise.

Then we have the following fact.
FACT 2. Let x N and y Z*. Given y and the prime factorization of x, Qx(y)

can be computed in time polynomial in Ix].
Let y Z* and the prime factorization of x be 1-I ki=1 pTi. Then, the Jacobi symbol

of y mod x is defined as

k

(y/x): II (y/p)%
i=1

where (Y/Pi): if y is a quadratic residue mod Pi, and -1 otherwise.
FACT 3. Given x N and y Z*, (y/x) can be computed in time polynomial in
The Jacobi symbol ofy mod x gives some information about whether y is quadratic

residue mod x or not. If (y/x)=-1, then y is a quadratic nonresidue mod x and
Qx(y) 1. However, when (y/x)= 1, no efficient (probabilistic or deterministic poly-
nomial time) solution is known for computing Q(y) correctly with probability sig-
nificantly better than 1/2. This leads to the formulation of the quadratic residuosity
problem.

DEFINITION. We define the quadratic residuosity problem as that of computing
Q(y) on inputs x and y, where y in Z* and (y/x)= 1,

The current best algorithm for computing Q(y), is to first factor x and then
compute Q(y). In fact, factoring integers and computing Qx have been conjectured
to be of the same time complexity. The difficulty of the quadratic residuosity problem
has been used as a basis for. the design of several cryptographic protocols [GM],
[LMR], [B1].

Define the following two languages:

QR: {(x, y)lx 6 N, y Z*, and Qx(y) 0},

QNR= {(x, y)lx N, y c: Z*, (y/x): 1, and Qx(y) 1},

where x and y are presented in binary.
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Clearly, by Facts 1 and 2, both QR and QNR are in the intersection of CO-NP
and NP. However, no probabilistic polynomial time algorithm is known that accepts
these languages, and thus they are not trivially zero-knowledge. In 5 we show a
perfectly zero-knowledge proof system for QR, and in 6 we show a statistically
zero-knowledge proof system for QNR. The following facts will be useful in the
zero-knowledge proofs of 5 and 6.

FACT 4. Let x e N. Then, for all y such that Qx(y)= 0, the number of solutions
w e Zx* to w2=y mod x is the same (independent of y).

FACT 5. Let x e N, y, z e Zx*. Then we have the following:
(a) If Qx(y) Qx(Z)=0, then Qx(yz)=O.
(b) If Qx(y) Qx(z), then Qx(yz)= 1.
Fhc-r 6. Given x, y, the Euclidean gcd algorithm allows us to compute in poly-

nomial time whether or not y e Zx*.
5. Zero-knowledge proofs of quadratic residuosity. Recall that QR {(x, y)[y is a

quadratic residue mod x}, where x and y are presented in binary.
We will first informally describe our zero-knowledge interactive proof system for

QR, and then describe it with more rigor. Say that A and B are given (x, y), ]x] m;
then the following is done m times:

A sends B a random quadratic residue mod x, u.
B sends A a random bit, bit.
If bit 0 then A sends B a random square root of u mod x, w; if bit 1 then
A sends B a random square root of (uy)mod x, w.
B checks that either [bit =0 and w2 mod x= u] or [bit 1 and w2 mod x=
(uy) mod x].

More formally, we assume, for convenience, that A starts the protocol.

A’s PROTOCOL ON INPUT (x, y) 6 QR.
FOR to m

Use random bits to generate u, a random quadratic residue mod x.
SEND u to B
GET a string/3 from B; let bit the first bit of/3 (or 0 if/3 is empty). If
bit- 0, use random bits and generate w, a random square root of u mod x;
if bit=l, use random bits and generate w, a random square root of
(uy) mod x.
SEND w to B
GET a string from B (this will merely indicate that B wishes to continue the
protocol).

END FOR
SEND "terminate" (just a string to finish off the protocol) to B.

B’s PROTOCOL ON INPUT (x, y).
See if x >- 1 and y Z*; if not, halt.
FOR i-1 to m

GET u from A. See if u Z*; if not, halt.
Generate a random bit.
SEND bit to A.

2GET w from A. See if w Z* and either [bit =0 and w mod x ui] or
2[bit- and w mod x (uy) mod x]; if not, halt.

SEND "okay" (just a string to continue the protocol) to A,
END FOR
GET any string from A, and halt accepting.
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This is clearly an interactive protocol.
CLAIM 1. The above (A, B) protocol is an interactive proof system for QR.
Proof Say that B is interacting with an arbitrary A’. Say that x => 1, y Z*, and

y is not a quadratic residue mod x. For each ui that B receives from A’ it cannot be
the case that both ui and (uy) have square roots mod x. Since A’ does not see any biti
in advance, there is at most a 1/2 probability that B will "okay" the ith pass. Hence, the
probability that B will say "convinced" is at most 1/2".

We will now show that the protocol is zero-knowledge for QR.
THEOREM 1. The above (A, B) protocol is a perfectly zero-knowledge proof system

for QR.
Proof Let B’ be an arbitrary polynomial time ITM that interacts with A. Let

(x, y) QR be the common input to the pair (A, B’), Ix[- m, and let H be the extra
input to B’. For convenience we consider the view VieWA., ((X, y), H) to consist of
the random variables

R, U1, BIT1, W1, U2, BIT2, W2,’’’, U,,, BITm,

where R is the string of random bits generated by B’, Ui takes on the value ui, BIT
takes on the ith message of B’, etc.

One way to describe the distribution of the view is as follows: R is assigned a
random bit string r (of the appropriate length). Say that R, U1, BIT1, W1, ’’’, U,
BIT/, W/ is the random variable V. Assume that for some i, 1 =<i< m, V has been
given the value v; we will describe the experiment for giving values to
Ui+, BIT+, W/+.

EXPERIMENT
Choose for Ui+ a random quadratic residue mod x, Ui+ If B’ were B, we would
choose BIT+ to be the (i+ 1)st bit of r. However, all we can say is that BITi+I
is assigned the value bit+l=f(x,y, H, v, U+l), where f is some (0, 1}-valued
function computable in deterministic, polynomial time. If bit+ =0, then W+
gets the value wi+, a random square root of u+ mod x; if bit+ 1, then W+I
gets the value W+l, a random square root mod x of (u+y)mod x.

Having characterized the view with the above experiment, we will now describe
a probabilistic Turing machine M that, given (x,y)QR and a string H, runs in
expected polynomial time, and such that its output distribution M((x, y), H) is exactly
the same as V, above; that is, M((x, y), H) is the same as VieWA,B, ((X, y), H). M
begins by choosing r equals a random bit string (of the appropriate length). Assume
that vi has been chosen for some i, 1-<_ < rn; M outputs U+l, bit+, wi+ according
to the following program:

DO FOREVER
biti+ := a random member of {0, 1}
w+l := a random member of Z*
IF biti+ 0 THEN

2
ui+ := Wi+l mod x

ELSE
Ui+l _.. 2wi+ly- mod x

IF bit+ f(x, y, H, v, U+l) THEN
OUTPUT ui+, biti+l, wi+ and HALT

END DO
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Two things about M’s program must be clarified. First, the way M chooses a random
member of Z* is by choosing random m-bit strings until one is found that is in Z*;
this halts in expected polynomial time. Secondly, by ,,y-l,, we mean that unique
member of Z* which when multiplied by y mod x yields 1.

We now show that M halts in expected time polynomial in m, with exactly the
right output distribution.

Let R’, U’i, BIT’i, W’} be the random variables corresponding to the output of
M, and let V be defined similarly to V. Certainly R’ has exactly the same distribution
as R. Let 1 =< < m and assume that VI has exactly the same distribution as V, and
assume that M gives a value to V’ in expected time polynomial in m. Say that both
V and VI have been given the value v; we wish to show that the above piece of
program code halts in expected time polynomial in m, with the same output distribution
as the above experiment, given that V

Consider the body of the DO loop up to but not including the last test. If bit+ 0
at this point, then since every quadratic residue in Z* has the same number of square
roots (mod x), ui+ is equally likely to be any quadratic residue, and w+ will be a
random square root of ui+; if bit+ 1 at this point, then u+ will also be a random
quadratic residue in this case (since y is a quadratic residue), and wi+ will be a random
square root of (u+y)mod x. Therefore, the body of the DO loop has the following
effect (even though the following code may not be efficiently executable):

EQUIVALENT DO BODY
u+l := a random quadratic residue mod x.

bit+:= a random bit
IF biti+ f(x, y, H, Vi, Ui+I) THEN

IF biti+--0 THEN wi+ := a random square root mod x of u+ FI
IF bit/ 1 THEN W/l := a random square root mod x of (u/y) FI
HALT and output (ui/, biti/, w/)

FI

It is clear that the equivalent body halts (and outputs) with probability , and therefore
that the actual DO loop halts in expected polynomial time. Since for each value of
u+l the equivalent body is equally likely to halt, U+ gets assigned (by the DO loop)
a random quadratic residue. BITI/ will be assigned f(x, y, H, v, u/). Lastly, we can
see from the equivalent body that in the case where the DO loop halts, WI+I gets
assigned a random square root of ui/ or of (u/ly), depending on bit,/t, as required.

6. Zero-knowledge proofs of quadratic nonresiduousity. We define QNR=
{(x,y)lyZ*,, (y/x)= 1, Q,(y)= 1}, where x and y are presented in binary.

Let (A, B) be an interactive protocol given as input (x, y) such that ]xl m.
The basic idea of the protocol is that B generates at random elements w of two

types: w-= r2 mod x (type 1) and w r2y mod x (type 2), and sends these elements to
A. If (x, y) QNR then A can tell of which type w is by computing whether w is a
quadratic residue (type 1) or not (type 2). If (x, y) is not a member of QNR, w is
always a quadratic residue mod x and A cannot guess its type better than guessing at
random. Thus, A will not be able to tell the types of the w’s and B will not be convinced
that (x, y) QNR.

This idea is sufficient as a proof system but not as a zero-knowledge proof system.
The danger is that B may not have followed the protocol and generated elements w
in a manner differently than specified in the protocol. We get over this difficulty by
complicating the protocol to force B to convince A that indeed B knows whether w
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is of type or type 2. He does this by convincing A that he knows either a square root
of w or a square root of wy-1 mod x, without giving A any information (in the
information-theoretic sense) of which one he really knows.

Our original protocol, which appeared in [GMR], was more complex to prove
than the one presented here. The simplified protocol presented here was suggested by
Cohen [Co].

As was done for the QR language, we will first informally describe an interactive
protocol, which we claim is a statistical zero-knowledge interactive proof system for
QNR, and then describe it with more rigor.

The following (A, B) protocol on input (x, y) should be repeated m times.

B picks at random r Z* and bit {0, 1}. If bit 0, B sets w r2 mod x; other-
wise B sets w rZy mod x. B sends w to A.
For 1 <=j<-_m, B picks random rl, rj2Z* and a random bib{O, 1}. B sets

a r}l mod x, and bj=yr}2 mod x. If bib 1, B sends A the ordered pair,
pair (a., b); else if bit O, B sends to A pair (b, a).
A sends B an m-long random bit vector ili2’’" ira.
B sends A the sequence v vl, v2,. , v,,; if !j =0 then v (rl, r2); if i 1
then v. rr mod x (a square root of wa mod x) if bit 0, and v yrr2 mod x
(a square root of wb mod x) if bit 1.
(The intuition behind this step is as follows: if i 0, then B is convincing A
that pair was chosen correctly; if i 1, then B is convincing that if pair was
chosen correctly, then w was chosen correctly.)
A verifies that the sequence v was properly constructed. If not, A sends terminate
to B and halts. Otherwise, A sets answer 0 if w is a quadratic residue mod x
and 1 otherwise. A sends answer to B.
B checks whether answer bit. If so B continues the protocol, otherwise B
rejects and halts.

After m repetitions of this protocol, if B did not reject thus far, B accepts and halts.

More formally, we proceed to describe first the protocol for B and then the
protocol for A. The protocol consists of B going through its first stage, followed by
A’s first stage, followed by B’s second stage, followed by A’s second stage, etc., until
either A or B chooses to terminate the protocol.

Denote by v {v; v} the result of extending sequence v with element v.
B’s PROTOCOL ON INPUT (x, y).
Check that x _-> 1 and that y Z* and that (y/x)= 1.
Set m Ixl.
Repeat Stages 1-3 m times.
Stage 1.1

use random bits to pick r Z* and bit {0, 1}.
IF bit 0 set w r mod x, else set w rZy mod x FI
FORj=I,2,. .,m

choose random rl, r2 Z* and random bit {0, 1}.
set a-- rl mod x and bg r}:y mod x.

1The careful reader may observe that picking Z "exactly at random" can be done in expected
polynomial time, while our B must by definition run in a fixed polynomial number of steps. Fortunately,
B can pick Z* "almost at random" in a fixed polynomial time. This will have a negligible effect on the
result and we omit any further details on this point.
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IF bit 0 set pair (a, b) else set pairj (bj, aj) FI
END FOR
SEND (w, pair for j 1, ., m) to A.

Stage 2.
GET from A and m-long bit vector i= i1"" ira, where i {0, 1}.
Initialize the sequence v to the empty sequence.
FORj=I,...,m

IF/=0 then set vg (rjl, j2) and set v {v; v.} FI
IF ig 1 do one of the following:

IF bit =0 then set vg rrl mod x v/wag mod x and set v {v; v}
otherwise set vg yr)2 mod x j mod x and set v { v; vg} FI

FI
END FOR
SEND v to A.

Stage 3.
GET answer {0, 1} from A.
IF answer bit then reject and halt
otherwise go to stage 1 FI.

After m iterations of Stages 1-3, if the protocol has not halted by now, accept and halt.

A’s PROTOCOL ON INPUT (x, y) c QNR.
Stage 1.

GET (w, pairj for j 1,. ., m) from B.
Pick at random il im where i {0, 1}.
SEND to B.

Stage 2.
GET sequence v from B
for every j=l,..., m check that, if i=0, then v is a pair (s, t) such that
(s mod x, t2y mod x) equals pairg, possibly with the elements interchanged; and
if/ 1, then (v})w- mod x is a member of pairg. If not, SEND terminate to B
and halt.
(Assume that the above checks have succeeded.)
If w is a quadratic residue mod x, set answer 0 and if w is a quadratic nonresidue
mod x, set answer 1.
SEND answer to B.
Go to Stage 1.

We first prove that (A, B) is an interactive proof system for QNR.
CLAIM 2. (A, B) is an interactive proof system for QNR.
Proof. Clearly (A, B) is an interactive protocol. If (x, y) QNR and A and B

follow the specification of the protocol, then for every execution of Stages 1-2 by B,
w is a quadratic nonresidue mod x if and only if bit 1. Thus, in A’s Stage 2, A can
always decide whether w is a quadratic residue mod x or not and send answer to B
such that answer bit and B will always accept.

Suppose that (x, y) not in QNR (i.e., y is a quadratic residue mod x) and that B
is interacting with an arbitrary prover A’, in the kth iteration of Stages 1-3. Then we
claim that even an A’ with infinite computation power cannot distinguish an interaction
with B where bit 0 from an interaction with B where bit 1. This is argued as follows.
At Stage 1, A’ gets the list (w, pair for j 1,..., m), where w is a random quadratic
residue, and where pair simply consists of a pair of random quadratic residues. This
gives absolutely no information about the value of bit.
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Now consider Stage 2, where 0. A gets (rl, rz). Note that rl. is just a random
square root of a and rz is a random square root of b/y mod x. So all that A sees is
the result of randomly choosing (or not) to reorder pair, and then taking a random
square root of the first element and a random square root of the result of dividing the
second element by y (all mod x, of course). This gives no information about bit.

Now consider the case where 1. If bit 0 then A gets rr mod x, which is a
random square root of wa mod x. If bit 1 then A gets yr)z mod x, which is a random
square root of wb mod x. Since pair is a random reordering of (a, b), v is equally
likely to be a random square root of w times the first element of pair as it is to be a
random square root of w times the second element of pair, no matter what bit is.

Thus, from the information that A’ receives in Stages 1 and 2, the value of bit is
as likely to be 0 as it is to be 1 and the chance that A’ predicts bit correctly is no
greater than 1/2. In rn iterations through Stages 1-3, the probability that A’ computed
answer such that answer bit is at most 1/2m. 13

Proving that the (A, B) proof system is statistically zero-knowledge for QNR is
much more complex.

THEOREM 2. The aboveprotocol (A, B) is a statistically zero-knowledgeproofsystem
for QNR.

Proof. Let B’ be an arbitrary probabilistic polynomial time interactive Turing
machine interacting with A. Let (x, y) QNR be input to (A, B’), let m [xl, and let
H be the extra input to B’.

For convenience, consider the random variable ViewA,B, ((X, y), H) (B"s view of
an iteration of the protocol) to consist of the random variables"

RAN, and

{ Wk, {PAIR: 1 <=j -<_ m}, (I: 1 <=j <= m}, Vk, ANSWERk 1 -<_ k -<_ m}.

RAN is the string of random bits generated by B’; Wk takes on the value of w in the
kth iteration of the protocol; PAIR takes on the value of pair in the kth iteration of
the protocol; I takes on the value of in the kth iteration of the protocol; Vk { V}
takes on the value of the sequence v in the kth iteration of the protocol; and ANSWERk

takes on the value of answer in the kth iteration of the protocol.
For simplicity (notational and otherwise) we concentrate on showing that a single

iteration of the protocol is zero-knowledge. Doing the general case implies carrying
along the view of the protocol so far as was done in the proof of Theorem 1. Thus,
from here on we drop all superscripts and work with the random variables: RAN, W,
{PAIR}, {/}, V= {V}, and ANSWER.

Note that in a good execution of the protocol (namely, if B’s protocol is followed),
we expect that W r mod x or W rZy mod x, where r is a substring of RAN; and
that PAIR (r} mod x, r}zy mod x) or (r}zy mod x, r} mod x), where rl and r2 are
substrings of RAN; and that for all _-<j =< m, if/ 0 then V will equal (r, r/z); and
if/ 1 then V rr mod x or yrrjz mod x.

However, since B’ may not follow the protocol, all we can say about these random
variables is that RAN is a random binary string; W (and PAIR) are assigned values
w (and pairj) computed by B’ on inputs x, y, H and RAN; I is a random binary string
of length m; and V is a value computed by B’ on inputs x, y, H, RAN, L

We will now describe a probabilistic Turing machine M that, given (x, y) QNR
and H, runs in expected polynomial time, and whose output distribution is statistically
indistinguishable from ViewA,B,((X, y), H).
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M starts by outputting a random string ran of the appropriate length and running B’
on inputs (x, y, H), and random tape ran on it. B’ goes through Stage 1 outputting
w, pairj, for -<j -< m.
Next, M chooses i,. ., i,, at random in {0, 1}, sets i= i ira, and writes on B"s
communication tape, activating B"s Stage 2.
B’ goes into Stage 2, writing on its communication tapes a sequence v { v.}. M outputs
w{pair}, i, v.
Next M does the checking that A does in Stage 2.
If the check fails M outputs "terminate" and halts.

Let us assume that the check succeeds. Think of x, y, H, ran as being fixed, so
that w and {pairj} are also fixed. The fact that the check succeeds means that A sending
to B’ causes B’ to send a v to A, which causes A to send a one-bit answer to B’

(rather than terminate); let us call any such i’ special M has just computed that is
special, and now wants to compute the value of answer that A would send. This value
is 0 if w is a quadratic residue mod x, and otherwise. Since B’ may not have computed
w the way B would have, it is not obvious how to compute the quadratic residuosity
of w, i.e., answer.

It turns out that finding one other special string i’ will allow M to determine
if w is a quadratic residue, as follows:

Say that i 0 and t and i, are special. Let v, v be the sequences sent by B’
after receiving or i’ (respectively); these can be computed in polynomial time
by running B’. Since /=0, vj=(s, t), where (s2 modx, t2y modx) equals pair,

"--1 (vj)2possibly with the elements reversed. Since t w-modxpair. If
(vj)Zw-modx=s2modx, then w is a quadratic residue modx; if
(vj)2w- mod x t-y mod x then w is a quadratic nonresidue mod x.

It therefore remains to find a special i’ mod x. M uses the following algorithm.

ALGORITHM TO FIND A SPECIAL i’ i.
Test 2" random i’ of length m (with replacement), halting when either a special
i’ is found, or when 2" strings have been tried. If no special i’ has been
found, then test all m-bit strings (in order), looking for a special i’ i.

if a special i’ is found, then M calculates answer as explained above and outputs
answer. If no such i’ exists, then M outputs "?"; note that this will happen when is
the only special string.

In order to show that M operates in expected polynomial time, it is sufficient to
show that M operates in expected polynomial time for each fixed value of (x, y, H, ran).
Say that x, y, H, ran are fixed, and so w, pair are also fixed. Let k be the number of
strings that are special. If k =0, then the ALGORITHM TO FIND A SPECIAL i’
will not be invoked, and the running time is clearly polynomial in m. If k 1, then
with probability (1/2")M will choose a special i; in that case the ALGORITHM will
run for time 2ram (for some c), so the expected running time is
polynomial in m.

Assume that k > 1. M will choose a special with probability k/2". To calculate
an upper bound on the expected running time of the ALGORITHM, imagine that it
was changed so that it tested random i’, including and with replacement, halting if
and when a special i’ is found; the expected running time would be at least half
that of the ALGORITHM. In effect, a coin is being tossed until "heads" comes up,
where the probability of"heads" is exactly (k- 1)/2". It is well known that the expected
number of coin tosses is exactly 2"/(k-1). Hence the expected time for the
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ALGORITHM is -<(2"/(k- 1))m (for some c). The total expected time is <-(k/2")-
(2"/(k- 1))me+ a polynomial in m, which is polynomial in m.

Recall that M((x, y), H) is the random variable denoting the distribution of M’s
output given x, y, H. It remains to show that M is statistically close to ViewA,B,. Fix
x, y, H. If ran is such that the number of special strings is not exactly 1, then any
output string a beginning with ran is taken on by VieWA,B,((X, y), H) with exactly the
same probability as by M((x, y), H). Let S be the set of a ran, w, {pairj}, i, v, answer,
where is the unique special string determined by ran. The probability that
ViewA,,((X, y), H) takes on a value in S is <-1/2", since for each ran there is at most
one i, which will be the unique special string. Similarly, the probability that M((x, y), H)
takes on a value in S is <- 1/2". Thus,

[prob (M((x, y), H)= a)-prob (VieWA.,((X, y), H)= a)[

Y [prob (M((x, y), H)= a)-prob (ViewA,n,((x, y), H)= a)[
ac!S

+ 2 [prob (M((x, y), H)= a)-prob (Viewa,,((x, y), H)= a)[

1 1 2
<- 0 + .-’; + 2" -2"

And for m iterations of the protocol, the difference is

2m
E IPrOb (M((x, y), H) a)-prob (VieWA,B,((X, y), H) ce)l <- ---.

This completes our proof, l-I
Remarks. In fact, the above protocol can be shown to be perfect zero-knowledge.

We just have to change M so that when it discovers that is the unique special string
it factors x in time roughly 2", and then determines if w is a quadratic residue mod x
in polynomial time. This does not change the expected running time by more than a
polynomial factor, since when M decides to do this extra work, it has already spent
time 2".

7. Related work.
7.1. Work related to interactive proof systems. In studying his Arthur-Merlin

games, Babai [Ba] has focused on the number of rounds, i.e., the number of times the
prover and the verifier alternate in sending messages. Babai denotes the set of all
languages accepted by rounds in an Arthur-Merlin proof system by AM[i], and
AM[f(n)] denotes the set of languages accepted by an Arthur-Merlin proof system
with f(n) rounds. Here f is a nondecreasing function from natural numbers to natural
numbers, and n the length of the input.

The elegant simplicity of Babai’s definition allowed him to show that for every
constant k, AM[k] collapses to AM[2]. This in turn is a subset of both II and
nonuniform NP.

We define IP[f(n)] as the class of languages having an interactive proof system
with f(n) rounds.

Goldwasser and Sipser [GS] show that, for all f, AM[f(n)]- IP[f(n)].
On the other hand, Aiello, Goldwasser, and Hastad [AGH] have shown that for

any two nonconstant functions g(n) and f(n) such that g(n) o(f(n)), there exists
an oracle X such that (if we modify the definitions so that one is computing using the
oracle X) IP[g(n)] is strictly contained in IP[f(n)]. This result is tight as Babai and
Moran [BM] have shown that for all constants c>0, IP[f(n)] IP[cf(n)]. Namely,
IP[ O(f(n))] is well defined.
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An interesting question is the following. Where does IP stand with respect to the
polynomial time heirarchy? Boppana, Hastad, and Zachos [BHZ] have shown that if
CO-NP has a constant-round interactive proof system, then the polynomial time
hierarchy collapses. Thus, from the results of [GMW], [GS], and [BHZ], it follows
that graph isomorphism is not NP-complete unless the polynomial time hierarchy
collapses.

Other works related to the study of randomized and nondeterministic complexity
classes appear in [P] and [ZF]. In Papadimitriou’s Games Against Nature, the verifier
is also a probabilistic polynomial time machine that flips coins and presents them to
a prover capable of optimal moves. This is different from our model in that L is said
to be accepted by a game against nature if x L implies that the probability of the
prover to win the game is greater than a rather than bounded away from a 1/2.

Zachos and Furer [ZF], in a work investigating the robustness of probabilistic
complexity classes, introduce a framework of probabilistic existential and universal
quantifiers and prove several combinatorial lemmas about them. The AM and thus IP
complexity classes can be formulated in terms of these special quantifiers.

7.2. Work related to knowledge complexity. Prior to our work, the theory of
knowledge had received much attention in a model-theoretic framework (see [FHV]
and [HM] for discussion). There are several essential differences between this
framework and ours. In the latter, knowledge is defined with respect to a specific
computational model with specific computational resources. In the former framework,
there are no limitations on the computational power of the participants, i.e., they
"know" all logical consequences of the information they possess. (For discussion of
this aspect see, Belief Awareness, and Limited Reasoning [FH].) As for another
difference, in our model knowledge is defined with respect to an available public input
and is gained by computing on this input. In their model-theoretic framework knowl-
edge is gained by being told (or witnessing) that a certain event is true (e.g., the
outcome of a coin flip is heads), rather than by computing.

Galil, Haber, and Yung [GHY] proposed the following extension of the concept
of a zero-knowledge interactive proof systems. A language L is said to have a result-
indistinguishable zero-knowledge proof system if there exists an interactive protocol
(A, B) such that for every string x {0, 1}*, A can convince B that x L or x is not
in L (whichever is the case) with high probability, such that no passive observer C
can get any information of which is the case. They give a result-indistinguishable proof
system for QR.

As previously mentioned, Goldreich, Micali, and Wigderson [GMW] have shown,
subject to the existence of secure encryption schemes, that all languages in NP have
computationally zero-knowledge proof systems. Subsequently, related notions of
proof systems and zero knowledge were given by Brassard and Crepeau [BC] and
Chaum [Ch]. They found that for any language L in NP, there is an interactive
protocol that

(1) is zero-knowledge, and
(2) proves membership in L correctly (i.e., with probability approaching 1) only

if factoring is computationally difficult and the prover is polynomial time.
Let us explicitly contrast their protocols with the ones in [GMW]. The latter ones

(1) correctly prove membership in L, and
(2) are zero-knowledge only if secure encryption schemes exist (which is true if

factoring is difficult).
Finally, let us mention the recent result of Fortnow.
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THEOREM [Fo]. Assume a language L has an interactive proof system (A, B) that
is statistically zero-knowledge with respect to B. Then L’s complement has a constant-round
interactive proof systein.

As a corollary, if SAT had statistically zero-knowledge proof systems, the poly-
nomial time hierarchy would collapse.

Note that the hypothesis of Fortnow’s theorem is much weaker than saying that
(A, B) is a statistically zero-knowledge proof system on L, which would mean that,
for all verifiers B’, A is zero-knowledge on L for B’. Usually, it is defeating this latter
quantifier "for all" that makes it hard to find a perfect or statistically zero-knowledge
proof system. Thus Fortnow’s result has the potential to be widely applicable.
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A LOWER BOUND ON THE COMPLEXITY OF DIVISION IN
FINITE EXTENSION FIELDS AND INVERSION IN
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Abstract. Let k be a field. The author continues the work of Lickteig [SLAM J. Comput., 16 (1987),
pp. 278-311] and extends it in two directions: (1) A lower bound on the Ostrowski complexity of division
in a finite extension field A k: LtlV>=3[A:k]+log_[B:k]-2, where Bc A is some simple extension of
k of maximal degree. The proof combines the technique of adjoining intermediate results to the ground
field [T. Lickteig, op. cit.] and lower bound criteria for approximative complexity recently obtained by
Griesser Theoret. Comput. Sci., 46 (1986), pp. 329-338].

(2) An optimal lower bound for the complexity of inversion in a quadratic alternative algebra A of
dimension greater than or equal to 2, A k k: LN 2 dim A index of the norm.

Key words, arithmetic in finite extension fields, Ostrowski complexity, substitution method, adjunction
of intermediate results to the groundfield and approximative complexity
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Throughout this paper k is assumed to be an infinite field. We use the same
notation as in [8, 2].

1. Finite extension fields. Let A k be a finite extension, m [A: k]. Division in
A is a k-rational mapping:

A A- A, (x, y)-> x-ly,

with A being viewed as m-dimensional k-vector space. When we fix a k-basis
Wl,’", tom Of A and use the basis (Wl, 0),..., (0, tom) Of A A, division is given by
rational functions ql, ", q, k(X, Xm, Y, , Y,,) such that x-ly
2im qi(oz,[)tOi if X-2i<:rn OiO)i, y--i<=mitO with ai, ik. The complexity of
division LDV is defined as the Ostrowski complexity L(ql,’’’, q,) (cf. [2]). As is
easily verified, LDV does not depend on the choice of the bases, so it is well defined.

As k is assumed to be infinite, we may equivalently view k(X, Y) as functions on
A x A. Accordingly, in the sequel we allow ourselves to change to the function interpre-
tation if it is more convenient. In this sense X1,’", Ym is the dual basis to
(Ol, 0),..., (0, Win) in (A A)*.

We note that division always has a reduction to multiplication; also in the more
general case of arbitrary associative algebras A: for a unit r A and r/ A, we have
the expansion

( x)- rt + (y x-’9 )) -r + -xrl + y + xy + (higher-order terms).

Now, choosing (sr, r/) appropriately and applying Strassen’s idea of computing the
quadratic terms [9], we obtain for the left division LLDV>__--LMVLV. Similarly for the
right division in A, we obtain LRDIV=> LMUL-r. Both coincide if A possesses an anti-
automorphism. So in case of finite field extensions LDv-->2m by Fiduccia and
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Zalcstein [4], Winograd [10], and Alder and Strassen [1]; and for simple extensions
this lower bound is the best we can get in this way.

To obtain a more explicit representation for the qi, we recall the norm function
N’" A--> k, N/(x) being defined as the determinant of the regular representation Rx
of x A (e.g., [7]). Let S denote the maximal separable extension, k S A. By the
transitivity of the norm N Nso NsA, where N’x-- x", u [a" k]i [A’S]. Let
/x --min { u" Vx A, x S}. By the theorem on primitive elements, we have

(1)
/x max {[B" k]" B A,Bksimple}

max {[ B" k]/[S" k]" B c A, B k simple}.

The principal norm N" A k is defined by N(x) N(x) for x A. Let n" A A k
be the composition N 7rl of N with the first projection; so n k[X], and by (1)
deg n =max {[B" k]: B A, B = k simple}. Let k denote an algebraic closure of k,
and the set of all embeddings ’A ka(lCl=[A’k].,.). In k’[X](=k"@kk[X]), n
has the linear factorization

(2) n l-I
j=l

while n is irreducible in k[X] (as g/(alX-/l,’’’ amX-m)--Irr (w, k,X) if 1=
ceoo and o)= E/3wi has maximal degree over k (a, /i k, be #)). It follows that

the qi can be written in a reduced quotient representation as

(3) qi 2 ajY.i (i <- m),
r/j=l

with ao k[X], deg ao deg n 1.
For later purpose we remark that every nonzero f A* induces an isomorphy of

A with A*:

(4) A- A* by 0->R*o(f)=fo Ro (f A*-{0})

(0 O=>f(OA) =f(A) 0 implies injectivity).
As in [8] we now follow de Groote’s line (initiated in [6]) of first finding the

symmetries of the computation problem. The affine group Aff (A x A, k) operates in
the natural way on k(X, Y), and thus also on k"(X, Y)=(k"(R)k(X, Y)). The symmetry
group F of the division is defined as follows:

This means

()

F= {a,Aff (A xA, k)" L(q,, qm mod q, q,) =0}.

kql +" 4- kqm + A kq +. + kq + A,

where A kX +. + kY,, + k. We have an embedding z(2, A) F ofthe group A(2, A)
of triangular 2x2 matrices over A into F via (Co’d)((x,y)(x,xrl+yO)) as the
following diagram

(6)

AXxA A

AxA A

commutes; here the horizontal mappings indicate division.
Similarly, we have an embedding Aut (A/k) F, a(, a) of the Galois group

Aut (A/k) into F, for (6) with the vertical mappings replaced by (, ) and e commutes.
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THEOREM 1. Let A k be a finite field extension. The symmetry group of division
in A over k is

F=A(2, A).Aut(A/k).

Proof As A(2, A) and Aut (A/k) commute, their product is a subgroup of F. To
prove the nontrivial inclusion, let F be given. Let X %Xj, Y %Yj
A(X, Y)(= A(R)kk(X, Y)). (As functions on A A, X rl and Y= r2.) Comparing
denominators in (5), we get n An with some k because n is irreducible in k[X].
Extending the canonically, ’A(X) ko(X), we get in ko[X]

by (X)= X. Thus there are , ’, 0’ (k) such that X O’(’X). Using
function interpretation on A x A and evaluating both sides at (1, 0), it follows that
0’ A, say 0’= 0. Thus, ’X= (0-1X)= X( .’0, and hence we may assume without
loss of generality ’X= X, by the action of (2, A). But then A c ’A; thus A ’A.
So -’ Aut (A/k). Thus, by the action of (the embedded copy of) Aut (A/k)c F,
we may change such that X=X. It suces to prove YAX+AY, for then

(2, A). Equivalently we show AY+AX AY+ AX. This is obtained by extend-
ing the ground field in (5) to A, multiplying (5) by X X, and intersecting with AA.
To see this, it suces to verify that

AY (AXq +. + AXq) AA;

the corresponding identity then also holds for Y. Let XqAA with A,
m with k. Substituting we obtain Xq(X, ) A, as the q are

linear in g (cf. (3)). Since the image of inversion is A, q(X, ), , qm(X,) k(X)
are k-linearly independent, and, as A and k(X) are linearly disjoint over k, they are
also A-linearly independent. It follows that m,..., m mm for some A.
Thus Xq
ToM 2. Let A k be afinite extension field, and let B A be a simple extension

of k of maximal degree. Then

L,v 3[A" k] +log [B" k]-2.

Remark. For quadratic extensions the bound is 5, so the result of [8] Lv=6,
which requires much more involved considerations, is not within reach of this bound.

Proo The proof is done in three steps. For convenience we assume without loss
of generality that m 1.

(i) L(q)NL(ql,’’ ",qm)-(m-1). To see this, we observe that any nontrivial
linear combination of q, , qm can be written as q for some 0 A (use (4) and
(6)). On the other hand, if (p,..., Pr) iS a computation sequence for {ql,"" ", qm},
an elimination shows that (p,... ,p_+) is a computation sequence for some
nontrivial linear combination of them. Now use the fact that complexity is constant
on F-orbits.

(ii) There exists f k(X) such that L((a/n) Y +f)L(q)-(m- 1): First we
remark that for every = aiwi A, a/n is in the F-orbit of q(X, ) (by (’ )
A(2, A)). There exists q(m)= q, q(m-1),..., q) with L(q-))< L(q)) of the form

a+ a +H jI
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where I c {1,..., m}, II- s, ce k,f k!X). As follows from the remark, the coefficient
of each Y is not contained in k, so L(q( )) 0. Thus there exists a substitution of one
of the Y/ of the kind

jl-{i}

with % k, f k(X), reducing the complexity of q(). This defines q(-) given q(). By
the remark, q() can be assumed to be of the form (a/n)Y +f

(iii) For all f k(X) L((a/n) Y +f) m + log deg n. The first member p not in
k(X) in an optimal computation sequence for (al/n)Y+f can be written as p=
(’" ")*/( Y1- h), or as p (- h)/g with g, h k(X). Here we use the stronger tech-
nique from [8] of adjoining a certain intermediate result to the ground field and deleting
an operation of arity zero. In our case we adjoin (Y- h)/g to k (g in the first
case) and delete Y in order to reduce the complexity, obtaining

After multiplying the above by t- it becomes degenerable into an-g (by -0)So the complexity L((al/n)Y+f) is greater than the approximative complexity
L(an-lg) (cf. Griesser [5], Bini [2], or the definition below). If n does not divide
the reduced numerator of g, the subsequent lemma yields the desired result. Otherwise
we apply the lemma to the intermediate result g, and use L((a/n) Y +f) > L(g).

Steps (i), (ii), and (iii) imply the assertion.
Let e be a further indeterminate over k, k k(e), and let ff c k(X,..., X)

be the domain of e0 (a discrete valuation ring). The approximative complexity
L(f,... ,f) off,... ,f k(X) is defined as the minimum k(X)-complexity of some
F,..., F ff such that F(=o= for iN s (cf. Griesser [5] and Bini [2]).

LEMMA 1. Let f= r/s with r, s e k[X] be nonzero and reduced. en L(f)
m 1 + log deg n if n lr, and L(f) g m + log (deg n + 1) if n ls.

For the proof we recall a result in [5]. There Griesser extends the substitution
method to the approximative model. In terms of adjunction of intermediate results to
the ground field [5], formulation and proof of his result become more transparent. Let
us call fe k(X) K-linear if fe KX +" + KX + K, K c k(X) a subfield. We shall
need Griesser’s result in the following form.
Tzoz 3 [5]. Let, , k(X), not all k-linear.
(i) ere exist a k-linear k(X) such that adjunction of to k and deletion ofsome

reduces L(f, ., f,).
(ii) r := L(f,... ,f) m implies the existence of a tower ofpurely transcendental

extensions k Ko c K c c K c k(X) such that

1 r Ki Ki-1 (li), li Ki_-linear,

f ", f, Kr-linear.
Proof (i) The first member p in an optimal approximative computation sequence

for fl,""" ,fs can be written as p--(...)*/(1 /3iXi +/30) with/3i k. Without loss of
generality v( iXi)= 0, where u denotes the valuation associated with ff (shift a
power of e to the first operand). We use an idea from [3, p. 488] to make Xi
k-linear by means of a linear transform according to some M k7m with u(M) 0
and M(=o)= as follows. If ()= 0, then

()=o .()>o
#j
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is transformed to

(]j (0) /i )l’e(i)>O

+ 2 x + 2 x
()=o i ()>0
j

1(=o).
It is now clear that L(f,... ,f) decreases if we adjoin to k and delete .

(ii) Is proved by induction using (i).
Proof ofLemma 1. By Theorem 3(i) there is some l= +y aX(a k) such

that adjunction of to k and deletion of reduces L(f). We consider the effect on
n more closely. When we substitute , the linear factors become (ew- ewy)X +
ewyl k(1). So, as n as element ofk[X] k[l][X,..., -1, +1,’" ", X] is irreduc-
ible, n as element of k(l)[X1,..., -1, +,..., X] is irreducible (by the Gauss
lemma) and has the same degree, m-1 repetitions of this argument and a final
application of the degree bound [5] yield the desired statements.

For inversion in a finite extension field we get the following corollary.
COROLLARY. Let A k be a finite extension field, B A simple of maximal degree

over k. en
LINV--> 2[A k] +log2 ([B k]+ 1)-2.

Proof Without loss of generality wl 1. There is a nontrivial linear combination

f of ai/n,.",a,,1/n such that L(al/n,...,a,,/n)>=L(f)+m-1. Now apply
Lemma 1.

Remarks. (1) As we shall see in the next section (Example (6)), this lower bound
is sharp for quadratic A (deg n 2).

(2) It is not clear whether the complexity of inversion (respectively, division) also
has a linear upper bound. In certain cases, however, this is true. Assume there exists
a tower k Ao a A a... a A. A of subfields, with Ai k simple and the degrees
[Ai:Ai_] bounded by some constant. Then, via computing the inverses of the norms
NI_,, we get a recurrence for inversion in Ai (over k) as

L,Nv(A,) L, Nv(A,-,) + C" LMULT(A,-,)

for some constant C. Since multiplication in Ai_ (over k) has a linear upper bound
[4], [10], this leads to a linear upper bound for the complexity of inversion in A (over k).

2. Qnadratie alternative algebras. Let A be a finite-dimensional alternative algebra
over k with identity element l, i.e., we have the following weak associativity laws
x2y x(xy) and yx= (yx)x for all x, y A. A is called quadratic if l, x, x are linearly
dependent for all x A. In these algebras trace and norm t, n :A - k can be introduced
such that for all x A

xZ-t(x)+n(x)=O;
is linear, and n is a quadratic form (cf. 1, p. 37]). With the involution x- t(x) x,

t(x) x + , and n(x) x. As is easily seen, x A has a right inverse if and only if x
has a left inverse if and only if right multiplication with x is regular if and only if left
multiplication with x is regular if and only if n(x) O. Thus the inverse x- if/n(x)
is well defined if n(x) 30. Let us define the index of n as ind (n)--max {dim L" Lc A
a linear subspace, n(L)=0}. (For nondegenerate quadratic forms in char k 2 this is
the Witt index.) A has zero divisors if and only if ind (n)> 0.
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THEOREM 4. Let A be a quadratic alternative algebra with identity element of
dimension -2, A k k. Then

LNV 2 dim A ind (n).

Proof Let X1," ", X,, be indeterminates over k, m dim A. Via the choice of a
basis we view n as an element of k[X]. We have

L,v L(X,/ n, X/ ),

as x-> is involutional, and therefore regular. Thus LNv<-m+L(n)=2m-ind (n),
by Strassen [9, 4, Anwendung 7]. For the lower bound first we consider the case
where n is reducible, ind (n)= m-1. If m =2, then A= k[T]/(T2), and a direct
calculation shows L(X2/X, 1IX21)=3 (n=X1,2 say). If m > 3 and n is a square, say
n X12, then two linearly independent linear combinations of the Xi/n have com-
plexity =<LNv-- (m --3), and the assertion follows from L(X2/Xe,X3/X2)>=
L(X2/X2, 1/X)= 3 (replace X3 by a multiple of X1 in order to get this inequality).
If n is not a square, say n X1X2, then three linearly independent linear combinations
of the Xi/n have complexity less than or equal to LiNv--(m--4). Here the result is
obtained from L(X3/X,X2, X4/X1X2, Xs/X1X2)L(X3/X1X2, X4/X1X2, 1/X+
ol/Xi) > L(X3/X1X 1/X, l/X2) > L(X3/XI, 1/X 1) 3, a k (here replace succes-
sively Xs, X4, X by multiples of X1 + cX, X2, X, respectively, in order to get these
inequalities). If ind (n)=< m-2, a nontrivial linear combination f of the Xi/n has
complexity less than or equal to LINV--(m- 1). Now, m- ind (n)- 2 successive com-
plexity decreasing adjunctions of linear forms to the ground field, and a final application
of Lemma 3.2(ii) of [8] give LiNv--(m-- 1) -> L(f)>= m-ind (n)-2+3, as desired.

Examples. (1) Null algebras A k[X1, ", X._I]/(" , XiXj, ), LINV S if- 1.
(2) Quadratic extension fields A of k, LNV 4.
(3) Quaternions A= Q(/x,/3) (cf. [11, p. 30]). If A has no zero divisors, then n

is anisotropic, so LINv 8 (e.g., real quaternions Q(-5/4,-1)).
(4) 22 matrices A=k2 (--Q(0, 1)). As ind (det)-2, LINV=6. (LINv=5 for

the subalgebra of triangular matrices.)
(5) Cayley numbers A C(z,/3, y) [11]. LNV 16 if A has no zero divisors (e.g.,

real Cayley numbers C(-5/4, -1, -1)).
/2 /) with [A" k](6) Char k 2, a purely inseparable extension A k(sC ,.

2s+l2. Here LINV
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ADAPTIVE BITONIC SORTING" AN OPTIMAL PARALLEL
ALGORITHM FOR SHARED-MEMORY MACHINES*

GIANFRANCO BILARDIt AND ALEXANDRU NICOLAU

Abstract. A parallel algorithm, called adaptive bitonic sorting, that runs on a PRAC (parallel random
access computer), a shared-memory multiprocessor where fetch and store conflicts are disallowed, is
proposed. On a P processors PRAC, the algorithm presented here achieves optimal performance TP
O(N log N), for any computation time T in the range (log N)<-_ T<= O(N log N). Adaptive bitonic
sorting also has a small constant factor, since it performs less than 2N log N comparisons, and only a

handful of operations per comparison.

Key words, sorting, parallel computation, shared-memory machines, bitonic sequence, time processors
optimality

AMS(MOS) subject classifications. 68Q20, 68Q25, 68Q10

1. Introduction. Bitonic sorting [Ba68] is an interesting parallel algorithm based
on a merge-sort scheme and an ingenious merging technique known as bitonic merging.
Orginally proposed for a network of comparators, bitonic sorting has been considered
for implementation on a variety of architectures such as the shuffle-exchange [St71],
the binary cube [Pe77], the mesh [TK77], [NS79], the cube-connected cycles [PVS1]
and its pleated version [BP84], and on array processors [St78]. Various properties of
bitonic networks have been investigated (e.g., [Kn73], [HS82], [Pr83], [B185], [B188]).

On an input of N elements, the bitonic merger performs (R)(N log N) operations
(comparisons and exchanges), coming to within a constant factor of a lower bound
for merging networks of comparators that is due to Floyd [Kn73, p. 230]. However,
in other models of parallel computation merging can be done with O(N) operations
[BH85], and therefore the bitonic algorithm is not optimal in these models.

In this paper we present procedures for merging and sorting which we propose
to call adaptive bitonic algorithms. Our algorithms are based on bitonic sequences, as
are Batcher’s, but unlike Batcher’s they perform a set of comparisons that is a function
of the input values. As a result, our approach cannot be used in the context of a
network of comparators, but will be shown to be more efficient than Batcher’s, in terms
of the number of operations performed, on a general purpose shared-memory machine.
When necessary to avoid confusion, we shall refer to Batcher’s algorithm as the
nonadaptive or the network algorithm.

Adaptive bitonic merging [sorting] can be implemented on a PRAC (parallel
random access computer) of P processors in time T- O(N/P)[ T- O((N log N)/P)],
for <= P <= N/2 tlogog N j. The PRAC [LPVS1] is a shared-memory multiprocessor of
the EREW-PRAM variety [Sn85], where simultaneous access of the same memory
location is disallowed. The product TP is optimal for both merging and sorting.
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The merging algorithm also achieves the T (log N) lower bound established
in [Sn85] for merging on a PRAC. To our knowledge, ours is the first algorithm that
attains the minimum time T O(log N) with an optimal number of processors P
O(N/log N), on the PRAC model. An algorithm recently proposed in [AS85] achieves
an optimal TP product, but for T (log2 N).

As for sorting on the PRAC, the question of asymptotic complexity was settled
by the network of [AKS83], which is logspace uniform [L85], and therefore yields a
PRAC algorithm with TP O(N log N) for T =(log N). Very recently, the same
asymptotic performance has been achieved by an adaptive algorithm proposed in
[C86], building on the previous work of [P78] and [Kr83]. Our algorithm also achieves
an optimal rate of growth for the TP measure, for T (log2 N), with a much smaller
constant factor than in the AKS network, and probably smaller than the algorithm in
[C86]: the latter algorithm performs less than 5N log N comparisons (2.5N log N if
concurrent reads are allowed). Furthermo.re, the number of other operations performed
by that algorithm is significant [C87] and has not been precisely analyzed.

Adaptive bitonic sorting performs only about twice as many operations as the
fastest sequential sorting algorithms, even for time T O(log: N). It can obviously be
implemented, with the same performance, on other shared-memory models with less
restrictive memory access mechanisms. For results on the complexity of merging and
sorting on some of these models see, for example, [BH85], [HHS1], [Kr83], [SVS1],
[V75].

In the bitonic merging network, both the number of comparisons and the number
of exchanges are O(N log N). Adaptive bitonic merging achieves a reduction of both
numbers to O(N), based on two properties established in the paper. First, there exists
a subset of less than 2N of the comparisons performed by the network sufficient to
determine the result of all the others. Second, there is a regularity in the pattern of
exchanges that can be exploited by using a data structure, which we call the bitonic
tree, whereby many element exchanges can be accomplished by a small number of
subtree (i.e., pointers) exchanges. The properties of bitonic sequences exploited by
our algorithm are discussed in 2. The adaptive bitonic-merging algorithm is developed
in 3, where a sequential model is adopted for simplicity.

Parallel versions of merging and sorting are described in 4. Here the main
difficulty consists in avoiding a loss in time performance with respect to the network
algorithm. In fact, in the PRAC implementation, adaptive bitonic merging emulates
the kth stage of comparisons of the merging network in time O(log N-k), for k 0,
1, , log N 1. If the stages are executed in sequence, the resulting time is O(log N).
However, a careful analysis of data-dependencies shows that O(log N) time can be
achieved by a suitable overlapping of the stages.

The adaptive algorithms of 3 and 4, as well as the network algorithms of [Ba68],
assume that the length of the input sequence N is a power of two. The obvious strategy
of padding the input sequence so that its length becomes a power of two leads to an
increase of the complexity by a constant factor. In 5 we show how this increase can
be avoided by developing a variant of the algorithm that works for arbitrary N.

Besides attaining an optimal rate of growth, the performance of the algorithms
presented here also exhibits very small constant factors. Adaptive bitonic sorting
performs less than 2N log N comparisons, independently of the number of processors,
and appears to be attractive for practical implementation. Some indication of the
practical behaviour is given in 6.

2. Properties of bitonic sequences. Let x=(xo,..., xN_) be a sequence of N
(hereafter N is assumed even) elements from a totally ordered set. We introduce the
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following operators on x:

(1)

(2)

(3)

Sjx xj mod N, X(j+ 1) mod N, X(j+ N- 1) mod N),

Lx--a (min {Xo, xN/2}," ", min {x/2-1, xu_l}),

Ux - (max {Xo, xu/2}," ", max {xu/2_,, xu_}).

A sequence x is bitonic if, for some j, the sequence Sjx-- (Yo, ",YN-) consists
of a nondecreasing portion followed by a nonincreasing one. Bitonic merging is based
on the fact that, if x is bitonic,

(4) sort (x) (sort (Lx), sort (Ux)).

This relation, due to [Ba68], leads to a recursive algorithm whose complexity is
determined by that of computing Lx and Ux. Theorem below states four properties
of L and U on bitonic operands. Property (P1) is a lemma for the others. Properties
(P2) and (P3), obtained by Batcher, imply (4) above. Relation (P4) is crucial here
since it provides the basis for a method to compute Lx and Ux that is more efficient
than the direct application of definitions (2) and (3) above, which are used in the
bitonic algorithm in [Ba68].

THEOREM 1. If X is a bitonic sequence (ofeven length), then thefollowing properties
hold:

(P1)

()

(6)

(P2)
(P3)
(e4)

(7)

(8)

(9)

(10)

There is a shifted version Sqx= (Zo," ", zN-1) of x such that

Lx= S(_q mod N/2)(Zo, "’, ZN/2_I)

UX-- S(_q mod N/2)(ZN/2,’’’, ZN-1).

Each element of Ux is no smaller than each element of Lx.
Sequences Lx and Ux are bitonic.
Let q be as in (P1) and let t=qmod N/2. Let x (x’, x", x"’, x"") with x’ and
x’" of length t, and x" and x’"’ of length N/2-t. If q < N/2 (t-q), then

(Lx, Ux) (x’", x", x’, x’"’).

If q >- N/2 q N/2), then

(Lx, Ux) (x’, x’"’, x’", x").

Before proving Theorem 1, we show two relations among the operators L, U, and S.
LZMMA 1. For any x and j,

Lx= S(_; mod N/2)LSjx

UX S(_j rood N/2) USjx.

Proof We prove only (9), the argument for (10) being similar. For j= N/2, (9)
becomes Lx LSu/2x, which can be trivially verified. Thus, index j in (9) can always
be taken modulo N/2 and it is sufficient to consider j < N/2. In this case we have
-j mod N2 N/2 -j, and

LSjx (min {Xj, Xj+N/2}, ", min {XN/2_I, XN_I} min {Xo, xN/2}, ",

min {x;_,

or, in compact form, LS;x S;Lx, from which (9) follows by applying S-;mod /2 to
both sides. 71
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Proof of Theorem 1. Let the median of a sequence x (Xo, , xN-1) be defined
as the minimum value m such that less than N/2 elements of x are greater than m.
Let x be bitonic, and let y S.x (yo, ",yN-) consist of a nondecreasing sequence
followed by a nonincreasing sequence. In general, y is the concatenation of five (possibly
empty) subsequences, respectively, containing N1 elements smaller than m, N2 elements
equal to m, N3 elements larger than m, N4 elements equal to m, and N5 elements
smaller than m.

Obviously, N +. + N5- N. Also, by the definition of m, N3 < N/2 and N2 +
N3 + N4 >- N2. By simple arithmetic, N1 --< N2- Ns and there exists a k, with N _-< k
N/2-N, such that the sequence (Yk, Yk+,’’’, Ytc+N/2-) contains all the elements
larger than m and none of those smaller than m.

We now consider the sequence z S+u/zy Sqx, where q (j + k + N/2) mod N.
If we write z (z’, z"), with z’ and z" sequences of N/2 elements, it is easy to see that
z"= (y, y+/2_1).

Thus all the elements of z" are no smaller than the elements of z’, which implies
that (Lz, Uz)= z. Lemma applied to the latter relation yields Lx S(_q mod U/z)Z’ and
Ux= S(-qmod u/)Z", which are equivalent to (5) and (6) and establish (P1).

Property (P2) follows from (5), (6), and the fact that max {Zo,"’, zN/2-1} <-

min {ZN/2, ZN_I}.
Sequences z’ and z" are bitonic since they are subsequences of z, which is bitonic.

Then from (5) and (6), Lx and Ux are shifts of bitonic sequences, and (P3) is proved.
If q < N/2 and x (x’, x", x’", x""), as defined in (P4), then SqX

From (6) and (7), cyclically shifting each half of Sqx q positions to the right, we obtain
Lx (x’", x") and Ux (x’, x""). This proves (7). A similar argument yields (8), complet-
ing the proof of (P4).

3. Adaptive bitonic merging with O(N) comparisons. In this section we present a
linear-time version of bitonic merging. For simplicity, we describe the algorithm in a
sequential setting and we assume that N, the sum of the lengths of the sequences being
merged, is a power of two. Parallelism and arbitrary input size are discussed in
subsequent sections.

3.1. Analysis of comparisons. Let x be the bitonic sequence obtained by concatenat-
ing, in opposite order, two sorted sequences to be merged. The classical bitonic merging
consists of the following steps:

(1) Compute Lx and Ux by N/2 (parallel) comparisons (according to definitions
(2) and (3)).

(2) Recursively sort Lx and Ux, in parallel.

The comparisons performed by the above algorithm are data-independent and
hence can be hardwired in a network of comparator-exchangers, the bitonic merger. In
the terminology of [Kn73], the bitonic merger has N (a power of two) lines numbered
0, 1, , N- 1 and log N stages each of N/2 comparator-exchangers. In the kth stage
(k 0, 1, , log N 1) lines and j are connected by a comparator-exchanger if and
only if the binary spellings of and j differ exactly in the (log N- k)th rightmost bit.
Comparators output the smaller of the two inputs on the line with lower number.

Since, as is well known, N comparisons are sufficient to merge two sequences,
the set C of the (N log N)/2 comparisons executed by the bitonic merger obviously
contains some redundancy. Less obviously, this redundancy can be almost eliminated
by executing only a suitable subset of C, as shown in the next theorem. As it will
become clear from the proof, this subset is a function of the input sequence x.
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THEOREM 2. Let C be the set ofthe (N log N)/2 comparisons executed by Batcher’s
merging network. Then, there is a subset C’ c C of size IC’I =2N-log N-2 such that
the results ofthe comparisons in C are uniquely determined by the results ofthe comparisons
in C’, as long as the input elements are distinct.

Proof Due to property (P4) established in Theorem 1, there is a decomposition
(x’, x", x’", x"") of x such that (Lx, Ux) is obtained either by exchanging x’ and x’" (7)
or by exchanging x" and x"" (8). Due to (P2), if XN/2-1 <XN-I then (7) holds, else

(XN/2- > XN_) (8) holds.
When (7) holds, x" contains xi if and only if xi < XN/Z+. Thus the leftmost element

of x" can be found by a binary search driven by comparisons of pairs of the form
(x, XN/+). Index is first set to N/4-1, and then decremented if xi <xu/z+ and
incremented otherwise. The increment is initialized to N/8, and halved at each step.
The search terminates after log N-1 steps, when the increment is zero. Therefore x",
and thus (Lx, Ux), is determined by log N of the N/2 comparisons implicit in
definitions (2) and (3). The case when (8) holds is completely symmetric.

Let C’ be the set of comparisons resulting from recursively applying the above
method to Lx and Ux. Considering that at the kth level of recursion (k=
0, 1,..., log N-1) there are 2k sequences each requiring log N-k comparisons, we
can evaluate the cardinality of C’ as follows:

log N-1

(11) M(N) -[C’I 2k(logS-k)=2S-logS-2. [3
k=0

The assumption of distinct input elements is essential in Theorem 2. An arbitrary
strategy for resolving ties may lead to incorrect behaviour. As an example, consider
the bitonic sequences u (0, 0,-1, 0, 0, 0, 0, 0) and v (0, 0, 1, 0, 0, 0, 0, 0). It can be
easily seen that if the case xi XN/+ is treated as x < xu/2+i, then u will be sorted
properly, but v will not. The opposite will happen if the case x XN/2+ is treated as
X XN/2+ i.

A simple and correct strategy consists of breaking ties (when comparing equal
elements) according to the original position of the elements in the input sequence,
which amounts to enforcing distinctness. The resulting algorithm clearly will be stable.
In the remainder of the paper, distinct elements will be assumed.

3.2. The data structure. Although Theorem 2 gives a way to obtain all the informa-
tion needed to merge two sequences with a linear number of comparisons, the problem
remains of how to efficiently achieve the data rearrangement that in Batcher’s network
requires (N log N) exchanges in the worst case. We solve this problem with the
adoption of a suitable data structure, which we call a bitonic tree.

A bitonic tree (see Fig. 1) is a binary tree where each node contains an element
from a totally ordered set, and the sequence of elements encountered in the inorder
traversal of the tree is bitonic. The bitonic tree is a simple generalization of the binary
search-tree. In fact, an inorder traversal of the latter yields a monotonic (sorted)
sequence.

Given a bitonic sequence of length N (a power of two), we adopt a representation
in which the first N- 1 elements are stored in a fully balanced bitonic tree of log N
levels, and the last element is kept in a spare node. In this representation, the
decomposition x (x’, x", x"’, x’"’) considered in Theorem corresponds to a decomposi-
tion of the bitonic tree into four forests (see Fig. 1). The roots of the trees in these
forests form two parallel paths in the main subtrees of the bitonic tree. The exchange



ADAPTIVE BITONIC SORTING 221

FIG. 1. Bitonic tree. Bitonic tree for the sequence x= (0, 2, 3, 5, 7, 10, 11, 13, 15, 14, 12, 9, 8, 6, 4, 1)
and the decomposition (x, x", x’", x for the computation of (Lx, Ux)= (x’, x’"’, x’", x"). Solid nodes are the
ones examined by the binary search.

ofx’ and x’" [x" and x’"’] required by (7) [(8)] to compute (Lx, Ux) can be accomplished
with O(log N) exchanges of values and pointers in the bitonic tree.

The relation between the bitonic tree and the bitonic network can be viewed as
a one-to-one correspondence between nodes and lines, the ith line being associated
with the ith node encountered in the inorder traversal of the tree. However, a node
and the corresponding line are guaranteed to hold the same value only at the beginning
of merging and immediately after the completion of the computation of the sequences
(Lx, Ux) at each level of the recursion.

3.3. The algorithm. Based on the preceding observations we give below a pro-
cedure bimerge(root, spare, dir) that sorts x by transforming the bitonic tree into a
binary search-tree. Parameters root and spare are pointers to the root of the tree and
to the spare node, respectively. Parameter dir is Boolean and represents the direction
in which the sequence is to be sorted (dir--false for ascending, dir=true for
descending).

Each node of the tree has three fields, value, left, and right, respectively storing
an element of the sequence (or a pointer to it) and pointers to the left and right
subtrees. The procedure bimerge given in Fig. 2 is written in pseudo-Pascal. The
identifiers not explicitly defined are self-explanatory.

We now briefly comment on procedure bimerge. At the beginning, the root contains

xN/2- and the spare node contains xN_. After statement 1. of Fig. 2, rightexchange
is false when (7) holds (i.e., x’ and x’" are exchanged), and true when (8) holds (i.e.,
x" and x"" are exchanged). In the latter case, xu/2_ and xu_ are exchanged (by
statement 2.). After statement 3., pl and pr point to the nodes that contain x/4_ and

X3N/4_l respectively.
The binary search for the boundary between x’ and x" (as well as between x" and

x’"’) is performed by the while-loop (statements 4.-: 19.). At the end of the loop, an
inorder traversal of the tree would yield (Lx, Ux). Sequences Lx and Ux are recursively
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procedure bimerge (root, spare, dir);
begin

1. rightexchange:= (root’value> spare ’ value) XOR dir;
2. if rightexchange then swap-value(root, spare);
3. pl := root ’ left; pr := root ’ right;
4. while (pl nil) do begin
5. elementexchange:= (pl’value> pr’value) XOR dir;
6. if rightexchange then /* X" and X exchange
7. if elementexchange then begin /* swap values and right subtrees;

search path goes left
8. swap-value(pl, pr);
9. swap-right(pl, pr);

10. pl := pl’left; pr:= pr’left
end

11. else begin
12. pl .’= pl ’ right; pr := pr’ right

end
13. else
14. if elementexchange then begin

15. swap-value(pl, pr);
16. swap-left(pl, pr);
17. pl := pl ’ right; pr := pr’ right

end
18. else begin
19. pl := pl ’ left; pr := pr ]’ left

end
end;/* while */

20. if (root ’ left nil) then begin
21. bimerge(root ’ left, root, dir);
22. bimerge(root ’ right, spare, dir)

end
end;/* bimerge*/

*/

*/

/* search path goes right */

FIG. 2. Procedure Bimerge.

/* X’ and X’" exchange */
/* swap values and left subtrees;

search path goes right */

/* search path goes left */

sorted by the recursive calls in statements 21. and 22. We observe that Lx and Ux are
represented, as is x, by a bitonic tree and a spare node: Lx by the left subtree and the
root, Ux by the right subtree and the original spare node. In general, the recursive
calls of depth k (the first call being of depth zero) operate on sequences of length
N/2k. These sequences are represented by a subtree with root at level k (the root of
the entire tree being at level zero) and a spare node. The spare node belongs to some
level less than k or is the spare node of the original tree. More precisely, the ith subtree
at level k, from left to right, is paired with the ith node encountered in the inorder
traversal of the first k levels of the tree.

A simple analysis of bimerge shows that the total number of operations is of the
same order as the number of comparisons. Thus, the algorithm runs in linear-time.

4. Parallel algorithms. In this section we present a parallel version of adaptive
bitonic merging and a parallel sorting algorithm based on it. As a model of computation,
we choose the PRAC of [LPVS1]. The PRAC is a shared-memory multiprocessor
machine. Any processor can access any common-memory location in constant time.
However, simultaneous access (either read or write) of the same location is illegal and
leads to termination error. For more details on the PRAC see [LPVS1].
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4.1. Merging. We call stage (k) of the merge (k=0, 1,...,log N-l) the set of
recursive calls of bimerge of depth k. There are 2k such calls, each processing a different
subsequence of N/2k elements. As already observed, this subsequence occupies a
subtree with root at level k and a spare node in some level less than k. All the calls
in stage (k) can be executed in parallel.

We call phase (0) of bimerge the execution of statements 1., 2., and 3. of Fig. 2.
We call phase (i) the execution of the ith iteration of the while-loop. For a call in
stage (k), ranges from to log N-k-1. A phase includes one comparison and a
handful of tests and assignment statements. It can be executed in O(1) time.

Since calls of depth k consist of log N k phases, stage (k) takes log N k parallel
phases. The total time for executing stage (0),..., stage (log N-1) in sequence is
O(kg=oN-’ (log N-k))= O(log N). We note a loss in performance with respect to
the O(log N) time of Batcher’s network. The loss is due to the difference in the
computation of (Lx, Ux). For x of length N the N/2 comparisons of Batcher’s network
are data-independent and take only one time step, while the log N comparisons of
our binary-search method are inherently sequential and take log N steps.

Little can be done to speed up the execution of a single stage without increasing
the number of comparisons. However, a careful analysis of the data dependencies
between comparisons of the various stages reveals that the execution of different stages
can be partially overlapped, with considerable savings in running time.

We observe that, in stage (k), phase (0) operates on levels 0, 1, , k of the bitonic
tree, and phase (i) operates on level k + (i 1, , log N- k 1). Thus, phase (0)
of stage (k) can begin as soon as stage (0),..., stage (k-1) have processed the first
k levels of the tree. In general, phase(i) of stage(k) can begin as soon as
stage (0),..., stage (k) have processed the first k +i levels of the tree. This condition
is satisfied if a new stage is scheduled to begin every other phase step. The entire
sequence of log N stages is completed in 2 log N- phase steps, that is in O(log N)
time. An example of the schedule of the phases of different stages is given in Table 1,
for N=16.

TABLE
Schedule for the overlapped execution of the stages of bimerge for N 16.

Phase
step

Stage (0)

Phase
Tree
levels

0 0

2 2
3 3

Stage (1)

Phase
Tree
levels

0,1
2
3

Stage (2)

Phase
Tree
levels

0 0,1,2
3

Stage (3)

Tree
Phase levels

0 0,1,2,3

In the above schedule, the maximum number of calls simultaneously active is
N/2, and hence N/2 processors are sufficient. We now consider a slightly different
schedule that leads to a reduction of the number of processors without substantial
degradation in time performance.



224 G. BILARDI AND A. NICOLAU

Let us assume a number of processors P 2 P, with P > and consider the following
strategy"

(1) Stage (0),..., stage (p-1) are scheduled to begin one every other step. The
total number of calls in these stages is P-1 so that a different processor is
available for each call. Stage (0) takes log N phase steps, after which a new
stage terminates at each phase step. Thus, the first p stages take t
log N +p phase steps.

(2) For the remaining stages, one processor is assigned to each of the P subtrees
corresponding to subsequences of length N/P. This will take tz--
2N/P-log (N/P)-2 phase steps (see (11)).

The total number of phase steps is t + -----2N/P-2p-3.
If we choose p N/2 [loglog NJ N/log N, we obtain

21ogN-2*2tggNJ-2[loglogNJ-2<41ogN. In conclusion, T=O(t)=
O(log N), with P= O(N/log N) processors. The product TP is optimal, since N
operations are necessary to merge. A similar result is obtained for 1 <-_ P <-_ N/2 tlog log N,
as summarized in the following theorem.

THEOREI 3. Adaptive bitonie merge can be executed on a PRAC of P processors
in time T= O(N/P), for I <-_P<-_N/2 llgg.

It is of interest to estimate the overhead incurred to distribute the algorithm among
P processors. Two aspects contribute to such overhead: (a) according to the schedule
outlined above not all the processors are active all the time; and (b) some time will
be spent in synchronizing the activities of different processors. Let us analyze each
aspect in turn.

We can rewrite the expression for the number of phase steps as tP < 2N + 2pP.
Since 2N is essentially the number of phase steps for the sequential algorithm, the
overhead due to idle processors is given by the term 2pP, which for P N/2 [gg NJ

is about 2N, and is smaller for smaller P’s.
In the parallel version of bimerge, the parameters root, spare, and dir are computed

by a processor different from the one that actually executes the call. Thus, the processor
that computes the parameters must write them in the shared memory from which the
processor assigned to the call will read them. A simple analysis shows that the total
number of memory accesses for interprocessor communication is O(P), so that the
synchronization overhead contributes a lower-order term to the total number of
operations of the merging algorithm.

4.2. Sorting. Essentially, using the classical sort-by-merge scheme (see Fig. 3) and
standard manipulations, Theorem 2 leads to the following result.

procedure bisort(root, spare, dir);
begin

1. if (root ’ left nil) then
test-and-swap (root, spare, dir) /* down at leaves */

2. else begin
3. bisort(root’left, root, dir);
4. bisort(root’right, spare, --dir);
5. bimerge(root, spare, dir)
6. end

end;

FIG. 3. Procedure Bisort.
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THEOREM 4. Let S be the set of the N log N(log N+ 1)/2 comparisons executed
by Batcher’s sorting network. Then, there exists a subset S’c S of size

(12) S(N)lS’I=2N log S-4S+log S+4

such that the results of the comparisons in S are uniquely determined by the results of the
comparisons in S’.

An efficient parallel version is provided by the following schedule. First, each
processor sequentially sorts NP elements, in 2(N/P) log (N/P) phases. Then, for
each j= 1,2,...,log P, there will be a merging step where the P processors are
partitioned in P/2 groups of size 2j, with each group merging two sequences into one
of length (N/P)2. The jth merging runs in less than 2(N/P)+ 2j phases. Thus, the
total number of phases, t, for the entire sorting process is:

< 2 log + 2 + 2j 2 log N + (log P + 1) log P.
j=l

Therefore,

tP < 2N log N + P (log P + 1) log P,

and we obtain the following result.
THEOREM 5. Adaptive bitonic sorting can be implemented on a PRAC ofPprocessors

in time T= O((N log N)/P), for <-_P<- N/2 tggNj.
We observe that ]S’I is within a factor of two of [log N!], which is a lower bound

on the number of comparisons needed to sort N elements [Kn73]. It is remarkable
that sorting can be done in O(log N) time with so little redundance. An analysis
similar to the one developed for merging shows that the total number of memory
accesses for interprocessor communication (synchronization) is O(P log N), contribut-
ing a lower-order term to the total number of operations of our algorithm. The overhead
due to idle processors is about P log P, which for P- N/2 [loglog NJ is about N log N,
i.e., 50 percent of the sequential work. For smaller values of P, the overhead is
obviously smaller.

5. Input sequence of arbitrary length. In the previous sections, it has been assumed
that N, the number of elements to be sorted, is a power of two. The algorithms so
derived can be used for any input sequence after adding enough dummy elements to
it so that the length becomes a power of two. However, this strategy leads to a constant
factor increase in time complexity, which is undesirable in practical applications.

In this section we modify our algorithm to handle arbitrary values of N, with a
negligible increase in complexity with respect to the case where N is a power of two.
The basic idea consists in simulating the actions that the power-of-two version of the
algorithm would perform on the input sequence padded with dummies, while avoiding
representing and processing most of the dummies.

5.1. Padding the input sequence. Let n [log N], that is, let 2 be the minimum
power of two no less than N. Given a sequence x= (Xo,’’’, XN-1) to be sorted, we
augment it to obtain a sequence z (d,..., d, Xo,’", XN-1) of length 2 by inserting,
at the beginning of x, D A 2" N dummy elements of value d < xi, for all xi’s.

If z is stored in a tree according to the inorder traversal, the dummy elements
n--1occupy a left subforest of the tree. More precisely, let D= i:o Di2, with Di {0, 1}.

Let r be the path in the tree that starts at the root and whose ith edge goes left when
D_i 0, and goes right when D,_i 1, for 1, 2, , n. Then, the D dummy elements
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occupy the nodes of r that are followed by a right edge and the left subtrees of such
nodes. In other words, for each Di 1, there is a dummy subtree of height i, whose
root is at level n- and is the left son of a node on r, also containing a dummy.

We now analyze the behaviour of our algorithm on a padded sequence z focusing
in particular on the dummy subtrees.

For a given call to procedure bimerge, consider the "parallel" paths p’ and p"
traced in the bitonic tree by the search for the boundary between x’ and x" (see 3.1).
A given subtree T’ can be modified by the call only if it is traversed by any of the two
paths.

If p’ and p" originate at the root v’ of T’ or at a descendent of it, then only
elements inside T’ will be rearranged. In particular, if T’ was originally a tree of
dummies, it will remain such.

If p’ and p" originate at an ancestor of v’, then only one path, say p’, can traverse
T’, and v’ is the first node of T’ to be visited. During the traversal, v’ will be compared
with some node v", root of a subtree T". Paths p’ and p" continue in T’ and T",
respectively. If T’ is a tree of dummies, its elements form a consecutive run in the
sorted output. Thus, the comparison of any node of p’ with the corresponding node
of p" gives the same result as the comparisons of v’ and v". Therefore, subtrees T’ and
T" will either be exchanged completely, or left in their positions.

5.2. Pruning the tree. The above discussion shows that dummy subtrees are left
intact throughout the algorithm, and that they can be processed by examining only
their root. This suggests a modification to the bitonic tree whereby a dummy subtree
is represented by a single node (its root) with left and right pointers set to nil. We
refer to the resulting data structure as the pruned bitonic tree.

The procedures bisort and bimerge have to be modified to work correctly on the
pruned version of the tree. The necessary changes are simple, and are outlined below:

(2)

(3)

The call bisort(root, spare, dir) is not executed whenever root is a node with
dummy value and nil pointers.
The call bimerge(root, spare, dir) is not executed whenever root is a node with
dummy value and nil pointers.
Whenever a node v’, with dummy value and nil pointers is compared with
another node v", and v’ and v" are exchanged, their left and right pointers
are also exchanged. In any case, the current call to bimerge is terminated after
the comparison.

5.3. Analysis. Let us consider a dummy subtree of height (i =< n -2). The savings
in comparisons coming from each of the modifications to the algorithm described
above are as follows:

(1)

(2)

(3)

(S(2i) 1) for replacing a call to bisort with a single comparison between the
root of the subtree and a spare node.
(M(2i) 1)(n-i) for replacing each of the (n-i) calls to bimerge with a
single comparison between root and spare node.
(i- 1)vi for not traversing the (i- 1) levels below the root v’ for each of the
v times in which the dummy subtree should be traversed by a path originating
above v’. In general, v is a function of the input sequence, but always satisfies
the simple bound v <- (n-i)(n- i+ 1)/2, the latter being the number of calls
to bimerge with an ancestor of v’ as the root.

We can now estimate the total number of comparisons performed by the pruned-tree
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sorting algorithm as

S(N) S(2")-savings S(2")- di[S(2i) + (M(2i) 1)(n -i)+(i- 1)vi]
i=0

and thus

(13) S( N) <- 2N [log N] 4N+ lower order terms.

To obtain the last expression we have (i) neglected the (negative) contribution of
the term (i- 1)vi; (ii) used expressions (11) and (12) for M(2i) and S(2i), respectively;
and (iii) applied some simple algebraic manipulation. The sublinear terms turn out to
be of O(log N). Comparing (13) with (12), we see that the complexity of the sorting
algorithm for arbitrary N differs from the complexity for N a power of two only in
sublinear terms. Summarizing the above discussion, we have Theorem 6.

THEOREM 6. The pruned-tree version of adaptive bitonic sorting executes a number

of comparisons:

(14) S(S)=2S[log S]-4S+O(log S).

6. Conclusions. We have presented a parallel sorting algorithm with optimal
TP O(N log N) complexity for f(log N)_-< T_-< O(N log N). To explore the prac-
tical potential of our algorithm we must examine the constant factors. The small
comparison count (<2N log N) is encouraging, but we need to consider the total
number of operations. To this end, we observe that, when running on P processors,
adaptive bitonic sorting executes all the operations that it would execute on one
processor plus a small number (0(13 log N)) of memory references due to inter-
processor communication. Therefore, an accurate estimate of the operation count can
be obtained by considering the performance of uniprocessor implementations. In
general, the operation count is a lower bound of the PT measure on the PRAC, which
is met only if processors actually perform useful operations at each timestep. This is
nearly the case for adaptive bitonic sorting since, even for T O(log N), on average
a processor is idle for less than one third of the total running time.

We have coded the sequential pruned-tree version of our sorting algorithm in C
under Berkeley Unix 4.2 on a VAX 780, and a Gould 9080. The only optimization we
have performed is the straightforward removal of recursion. As a term of comparison,
we have chosen "quicker-sort," the Unix system sort, which is a carefully tuned version
of quicksort. On sequences of length up to 219, the running time of our algorithm has
consistently been below 2.5 times the running time of quicker-sort. This performance
is remarkable for an algorithm that, with a small synchronization overhead and high
processor utilization, can run in O(log N) parallel time.

The combination of relative simplicity, optimal operation count, and small over-
head makes adaptive bitonic sorting appealing for practical implementation.
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THE TOKEN DISTRIBUTION PROBLEM*
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Abstract. A solution to the following fundamental communication problem is presented. Suppose that
n tokens are arbitrarily distributed among n processors with no processor having more than K tokens. The
problem is to specify a bounded-degree network topology and an algorithm that can distribute the tokens
uniformly among the processors.

The first result is a tight (R)(K +log n) bound on the complexity of this problem. It is also shown that
an approximate version of this problem can be solved deterministically in O(K +log n) on any expander
graph with sufficiently large expansion factor.

In the second part of this work, it is shown how to extend the solution for the approximate distribution
problem to an optimal probabilistic algorithm for the exact distribution problem on a similar class of
expander graphs. Note that communication through an expander graph is a necessary condition for an

O(K + log n) solution of the problem.
These results have direct applications to the efficient implementation of many-to-one and one-to-many

communication requests, as well as to the solution of load-balancing problems in distributed systems.

Key words, parallel and distributed computation, communication, expander graphs
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1. Introduction. Information exchange between processors is essential for any
efficient parallel computation. In most applications, data transfer between individual
processors has to be done through a relatively sparse communication network. Thus,
the problem of routing simultaneously many packets on bounded-degree interconnec-
tion networks is fundamental to the theory of parallel and distributed computation.

The problem of packet routing is best formulated in terms of communication
requests. An (m, K1, K2)-communication request is a set of up to m pairs. Each pair
specifies a source and a destination for one packet in the network, and no processor
appears as a source (respectively, destination) of more than K1 (respectively, K2)
packets. The (m, K, K2)-routing problem is the problem of routing simultaneously an

(m, K, K2)-communication request.
Most previous research has focused on the problem of routing a permutation or

an (n, 1, 1)-communication request (one-to-one communication) on an n-vertex graph.
An O(log n) deterministic solution for this problem is known for certain bounded-
degree networks enabling sorting in O(log n) steps (henceforth, S-networks), based
on the AKS sorting network [AKS], [L1]. O(log n) probabilistic algorithms have been
analyzed for more practical networks like the butterfly [U] and the d-way shuffle [Ale].
These results match the (log n) lower bound for the implementation of an (n, 1, 1)-
communication request on any n-vertex bounded-degree network.

However, permutation routing is a very restrictive form of communication, and
the assumption that individual processors can coordinate their activity in a distributed
computation so that only one message is addressed to each processor at any given
time can rarely be justified. Furthermore, the algorithms developed for (n, 1, 1)-routing
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do not "scale up" to give an optimal solution for communication requests with higher
parameters. (A naive iterative application of a permutation algorithm for an (n, K, K)-
communication request takes O(K log n) steps.) Thus, a new approach is needed for
the more general problem.

In the first part of this work we give an optimal solution for the general communica-
tion problem on bounded-degree networks.

THEOREM 1. Any solution of the (n, K, K2)-routing problem on an n-processor
bounded-degree network requires (K + K2+ log n) parallel steps.

THEOREM 2. There exist an (explicitly constructible) n-processor bounded-degree
network and a deterministic algorithm that solves any n, K K2)-communication request
on this network in O(K + K2 + log n) parallel steps.

The core of our solution is an optimal algorithm for the (n, K)-token distribution
problem, which is stated as follows: n tokens are initially distributed among n processors,
with no more than K at each site. Redistribute the tokens through a bounded-degree
network so that each processor will have exactly one token.

This problem is thus very similar to the (n, K, 1)-routing problem, except that the
destinations of the tokens are immaterial and not fixed in advance. It is trivial to see
that any algorithm for the (n, K)-distribution problem, combined with any permuta-
tion-routing algorithm, implies also an algorithm for the (n, K, 1)-routing problem,
with the same time complexity (up to an additive factor of O(log n)). It is slightly
harder to show that the same applies to the (n, 1, K)-, and hence also to the (n, K, K)-,
routing problems.

This problem was studied to some extent on networks of unbounded degree.
Leighton [L2] has derived an O(K + log n) algorithm for (n, K)-token distribution on
an n-processor hypercube. The best lower bound known for this problem on the
hypercube is (K/log K)[K]. In this paper we give an optimal solution for the problem
on bounded-degree networks.

THEOREM 3. The complexity of the n, K )-token distribution problem on bounded-
degree communication networks is (K + log n).

THEOREM 4. There exist an (explicitly constructible) n-processor bounded-degree
network and a deterministic algorithm that solves the n, K )-token distribution problem
on this network in O(K + log n) steps.

In addition to its importance in the context of communication, the token distribu-
tion problem has direct applications to the problem of load balancing in distributed
systems. Consider each token as an independent process waiting for execution. Then
a token distribution algorithm provides an efficient distributed method for balancing
the queue lengths of the individual processors. This and other applications motivate
the study of a more general distribution problem, in which the number of tokens is
larger than the number of processors in the system and the goal is to uniformly distribute
the tokens among the processors. Our method is extended to give an optimal solution
for this problem as well [PU].

The token distribution algorithm works in two phases. First an approximate token
distribution problem is solved deterministically in O(K + log n) steps, leaving no more
than O(1) tokens in each processor. Then, an exact distribution is achieved using an
O(log n) routing or sorting algorithm.

It is easy to verify that both these problems can be solved in O(K + log n) time
only on expander graphs. (An (a, )-expander is a graph with the property that for
every set U subject to UI <_-/3n, IF(U)- UI--> al UI, Where F(U) denotes the set of
neighbors of nodes in U.) The rapid progress in the explicit construction of strong,
low-degree expander graphs [LPS] suggests that expanders are very likely to become
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a feasible pattern for future communication networks. These new construction methods
should motivate more research on algorithms that exploit the special properties of
expander graphs.

Since these problems appear in a variety of applications, our goal is to provide
an optimal solution for a large class of communication networks, preferably for all
networks for which such a solution exists. Indeed, the solution to the approximate
token distribution problem differs from other known algorithms for network routing
in that it is not tailored for one particular network; rather, it solves the problem on
any d-regular expander graph with a sufficient expansion factor (which is still small
enough so that there exist such explicitly constructed networks).

The solution to the approximate problem involves solving a subproblem which is
of general interest by itself. This is the problem of constructing a directed subgraph
in a network (e.g., a spanning tree), based on some local property P, such that the
subgraph is centered around the nodes enjoying P, and the other nodes appear only
in the periphery (i.e., as leaves). This can be done distributedly, when initially every
node knows only whether he/she itself has P.

In the second part of this work ( 5) we attempt to achieve a similarly wide result
for the exact K token distribution problem. We do not know of any deterministic
algorithm that can sort or route n elements in O(log n) steps on every expander.
However, we present a probabilistic algorithm that solves the (n, 1, 1)-routing problem,
i.e., executes any (n, 1, 1)-communication request in O(log n) steps on any d-regular
expander. The algorithm is a variant of Valiant’s two-phase routing algorithm [V].
Note that the routing algorithms mentioned above were devised for special networks,
and their analyses depended strongly on the network topology. Our analysis of the
new algorithm uses a completely different approach. Since we analyze the algorithm
for a whole class of graphs, characterized by some abstract properties, the analysis
can make use only of these properties of the graphs rather than their particular design.
In our case we use information about the eigenvalues of the adjacency matrix of an
expander graph to analyze the convergence of a Markov chain, which is the core of
the algorithm.

THEOREM 5. Let G be an n-vertex d-regular graph, and let A G) denote the second
largest eigenvalue in absolute value of its adjacency matrix. Ifd- A (G) is bounded away
from zero, then the probabilistic routing algorithm implements any n, 1, 1 )-communication
request on G in O(log n) parallel steps.

A recent result of Alon [All], [A12] guarantees that the above condition on A (G)
holds for any d regular expander graph. Thus we prove Theorem 6.

THEOREM 6. Exact (n, K)-token distribution can be achieved by a probabilistic
algorithm in O(K + log n) steps on any sufficiently strong regular expander graph.

Theorem 4 has further implications, beyond the context of the token distri-
bution problem. To mention a few, using Leighton’s sorting algorithm [L1] we get
Corollary 7.

COROLLARY 7. There exists a probabilistic algorithm for sorting n elements on any
n-processor regular expander graph in O(log2 n) steps.

And in general, using a recent result of Alt et al. [AHMP].
COROLLARY 8. There exists a probabilistic algorithm that can simulate the execution

of any n-processor T-step PRAM (parallel random access machine) program in
O( T log2 n) steps on any n-vertex regular expander.

Finally, in 6 we study the token distribution problem on general given networks.
We first give a specific lower bound for any network and any initial distribution. This
bound can be as bad as l)(n) for some particular graphs and distributions. We then



232 D. PELEG AND E. UPFAL

give a general deterministic algorithm that works on any network and for every initial
distribution in O(n) steps.

2. Notation. We first define precisely the underlying model. Throughout, our
communication network is modeled by an undirected graph G (V,/), where V[ n
and the maximal degree is d. The system is assumed to be synchronous, and we use
the number of rounds (clock ticks) as our time measure. A node can send at most one
message along any adjacent edge in one timestep, where by message we mean either
a token (i.e., a packet) or a string of O(log n) bits. Thus a node may send up to d
messages in any time unit. (This does not affect the time complexity of our problem,
since we consider only graphs of bounded degree.) We assume that the processors can
perform an unlimited amount of computation in every timestep. However, in our upper
bounds local computations are minimal (i.e., logarithmic in n).

For every node v V we denote the number of tokens in v in any given moment
by t(v), where t(v)= n. We assume that the tokens are numbered. However, this is
not necessary, as the tokens can be numbered initially in O(log n) time.

3. Reducing routing to distribution. In this section we sketch how an O(K + log n)
algorithm for token distribution (to be described in the rest of the paper) implies an
O(Kl+K2+log n) solution for the (n, K1, K2)-routing problem on an n-vertex
network.

For every processor vi, let xi denote the number of tokens whose destination is
l)i(xi <: K2).

A central component of the simulation is a step in which we count the number
of tokens to be sent to each processor. For this step we assume that we have precon-
structed on the graph a tree of bounded degree and depth O(log n) whose leaves are
precisely all the nodes of the graph (so each node appears once as a leaf and possibly
several more times as an internal node). It is easy to prove that such a tree exists for
any bounded-degree graph whose diameter is O(log n), and hence in particular for
any expander. The tree has to be constructed once, and be known to all the processors.
We also assume, for the purposes of the simulation, that the nodes of the graph are
numbered in an order corresponding to some depth-first traversal of the tree.

The routing problem is solved in six steps"

(1) Run the token distribution algorithm.
/* At the end of this step each processor stores exactly one token. */

(2) Sort the tokens according to their destinations.
/* At this point, the xl tokens with destinations vl are located in processors
vl,’’’, vx,, the x tokens with destinations v2 are located in processors
Vx,+, Vx,+x2, and so on. */

(3) Count for each processor vi the number xi of tokens to be sent to it. This can
easily done by the following three substeps"
(3.1) Perform the actual counting, using the tree structure described earlier,

by shipping upwards partial counting information. (See [U1].)
/* At the end, the numbers xi are held at different nodes in various
levels of the tree, with at most d numbers in any "virtual" tree node,
and hence at most O(d log n) numbers in each "real" graph node. *//

(3.2) Distribute the numbers in the graph, using the token distribution
algorithm.

(3.3) Permute these values, sending xi to vi.
/* At the end of this step, each processor vi knows the number of tokens
it should expect. */
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(4) Each processor vi produces xi dummy tokens and supplies them with the
labels "(i,j)," 1

(5) Run the token distribution algorithm on the dummy tokens and then sort
them lexicographically according to their labels (with being more significant
than j). During this step the paths used by the tokens are recorded by the
intermediate processors. (That is, in every time unit, every processor records
the label and entry/exit edge of each token going through it.)
/* After this step every node has two tokens: a real one, destined for some
node vi, and a corresponding dummy one that originated at vi. */

(6) Send the real tokens to their destinations, each traversing the path "marked"
by its corresponding dummy token, in reverse order.

Analysis. The sorting and permutation of steps (2), (3.3), and (5) require the
network to be an S-network and take time O(log n). Step (3.1) can be done in time
O(log n) also; step (4) takes time O(1); and step (6) takes the same amount of time
as step (5). Assuming that we have an O(K + log n) token distribution algorithm, step
(1) takes time O(K,+log n); steps (5), (6) take time O(Kz+log n); and step (3.2)
takes time O(log n) (since it starts with K O(log n)), so overall, the above reduction
implies Theorem 3.1.

THEOREM 3.1. There exist an (explicitly constructible) n-processor bounded-degree
network and a (deterministic) algorithm that solves any (n, K1, Kz)-communication
request in O(K1 + K2 + log n) parallel steps on that network.

To achieve this run-time we need a network that satisfies the requirements of the
token distribution algorithm and is also an S-network.

4. The token distribution problem. In this section we give the lower bound for
token distribution, and then describe a deterministic algorithm for the approximate
problem on a wide class of expander networks. We then extend this algorithm to an
algorithm for the exact problem.

THEOREM 4.1. The approximate and exact n, K)-token distribution problems require
I(K + log n) steps on any bounded-degree network. Further, O(K +log n) run time is

achievable only on expander graphs.
Proof Since the degree of the graph is bounded, D(K) steps are needed in order

to take K tokens out of a processor. Also, to send rs tokens out of any set of size s
in O(r) steps the set needs to have O(s) edges connecting them to the rest of the
network. Thus, the graph must be an expander.

To prove the )(log n) bound, observe that in any bounded-degree network there
are three vertices that are at least 8 log n apart from each other for some 8 8(d) _-> 0.
Let u, u2, and v be three such vertices. Fix an initial distribution of tokens as follows.
Give one token to each processor in the graph other than u, uz, and v. Give two
tokens to v and the remaining one to either u or uz. Let N(u,1/26 log n) be the set
of vertices that are within distance 1/26 log n or less from u and let F(ul, 1/28 log n) be
the set of vertices that are in distance 8 log n or more from u. At the termination of
the algorithm, the total flow from the set F(u, 8 log n)-N(u, 1/28 log n) to the set
N(u,1/26 log n)-F(u,1/26 log n) is one if u did not get a token initially and zero
otherwise. The set N(u,1/28 log n)F(u,1/26 log n) cannot get information on the
initial number of tokens in u in less than 1/28 log n steps; thus the algorithm execution
must take ft(log n) steps.

4.1. Approximate token distribution. Our algorithm employs parallelism on two
levels. The algorithm consists of O(log K) phases, each of which reduces the maximum
number of tokens at any site in the network by a constant factor. In the execution of
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each phase, parallelism is employed in the n processors in the usual sense. However,
executing the O(log K) iterations successively does not yield the desired run-time. To
speed up the algorithm we introduce a second level of parallelism by executing all of
the phases in parallel. We manage to do so despite the fact that the input of one phase
is the output of the previous one.

Our solution works on graphs of the following type. A sqrt expander is an expander
with the additional property that there exists 0-<_ =< d subject to a > (d + i2)/(i + 1).
For such expanders we define l=min {ilc > (d + i2)/(i+ 1)} as the spanning factor of
the sqrt expander. Note that this requirement holds approximately when a > 2x/-d, and
it is possible to explicitly construct sqrt expanders with the above property and with
relatively low degree. For instance, the construction in [LPS] yields expanders with
second eigenvalue 12<_-2x/d-I, and using Tanner’s equation [T, Thm. 2.1] we get
a > d/4 for sufficiently small/3.

We first describe the algorithm assuming the phases are .carried out sequentially.
Our goal is to reach a situation in which t(v)<-_ c for every v, for some fixed constant
e (independent of n and K). In particular, for a sqrt a, /3 )-expander we choose
c [2//3 ]. In the beginning of phase j (j 0, 1, the current maximum is no larger
than K. The convergence property relating the phases is K yK, or alternatively
Kj+I yK, where 7=(21+1)/(21+2)(0< 3,<1) and is the spanning factor of the
underlying expander.

As the phases are identical, we shall describe one phase j in general. Consider a
set U of "heavily loaded" nodes (i.e., all nodes with more tokens than a certain
threshold). During the phase the nodes first distributedly construct a directed acyclic
graph in which all of the heavy nodes participate as internal nodes, and the leaves
are taken from among the lightly loaded nodes. Then, the internal nodes ship tokens
to their children in the dag for a prescribed number of steps. The construction of the
dag guarantees that the heavy nodes keep losing tokens in every shipping step (it is
most convenient to visualize the particular case of a binary forest). More precisely, let

U.i= {vlt(v)>= K/2}. The phase j consists of two parts.

Part (1) Dag construction. Distributedly construct a dag G’= V’, E’) with the
following properties"

(1) =_ v’=_ v.
(2) E’_ E (looking at the underlying undirected edges).
(3) For every v V’, indegree (v) _-< L
(4) For every v U, outdegree (v)= 1+ 1.
(Again is the spanning factor of the expander. Note that when 1 indeed we

get a binary forest.)
Part (2) Token flow. Perform K/2(l+ 1) "flow" steps, in which on every edge

(u, v) E’, u sends a token to v.

Before going into the details of the construction, let us note that the above
properties of the dag guarantee the promised convergence property.

LEMMA 4.2. Upon completion ofphase j, for every v, t(v) <= K+I( yK).
Proof Clearly we only need to consider nodes in V’. If v U./then in every flow

step it receives at most tokens and sends + 1, so it loses a token per step, and hence
the new bound. If v V’-U then it begins with less than K/2 tokens, and gets at
most in every flow step, so it will also end with no more than yK. tokens.

Construction of the dag. The dag is constructed "bottom up" while keeping the
nodes of U that did not choose children yet in a set W. Throughout, each node knows
whether or not it is in W. Initially W= U and in every following step some of the
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nodes in W choose children and leave W, and are ready to be chosen as children of
other members of W. Each step of the construction of the dag is of the following form:

(1) Every node v e W informs all its neighbors that it belongs to W.
(2) A node v W that received such messages from at most neighbors returns

to these neighbors the message "ready" (meaning intuitively: "I’m ready to
be chosen as a child and consequently to receive tokens").

(3) A node v e W that has received "ready" messages from at least + neighbors,
chooses exactly l+ of them as children and so informs them. (The edge set
E’ will contain directed edges from v to these nodes.) For the rest of the
construction, v removes itself from W.
These steps are repeated as long as W # .

It is easy to see that nodes participating in the dag obey the degree requirements
in the definition. Specifically, we have the following lemma.

LEMMA 4.3. For every v V’, indegree (v)<-_l, and if v6 U then also out-
degree (v)= l+ 1.

Proof A node v receives parents in the dag only if and when v W. Consider the
first iteration during which a node v V sends "ready" messages to (some of) its
neighbors. This happens if there are at most neighbors of v in W. The set W shrinks
with every iteration, so clearly all possible parents of v come from among its (at most
l) possible parents in W.

The second condition holds trivially.
For the analysis, denote the sequence of sets W in the successive iterations by

U Wo_ W _... _ W,,. We have to prove that the construction process stops with

Wm and further, that rn O(log ]). The proofcan be sketched along the following
lines.

For a set U_ V we denote by F(U) the set of neighbors of nodes in U. Let
Fi =F(W/)- W/, Xi={vlvFi, I) has at most neighbors in W/}, Yi={vlve W, v has
at least l+ neighbors in Xi}, and 6= 1-((/+ 1)ce-d-12)/l(d-l).

LEMMA 4.4. 0< 6 < 1.

Proof It suffices to show that O<((l+l)ce-d-12)/l(d-l)<l, and this follows
from the choice of the expander to satisfy (d + 12)/(1 + 1)< a < d.

LEMMA 4.5. IFi[ C] W/], whre o is the expansion constant of the graph.
Proof The definition of U implies IUI<=2n/K. Wc_ U, and K> c= [2//3]. Put

together, WI <=11 <-- 2n/[2//3 _<-/3n, so the expansion requirement holds for W.
LEMMA 4.6. IX]--> (((1+ 1)c-d)/l)lW I.
Proof Denote by e the number of edges between W and F. Clearly e-<_ d] W].

On the other hand, from every node in X there is at least one edge to W, and from
every node in F-X there are at least l+ such edges. Hence,

1. IXil / (1 / 1)IFi- X, <- e.

Combining the two inequalities we get (l+ 1)IF,I-llX, <- dlWil. Together with the
previous lemma we have llXi >= (l + 1)eel W]- a[ w,I.

LEMMA 4.7. [Y,I->- ( )1 1.
Proof Every node in Y/has at most d neighbors in Xi, and every node in W-

has at most neighbors in Xi. Therefore

and the result follows from the previous lemma.
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COROLLARY 4.8. W+,I-< 61
Proof. The proof follows from the fact that W/+I W-Y, together with the

previous lemma.
COROLLARY 4.9. The dag can be constructed correctly in O(log n) steps.
Summarizing, the algorithm requires O(log K) phases, where phase j takes time

O(Kj + log n) and Kj 3,K. Therefore, the Kj components sum up to O(K), and the
entire time is in O(K+log n logK), which, for K<_-n, is contained in O(K+
log n log log n). To reach optimality it remains to eliminate the consecutive execution
of the phases.

Parallelization of the phases. It is clear that as long as K _-> O(log n), the cost of
a single phase is dominated by the "token flow" steps. The cost of the dag construction
becomes significant only from that point on. Therefore we may execute the first few
phases sequentially, and parallelize only when K < 2(1 + 1) log n.

The idea for parallelizing the phases is based on the observation that we can
"separate" the phases, i.e., construct all the dags first and perform all the token
transitions afterwards. Furthermore, the communication required for the construction
of the dags is only O(1) bits per step, while the model allows us to use O(log n) bit
messages. We also observe that to begin building the dag for the j + 1st phase it is not
necessary to have completed the jth dag, but merely to know U+I. This leads to the
idea of trying to find a fast way of identifying the sets U in advance, and then
constructing the dags in parallel. An obvious obstacle to this idea is the fact that the
exact composition of U+I is determined only upon completion of the construction of
the jth dag. However, it is possible to maintain approximations ’(v) for the number
of tokens in every node, upper bounding the real number t(v), and to identify a larger
set /./+l that is guaranteed to contain U+l and that can be constructed in O(log log n)
steps (from knowing U).

It should be clear that when using instead of we will still have Kj
as the bounds on the number of tokens at the beginning of phase j. The worst that
might happen is that nodes in -U will discover this fact during the actual flow
steps, and may cease sending tokens if they do not have any, which can only result
in some nodes having fewer tokens than expected.

The sets are constructed serially as follows. Forj =0, /o Uo {v[ t(v)>= K/2}.
Forj >_-0, we start phasej from U./and apply the dag construction for m 2 logl/ log n
iterations. The remaining set of candidates (nodes from who still need to choose
children) was denoted earlier by Win. Let W./= Wm and Z U F(I/). Denote by

T the set of all nodes v Z that entered the dag during the jth iteration (as parents,
children, or both). At this point each node v in the graph is required to determine its
value of ’(v) at the end of the jth phase. For nodes v (Z U T) this value cannot
possibly change during this phase. Nodes in ask their parents in the dag for the
number of tokens they should expect to receive during the flow steps of phase j (note
that, unlike the situation in the serial execution, a parent may send its sons fewer than
Ki/2(l+ 1) tokens during phase j). Since the dag is of depth m =-2 log log n, this
information can be collected in O(log log n) steps using O(log log n)-bit messages,
and then the new value of ’(v) can be computed directly, for every v T. Finally,
nodes in Z cannot yet estimate the number of tokens they will have at the end of the
phase. Therefore they exaggerate and take this number to be the maximum possible,
K/l. This can be viewed as a commitment on behalf of these nodes to produce
"dummy" tokens and distribute them if they do not have enough. (This assumption
serves to simplify the analysis, but the commitments clearly do not have to be honored
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during the actual flow steps, which accounts for the difference between t(v) and f(v).)
Now we take + {v] ’(v) -> K+1/2}.

This process can be repeated aslong as =</3n. Clearly U . The crux of the
analysis is in showing that the sets U do not grow too fast. This requires us to bound
the number of dummy tokens added along the process.

LEMMA 4.10. The number ofphases is O(log log n).
Proof Since -> U, the number of phases is bounded above by the number of

phases in the serial algorithm.
LEMMA 4.11. In everv phase j, Il_-<(d / 1)n/log2 n.

Proof Recall that W./ is the set W,, obtained after m iterations of the dag
construction in phase j. Hence tml Wol -2 log log

iv n/log2 n, and Iz l-<-
Il+}F()<=(d+l)n/log n. [3

LEMMA 4.12. In every phase j, (v)<=2n.
Proof. The number of dummy tokens added by nodes in Z in any single phase

is bounded by IZlKj<=(d+l)n/logn. Hence by Lemma 4.10, the total number of
tokens added to the system is in o(n). [3

LEMMA 4.13. I/./I--<_ an/Ky.
Proof By the definition of and by Lemma 4.12,

and the result follows immediately. [3

As noted before, the sets U are usable as long as they are no larger than/3n.
By the last lemma this holds while 4n/Ky <= n, or in other words while

j_-<J= log logT

This number of phases lowers K down to K’-<_ [4//3 ], which is still constant, although
twice as large as that achieved in the serial construction. Therefore the general process
proceeds as follows.

(1) For each of the first J+ phases (0_-<j_-< J), start from the set U, perform
the first m steps of the dag construction, identify the sets W./ and Z./, and
determine the new value of ’(v) for every v and U+I. These phases are
executed serially, in time O((log log n)Z).

(2) Complete the construction of all the dags of the first J + 1 phases in parallel,
based on the sets W, in time O(log n).

(3) Perform the actual flow of tokens on the constructed dags, phase by phase
(for J phases).
The total cost is therefore O(K + log n).

THEOREM 4.14. The approximate V(n, K)-token distribution problem can be solved
deterministically in time O(K + log n) on sqrt expanders.

4.2. Exact token distribution. Our algorithm for the exact (n, K)-token distribution
problem starts with solving the approximate problem. Assuming that the tokens are
numbered, the remaining problem can be viewed as an (n, c, 1)-routing problem, where
c is a constant independent of n and K. In this section we will show that the
(n, c, 1)-routing problem can be solved deterministically, in O(log n) steps on any
n-vertex S-network. More significantly, the result of the next section shows that the
same run-time can be achieved probabilistically on any regular (a, 1/2)-expander graph
(a > 0). Thus, we have the following theorem.
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THEOREM 4.15. Exact (n, K)-token distribution can be achieved in time O(K +
log n):

(1) Deterministically on any network combined of a sqrt-expander + an S-network.
(2) Probabilistically on any network combined of a sqrt-expander + a regular (a, 1/2)-

expander a > 0).

ThE O(log n) DETERMiNiSTiC (n, , 1)-ROUTING ALgORiTHM. Initially all the
tokens are labeled/. When a token reaches its final location its label is changed to F.

Repeat the following six steps for c times:

(1) A processor that stores some tokens with label I changes the label of one of
these tokens to R. A processor that does not store such tokens generates a
dummy token with label R and value -o.

(2) Sort the n tokens with label R according to their values.
(3) Discard the dummy tokens.
(4) A processor that stores a token with label F generates a dummy token with

label R and value -oo. A processor that does not store a token with label F
or R generates a dummy token with label R and value

(5) Sort the n tokens with label R.
(6) Discard the dummy tokens and change all the labels R to F.

Analysis. Since initially there are no more than c tokens in each processor, after
c iterations of the algorithm all the tokens are processed, i.e., given label R, moved to
a new location and given label F. Note that each token moves during exactly one
iteration, and does not move afterward.

Assume that x tokens have been processed during the first i-1 iterations, and
assume also that at the beginning of the ith step these tokens are stored in processors
1,..., x, one in each processor. (These inductive assumptions certainly hold for i= 1
and x 0.) Let y be the number of tokens processed during the ith iteration. After the
first sorting phase (step (2)), these y tokens are stored in processors n-y+ 1,..., n,
one in each processor. Clearly, n -y >_- x and the second sorting phase (step (5)) involves
x dummy tokens with value -oo and n-y-x dummy tokens with value +oo. This
implies that the y "real" tokens processed in the ith iteration end up in places
x + 1, , x + y. Thus at the end of the last iteration all the tokens are evenly distributed
among the processors.

Each iteration involves two sorting phases; thus the total run-time is O( log n),
which is O(log n) when c is a constant.

5. Routing on regular expanders. In this section we give a probabilistic algorithm
that solves the (qn, q, q)-routing problem on any d-regular n-vertex (a, 1/2)-expander
graph in O(q log n) parallel steps. As mentioned in 4, augmenting this result with
the approximate distribution algorithm we get a probabilistic algorithm that solves the
(n, K)-distribution problem in optimal time on any graph that is both a sqrt-expander
and an (a, 1/2)-expander for some a > 0.

The communication protocol we use is a variant of the protocol used in [U] for
the butterfly network, based on Valiant’s two-phase randomized routing scheme [V].
The process of routing a packet to its destination has two phases. Each phase consists
of L (L O(q log n)) transitions. In the first phase every packet X performs L random
transitions. If X is in processor u and e is an edge going out of u, then X chooses e
for its next transition with probability 1/d.

The first phase defines the following sets of probabilities for every pair of vertices
{u, v} and for every 1 <j < L. P is the probability that a packet initially located at
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u enters processor v in its jth random transition, and P,(e) is the probability that a
packet initially located at u enters v in its jth random transition through edge e. Note
that these probabilities do not depend on the destination of the packet.

In the second phase every packet is sent from its current location to its final
destination in L transitions. Its route is defined as follows" If a packet is on its way
to processor u, and is located in processor v after executing L-j transitions of this
phase, then it chooses an edge e for its next transition with probability P,(e)/PJ,,.
We show in the analysis that for every pair (u, v), pL, > 0. Thus, the routes are properly
defined and on the Lth transition a packet always reaches its destination. Note that
these probabilities must be computed only once, when the network is constructed, and
this computation can be done very efficiently.

We still have to specify the queue policy of processors. In each step every packet
has a priority associated with it, which is the number of transitions the packet has
already performed. In the first phase the priority numbers are 1,..., L and in the
second phase L+ 1,. ., 2L. The packet with the smallest priority number is the first
to be transmitted. Thus, priorities are used to speed up slower packets at the expense
of faster ones.

THEOREM 5.1. There are constants S= S(d) and R R(d) such that the routing
algorithm executes any qn, q, q)-communication request on any d-regular (c, 1/2)-expander
in Sq log n steps with probability 1- e-R log n.

Proof Let G be a d-regular (or, 1/2)-expander and let A (ai,j) be its adjacency
matrix. A random walk of a packet on the graph defines a Markov process in which
a state of a packet at a given time is its location in the graph. Let B (bi,) be its
stochastic transition matrix. An estimate of the convergence rate of this process to its
stationary state is the crux of the analysis. Since G is d-regular, B Aid. To analyze
the Markov process we need bounds on the eigenvalues of B, which we obtain from
the following algebraic characterization of expanders.

For any matrix M we denote its eigenvalues by AI(M)-> A2(M)_>-
THEOREM 5.2 (Alon [All]). Let G be a d-regular (c, 1/2)-expander with an adjacency

matrix A. Then d- A2(A) is bounded away from zero.
By observing that the proof of Theorem 5.2 holds even if G is a multigraph we

can slightly extend the result of the theorem. Let G be the graph defined by the matrix
A2. Since G is an expander, so is G2. Thus, A2(A2) is bounded away from d 2. However,
Az(A2) maxiel A(A); thus maxl ]A(A)] is bounded away from d.

COROLLARY 5.3. Let G be a d-regular (, 1/2)-expander with an adjacency matrix A.
Then d-lAi(A)] is bounded away from zero for any 1.

Let Q,, be the probability that a packet located at u will reach v in exactly j
random transitions.

LEMMA 5.4. There is a constant y < such thatfor everypair (u, v), Q ,,o< l/ n y.
Proof The matrix B is real and symmetric and thus has real nonnegative eigen-

values AI(B), ", An(B) with corresponding orthogonal eigenvectors 1,. ., ,. Since
B A/d, A(B)= A(A)/d. It is easy to check that AI(A) d, and from Corollary 5.3
we get that A2(A) is bounded away from d; thus A I(B) and Az(B) is bounded away
from 1. It is also easy to check that a possible choice for 8 is the vector I/n, where
I is the unit vector.

To compute Q, we start with a vector k7 having in the entry corresponding to
the processor u and zero elsewhere and look at the entry corresponding to v in the
vector /Bj. Let i= r/8 be the orthogonal representation of b. Then bB== (A(B))Jr/. It is easy to verify that r/ must be 1 since =2 (A(B))r/fii converges
to zero. Therefore, we get Q, _-< / n + (A2(B))J.
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LEMMA 5.5. Let L 3(log l/y) -1 log n. Thenfor every pair u, v, 1In l/n2<=
1/n+l/n 3.

Proof From Lemma 5.4 we immediately get the second inequality, since
1/n + yL 1/n + 1/n 3. Now fix a pair of nodes u and v. Clearly Y v Q/u,w 1, and
by the second inequality, Yw# QI <(n-1)(1/n+ 1/n3) Put together, we get Qu>ig,

1/n-1/n 2.
LEMMA 5.6 For any d-regular (a, 1/2)-expander G there exists a bounded-degree

d’-regular (a’, 1/2)-expander G’ for some ’> O, (obtained by a suitable iterative construc-

tion) with an adjacency matrix A’ such that Az(A’/d’) < 1/2 and a communication step on
G’ can be simulated by 0(1) communication steps on G.

Proof Define A and B as above with respect to G and let k be the minimum
integer such that A(B) k <1/2. Define G’ as follows" G’ has the same vertex set as G, u
and v are connected by an edge in G’ if and only if their distance in G is k. Clearly
G’ is a dk-regular (multi-)graph, and if A’ is the adjacency matrix of G’ then hz(A’)---
(h2(a)). Thus, h2(a’/d)=(h2(a)/d)=(A(B)) <, and clearly a step on G’ can be
simulated by kd k steps of G.

Due to Lemma 5.6 we can assume without loss of generality that y A2(B)< 1/2.
LEMMA 5.7. There are positive constants S’ and R’ such that the execution of the

first phase terminates in S’q log n steps with probability 1- e-R’q log n.
Proof For the purposes of the proofwe consider the following modified algorithm.

No processor ever transmits a message of priority before it has transmitted all messages
of priority less than that it will ever transmit. Such an execution clearly takes at least
as long as an execution of the original algorithm.

The analysis is based on the familiar technique of critical delay sequences.[U].
This technique has so far been applied only to highly structured networks such as the
butterfly [P], [RV]. In contrast, expanders are of much more general, unspecified and
seemingly irregular structure, which makes the task harder. A delay sequence is a
sequence of processors Vo," , v/, such that for any < L either vi vi+. or vi is one
of the d processors connected to vi+. A delay sequence is critical if v/ was one of the
last processors to transmit a message in the execution of the algorithm, and for each
0 <-i< L, vi was one of the last processors to transmit messages with priority from
among the d processors connected to vi+ and vi+ itself.

For a given critical delay sequence D, define two random variables:

f is the number of messages with priority leaving vi, and
t is the time when all messages of priority j leaving vi, for j_-< i, have been

transmitted.
It follows from the construction of the critical delay sequence that if the algorithm

terminates after steps, then t_-< t. Moreover, at time t/, v has finished transmitting
all messages with priority less than or equal to that pass through it and v+ has
received all messages that it should transmit with priority i+ 1. Thus, at time t each
of the f g+l messages that v+ should transmit is either in its queue or has already been
transmitted. Therefore, the time required to transmit the f+ messages from the head
of vi+l’s queue is an upper bound for o D _tti+ tiD. Hence ti+ i+.

Denoting FO=Yo<__i<__f and fixing t=0, we get t<-_Y<=i<=(t-t_) <-

o<=i<=f F.
Hence we are interested in bounding the probability of an execution that has a

critical delay sequence D of length F o>= cq log n for some c > O.
In order to perform this analysis, we present each f/ as the sum of two random

variables g/O and h.
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gP is the number of messages in f not appearing in Uo=,-,f, and h is

f-gi.
Let F Yi gO and F 2 h?. Then FD= F+ F.
It is easy to estimate F. E (g) N q and F is bounded by the number of successes

in qnL independent Poisson trials. Thus, by Hoeffding theorem [HI, Pr{F
B(, qnL, l/n), and using Chernoff [C] bound, we prove that Pr{Fsqlogn}N
e-rq log [U].

The tricky part is to bound F, the estimate for the number of transitions the
F( O(q log n)) packets performed inside the delay sequence, since a packet might
return for an unpredictable number of times to the sequence after leaving it (as opposed
to the situation on the butterfly). Here we rely again on the expansion properties of
the graph. Let Q be the probability that a packet, currently in processor v in the delay
sequence, will ever return to the sequence. Then, by Lemma 5.4,

Q +y <1 recally<Q Ui,Di+j

Thus, the number of transitions a packet performs on the delay sequence is bounded
by a geometrically distributed random variable. The routes of distinct packets are
probabilistically independent. Thus, using Chernoff bound again we prove that

Pr(Fsq log n e-qg".

Letting S’= s’ + s and R’= rain (r’l, r), we get the required result.
It remains to analyze the run-time of the second phase.
LEMMA 5.8. ere are constants S" and R" such that the second phase is executed

in 2S"q log n steps with probability e -R’’q og ,.
Proo The proof is based on the near symmetry between the first and the second

phases. The two phases are not entirely symmetric since the endpoint of a packet in
the first phase is not uniformly distributed. The bias, however, is bounded by 1In 2

(Lemma 5.5), which enables us to prove that the number of packets traversing an edge
e with priority in the execution of an (2qn, 2q, 2q)-communication request stochasti-
cally bounds the number of packets traversing e with priority 2L-i in the execution
of a (qn, q, q)-communication request.

Let be a path of length L from processor v to processor w, and lt be the path
in a reverse order. Let P be the probability that a packet going from v to w in the

first phase of the algorithm will use the path . Let Al(2q) be the execution of the first
phase of the algorithm on a (2qn, 2q, 2q)-communication request and let A2(q) be the
execution of the second phase of the algorithm on a (qn, q, q)-communication request.

From Lemma 5.5 we know that the number of packets going from v to w in A(2q)
is stochastically lower bounded by the binomial distribution with parameters
B(2qn, 1In- 1/n2). Thus, the number of packets taking the route in A(2q) is lower
bounded by B(2qn, (1In- 1/n)P). On the other hand, the number of packets going
from w to v in A2(q) is stochastically upper-bounded by B(qn, 1/n+ 1/n3) and by the
definition of the second phase of the algorithm the number of packets taking the route

is upper-bounded by B(qn, (l/n+ 1/n3)P). Thus, the number of packets taking the
route in A(2q) is stochastically larger than the number of packets taking the route

in A2(q). Fixing an edge e and summing over all routes of length L that contain the
edge e as the ith edge of the route, we get that the number of packets traversing e
with priority L in A2(q) is stochastically bounded by the number ofpackets traversing
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e with priority in Al(2q). Let T[AI(2q)] (respectively, T[A2(q)]) be the run-time of
A(2q) (respectively, A2(q)). Then by Lemma 5.6

Pr{T[az(q)]>_ S’2q log n} <__Pr{T[a(2q)]>=S’2q log n} <_e-l’2qlg".

6. Token distribution on general networks. In this section we return to token
distribution and look at a generalized version of the problem. The application of token
distribution as a tool for load balancing in distributed systems may require solving the
problem on an arbitrary given network which might not have good expansion properties.
This general problem is much harder. We first give a combinatorial characterization
of a lower bound for any particular graph, depending on its specific properties. For
each set of vertices U

_
V, denote by y(U) the number of edges leaving U, and let

t(U) denote the total number of tokens initially in U. Let

t(C)-lU[
max

y(U)

THEOREM 6.1. The general (n,n)-token distribution problem requires
diameter(G)) parallel steps on any network (3.

COROLLARY 6.2. There exist bounded-degree networks for which the (n, K)-token
distribution problem requires f( n steps, even for K 2.

Proof Consider a straight line graph of n nodes (i.e., in which node is connected
to i+ 1 and i-1, except the endpoints). Assume the initial distribution is such that

2 if <-_ n/2,
t(i)=

0 otherwise.

For the upper bound we make the assumption that a directed spanning tree was
preconstructed on the graph, and is known to every node in the graph. The algorithm
we give consists of two steps. In the first, the tokens are sent upwards to the root. In
the second, the root sends the tokens downwards according to their destinations--the
token labeled is sent to node i.

It is clear that the algorithm works correctly, and it remains to analyze its running
time. Clearly the second step runs in O(n) time. In order to analyze the first phase,
let us add the requirement that whenever a node has more than one token, it first sends
the token numbered least.

Denote by h(i) the initial distance of token from the root, and let z(i) be the
time it took token to reach the root.

LEMMA 6.3. z(i)<-max{h(i), z(1)+l,..., z(i-1)+l}.
Proof If token was not delayed on its way to the root by other tokens, then

z(i)--h(i) and we are done. Now assume was delayed, and let j be the last token
delaying i. It is clear that j < i, and also that z(i)= z(j)+ 1, since was not delayed
afterwards, and it followed the same path as j to the root.

LEMMA 6.4. z(i) _--< n + 1.

Proof The proof is by induction on i. For i=1, z(1)=h(1)<=n. Now
assume the claim for 1, , 1. By the previous lemma z(i) _-<

max {h (i), ( + 1, , z( + }. By the inductive hypothesis (i) _-<

max{n, n+l,...,(n+(i-1)-l)+l}=n+i-1.
COROLLARY 6.5. For every token i, z( i)<-_ 2n.
THEOREM 6.6. The exact (n, K)-token distribution problem can be solved deter-

ministically on any graph in O( n parallel steps.
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7. Some open problems. (1) Our algorithm works only for relatively strong expan-
ders. Can it be extended to every expander?

(2) Can the exact token distribution algorithm be made deterministic?
(3) The optimal O(K +log n) run-time is achievable only on expander graphs.

What is the complexity of this problem on other families of graphs? (The lower bound
given in the previous section may well be nonoptimal.)

(4) Find a distributed algorithm that solves the problem on any graph in a time
that matches its specific lower bound.
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SCHEDULING PRECEDENCE GRAPHS IN SYSTEMS WITH
INTERPROCESSOR COMMUNICATION TIMES*

JING-JANG HWANG’, YUAN-CHIEH CHOWS, FRANK D. ANGER, AND CHUNG-YEE LEE:

Abstract. The problem of nonpreemptively scheduling a set of rn partially ordered tasks on n identical
processors subject to interprocessor communication delays is studied in an effort to minimize the makespan.
A new heuristic, called Earliest Task First (ETF), is designed and analyzed. It is shown that the makespan

wEx- generated by ETF always satisfies to Eq.. (2 1/n wopti) + C, where Wopti) is the optimal makespan without
considering communication delays and C is the communication requirements over some immediate
predecessor-immediate successor pairs along one chain. An algorithm is also provided to calculate C. The
time complexity of Algorithm ETF is O(nm2).

Key words, multiprocessor scheduling, worst-case analysis, communication delays

AMS(MOS) subject classifications. 68Q20, 68Q25

1. Introduction. An extensively studied problem in deterministic scheduling theory
is that of scheduling a set of partially ordered tasks on a nonpreemptive multiprocessor
system of identical processors in an effort to minimize the overall finishing time, or
"makespan." So much literature has been produced in the related area that a number
of review articles have been published, including excellent summaries by Coffman ],
Graham et al. [3], and Lawler, Lenstra, and Rinnooy Kan [6]. The underlying comput-
ing system of this classical problem is thought to have no interprocessor overhead
such as processor communication or memory contention. Such an assumption is a
reasonable approximation to some real multiprocessor systems; therefore, applications
can be found for the derived theory [5]. The assumption, however, is no longer valid
for message-passing multiprocessors or computer networks, since interprocessor com-
munication overhead is clearly an important aspect in such systems and is not negligible.

In this paper, interprocessor communication overhead is made part of the problem
formulation and corresponding solutions are derived. The augmented multiprocessing
model starts with a given set F-{ T1, T2," ", T,} of m tasks, each with processing
time/x(T), and a system of n identical processors. The tasks form a directed acyclic
graph (DAG) in which each edge represents the temporal relationship between two
tasks and is associated with a positive integer r/(T, T’), the number of messages sent
from an immediate predecessor T to an immediate successor T’ upon the termination
of the immediate predecessor. The task model is called an "enhanced directed acyclic
graph (EDAG)" and is denoted as a quadruple G-G(F,

To characterize the underlying system, a parameter ’(P, P’) is introduced to
represent the time to transfer a message unit from processor P to P’. The system is
then denoted as S S(n, -), where n is the number of identical processors. By varying
the values of -(P, P’), the system model can be used to model several types of systems
such as a fully connected system, a local area network, or a hypercube. To accommodate
the deterministic scheduling approach, we further assume that the communication
subsystem is contention free. Mathematically speaking, the time to take r/(T, T’) units
of messages from P to P’ is ’(P, P’) x r/(T, T’), a deterministic value. Figure shows
an example of the computing model and a feasible schedule.
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FIG. 1. An example. (a) The EDAG model; (b) the system model; (c) schedules with and without
communication delays.

The computing model described above is an extension of Rayward-Smith’s earlier
model [7], which was confined to unit communication times (UCT) and unit execution
times (UET). He shows that the problem of finding the minimum makespan is NP-
complete and also presents a heuristic. The heuristic, called "generalized list schedul-
ing," adopts the same greedy strategy as Graham’s list scheduling [2]: No processor
remains idle if there is some task available that it could process. For UET and UCT
models, a task T can be processed on the processor Pi at time if T has no immediate
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predecessors, or each immediate predecessor of T has been scheduled (to start) on
processor Pi at time _-< t-1 or on processor P Pi at time =< t-2. A schedule using
Rayward-Smith’s heuristic always satisfies

< 3 X O,) opt(1.1) Wg=

where cog is the length of the greedy schedule and W or, is the length of the optimal
schedule.

This work generalizes Rayward and Smith’s assumptions on communication times
and execution times. The main result offers a new heuristic and its performance bound.
The method is named "Earliest Task First (ETF)" and was first presented in Hwang’s
dissertation [4]. This paper simplifies the presentation, reduces its time complexity,
and improves the performance bound. The main result indicates that the length of an
ETF schedule is bounded by the sum of Graham’s bound for list scheduling and the
"communication requirement" over some immediate predecessor-immediate successor
pairs along one chain that can be calculated using Algorithm C of 3. In notation this
is expressed as follows:

(1.2) wEVF
< (2= l)to’(i)-Jr-C.opt

In (1.2) -() denotes the optimal schedule length obtained by ignoring the inter-03 opt

processor communication and is different from w opt in (1 1) The term (2-l/n) 03opt
is the Graham bound for list scheduling [2].

When ETF is applied to a problem with UET and UCT assumptions, its schedule
length satisfies

(1.3) ovF --< 3 x opt

since C N mopt(i)-1. Both bounds ((1.1) and (1.3)) are close since 3 is the dominant
( whichfactor in both expressions; but we should note that the bound on ETF uses opt,

is smaller than opt in (1.1), as the base multiplier.. ETFA e erisfie. Section 2.1 presents a simple approach, named ELS,
for solving the scheduling problem formulated in 1. ELS (extended list scheduling)
is a straightforward extension of Graham’s LS (list scheduling) method. The unsatisfac-
tory performance of ELS motivates the development of ETF.

.1. ELS sile slt. The ELS method adopts a two-phase strategy. First,
it allocates tasks to processors by applying LS as if the underlying system were free
of communication overhead. Second, it adds necessary communication delays to the
schedule obtained in the first phase.

Graham’s worst-case bound of LS as stated in (2.1) [2] provides a basis for deriving
a similar bound for ELS:

LS opt"

It is obvious that the difference between an ELS and an LS schedule, using the same
task list L, is bounded by the total maximum communication requirement:

((L)<(2.2) ELs(L) Lb, Tmax X 2 ( r r’),
TI’,T’Sr
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where "/’max max { r(P, P’)} is used to calculate the maximum communication require-
ments, and Sr denotes the set of immediate successors of T. We shall also use Dr to
denote the set of immediate predecessors of T in later sections. Combining (2.1) and
(,2.2), we obtain (2.3):

(2.3) tOELS <(2__ ) (i)._toopt "/’max rI(T,T’).
TF,T’ST

The question raised here is whether the bound shown in (2.3) is the best possible.
It is not hard to show that all maximum communication requirements may actually
produce communication delays. However, to show that the bound stated in (2.3) is
tight, it is necessary to produce an ELS schedule in which the schedule of computational
tasks is the worst and, at the same time, almost no communications can be overlapped
with the computations in the same schedule. This is not obvious since, in general, a
longer schedule will allow more overlapping between computation and communication.
Nevertheless, the example in Fig. 2 shows that the bound stated in (2.3) is asymptotically
achievable as e and approach zero. We summarize the result in Theorem 2.1.

THEOREM 2.1. Any ELS schedule is bounded by the sum of Graham’s bound and
the total communication requirement ((2.3)). Furthermore, this bound is the best possible.

(a)

l T3n/I/E 1
S(n,

where for all Pi P
()

FXG. 2. A worst-case example for Theorem 2.1. (a) The EDAG model; (b) the system model; (c) an

optimal schedule on an ideal system; (d) an LS schedule and its corresponding ELS schedule.
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FIG. 2--continued

2.2. ETFma new heuristic. The performance of ELS is unsatisfactory when dealing
with communication delays, as indicated by Theorem 2.1. ETF, the core of this paper,
has a much better performance bound. ETF adopts a simple greedy strategy: the earliest
schedulable task is scheduled first. The algorithm is event-driven and is to be described
in detail in the following paragraphs.

A task is called available when all its predecessors have been scheduled. Let A
and I be the sets of available tasks and free processors, respectively, with A
{ T: DT } and 1 {P,. ., P,} initially. The starting time of T is denoted as s( T);
the finishing time is f(T); the processor to which T is assigned is p(T). These three
values for all tasks are the output of the scheduling algorithm.

The starting time of an available task is determined by several factors: when its
preceding tasks are finished, how long the communication delays take, and where the
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task and its predecessors are allocated. Let r(T, P) denote the time the last message
for T arrives at processor P; mathematically,

0 if T has no predecessors,
(2.4) r( T, P) ! max r/ p[T,{f(T’)+ (T’,T)7"( (T’),P)}.

Then the earliest starting time of an available task T can be calculated by

(2.5) e(T) max {CM, min {r(T, P)}}
PI

where CM, called "current moment," denotes the curent time of the event clock. By
definition, I is the set of free processors at time CM. Now, the earliest starting time
among all available tasks, e, is calculated as follows"

(2.6) e, min {es( T)}.
TeA

The greedy stra,,tegy of ETF wants to find A and /3 I such that e, e.()
max{CM, r(T,P)}.

Since we assume arbitrary communication delays in our model, a newly available
task after the event clock is advanced may have an earlier starting time than that of
the select task . To overcome such a difficulty, a second time variable, called "next
moment" and abbreviated as NM, is introduced to keep track of the scheduling process.
NM denotes the earliest time after CM at which one or more currently busy processors
become free. NM is set to if all processors are free after CM. It is clear that the
scheduler will not generate any available task that can be started earlier than e if
NM => e,. The scheduling decision will be made in this case; otherwise the event clock
is advanced and the decision is postponed.

Conflicts may occur during the scheduling process when two available tasks have
the same starting time. To resolve the conflicts, we adopt a priority task list L as we
did in LS and ELS methods. Such a strategy is called ETF/LS. If the priority list L
is obtained through the critical-path analysis, then the method is called ETF/CP.
Algorithm ETF below is a simple ETF implementation in which conflicts are resolved
arbitrarily.

Example. Consider the same EDAG task graph and the same three-processor
system as given in Fig. 1. The ETF schedule is presented in Fig. 3. Table shows the
detail of the scheduling process. In Table 1, denotes ith execution of the inner loop
of executing Algorithm ETF when it is applied to the given problem. The values of
CM and NM at the beginning of ith execution of the inner loop are denoted as cm(i)
and nm(,,/), respectively. T is the available task selected when CM cm(i) and NM--
nm(i); T--NONE means no task available at the current moment. The scheduling

91
9

9

FIG. 3. An ETF schedule.

=18
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TABLE

CM (I) NM (I) Decision

0 c T made
2 0 6 T2 made
3 0 5 T3 made
4 0 4 None
5 4 5 None
6 5 6 T postponed
7 6 c T made
8 6 12 T made
9 6 12 T made
10 6 12 None
11 12 13 None
12 13 o T made
13 All tasks have been scheduled

decision of is made if e. _<-nm(i) and postponed otherwise.

ALGORITHM ETF.
(0) Initialize" !{P,...,Pn}, A{T’DT=}, Q, CM-0, and NM,

r( T, P) 0 for each T A and each P /.
(1) While I1 < m Do

begin
(1.1) While I#andA#Do

begin
(1.1.1) Find " A and/3 6 ! such that

min min r( T, P) r( ’,/3) temp, let e max {CM, temp}.
TA P

(1.1.2) If e. _-< NM
then
Assign to run on /3. p( ) <_ /3; s(’)-e;f()-s()+tx(),
A <- A,, -{ }, I <- I- {/3}, append to Q,
iff(T) -< NM then NM <--f(T)
else exit the inner loop.

end
(1.2) Proceed: CM <-NM, find new NM.
(1.3) Repeat for each T, P such that T just finished on P"

I I + {P}, repeat for each T’ ST
dr, dr,-1; if dr, 0 then T’ is newly available

(1.4) For each newly available task T’ do
A+-A+{A’},
for each processor P, r(T’, P) maxroT, {f(T) + r/( T, T’) -(p(T), P)}

end.

3. Analysis of ETF. Some properties of ETF are to be established in this section.
The time complexity is analyzed first, followed by the three lemmas that help to explain
the way ETF works. The establishment of a performance bound concludes this section.

THEOREM 3.1. The time complexity of ETF is O(nm2), where n and m are the
number ofprocessors and the number of tasks, respectively.

Proof The ETF algorithm consists of a main loop containing an inner loop. It is
obvious that the main loop repeats at most m times since some task "finishes" in step
1.2 each time. The running time depends on the number of repetitions of the inner
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loop. We observe that there are two mutually exclusive possibilities after executing an
iteration of the inner loop" (1) When e._<-NM, the selected available task T was
scheduled. (2) When e.2 > NM or ! or A , the inner loop was exited. For the
latter case, the CM was moved forward to NM (by executing step 1.2, which follows
the inner loop) and at least one task was finished at the new CM. Consequently, the
inner loop repeats at most 2m times (since the algorithm either schedules a task or
finishes at least one task for each iteration of the inner loop).

Each task becomes newly available once during the scheduling process;
therefore, the total running time of step 1.4 is O(nm2). The most time-consuming step
is generally step 1.1.1, which takes O(nm) for each execution and O(nm2) for at most
2m executions. [3

We introduce some conventions here. Let z be the number of iterations of statement
1.1, and let be an index of a particular iteration, i_-< z. By an execution of state-
ment 1.1, we mean the execution of the whole inner loop. When I or A , the
statement 1.1 is also considered being executed once, though the substatements 1.1.1
and 1.1.2 are skipped. Let the sequences cm (1), cm (2),..., cm (z) and nm (1),
nm (2),..., nm (z) denote values carried by variables CM and NM, respectively, at
the beginning of each execution of statement 1.1. If the scheduling decision of a task
T is made during the ith execution of statement 1.1, then is called the decision order
of T and denoted as do (T), and cm (i) is called the decision time of T and denoted
as dt (T). Note that not every integer i, _-<i<_-z, is a decision order of some task. We
define e.(i) as the earliest starting time among all available tasks while CM carries
the value cm (i); e.(T, i) is similarly defined for each available task T and is calculated
by (2.5).

LEMMA 1. For any task T, dt T)<= s( T) holds and there exists no task T’ such that
dt (T) <f(T’) < s(T) or dt (T) < dt (T’) < s(T).

Proof The first part is obvious since each task was scheduled to start at a time
no less than the value of the current moment at which the decision is made (see
statements 1.1.1 and 1.1.2 of Algorithm ETF).

Suppose that T’ is a task such that dt T) <f( T’) < s( T). Let do (T)= and
do (T’)=j. We have four cases:

(1) T was scheduled after T’(i>j). We get nm (i)<=f(T’) by definition and thus,
nm (i) =<f(T’) < s(T) follows. According to the decision principle (statement (1.1.2)),
T should not be scheduled at the ith execution of statement 1.1. This contradicts
do (T)= i.

(2) T was scheduled before T’(i<j) and T’ has no predecessors. T’ became
available from the first execution of statement 1.1. Thus, e.(T, i)=s(T)>f(T’)>
s(T’) eL(T’,j) e.,.( T’, i). (The last inequality is due to the fact that the earliest starting
time of a task is nondecreasing after it becomes available, since CM is nondecreasing
(see (2.25)). The result e.(T, i)> e(T’, i) implies that T’ instead of T should have
been selected in the ith execution of statement 1.1. This leads to a contradiction.

(3) T was scheduled before T’ and f(T*)-<_ cm (i), where T* is a last finished
predecessor of T’. The assumption f(T*) =< cm (i) implies T’ became available before
the ith execution of statement 1.1. Thus, the same argument for case (2) leads to a
contradiction.

(4) T was scheduled before T’ and f(T*)> cm (i), where T* is a last finished
predecessor of T’. For this case, we have dt (T) <f(T*) < s(T). We replace T’ by T*,
find the last predecessor of the new T’, called T* again, and repeat the same argument.
One of the four cases may happen. If one of cases (1), (2), and (3) occurs, then we
are done; otherwise the process is continued. Since a new task T* with earlier finish
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time is obtained in each cycle, we will reach the case f(T*)_-< cm (i) in a finite number
of cycles if case (4) occurs repeatedly. This concludes the proof of the second part.

Suppose now that dt (T) < dt (T’) < s(T). We can find a task T* such that f(T*)
dt (T’) since a decision is made only at some cm at which a task is finished. This
contradicts the second part of this lemma.

LEMMA 2. If s(T) < s(T’), then do (T) < do (T’) and dt (T) _-< dt (T’).
Proof Suppose s(T) < s(T’), do (T) i, do (T’) =j, >j. Since the current-

moment sequence is nondecreasing, two possibilities can be discussed: (1) dt (T)>
dt (T’), or (2) dt (T)= dt (T’). For (1), we apply the first part of Lemma 1 and get
dt (T’) <dt (T) _-< s(T) < s(T’). This contradicts the second part of Lemma 1. For (2)
T and T’ are available at cm(i)=cm(j), and e( T’,j) s( T’) > s( T) e,( T, i) >=
e.(T, j). During the jth execution of statement 1.1, T should have been selected instead
of T. This is a contradiction. [3

LEMMA 3. Let T and T’ be two tasks satisfying f(T) < dt (T’). Then there exists an
integer such that cm (i)=f(T). In other words, the current-moment sequence cannot

skip any time point at which a task is finished until all tasks have been scheduled.
Proof Let do (T’) =j. Then 0 cm (1) =<f(T) < cm (j). Since the current-moment

sequence is nondecreasing, an index k can be found such that cm (k)<-f(T)<
cm (k + 1). If cm (k)=f(T), then we are done. If cm (k)<f(T)< cm (k + 1) and T is
not a task scheduled when CM cm (k), then T is a task whose scheduling decision
was made earlier. Then f(T) < cm (k + 1) nm (k) contradicts nm (k) -<f(T). If
cm (k)<f(T)<cm (k+ 1) and T is a task scheduled at cm (k), then NM should have
been moved backward tof(T), and thus cm k + 1 nm (k) f(T) after the scheduling
of T. This is also a contradiction. [3

THEOREM 3.2. For any EDAG task model G- G(F,-->,/x, r/) to be scheduled on
a system S S(n, ’), the schedule length, WEVF, obtained by ETF always satisfies

(31). mew<(2= )x’(i)Ac-CmaxtOopt

where Cma is the maximum communication requirement along all chains in F. That is,

(3.2) Cm,x max ’/’max x ., rl T, T,/,)" T., T,) is a chain in F
i=1

Proof The set of all points of time in (0, C0ETF) can be partitioned into two subsets
A and B. A is defined to be the set of all points for which all processors are executing
some tasks. B is defined to be the set of all points of time for which at least one
processor is idle (maybe all processors are idle due to simultaneous communication
delays). If B is empty, then all processors complete their last assignment at mEW and
no idle interval can be found with (0, WEVF). The ETF schedule is indeed optimal and
thus the theorem holds obviously. We thus assume B is nonempty. In the interest of
mathematical rigor, we suppose B is the disjoint union of q open intervals (hi,, br,) as
below:

B (b,,, br,) U... U (b,,,, br,,)
where bl, < br, < bl < br2 <" < b,, < br,,.

We claim that we can find a chain of tasks,
X:T,-, T,_,--,...-, T,,

such that
q 1-1

(3.3) E (br,-b,,) <= E #(Tj,,)+ Z 7"maxXT](rj,+,, Tjt,).
i=1 k=l k=l
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In other words, the total length of B is no longer than the sum of all computational
times and all pessimistic communication requirements along the chain X. We say that
the chain X covers the set B.

Let T, denote a task that finishes in the ETF schedule at time C0EVF. Let s(,)
denote the time at which T, is started as scheduled by ETF. There are three possibilities
regarding the starting time of T,

(l) s(Tj,)bll.
(2) s(T,) B, i.e., there exists an integer h, h =< q, such that

(3.4) b, < s( T,) < br,,.

(3) s(T,) A but s(T,) > b,, i.e., there exists an integer h, h =< q 1, such that

(3.5) brk<=s(T,)<-_b,k+, or br,,<=s(Tj,).
If the first possibility occurs, then the task T, by itself constitutes a chain that

satisfies our claim. We shall show for the second and the third possibilities, respectively,
that we can always add one or more tasks to the chain to extend the covered part of
B to the left. To say a set of points is covered by a chain means that the length of the
set is less than or equal to the sum of computation times and communication require-
ments along the chain, where communication requirements are estimated pessimistically
(using ’/’max)"

Let us first consider the second possibility. Let h be the index satsifying (3.4).
Then , alone has covered part of B from its right end to somewhere in between bk
and br,. The mission here is to add the second task, T, to the chain. By the definition
of B there is some processor P that was idle during (s(,)- e, s(T,)) for some e > 0.
We consider three cases separately:

Case 1. T, did not become available until s().
Case 2. T.h became available at a time earlier than s(T,) but later than time zero.
Case 3. T, became available at time zero.
For Case 1, we simply take the last finished predecessor of T, as T.
For Case 2, let T* be the last finished immediate predecessor of T,. Then

f(T*) < s(T./,). We further consider three subcases: (i) There exists no task T assigned
to run P with s(T)> s(,)-e. (ii) There exists at least one task T assigned to run
on P with s(r) > s(T,), but there exists no task T assigned on P with s(r) s(T,).
(iii) There exists a task r assigned to run on P with s(r)= s(T,).

For the first subcase (of Case 2), since no task is blocking T, from starting earlier
on P, it must be that r(,, P)>-s(T,). Let T be an immediate predecessor of T,
whose message to T, arrives at P at time r( T,, P). Let p(T) PC. Then z(P, P) x
r(, T,) r( ,, P -f() _>- s(T,) -f(T). This result indicates that the communica-
tion requirement from T to , covers the interval (f(T), s(T,)), and hence the covered
part of B is shifted further left from s(,) after T is added to the chain. Furthermore,
the parameter z(P, P) can be replaced by rma This completes the first subcase.

For the second subcase (of Case 2), we let T be the first task allocated on P
after s(,). By Lemma 2, do (,)< do (T). The allocation of T on P cannot be a
reason to block the possibility of T./, utilizing P at an earlier time. The reason T, did
not take such an advantage is again due to r(,, P)>-s(T,). T2 can therefore be

found in the same way as in the first subcase.
We assume a task T satisfying p(T)= P and s(T)= s(T,) in the last subcase.

Now both do (T) > do (,) and do (T) < do (,) are possible. If do (T) > do (T,),
then T was scheduled later than T./, hence, the same argument used in the previous
subcase prevails. We need to argue why r( T.h P) => s(T,) when do (T) < do (T,). Let
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us assume do (T) k and consider two situations separately: (1) dt (T) < s(T), and
(2) dt (T)= s(t). For (1), at the beginning of the kth execution of the inner loop,
both T and T, were available. T, was available since f(T*) _-< dt (T) guaranteed by
Lemma 1.) If r(T,, P)< s(T), then T,, and not T, should have been selected in
the kth execution of the inner loop. For (2), we let cm be the largest value in the
current-moment sequence satisfying f(T*) -< cm > s(T). (The existence of such cm is
guaranteed by Lemma 3.) At CM cm, T was unscheduled and T, was available. T
could not block T, from occupying P at a time earlier than s(T). If r( ,, P) < s(T,),
then T, should have been allocated on P and started at an earlier time when CM
carried the value cm. This contradiction implies that r(T,, P)_-> s(T,). Based on this
result, the same technique as before can be applied to add a second task T2 to the
chain finishing all subcases of Case 2.

Case 3 is indeed impossible. We can obtain r(T,, P)_-> s(T,) as we did above for
Case 2; on the other hand, we have a contradictory fact that r( ,, P 0 due to Dr .

We have completed our discussion of the second possibility. Let us summarize
the results obtained so far. Suppose , < br,, for some h-<_ q. We constructed a second
task 2 such that precedes T, and

(TI) +(T) + ’m X (T, T,)
(br,,- b,,,) +... + (br,,+,- b,,,+,) + (b,,,- s(T,)) + s((T,) s(T)).

Since s(T,) is an interior point of (bt,,, b,,,), at least some new portion (maybe all) of
(bl,,, br,,) has been covered now.

The location of s(2), once again, has three possibilities"
(1) s(Ti)<-_b,,.
(2) s(T) B.
(3) s(T2) a but s(.) > b,,.

If the first possibility happens, then we are done. If not, we repeat our arguments to
construct a third task or more tasks. (The third possibility may lead to adding more
than one task in one cycle.) The cycle can be repeated until the starting time of the
last added task satisfies the first possibility.

Now, it remains to show how to add tasks to the chain in the case of the third
possibility (3.5):. Suppose that h is the integer such that br,, =< s(Tj,) _-< b,,+, or h q when
b,, =< s(,). Let F T: T is a predecessor of T, satisfying s(T) _-> b,, or T T,}. Clearly,
F # b. Let T [" such that s(T)< br,, for any immediate predecessor T of T*. Then
T* is either a predecessor of T./, or , itself. In either case, we can always construct
a sequence of tasks:

T T,,_,- ,__
Although these tasks are not scheduled during B, the last added task, T, is closer to
uncovered points of B. The task T will play the same role as T, did in the discussion
about the second possibility. The mission again is to add a task Td to the chain. There
are three cases"

Case 1. T did not become available until b,,.
Case 2. T became available at a time earlier than br,, but later than time zero.
Case 3. T became available at time zero.
We finish Case by setting T,, to be the last finished predecessor of T. Case 3

is impossible by the same argument for Case 3 of the second possibility.
For Case 2, let T* be the last finished predecessor of T. Thenf(T*) < br,,-< s(T*).

By the definition of B there is some processor P that was idle during the time
(br,,- e, br,,) for some e > 0. We ask the same question as before. Why had T not
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been allocated on P, while it was available and P was idle? Let T, be the task
assigned to run on P, at br,,. Then f(T*)--< dt T,) <- s( T,) by Lemma 1. As in the last
subcase of Case 2 for the second possibility, (1) do (T,) > do (T*) and (2) do (T) <
do (T*) are distinguished. Two situations for (2) are further discussed separately: (1)
dt(T,)<s(T,), and (2) dt(T,)=s(T,). The same techniques can be applied to
conclude that r(T*, P,)_-> br,,. Let , be the immediate predecessor whose message
reaches P, at r(T*, P,) assuming " ’be allocated on P,. This task is exactly what we
want.

After Tz, together with T,,__,,..., T. is added to the chain, the enlarged chain
clearly covers all of B from some point on, and this is a greater part of B than the
initial one. We repeat the whole process by considering three possibilities regarding
the position of s(T,,). The process is repeated until s(,) <= bt, is satisfied by the added
task in the chain. Finally, a chain satisfying our claim (see (3.3)) is constructed.

The important thing to note about this claim is

!-1

/z(&,)(n-1)x ft(Tj,<)+nX’m.xX /(Tj,+,. Tj,.)
ieO k=l k=l

where the left-hand sum is over all empty tasks. (A processor is said to be executing
an empty task when it is idle.) But the fact that Tj,, , Tj, is a chain implies that it
takes at least t=/(Tj.) to finish all tasks in F in any schedule, even on an ideal
system, i.e.,

60op
k=l

The following inequality is obvious:
.(i)E /(T) =< n x Wopt

Consequently,

T, I"

< (i) -t-(n-- 1)co (i) 4- n x x E I?(Tj.+, Tj,,)/’/O) opt opt Tmax
k=l

(i) _lt_Tmax x E l(r.h+,, rj,)2
k=l

The theorem follows immediately by replacing the communication requirements along
a particular chain by Cma

The bound stated in Theorem 3.2 can be reduced by giving an algorithm to
construct the task chain and the corresponding communication requirements used to
cover idle times. The proof of Theorem 3.2 actually finds a chain X: T,,. -., T, such
that IBl<--_k__ tx(Tj,.)+certain communication times. The last term, called C in the
following discussion, corresponds to the sum of just enough terms of the form
’(p(T./+,), P, x r/( T./+,, T./,. to "cover" the times at which (1) no task in the constructed
chain is running, and (2) at least one processor is idle. Since it can frequently happen
that all processors are busy while communication is taking place, much of the time
Cma is "hidden" by being overlapped with computation of other tasks. We are therefore
led to a better bound for tOEVF that even coincides with Graham’s bound if all
communication is hidden. The algorithm assumes that all processors were idle for
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< 0, and each task was scheduled to run during a closed time interval [tl, t2]. It
calculates an upper bound C for the "unhidden" communication of the constructed
chain.

ALGORrrHM C
Input: An ETF Schedule
Output: C
(0) C 0, find a task T that was scheduled to finish last.
(1) Let u 1.u.b. {t: t_-< s(T) and at least one processor is idle at t}.
(2) If u 0 then output C and stop.
(3) If u <s(T) then find a task T’ such that T’ is either a predecessor of T with

s(T’) => u or T itself but s(T*) < u for any immediate predecessor T* of T’. Replace
Tby T’.

(4) Let T’ be the last finished predecessor of T. Iff(T’) u then replace T by T’ and
go to (1).

(5) Find a processor P that was idle during (u-e, u) for some e >0, find a task
T’ Dr such that f(T’) + z(p( T’), P x ,q( T’, T) r( T, P ), C - C +
z(p(T’), P) "q(T’, T), replace T by T’, go to step 1.

In general, C is much smaller than Cma depending on the case. It serves, however,
to replace Cma in the performance bound of Theorem 3.2, and this is stated in the
corollary below.

COROLLARY. An ETF schedule is boundedfrom above by the sum of the Graham’s
bound and the output of Algorithm C. Mathematically,

(3.6) toETF
<(2= )to’(i)Ar-C.opt

4. Conclusion and tliseussion. An essential result of multiprocessor scheduling
theory is the introduction of the list-scheduling method and the establishment of its
performance guarantee. In this paper, we first extend the LS method to address the
issue of communication delays. Theorem 2.1 indicates that the extended method, named
ELS, fails to shorten communication delays, at least in worst cases. The new heuristic
presented in this paper effectively reduces communication delays and also maintains
the strength of the classical list scheduling.

It should be noted that the performance bound of ETF is made possible by the
assumption of no communication contention; however, it is clear that the contention-
free attribute alone does not guarantee the same bound.

Assume no communication contention is indispensable for maintaining the deter-
ministic approach; but, strictly speaking, this assumption is only valid in fully connected
systems or systems with contention-free protocols. For the later case, the protocol
overhead should be included in the estimation of the communication parameters.

To expand the application domain of this theoretic work, we would rather consider
the deterministic scheduling as a planning tool for task allocation suitable for most
highly connected systems. Though each task is scheduled to start at some specific time,
it will be started whenever enabled in the actual execution. In the case the actual start
time of a task is later than its scheduled start time due to the queueing delay caused
by communication contention, the succeeding tasks may become incapable of starting
their execution at their scheduled times. This "postponement" may propagate. In the
extreme case the postponement may propagate down to the critical execution path

Least upper bound.
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and then lengthen the total scheduled time of the graph. However, to some extent,
queueing delay can be absorbed in noncritical paths. Only the portion of queueing
delay that cannot be absorbed will lengthen the total graph’s execution time. For this
reason, the sensitivity of the no-communication contention assumption can be relaxed
in real applications.
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FINDING AN APPROXIMATE MAXIMUM*
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Abstract. Suppose that there are n elements from a totally ordered domain. The objective is to find,
in a minimum possible number of rounds, an element that belongs to the biggest n/2, where in each round
one is allowed to ask n binary comparisons. It is shown that log* n +19(1) rounds are both necessary and
sufficient in the best algorithm for this problem.

Key words, searching, approximate maximum, parallel comparison algorithms
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1. Introduction. Parallel comparison algorithms have received much attention
during the last decade. The problems that have been considered include sorting [AA87],
[AA88], [AAV86], [Ak853, [AKS833, [A185], [AV87], [BT83], [BHe85], [HH81],
[HH82], [Kn73], [Kr83], [Le84], [Pi86]; merging [BHo82], [HH82], [Kr83], [SV81];
selecting [AA88], [AKSS86a], lAP89], [Pi87], [Va75]; and approximate sorting
[AA88], [AAV86], [AKSS86b], [BB87], [BR82]. The common model of computation
considered is the parallel comparison model, introduced by Valiant [Va75], where only
comparisons are counted. In this model, during each time unit (called a round) a set
of binary comparisons is performed. The actual set of comparisons asked is chosen
according to the results of the comparisons done in previous rounds. The objective is
to solve the problem at hand, trying to minimize the number of comparison rounds
as well as the total number of comparisons performed. Note that this model ignores
the time corresponding to deducing consequences from comparisons performed, as
well as communication and memory addressing time. However, in some situations this
seems to be the relevant model. Moreover, any lower bound here applies to any
comparison-based algorithm. There is an obvious, useful correspondence that associates
each round of any comparison algorithm in the above parallel model with a graph
whose vertices form the set of elements we have. The (undirected) edges of this graph
are just the pairs compared during the round. The answer to each comparison corre-
sponds to orienting the corresponding edge from the larger element to the smaller.
Thus in each round we get an acyclic orientation of the corresponding graph, and the
transitive closure of the union of the r oriented graphs obtained until round r represents
the set of all pairs of elements whose relative order is known at the end of round r.

In many of the problems discussed so far in the parallel comparison model, the
most interesting case is the one where the number n of elements is equal to the number
of comparisons performed in each round. It is well known that in this case @(log n)
rounds are both necessary and sufficient for sorting. The lower bound follows trivially
from the serial lower bound, and the upper bound follows from, e.g., the AKS sorting
networks [AKS83]. As proved by Valiant, (R)(log log n) rounds are both necessary and
sufficient for finding the maximum. The results of [AKSS86a] and [BHo82] show that
the same (R)(log log n) bound holds for selecting and merging, respectively

In the present paper we consider, motivated by the research on approximate
sorting, another problem called the approximate maximum problem. This is the problem
of finding, among n elements, an element whose rank belongs to the top n/2 ranks.

Received by the editors January 10, 1988; accepted for publication (in revised form) May 18, 1988.
t Department of Mathematics and Computer Science, Sackler Faculty of Exact Sciences, Tel Aviv

University, Ramat Aviv, Tel Aviv 69978, Israel.
$ The research of this author was supported in part by an Allon Fellowship and by a grant from the

United States-Israel Binational Science Foundation.

258



FINDING AN APPROXIMATE MAXIMUM 259

It is easy to show that in the serial comparison model this problem requires n/2
comparisons: only a constant factor better than the problem of finding the maximum.
It is therefore rather surprising that with n comparisons in each round this problem
can be solved much faster than that of finding the exact maximum in the same
conditions. As it turns out, log* n + (R)(1) rounds are both necessary and sufficient for
finding an approximate maximum among n elements, using n comparisons in each
round. Moreover, the gap between the upper and lower bounds we obtain is only six
rounds! The precise formulation of our result is the following. For a >= 1, k >= 0 define
a (k) by a () and a k) a

aj’-’) for k -> 1. Also define, as usual, log* n min{k" 2k)-> n}.
Let r(n) denote the worst-case number of rounds of the best deterministic algorithm
that finds an approximate maximum among n elements using n comparisons in each
round. Our result is the following theorem.

THEOREM 1.1. For every n >--_ 2,

log* n 4 <-- r(n) _--< log* n + 2.

The upper bound here is not by explicit algorithm, as our algorithm uses certain
random graphs. However, the known results about expanders easily supply (as in, e.g.,
[A185], [A186], [Pi87]) an explicit version of the algorithm, which will take about
log* n + 12 rounds.

We note that our methods can be extended to the case where we have p comparisons
in each round, as well as to the problem of finding an element whose rank is in the
top en ranks for all p_-> and 1/n =< e _<-. With some additional work we can also
obtain the corresponding results for approximate sorting. However, for the sake of
simplicity we present here, in 2 and 3, only the proof of Theorem 1.1 and only state
the more general results (the detailed proofs of which will appear elsewhere) in the
final 4.

2. The upper bound. In this section we prove the upper bound, i.e., that using n
processors we can find an element whose rank belongs to the top half of the ranks of
the n elements in log* n + 2 rounds. Our algorithm uses some known results. The first
is the algorithm of Valiant for finding the exact maximum. The others deal with
properties of some random graphs (or explicit expanders). First we state a theorem
from [VAT5] and two lemmas from [Pi87].

THEOREM 2.1 [Va75]. The maximum of n>4 elements can be bound using n
processors in [log log n rounds. [3

LIMMA 2.2 [Pi87]. For every m and a, there is a graph with m vertices and
2m2 log m/aedgesinwhichanytwodisjointsetsofa + verticesarejoinedbyanedge. [3

LEMMA 2.3 [Pi87]. If m elements are compared according to the edges of a graph
in which any two disjoint sets of a + vertices are joined by an edge, then for every rank
all but at most 6a log m elements will be known to be too small or too large to have that
rank. [3

For our algorithm we use Theorem 2.1 and a corollary of the’last two lemmas.
Note that Lemma 2.2 does not give an explicit construction of a graph with the specified
properties; therefore, the algorithm seems to be nonexplicit. However, we can use
some of the known results about explicit expanders (as in [Pi87], [A185], [A186]) to
obtain an explicit version of our algorithm (with a slightly bigger additive constant).
As the treatment for this case is analogous, we discuss here only the algorithm that
uses Lemma 2.2.

PROPOSITION 2.4. Assume we have m elements and p 2m2 log ma. Then, we can

find in one round (using p comparisons) an element whose rank belongs to the top 7 a log m
ranks of elements.
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Proof Compare the elements according to the edges of the graph supplied by
Lemma 2.2. By Lemma 2.3, all but at most 6a log m elements will be known to be too
small ortoo large to have rank m-7a log m. Therefore, at least (7-6)a log rn elements
will be known to belong to the top 7a log m elements.

For the description of our algorithm, we define the following function: f(x)=
T"/4. x, x->_ 1. f is a monotone increasing function and therefore f-l(y) exists (for
y _-> 2) and is also a monotone (increasing) function. Define the following two sequences:

bo 216 bi+l =f(bi), _-> 0 (We can easily check that all the bls are integers),

ao n, ai+l =f-l(a), i=>0.

Define k(n) by

(2.1) k(n) min {k: bk --> n}.

By trivial induction using the monotonicity of f-l, we get

(2.2) ai<-bk_i forO<=i<k(n).

Our algorithm is based on the following lemma, which is a consequence of the previous
proposition.

LEMMA 2.5. Assume we have n=>232 elements, partitioned into m= [n/f-l(n)]
pairwise disjoint set, the ith having t<= [f-l(n)] elements. Suppose that in each set we
have an element that is smaller than at most et elements in this set. Then we can find in
one round using n processors an element smaller than at most (e + c/x/f-(n))n elements
among the n elements, where c 32.

Proof Choose a [4m/log rn ]. Note that rn => 216, a-->4m/log rn => 26. Clearly,
(2mZlog m)/a<=(m log4 m)/2<=n, because by the definition of f:loga(n/f-l(n))
f-’(n).

Thus we can use Proposition 2.4 for the m special elements with the n processors
and find an element that belongs to the top 7a log rn elements out of the rn elements.
But

[ 4m ]logm<=7( 4m ) 65 4m 30m
+ log rn7a log rn 7

log rn log rn 64 log rn log2 m"

Therefore, the number of elements greater than this element is at most

30m (1) 30(l+l/216)n/f-l(n)
<=en+ 1+ f-en+ [/-l(n)] lo82 rn

(n). lo82 (n/f_l(n))

rl e +log
(In the last inequalities we used the facts that f-(n), m =>26.)

Now log (n/f-(n))=log (2-’()/4) =/f-(n). Hence we can find an element
that is smaller than at most (e+(c/x/f-(n)))n, where c=32.

Now we can describe our algorithm and prove that it works.
THEOREM 2.6. We can find an element the rank of which belongs to the top half of

the ranks of n >= 2 elements in log* n + 2 rounds using n processors.
To obtain the last theorem, we prove by induction a more exact lemma.
LEMMA 2.7. Let n be the number of elements and the number of processors. Then

we can find in k(n)+4 rounds (where k(n) is the number defined in (2.1)) an element
-2 1/ elements.that is smaller than at most cn
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Proof We apply induction on n. The basic case is n _-< b In this case, we find
k-2

the exact maximum using Theorem 2.1. Here k-< so cn i=o 1/, 0, and we really
find the exact maximum. To calculate the number of rounds we consider three cases.
If n -< 4, four rounds are more than what is needed. If n-< bo, then by Theorem 2.1
[log log n] <_- [log log bo] [log log 216] =4= k(n)+4. Otherwise bo< n -< bl, k(n)= 1,
and [log log hi-< [log log b]= [loglog 232] =5= +4= k(n)+4. Assuming that the

232, k(n) > 2). Split the nlemma is true for every n < n, we prove it for n (n > bl
elements into m [n/f-(n)] pairwise disjoint sets, where the jth set has size nJ <-

[f-l(n)]. Assign to each set a number of processors equal to the size of the set. Now
we can use the inductive assumption for each of the new sets, and find in k’+4-<

k([f-l(n)])+4 rounds an element in each set, where the one in the jth set is smaller
k’-2than at most cnj i=o 1/v/ elements in his set. By the definition of k, n-< bk so

f-l(n)<-f-(bk)=bk_ and because the right-hand side is an integer nj-< [f-(n)]-<
bk_. Hence k’-< k-1; therefore we are allowed to have one more round to find the
right element (among the m special elements). For that we use Lemma 2.5 and find
an element smaller than at most

e+ n-< + cn
d/--l( #’l i=0 df" l’( il

other elements. Note that b__l <n so bt,_2-<f-(n), and hence the last expression is
at most

-2 1/ elements amongHence, we can find an element smaller than at most cn
all the n elements in k(n)+ 4 rounds. This completes the proof of Lemma 2.7. 71

To complete the proof of the main theorem, we just have to check the following
two simple facts:

(2.4) k(n) +4-< log* n+2.

2(b.) /4 2Inequality (2.3) is trivial, since bi+ b>_- bi or 1/b-+-<1/2/v/-b-. Thus

2c 64 1

4

To prove (2.4) we need the following simple lemma:
LEMMA 2.8. bi >- 28(2(i+2))4 for every >- O.
Proof The proof is by induction on i. For i=0, bo 26=28(22)4= 28. (2(2))4.

Assuming the inequality holds for i, we prove it for i+ 1. Indeed, b+l 2 (b’)/4 bi
2 (28)1/4"2(’+2) 28(2(i+))4 by the definition of b+ and by the inductive assumption. But
the right-hand side is ->_28. 24"2(i+2)-" 28(2(i+3))4, which completes the proof. 71

Taking i= log* n-2, we get that b => n and, therefore, k(n)<= log* n-2. Thus,
we have the complexity of the algorithm, which is k(n) + 4 N log* n + 2. This completes
the proof of Theorem 2.6.

3. The lower bound. It is convenient to establish our lower bound by considering
the following (full information) game, called the orientation game, and played by two
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players, the graphs player and the order player. Let V be a fixed set of n vertices. The
game consists of rounds. In the first round the graphs player presents an undirected
graph G on V with at most n edges, and the order player chooses an acyclic orientation

H of G1 and shows it to the graphs player, thus ending the first round. In the second
round the graphs player chooses again, an undirected graph G2 with at most n edges
on V, and the order player gives it an acyclic orientation H2, consistent with H1 (i.e.,
the union of H1 and Hz is also acyclic), which he presents to the graphs player. The
game continues in the same manner; in round the graphs player chooses an undirected
graph Gi with at most n edges on V, and the order player gives it an acyclic orientation
Hi, such that the union H1 U. U Hi is also acyclic. The game ends when, after, say,
round r, there is a vertex v in V whose outdegree in the transitive closure ofH U U Hr
is at least n / 2. The objective of the graphs player is to end the game as early as possible,
and that of the order player is to end it as late as possible. The following fact states
the (obvious) connection between the orientation game and the approximate maximum
problem.

PROPOSITION 3.1. The graphs player can end the orientation game in r rounds if
and only if there is a comparison algorithm that finds an approximate maximum among
n elements, using n comparisons in each round in r rounds. [3

In view of the last proposition and the results of the previous section, the graphs
player can always end the orientation game in at most log* n + O(1) rounds. A proof
of existence of a strategy for the order player that enables him to avoid ending the
orientation game in r rounds implies that r + is a lower bound for the time complexity
of the approximate maximum problem. The next proposition is our main tool for
establishing the existence of such a strategy for r--log* n- 5.

PROPOSITION 3.2. There exists a strategy for the order player to maintain, for every
d >= 1, thefollowingproperty P(d) ofthe directed acyclic graph constructed during the game.

Property P(d). Let H(d)= H1U"" U Hd be the union of the oriented graphs
constructed in the first d rounds. Then there is a subset Vo V of size at most lVol <=
n/8+ n/16+...+ n/2d+2 and a proper D=2OO@d-vertex-eoloring of the induced sub-
graph of H(d) on V-Vo with color classes V, Vz,..., VD (some of which may be
empty), such that for each i>j >= and each v V, v has at most 2 i-j-2 neighbors in

V. Furthermore, for every i>j >= 0 any edge of H(d) that joins a member of V to a
member of is directed from Vi to .

Proof We apply induction on d. For d 1, the graph G (V, El) constructed by
the graphs player has at most n edges. Let Vo0 be the set of all vertices in V whose
degree is at least 32. Clearly,

(3.1) Vool <= n/16.
Put U V-Voo and let K be the induced subgraph of G on U. As the maximum
degree in K is at most 31, K has, by a standard, easy result from extremal graph
theory (see, e.g., [Bo78, p. 222]) a proper vertex-coloring by 32 colors and hence,
certainly, a proper vertex coloring by 2000 colors. Let U, U2," , U20oo be the color
classes. For every vertex u of K, let N(u) denote the set of all its neighbors in K. For
a permutation r of 1, 2,..., 2000 and any vertex n of K, define the r-degree d(r, u)
of u as follows. Let satisfy u Ui; then d(r, u) Z-__ IN(u) f3 Uj)]/2i-. We claim
that the expected value of d (r, u) over all permutations r of 1,. , 2000), is at most

31/2000. Indeed, for a random permutation r the probability that a fixed neighbor v
of u contributes 1/2 to d(r, u) is at most 1/2000 for every fixed r > 0. Hence, each
neighbor contributes to this expected value at most 1/2000 r>o 1/2r= 1/2000 and the
desired result follows, since IN(u)l=<31.
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Now consider the sum .cu d(Tr, u). The expected value of this sum (over all
7r’s) is at most 31/2000]U], by the preceding paragraph. Hence, there is a fixed
permutation o- such that , u d (o-, u) <= 31 / 2000[ UI. Put Vo, { u U] d (or, u) > 1/4}.
Clearly,

4" 31 IUI n
Yogi_-< <-

2000 16 16

Define Vo Voo U Vow, W U- Vo V- Vo. The last inequality together with (3.1)
gives

IVol_-<

Let F be the induced subgraph of G on W and define V U(i)1"3 W (1 <=i<= 2000).
The V/’s clearly form a proper vertex coloring of F. Also, for every i, -< <_- 2000 and
every v V

1’’ IN(v) n VI
j=/ 2-j 4

and hence v has at most 2 i-j-2 neighbors in V for each j, <-j < i. Let H be any
acyclic orientation of G in which all the edges that join a member of V to a member
of V, where i>j >= O, are directed from V to V (the edges inside V0 can be directed
in an arbitrary acyclic manner). Clearly H(1)--H satisfies the property P(1). Thus,
the order player can orient G1 according to H. This completes the proof of the case
d--1. [3

Continuing the induction, we now assume that H(r) has property P(r) for all
r< d, and prove that the order player can always guarantee that H(d) will have
property P(d). We start by proving the following simple lemma.

LEMMA 3.3. Let F be a directed acyclic graph with a proper g-vertex coloring with
color classes W, W2,’", Wg. Suppose that for each g >=i >j >-_ 1 and each v Wi, v
has at most 2 i-j-2 neighbors in W, and that every edge of F whose ends are in W and

W for some i>j is directed from W to W. Then the outdegree of every vertex of F in
the transitive closure of F is smaller than 48.

Proof Let v be an arbitrary vertex of F. The outdegree of v in the transitive
closure of F is obviously smaller than or equal to the total number of directed paths
in F that start from v. Suppose v W. Each such directed path must be of the form
V, Vi2 Vi3 ", Vi,., where > 2 > >... ir => 1, Vi2 W/2, vi, W/,.. There are 2 i-1

possibilities for choosing i2, i3,"" ", ir. Also, as each vertex of the path is a neighbor
of the previous one, there are at most 2 i-i2- possible choices for vi2, 2i2-i3-2 possible
choices for vi (for each fixed choice of vi2), etc. Hence, the total number of paths is
at most 2- 2-- 2i2-i3-2 2"-’-"- < 28. 2i-i"< 48. This completes the proof
of the lemma. [3

Returning to the proof of Proposition 3.2, recall that d _-> 2 and that by the induction
hypothesis H(d- 1) has property P(d- 1). Thus, there is a subset Vo V satisfying

F/ F/ r/
(3.2) w%l-<-+--+" "+ 2+----58 16

and a proper D 2000(a-)-vertex-coloring of the induced subgraph of H(d-1) on
V- Vo with color classes V, V, , Vo satisfying the conditions of property P(d 1).
Put U V Vo, let F be the induced subgraph of H(d 1) on U, and let T U, E (T))
be the transitive closure of F. Let Ga (V, Ea) be the graph constructed by the graphs
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player in round number d. Let Voo be the set of all vertices in U whose degree in Gd
is at least 2d/4" 4 and define

Voo VooU{u U’::lv Voo with (v,u)E(T)}.
Since Gd has at most n edges, 19ool--< n/(2d+3 4). Also, by Lemma 3.3, the outdegree
of each v 9oo in T is at most 4D- 1. Hence

(3.3) IWool_-< n/2+

Let G be the induced subgraph of Ga on U- Voo. Then the maximum degree in G is
smaller than 2a+4 4D. For each i, 1 -< -<_ D, let O denote the induced subgraph of
on (U- Voo)13 V. As each is a subgraph of , it has a proper vertex coloring with
2a+4 4 colors. For each i, 1 =< <- D, fix a proper n-vertex-coloring of with color
classes UN,+, Uu,+," ", UN,+,,, (some ofwhich may be empty), where Ni E-ll n and

D

(3.4) n=>100.22d+7.16 for each l=<i=<Dand ni=2000
i=1

(Note that since D= 2000d-), d > 2, there is such a choice for the n’s.) For every
vertex u of G, let N(u) denote the set of all its neighbors in G. Let us call a permutation

D
7r of 1, 2, 3, ,= n legal if it maps each set of the form {N + 1, , Ni + n} into
itself (and only permute the elements inside these sets among themselves). For any
vertex u of G and any legal permutation 7r, define the 7r-degree d(Tr, u) as follows;
let k satisfy u Uk), then

k-1

d(Tr, u)= Y IN(u)fq U(jl/2’-.
j=l

DWe claim that the expected value of d(0"r, u), over all I-I= ni! legal permutations, is
at most IN(u)l/min=i<=on<= 1/(100.2d+3" 4D). Indeed, consider a fixed neighbor v
of u. If v belongs, as does u, to the same graph , then the probability that for a
random legal permutation 7r, v will contribute 1/2 to d (Tr, u) is at most 1/n, for each
fixed r > 0. Otherwise, it is easy to check that this probability is even smaller. Hence,
each neighbor contributes to this expected value at most 1/n Y>o 1/2= 1/n, and
the claim follows.

Consider now the sum d(Tr, u), where u ranges over all vertices of G. The
expected value of this sum (over all legal permutations 7r) is at most

V(O)]/(100 2a+3" 40) -< n/(100 2d+3" 4). Hence, there is a fixed legal permutation
o- such that ,v(o)_d(o’, u)<=n/(lO0 2a+3" 4D). Define I7o ={u V(O)" d(o-, u)>
1/100} and Vo=VoU{uV(O)’::lv"o with (v,u)E(T)}. Clearly, I?o1_-<
n/(2a+34) and, hence, by Lemma 3.3,

(3.5) Vo, <= n/2d+3.
Put V= VoU Voo Vow, W= V- Vo. By (3.2), (3.3), and (3.5)

Ivgl__<-+--+. .+2a+2.8 16

Let be the induced subgraph of ( on W, and define Vl U() f-I W (1 -< =< 2000
2000(a)). The sets V’ clearly form a proper vertex coloring of (. Moreover, as each
U is an independent set in H(d 1), the sets VI actually form a proper vertex coloring
of H(d-1), as well. Moreover, for every i, 1 =< i-<2000a), every ve VI satisfies

’-’ IN(v) 0 Vii 1

2 i-j 100j=l

where N(v) is the set of all neighbors of v in G. Thus, for each fixed j, -j < i, v has
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at most 2i-J/lO0 neighbors in V. Let Hd be any acyclic orientation of the edges of
Gd obtained by orienting all the edges that join a member of VI and a member of V:J,
where i>j_-> 0, from VI to Vj. The edges inside V are oriented in an arbitrary acyclic
order consistent with the order given on H(d 1). Notice that all the edges of H(d 1)
that do not lie inside VD are also oriented from VI to Vj with i>j-> O. In order to
show that H(d) H(d 1) t_J Ha has the property P(d), it remains to check that for
every i> j_-> 1, every v VI has at most 2 i-j-2 neighbors in V. By the construction, v
has at most 2i-J/lO0 neighbors in V in the new graph Ha. Recall that each VI is a
subset of one of the sets Vk corresponding to the graph H(d- 1). Suppose VI_ Vk,
Vj

__
V. Then k -> 1. If k or k 1, then, since v has at most [2 k-l-2] 0 neighbors

in Vt in the graph H(d- 1), it follows that in H(d) v has at most 2i-J/lO0</2i-j-2

neighbors in Vj, as needed. If 1-_< k-2, observe that our construction implies that

(i-j)->(k-l-1) min ni>-(k-t-1) .100.22d+y.16D>(k-/) .100->200.
liD

Thus, in this case, the total number of neighbors of v in gj is at most 2i-J/100+ 2 k-l-2

2i-J/100+ 2(i-j)/l < 2 i-j-2.

We conclude that the order player can orient Gd according to Ha, and maintain
the property P(d) of the graph H(d)= H(d-1)U Ha. This completes the induction
and the proof of Proposition 3.2. [3

The main result of this section, stated in Theorem 3.5 below, is an easy consequence
of Proposition 3.2 and the following simple lemma.

LEMMA 3.4. For every d _-> 1, 2(d+3)-> 32. 2000(d).
Proof We apply induction on d. For d the inequality is trivial, as 2(4)--

64,000 32. 2000). Assuming it holds for d- 1, we pro+ve it for d => 2. By assumption
2) 1) 0 (d 1)

2 (d+2) => 32 2000(d-). Hence 2(d+3) --’22 --2> 32.2000 --(2)32 2 00’-

(22’. 2000) ’’’-’) (2’) ’’’-’) (2000)2"-’) > 32. (2000)a).
THEOREM 3.5. The order player can avoid ending the orientation game during the

first log* n-5 rounds. Hence, by Proposition 3.1, the time required for finding an
approximate maximum among n elements using n comparisons in each round is at least
log* n 4.

Proof Clearly, we may assume that log* n- 5_>-0. By Proposition 3.2, the order
player can maintain the property P(d) for each of the graphs H(d) constructed during
the algorithm. Notice that by Lemma 3.3, the outdegree of every vertex in the transitive
closure of a graph that satisfies P(d) is at most 4)+n/8+n/16+ .+n/2a+<
4+ n/4, where D=2000(a). Thus, it follows that if 42<’)< n/4, then the graphs
player can keep playing for at least r + rounds. Therefore, by Lemma 3.4, the assertion
of the theorem will follow if for r log* n 5 the inequality 42(’+3)/32 < n/4 holds. Since
for r > 0 4 42<’+3)/32 < 2 (r+4), this follows immediately from the definition of log* n.

4. Extensions and related results. In this section we merely state, without proof,
several extensions of the results of this paper and several related results. The proofs
of these results combine the methods used here with some new ideas, somewhat similar
to ones used in [AV87], [AAV86], [AP89]. The detailed proofs are somewhat compli-
cated and will appear somewhere else.

For integers n_->2 and p, l_-<p_-< (), and for a real number e, l/n-< e-<-5, let
r(n, p, e) denote the time complexity of the best deterministic comparison algorithm
that finds, among n elements, an element whose rank belongs to the top en ranks,
using p comparisons in each round. Clearly r(n, n, 1/2) is just the function r(n) discussed
in this paper. For e 1/n, the problem is that of finding the exact maximum, and the
case p corresponds to serial algorithms. We can prove the following theorem.
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THEOREM 4.1. For all admissible n, p, e,

r(n, p, e) (R)|_n+[ log
\P

log(l/e)
log(2+p/n)

Thus for all n, p <- 2 n, e

r(n,p,e)=(R)(+loglog 1-+e lo*_ n

and for all n, p >-_ 2n, e

log 1/e
r(n, p, e) 19 log

log (p/n)

For e 1/n this theorem reduces to Valiant’s result about finding the maximum.
For e =, p n this reduces to our Theorem 1.1 (with a somewhat cruder estimate).

Next we consider approximate sorting. For n => 2, 1 _-< p _-< (), and 2/n2 =< e <= , let
a(n, p, e) denote the time complexity of the best deterministic comparison algorithm
that uses p comparisons in each round and finds, given n elements, all the order
relations between pairs but at most e(). The results of [BR82], [AA88], [AKSS86b],
[BB87] deal with the minimum p for which a(n, p, e)= for some e o(1). Notice
that a precise determination of a(n, p, e) contains all the known results about deter-
ministic comparison sorting or approximate sorting algorithms. We can prove the
following result, determining a(n, p, e), up to a constant factor, for all possible n, p,
and e.

THEOREM 4.2. For all admissible n, p, e

log 1/e
a(n,p,e)=19

log(l+p/n)

Thus, for p<=2n, a(n,p,e)=19(nlog(1/e)/p+log*n) and for p>=2n, a(n,p,e)=
19(lo8 (1/e)/log (p/n)+log* n-log* (p/n)).

For e=2/n this theorem corresponds to sorting and gives the known
19(log n/log(l+p/n)) bound (which is 19(n log n/p) for p<=2n lnd is
19(log n/log (p/n)) for p _-> 2n), (see [AV87], [AAV86]). Notice that for p n and for
any e > 1/2g*n, a(n, n, e) 19(log* n). As shown in 3, f(log* n) rounds are required
(with p n), even if we wish to find one element known to be greater than n/2 others.
By the last equality, O(log* n) rounds are already sufficient to get almost all the order
relations between pairs.

Finally, we consider the problem of approximate merging. In this case the results
and the methods are simpler and similar to the methods of [Va75], [BHo82]. For n,
l<=p<=n and 1/2n2<-e<=1/2, let m(n,p,e) denote the time complexity of the best
comparison merging algorithm that uses p comparisons in each round and finds, given
two sorted lists, each of size n, all the order relation between pairs but at most en.

The results of [Va75], [BHo82] deal with full merging, i.e., the case e < 1/n. We
can prove the following theorem that determines m(n, p, e), up to a constant factor,
for all admissible n, p, e.

THEOREM 4.3. For all admissible n, p and 1/n <-e <=-,

L+m(n, p, e)=19 p log
log 1/e )log (2+ p)

Thus for p<=2/e m(n,p, e)=19(1/(ep)+loglog l/e) and for p>=2/e m(n,p, e)=
19(log (log 1/e/log ep)). For the case e <_- 1/n, the bounds are the same as for e 1/n
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(up to a constant factor), which are the same bounds as for exact merging: (R)(n/p+
log (log n/log (2+p/n))).

Acknowledgment. We thank N. Pippenger, who brought the problem of finding
an approximate maximum to our attention.
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BOUNDS ON UNIVERSAL SEQUENCES*
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AND MICHAEL WERMANt

Abstract. Universal sequences for graphs, a concept introduced by Aleliunas [M.Sc. thesis, University
of Toronto, Toronto, Ontario, Canada, January 1978] and Aleliunas et al. [Proc. 20th Annual Symposium
on Foundation of Computer Science, 1979, pp. 218-223] are studied. By letting U(d, n) denote the minimum
length of a universal sequence for d-regular undirected graphs with n nodes, the latter paper has proved
the upper bound U(d, n)= O(d2r log n) using a probabilistic argument. Here a lower bound of U(2, n)-
(n log n) is proved from which U(d, n)-l’I(n log n) for all d is deduced. Also, for complete graphs
U(n-1, n)=gl(n log n/log log n). An explicit construction of universal sequences for cycles (d 2) of
length r/O(lgn) is given.

Key words, universal sequences, graph connectivity, complexity theory

AMS(MOS) subject classifications. 05C40, 68R10, 68Q15

1. Introduction. In addition to their obvious computational interest, graph con-
nectivity problems play a central role in complexity theory. Let STCON (respectively,
USTCON) denote the problem of determining if a directed (respectively, undirected)
graph has a path from a given source node s to a given goal node t. As usual, let
NSPACE(S) (respectively, DSPACE (S) and RSPACE (S)) denote those sets accepted
in nondeterministic (respectively, deterministic and random) space S. Savitch’s [7]
fundamental result that NSPACE (S) DSPACE (S2) is based on the fact that STCON
is complete for NSPACE (log n) with respect to log-space reducibility. (In fact, it is
complete with respect to log-depth=NC reducibility.) Similarly, Lewis and
Papadimitriou [6] show that USTCON is complete for symmetric log-space bounded
computation.

It is easy to see that STCON_ NC2 DSPACE (log2 n). However, despite con-
siderable attention to this problem, there has been no improvement to this upper
bound. In one of the few significant attempts to give evidence that STCON is not
contained in DSPACE (log n), Cook and Rackoff [4] introduce the JAG (Jumping
Automata for Graphs) model and show that within this restricted model STCON
requires space (log n/log log n).

Although USTCON appears to be a computationally easier problem (and indeed
Cook and Rackoff [4] cannot prove such a strong result for JAGs operating on
undirected graphs), the best known deterministic algorithms for USTCON also apply
to STCON. However, when we consider random space bounded computations, the
situation seems to be different, since Aleliunas et al. [2] show that USTCON is in
RSPACE (log n).

Motivated by the Cook and Rackoff [4] paper, Aleliunas 1] (for the special case
of degree two) and then Aleliunas et al. [2] introduce the concept of a "universal
sequence" for graphs. Let G(d, n) denote the class of all connected d-regular graphs
with n nodes and with labeled edges. Think of every edge as a pair of directed edges.
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Every directed edge is labeled with a label from {0,..., d-1} in such a way that
edges going out from the same vertex are labeled differently. (It is easy to verify that
for 2_<-d <_-n- 1, G(d, n) is not empty if and only if dn is even, see Lovfisz [5, Ex.
5.2.] A sequence s sis2 sr in {0,. ., d- 1}* is interpreted as a sequence of edge
traversal commands. Thus a sequence s and a node Uo on a graph G in G(d, n) define
a unique sequence of nodes Uo, Ul,’", Ur in G with (ui-1, ui) labeled by s for

1,. ., r. We say that s visits the set of nodes {Uo," ", ur}. A sequence s covers a
graph G in G(d, n) if the sequence visits every node in G independent of the starting
node. A sequence s is universal for G(d, n) if s covers every G in G(d, n). Finally,
we let U(d, n) denote the minimal length of a universal sequence for G(d, n). We will
see in 5 that the restriction to regular graphs serves some aesthetic purposes.

Aleliunas et al. [2] show that the expected time for a random walk to visit all
nodes of G=(V, E) is at most 21E] ]V[. (No such result holds for directed graphs.)
Hence the result that USTCON is in RSPACE (log n). They then use this result to
assert the existence of a (nonuniform) universal sequence s(d, n) for G(d, n). The
length of s(d, n) is asymptotically bounded by

dn log (IG(d, n)l)= O(d2n log n).

In fact, they argue that most sequences of this length must be universal. Clearly, such
universal sequences give a nonuniform method to test connectivity (using only two
pebbles in the JAG model) within O(log n) space.

There are a number of reasons to study U(d, n) further. If we could obtain a

"sufficiently" explicit construction of polynomial length, then USTCON would be in
DSPACE (log n). (We need to be able to generate any element of the sequence in
DSPACE (log n).) In order to beat the previously mentioned log2 n deterministic space
bound, it suffices to show, by an explicit construction, that U(3, n)= r/(lgn). In this
regard, we should also note that at present there is no deterministic sublinear space
algorithm that runs in polynomial time. Second, for the purpose of time-space tradeoffs,
it is important to determine the asymptotic behavior of U(d, n) by any type of
construction since lower bound techniques tend to apply to nonuniform models. In
this regard an U(d, n)=O(dn) or even O(n2) lower bound would have serious
implications for any attempt at time-space lower bounds. In addition to complexity
theory, universal sequences may play a role in the study of distributed systems (e.g.,
anonymous rings). And finally, of course, we think that the study of U(d, n) raises a
number of interesting combinatorial problems.

In 2 and 3 we consider the special case of d 2, the subject of Aleliunas [1].
First we give an explicit construction of length n(lg n. Then we prove a nonlinear
lower bound, U(2, n)= l)(n log n). Section 4 considers the other extreme, namely the
case of complete graphs (d n-1). Here we observe that the probabilistic bound
yields an upper bound of n31og n. We are able to prove that U(n-l,n)=
f(n log2 n/log log n). In order to establish this lower bound, we view the problem as
a game consisting of a graph generator (perhaps thought of as a taxi driver) versus a

very powerful sequence generator (thought of as a passenger) where the passenger
wants to see all n sites in as little time as possible and the driver would like to prolong
the tour as long as possible. In 5 we discuss the implication of the previous results
for arbitrary d.

2. An explicit construction for the ease of d = 2. There is only one regular connected
graph of degree two, namely a cycle. In order to study U(2, n), there is an equivalent
way to formulate the problem as first discussed by Aleliunas in [1]. Instead of
considering different labelings of the n-cycle, we consider the infinite line and label
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each integer coordinate (= node) with a "0" or "1" with the interpretation that at a
node labeled "b" the edge to the right is labeled "b" and the edge to the left is labeled
"1 b." We now interpret U(2, n) as the smallest length of a sequence that is guaranteed
to visit at least n nodes on any labeled line.

From the probabilistic constructions of Aleliunas [1] and Aleliunas et al. [2] we
know that U(2, n)= O(n3). In fact, Aleliunas [1] conjectured U(2, n) to be exactly
(). Exhaustive tests confirm U(2, n)= () for n < 8 but we are aware of at least one
claim (again by testing) that U(2, n)<() for n=9.

To gain insight for both a lower bound and an explicit construction, we first
consider a special class of labeled lines. Let ODD denote the class of labeled lines of
the form. 0 i’ i20i31 i4 , where all/j are odd. Let L(n) be the class of all sequences
that cover at least n nodes on any line in ODD and let U(n) denote the minimal
length of any sequence in L(n). Without loss of generality, we shall assume that n is
even in order to avoid ceilings and floors. Let n’= n + so that n’ is odd.

LEMMA 1. The sequence w, (0n’ln’) n/2+) has the following properties:
(A) If begun on the leftmost node of a block labeled with zeros (respectively, on the

rightmost node of a block labeled with ones) w, will move right (respectively, left) until
encountering the first block of nodes with an even number of zeros or ones wherein it will
terminate on the leftmost zero or rightmost one ofthis block. Ifno such block is encountered
within thefirst n nodes visited, the sequence will be exhausted having visited at least n nodes.

(B) If not started on a leftmost zero or rightmost one the directional behavior of
on the line will depend on the parity of the initial location within the block on which the
sequence is started. In any case the sequence will either visit n nodes or will terminate on
the leftmost zero or rightmost one of some block of even length. In particular, w, L( n
and U(n) <-_ (n + 1)2.

LEMMA 2. The sequence v, defined reeursively by v =01 and v, Vn/z(On’ln’)Vn/2
is in L(n) so that U(n)= O(n log n).

We leave it to the reader to verify both lemmas. Let us remark that Theorem 2 of
the next section shows that Lemma 2 is asymptotically optimal. We use the w, sequences
repeatedly to explicitly construct a universal sequence of length n o(Iog ). We chose to
use the w, sequences for ODD rather than the shorter O(n log n) sequences v since
its properties are easier to state and since the shorter length v, would not significantly
change the length of the universal sequence of Theorem 1.

THEOREM 1. There is a recursively defined sequence s(n) that is universalfor G(2, n)
with length Is(n)l n lgn). Furthermore, any bit of s(n) can be computed in time
bounded by a polynomial in n.

Proof By induction on n we construct s(n). The basis of the induction is immedi-
ate. Let wn be as in Lemma and let s(n/2)=sls2...s,. Then, s(n)=
w,sl w,s2 w,s,w,. Consider any labeled line and mark the leftmost zero and rightmost
one in every even-length block. Note that in a segment of length n at most n/2 nodes
have been marked. Now after the first w,, s(n) has either visited n nodes or has
positioned itself on a marked node. Once on a marked node, a sequence symbol si of
s(n/2) will move either left or right so that the next w, (by Lemma 1) will continue
to move in that direction until it is stopped at the next marked node. In this way we
are guaranteed to visit at least n nodes with some wn or at least n/2 marked nodes
and all the nodes within the blocks containing those marked nodes. In either case, at
least n nodes have been visited.

To bound the length we see that [s(n)[<-(n+ 1)2]s(n/2)[ from which the length
bound easily follows. It is also easy to see how to compute any particular bit of s(n)
in polynomial time.
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3. A lower bound for the case of d =2. The aim of this section is to prove an
(n log n) lower bound for U(2, n). We shall pick a small subset of ODD and show
that, just to traverse this subset, a sequence must be "long."

We begin by introducing some notation. Let S be the set of infinite lines of the
form: 0la0al a" ", a odd. Let Sn be the set of segments of length n of lines in S
with starting point a leftmost zero. We show that a sequence that traverses every line
in Sn must be (n log n) long. We say that a sequence a is good for a segment w if,
when started at the left of w, a eventually reaches the right of w. For a string w {0, 1}*
and x {0, 1} let :xw be the number of occurrences of x in w.

We illustrate the idea of our proof by considering some very simple sequences.
So let a cover every line in S where is of the form Or,lr,... 0rk lrk with all ri odd.
Assume, moreover, that a covers at least n/2 locations to the right of the starting point.

FACT 1. O r‘ lr’ is good for 0al if and only if ri _-> a and ri is odd.
Define aj to be the biggest odd number less than or equal to n/(2j). Fact 1 implies

that at least j ri’s must be bigger than a so that

I1 E aj E -2 =a(n log n).
j=

We now give a lower bound for arbitrary a’s. Consider the runs of a sequence
and the sequence la on a line from S. Since we start from a leftmost zero, these runs
are symmetric with respect to the starting point. For a sequence fi, let R, (L) be the
set of indices j such that/3 covers at least n/2 nodes to the right (left) of the starting
point when run on the line 0 0 a. . Either Yj Ra aj "(n log n) or Ej L aj
f(n log n). Since R L and the lengths of a and a differ only by one we assume,
without loss of generality, that YjR aj 12(n log n). We deal only with the runs of
on lines 0 1 a;0. . , where j 6 R.

Fact 1 motivates the following lemma.
LEMMA 3. Let a’ be good for 0 , then a’ //1 0 bl2 l’13, where

(C1) +off o# ,fl a, and ,fl # ofl a;
(C2) Every nonempty prefix and suffix of() has more zeros (ones) than ones (zeros).

Proof (C1) is necessary in order to pass the block of zeros or ones. (C2) can be
obtained by extending u to the right and u2 to the left so as to make/3. minimal, and
extending u2 to the right and u3 to the left to make fio minimal. Note that #oU2
:: 1U2o [’-]

We denote/3 o u2/3 by/3 and call it an a-block./3 o and/3 are called half blocks
LEMMA 4. Let a’ be good for (oala)m; then a’ contains tn disjoint a-blocks.
We say that two half blocks have a trivial intersection if they are either disjoint

or one is contained in the other.
LEMMA 5. Let fl,, be an ai-block and aj-block respectively’, then floa, and

have a trivial intersection.

Proof Follows by the prefix and suffix properties of/3 0 and 1aj

We say that a sequence {flx.}=1,..., xj {0, 1} of half blocks is nested if we have
the following.

(i) Every two half blocks have a trivial intersection;
(ii) /3 .; /3 implies that there exists an j, k such that/3 _/3,_ fl, 2 being

the complement of x.
LEMMA 6. Let a cover every line in S. Then a contains a nested sequence

1,. ., n/2 ofhalf blocks where, again, a is the biggest odd number less than or equal
to n/(2j).
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Proof The proof is by induction on i. Let Ba, be a set of disjoint ai-blocks in
By Lemma 4 and the fact that iai <= n, IBa,[ >- i. When l, pick any half block of any
fla,. Assume the lemma is true for i-1. Let B {/3i}..=,...,i_ be the nested sequence
constructed up to step i- 1. We will show how to find a half block of B, that preserves
the nestedness of B.

For each /3a, Ba; define

in(fli {j[flX f-] flX : BX
ai aj

A
ai aj-"

Intuitively, In() is the set of half blocks that prevent , Dora being properly nested.
CA 1. {n(a,)}, B, are,pairwise disjoint. To see this, suppose that

j In() In(,) for some and and without loss of generality assume that
appears in to the left of Furthermore, assume that x is of type O, i.e. x O.

Then, either flo fl, or ifo fl , then fl fl0 (because of suffix and prefixai ai aj

properties of the blocks). In either case, we get j In(). If x l, a similar argument
shows that j In (fl).

CLAIM 2. There exists a , such that In(,)=. This is true by Claim 1 and
the fact that there are arblocks in B.

Choose a fl, as in Claim 2 and consider a minimal (in the inclusion sense)
such that ’ fl. . If no such ’ exists then , is disjoint to every X so that

2. xj
ai

we can pick any half block of t. Otherwise, fla’, fl and letting x ff we have that

}=1,...,- U {d,} is properly nested.
LEMMA 7. Let B= {fl.}=l,...,i be a nested sequence. en

j=l j=l

Proof Without loss of generality, assume that the half blocks in B are ordered
so that is not contained in fl for j 1,..., i-1. We proceed by induction on i.

i--1 xi i--1The case 1 is obvious. Assume the lemma is true for 1 so that ]w= a = a.By (ii) in the definition of nested sequences, we have that the maximal . % i,,., which are maximalare of opposite type, i.e., x g. Let be the union of the
i--1half blocks contained in fl d,. For d, to have (C1) we need [d,-= [ ag so that

X
Tnog 2. A universal sequence for S, satisfies [a[ =(n log n).
Proof The proof follows immediately from Lemmas 6 and 7.

4. The complete graph. There is only one graph in G(n 1, n), namely Kn. While
connectivity is no longer an issue, the question of U(n-1, n) is still surprisingly
difficult and interesting.

The probabilistic construction of Aleliunas et al. [2] shows that U(n-1, n)-
O(n log n) as the upper bound for any d. In fact, a more specific probabilistic analysis
of random walks in Kn shows that the expected length to visit all nodes is O(n log n).
From this follows U(n 1, n) O(n log2 n).

For the lower bound, we consider the following two-player game, played between
D (the driver) and P (the passenger). There is a fixed integer n and the game is with
a taxi moving on a graph in G(d, n). The game starts at any node of the graph. At
each step, P can either direct the taxi along a directed edge that has already been
traversed before, or he/she may let D choose any untraversed edge. In particular, if
the present node is being visited for the first time, then D moves. The game ends at
the first time when all nodes of the graph have been visited. P pays D the number of
steps the game took.
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We denote by DP(d, n) the value of this game. Our result is Theorem 3.
THEOREM 3.

( n lg2 n )nZ-3n+3>-DP(n-l’n)>-
loglogn

COROLLARY 1.

n log2 n ) [3U(n-l,n)>-f
log logn

Proof of Theorem 3. The upper bound is obvious. P plays a strategy according to
which he lets D play all the time. This insures that no edge is traversed twice in the
same direction, so when (n- 1)(n-2) + steps elapse all nodes must be visited.

To prove the lower bound, we consider a strategy for D that is defined inductively.
At any time T in the game there is a digraph Br on V(Kn) consisting of all directed
edges traversed thus far. The induction hypothesis follows:

(,) D has a strategy that causes the game to last at least T(n)=
(n log n)/(30 log log n) steps in such a way that all indegrees in Br do not
exceed log n.

We proceed to show how the strategy is carried over from n to 2n. In the first
stage D applies (,) to the first n nodes, thus he stays there at least T(n)=
(n log n)/(30 log log n) steps, with no indegree exceeding log2 n. At the first time after
T(n) at which D gets the right to move, he moves to node n + 1. Now for another
T(n) steps he stays at nodes {n+ 1,..., 2n} according to (,). After these two stages,
which take more than 2 T(n) steps, no indegree exceeds log2 n and node 2n + is still
isolated. Now begins a merging stage. To carry out the induction we show that for
(n log n)/(5log log n) steps D can proceed in the game with no indegree exceeding
logZ(2n). Since T(2n)-2T(n) <-_ (n log n)/(51og log n) the induction hypothesis is
maintained. We claim the following easy lemma.

LEMMA 8. Let G be a digraph, S c_ V( G), and let d >= 3. be the largest indegree in
G. Then there are at least VI/2 nodes u for which all paths from u to S have length at

least (log VI- log Isl- 1)/log d.
Now let us consider the set S of all nodes of largest outdegree. Whenever D is

given the move, he chooses to go to a node whose indegree is strictly less than log (2n)
and whose distance in Br from S is as large as possible. Note that the average indegree
is at most T(2n)/(2n)=(logZ(2n))/(3Ologlog(2n)) so that all but 2n/(301og-
log (2n)) o(n) nodes have indegree strictly less than log (2n). Thus during the whole
process there are always many nodes with small indegree. In our case, all indegrees
are at most log (2n) and it follows by Lemma 8 that for every node u and for at least
half of the nodes v, the distance from v to u is at least log n/(5 log log n). Therefore,
if ISI then with this strategy the game proceeds at least log n/(5 log log n) steps
more before the maximum outdegree increases. Ignoring momentarily the possibility
that ISI is larger, no degree reaches 2n before (n log n)/(5 log log n) steps. As long as
the maximum outdegree is less then 2n the missing node will not be reached and the
induction hypothesis is established since T(2n)-2T(n) =< (n log n)/(5 log log n).

To complete the proof for arbitrary ]SI--> 1, consider the number of steps needed
to increase the outdegree by two. We investigate a segment of the game during which
the largest outdegree in Br increases from rn to rn + 2. Let us concentrate on that step
where for the first time some outdegree reaches rn + 2 and let us say that at this point
the number of nodes of degree rn + is k. If k-_> (2 log n)/(5 log log n) then our claim
about the number of steps remains valid since the increase of the outdegree of any
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node requires at least one move (of D). On the other hand, if k < (2 log n)/(5 log log n)
then by Lemma 8 at the beginning of the stage there is a node whose distance from
all k nodes of outdegree rn + 1 is at least log (n/k)/log (log2 n) > (2 log n)/(5 log log n)
and, all of our previous arguments carry through. Thus DP(n)>= T(n)=
(n log2 n)/(30 log log n) and the proof is complete.

5. Bounds for arbitrary graphs. Given the U(2, n)=O(n log n) result, it is a little
tedious but not difficult to derive the same (or improved as a function of n) lower
bounds for all degrees. We again note that G(d, n) is nonempty for 2-< d =< n- 1 if
and only if dn is even, so that we always assume that dn is even.

Aleliunas [1] has shown that U(2, n) <= U(d, (d 1)n). We modify his construction
to obtain Lemma 9.

LEMMA 9. U(2, n)<=(2/d)U(d, (d-1)n).
Proof We show how to derive a universal sequence s’ for G(2, n) from a universal

sequence s for G(d, (d 1)n). For any a, b {0, 1,. , d 1} let s(a, b) be the sequence
obtained from s by replacing each a by 0, each b by 1 and deleting all other symbols.
Now let a, b be the least frequently occurring symbols in s and define s’-- s(a, b) so
that Is’l<-_(2/d)lsl. We will show that s’ is universal for G(2, n).

Let C be any labeled n-cycle. We want to construct a labeled graph Gc in
G(d, (d- 1)n) whose traversal by s will guarantee that s’ covers C. Let Kd_--(V,Ei i)
for0 <= <= n- be n copies of the complete graph Kd_ Say Vi= {v il,..., Vd-1}.i Then
GC U Vi, U E [’-j D), where

)m n))10 =< =< n 1, _--<j _--< d 1}.D= {(vj, vJ i+
correspond to nodes in C while the edges in D correspond toIntuitively, the Kd_

the edges in C. We label the edges in E by any labeling from {0, 1,. ., d- 1}\{a, b}.
We label the edges in D in a way which corresponds exactly to the labeling in C. That

i+1is, if i, i+ 1) has label "0" (respectively, "1 in C then for all j, (vj, v has label
i--1a (respectively, b) and (v, v has label b (respectively, a). Clearly Gc is in

G(d, (d- 1)n). Now it should be clear that as s traverses the graph Gc, it is precisely
the labels {a, b} that cause a traversal between neighboring (in the cycle) copies of
Ka-1. Thus s covers G implies s’ covers C.

LEMMA 10. U(d, n)<-(d/d)U(d2, (d2-dl+ 1)n) for all d<-_d2.
Proof This is an immediate generalization of the construction in Lemma 9.
LEMMA 11. U(d, n) =l)(n log n-n log d).
Proof If n was divisible by d-1, this lemma would follow immediately from

Lemma 9 and Theorem 2. For arbitrary sufficiently large n q(d- 1)+ r we proceed
as follows. If r 0 then we would follow the construction of Lemma 9 and form a
cycle" with q=n/(d-1) copies of Kd_ 1. If r>0 we form q-3 copies of Ka_I--
(W,E ) and a set of nodes W with IWl=n-(q-3)(d-1)=3(d-1)+r. As before,
each copy Kd- will play the role of a node in a cycle as will W. We only have to
describe how to fit W into a cyclic structure.

q--3Suppose we want W to have K_ and Kd_ as its cyclic neighbors. Since dn is
even, it follows that dl Wl is even and wl-> d + 1. Thus we can form a d-regular graph
W, E) and remove d node-disjoint edges, say (u, wj). We connect W to K

_
and

q-3 K+_Kd- by edges {(u, v)} and {(w./, v-3)} for l<=j<=d-1. We connect Kd_ to
(1 _--< <= q- 3) as in Lemma 9. In this way we are able to construct a d-regular graph
Gc on n nodes. And again, as in Lemma 9, for any universal sequence s for G(d, n)
we construct s’= s(a, b), where a and b are the least frequently occurring symbols in
s. By labeling the "cycle" in Gc to mimic the labeling in C we can argue that if s is
started on some node in Kfd(_q-3)/2], then s’ would cover at least [(q-3)/2] nodes in
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C. Since C is an arbitrary member of G(2, n), this insures that s’ covers at least
[(q-3)/2] nodes in any infinite labeled line. Therefore U(2, n/(3d))=<
U(2, (q- 3)/2) -<_ (2/d) U(d, n) for any sufficiently large n which together with Theorem
2 yields Lemma 11.

Lemma 11 shows that for small d (say d =<n , e < 1), we have U(d, n) f(n log n).
For large d, there is a simple way to achieve the same bound using the driver-passenger
game introduced in 4.

LEMMA 12. U(d, n)>= DP(d, n)= l)(n log d).
Proof The driver’s strategy is simply first to form a directed cycle on n nodes

with the first n labels. Then whenever the driver has a free choice he chooses to direct
the new edge to the nearest nonadjacent node on the cycle. This continues until some
node has degree d. On the ith tour of the cycle, the driver takes at least [n/iJ steps
and the game continues for at least d tours. Thus,

In terms of n, the largest known lower bound is obtained for d n/2-1 by another
simple driver-passenger game.

LEMMA 13. For d<=n/2-1, U(d,n)>=DP(d,n)>=d(n-d).
Proof The game will construct G= (V, E) in G(d, n) with V= V1U V2, w, I-

n- d- 1, v=l d + 1. G is constructed so that a given universal sequence will visit
only nodes in V1 within the first d (n d 1) steps. This is simply achieved by thinking
of the driver generating a d-regular graph on V minus an edge. We complete the
construction of G by choosing any complete graph on V2 minus an edge with an
arbitrary labeling. Now if (u, w) (respectively, (/’/2, W2)) is missing from V (respec-
tively, V2), then G is the union of these graphs on V1 and V2 joined by the two edges
(u, u2) and (vl, v2). The driver forces the sequence (passenger) to stay on V1 until
d(n- d- 1) steps have expired and then trivially forces another d steps to cover the
nodes of V2o

THEOREM 4. For all d <= (n/2 1),

U(d, n)=l)((n log n)+d(n-d)).

Proof The proof is immediate from Lemmas 11, 12, and 13.
Our final result emphasizes the importance of the case d 3. Theorem 5 below is

based on Theorem 4.13 of Cook and Rackott [4]. Let G’(d, n) denote the class of all
graphs with n nodes and all degrees less than or equal to d labeled by {0, 1,. ., d- 1}.
In this case a sequence s in {0, 1,..., d- 1}* and a node Uo in a graph G in G’(d, n)
uniquely defines a sequence of nodes u0, u,..., ul. in G with (ui-1, ui) labeled si if

ui-1 has an out edge so labeled and ui u-i if u_ does not have an out edge labeled
by s. And now, as before, let U’(d, n) denote the minimal length of a universal
sequence for G’(d, n).

The following is a direct consequence of Theorem 4.13 in Cook and Rackott [4].
LEMMA 14. There is a finite state transducer computing a function

f: {0, 1, 2}*-->{0, 1,..., d- 1}*

with the property that if s is universal for G’(3, (2d-1)n) then f(s) is universal for
G’(d, n). Furthermore, ]f(s)]<-(1/log d)[s] so that

1
U’(d, n)<= U’(3 (2a 1)n).

log d



276 BAR-NOY, BORODIN, KARCHMER, LINIAL, AND WERMAN

In order to place this result within the context of regular graphs we need to justify
our introductory comment that regularity is not a significant restriction.

LEMMA 15. U’(d, n) <= U(d, d’n), where d’-- d ifd is even and d’-- d + 1 ifd is odd.
Proof For any G’ in G’(d, n) we construct a G in G(d, d’n) by taking d’ copies

of G’. If x has degree 3 < d in G’ we connect all d’ copies of x by a graph in G(d 3, d’)
(a perfect matching if 6 d- 1). The new edges are labeled by the labels missing at
x in G’. It is easily verified that a sequence that covers G covers G’ as well. If all the
degrees in G’ are d and d- a slight modification is needed, which we omit.

THEOREI 5.

U(d,n)<= U(3,2(2d-1)n).
log d

Furthermore, there is a finite state transducer computing a function

f: {0, 1, 2}*-{0, 1,..., d- 1}*

such that if s is universal for G(3, 2(2d 1) n) then f(s) is universal for G(d, n).
Proof The Cook and Rackoff construction on which Lemma 14 is based produces

graphs where every node has degree two or three. In this case, we can take d’= d 1 2
in the construction of Lemma 15. The theorem then follows immediately from Lemmas
14 and 15.

6. Conclusion. Perhaps the main technical result of this paper is the proof of a
nonlinear lower bound for d 2, thus answering a specific challenge in Aleliunas et.
al. [2]. However it is clear that even for this restricted case we are far from understanding
the true nature of U(2, n). We know that the crucial aspect of labeled lines is the
parity of the blocks. (We claim that, within a factor of n, we can assume that every
block has length or 2.) It seems feasible to us that some of the ideas developed here
will lead to an explicit polynomial length universal sequence for G(2, n). We also
expect to be able to narrow the gap between the lower and upper bounds for U(2, n).

For the complete graph, many obvious questions remain. It seems reasonable to
be able to explicitly construct a "good" universal sequence. At present, we only know
the brute force approach that gives n IG(n-1, n)l. It is not difficult to see that a
sequence universal for G(n-1, n) will traverse at least n nodes when applied to
members of G(n, n + 1). But we cannot see how to use this fact to construct such
sequences. It also seems reasonable that we can narrow the gap for DP(n 1, n).

Theorem 5 emphasizes the importance of U(3, n). In particular, any explicit
universal sequence beyond brute force for G(3, n) would be of interest. It will also
be of interest if we could find for d >= 3 a simple d-ary infinite graph that would play
the role that the infinite line played for d --2.

Finally, there are many alternative universal sequence formulations that could be
used for determining graph connectivity. One formulation we find particularly interest-
ing is to number the nodes V={1,..., n} and consider sequences in {1,..., n}*.
Now, a sequence command causes a move to node if there is an edge from the
.currently scanned node to node i. Otherwise, it remains in the current node. Random
walk arguments again show the existence of polynomial length universal sequences.

Note added in proof. Bridgland [J. Algorithms, 8 (1987), pp. 395-404] has given
another construction for a universal sequence of length ngn. His construction
differs from ours. We were informed also of a construction by Barrington [private
communication] for the same problem. Since the completion of this research in June



BOUNDS ON UNIVERSAL SEQUENCES 277

1986 there has been much activity in this area, and some of our results have been
improved. Istrail [Proc. 20th Annual ACM Symposium on Theory of Computing, 1988,
pp. 491-503] presents an explicit construction of a sequence of polynomial length that
is universal for d 2. The ideas required go beyond the ones presented here. Karlott,
Paturi, and Simon [unpublished manuscript] have given an explicit construction of a
sequence universal for complete graphs whose length is n(lg n). The construction of
a polynomial length sequence even for complete graphs remains open. Alon and Ravid
[Discrete Appl. Math., to appear] have improved our lower bound for U(n- 1, n) to
nZ/log n. Their bound does not apply to our driver-passenger game. Also in the closely
related area of random walks on graphs there has been considerable progress. A special
issue of the Journal of Theoretical Probability, D. Aldous, ed., will be dedicated to the
subject. A paper by Kahn, Linial, Nisan, and Saks that will appear therein shows that
the expected cover time for regular graphs is only O(n2). This yields an improvement
on the upper bound for U(d, n) over the one in [2].
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WORST-CASE GROWTH RATES OF SOME CLASSICAL
PROBLEMS OF COMBINATORIAL OPTIMIZATION*
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Abstract. A method is presented for determining the asymptotic worst-case behavior of quantities like
the length of the minimal spanning tree or the length of an optimal traveling salesman tour of n points in
the unit d-cube. In each of these classical problems, the worst-case lengths are proved to have the exact

asymptotic growth rate of/3,,1-)/,i as n oe, where/3 is a positive constant depending on the problem and
the dimension. These results complement known results on the growth rates for the analogous quantities
under probabilistic assumptions on the points, but the results given here are free of any probabilistic
hypotheses.

Key words, asymptotics, traveling salesman problem, minimal spanning tree, Beardwood-Halton-
Hammersley theorem

AMS(MOS) subject classifications. 05C35, 90B10, 90C10, 52A40

1. Introduction. The purpose of this paper is to illustrate a general method for
determining the asymptotic behavior of some classical quantities of operations research
and combinatorial optimization. For specificity, we focus on the traveling salesman
problem and on the minimal spanning tree of n points in the unit d-cube, but the
general applicability of our method to a number of other problems will be made evident.

To set our problem precisely, we first note that a Euclidean minimal spanning
tree or a traveling salesman tour can be represented by a graph G (Vn, E), where
Vn denotes a set of n points in [0, 1] d, where d =>2, and E denotes a subset of the
edges of the complete graph on the points of Vn. The length of an edge e {xi, xj} is
taken to be the usual Euclidean distance, and we write ]e] Ixi-xj] for that length.
For a collection E of edges we will often use L(E) to denote the sum of the lengths
of the edges in E, i.e., we define L(E) ee el. Still, when V is a finite set there will
be no ambiguity in using IvI to denote the cardinality of V.

The objects of principal interest here are the sequences PMsv(n) and pvsp(n),
defined by

PMSX(n): max {minYlel’TisaspanningtreeofV,}
V,, [O,I T T

and

PTSP(rt) max {mrin le I" T isatourofV}.v,,c[o,l] eT

In other words, pMsv(n) is equal to the largest possible length of any minimal
spanning tree formed from n points in [0, 1] d. Similarly, pvsp(n) is the largest possible
length of any optimal traveling salesman tour through n points in [0, 1]d. The use of
max instead of sup in the definitions of pMsv(n) and pvsp(n) is justified by the fact
that the expressions in braces can be viewed as continuous functions on the compact
set obtained by forming the product of n copies of [0, 1], i.e., 1-Ii__<i__<, [0, 1].
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One should note that the functions PMSV and PvsP depend on the dimension d.
This fact also applies to all of the other functions and constants that are used here.
Since d _-> 2 is fixed, we will suppress the dependence of PMSV, PvsP, and other functions
on d, but the reader should be mindful of this dependence, especially in the main result.

THEOREM. There are constants/3Msv and/3vsp depending on the dimension d >= 2
such that

(d-1)/d1.1 PMST( n --/3MsTn

and

(1.2) PTSp(n) TSpn(d-1)/d

as n - oo, with /TSP -> /MST => 1.
This result provides the determination of the exact asymptotic order of the

functions PMST and PTSP in any dimension d >= 2. Considerable earlier effort focused
on bounds for PMST(n) and PTSp(n), but none of the inequalities provided by that work
is tight enough to determine that PMST(n) or PTSp(n) are actually asymptotic to a
constant times n -)/d. Some earlier results of particular interest are the bound of
Verblunsky (1951), which says that in d 2 one has PTsp(n)=< (2.8n) /2+ 3.15, and the
bounds of Fejes-T6th (1940), which say that PTSp(n) and PMST(n) are both at least as
large as (1-e)(4/3)l/4n /2 for all n>-_ N(e). Few (1955) improved the upper bound
of Verblunsky (1951) to PTsp(n)<=(2n)l/2+l.75 in d=2 and obtained PTsp(n)=<
d{2(d -1)}(-d)/2dn-)/ +O(n 1-2/d) for general d=>2.

Recent results have improved these bounds. Fews bound on PTsp(n) in dimension
two is sharpened in Supowit, Reingold, and Plaisted (1983), to show that PTsp(n)=>
(4/3)/4n /, for all n >_- 1. Moran (1984) used inequalities on sphere packing to obtain
essential improvements on the upper bounds of Few for large values of d. Goldstein
and Reingold (1988) carefully analyze Few’s heuristic algorithm to improve the upper
bounds in dimensions 3 <-d =< 7. They also improve lower bounds, using the exact
densities of sphere packings for 2_-< d =<8. Goldstein (personal communication) has
further improved the upper bounds in dimensions three and four.

The (2n) /2 barrier on PTsp(n) in dimension two is broken by bounds of Karloff
(1987) that show PTsp(n) < 0.984(2n) /2 + 11. Also, for low dimensions d -> 3, Goddyn
(1988) improves all known upper bounds on PTsp(n) by considering an infinite number
of translations of quantizers other than cubical cylinders.

Some other early work focused on the probabilistic circumstances under which
one can provide bounds for the lengths of the minimal spanning tree or optimal
traveling salesman tour. For example, Ghosh (1949) sharpened earlier results of
Mahalanobis (1940) and Jessen (1942) to establish that the expected length of an
optimal traveling salesman tour of n points chosen at random from the unit square
was at most 1.27nl/2+0(1). The bound of Marks (1948) complements the upper bound
of Ghosh (1949) by providing a lower bound of (n/2-1/n/2)/2 on the expected
length of an optimal traveling salesman tour in d 2.

The culminating result on the length of an optimal traveling salesman tour under
probabilistic assumptions was provided by Beardwood, Halton, and Hammersley
(1959). That work showed that if T, denotes the length of an optimal traveling salesman
tour of Xi, where =< =< n and the Xi are bounded independent identically distributed
random vectors in [d, then with probability one we have the asymptotic relation

(1.3) T, cn (-’)/d I f(x)(d-’)/d dx.
Ja
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Here, f denotes the density of the absolutely continuous part of the distribution of
the Xi, and ca is a constant depending only on the dimension.

In addition to providing improved upper and lower bounds on the constant ca,
Beardwood, Halton, and Hammersley (1959) also indicated that a result analogous to
(1.3) holds for the minimal spanning tree. A review of the probability theory which
has grown out of the Beardwood, Halton, and Hammersley theorem is given in Steele
(1987), and a review oriented toward algorithmic applications is given in Karp and
Steele (1985).

The focus of the present work is on the growth rates of the worst-case lengths of
the traveling salesman tour and minimal spanning tree. There are no probabilistic
assumptions used here, and it is perhaps remarkable that one obtains asymptotics that
are so close in form to the probabilistic results. Another intriguing aspect of these limit
theorems is that the same method applies both to a computationally difficult problem
(the TSP) and to one which is computationally easy (the MST).

The proof of the main theorem is given in three sections. The first of these sections
provides a general lemma that isolates inequalities that are sufficient to determine the
asymptotic behavior of PMST and PvsP. The following section focuses on minimal
spanning trees, and, in particular, it provides an approximate recursion relation for

PMsv. The construction used to study pvsP in 4 is much like that used for p4sv; so
the analysis required for the optimal traveling salesman tour is quite brief.

The final section points out some limitations of this method and comments on
some open problems.

2. Asymptotics from an approximate recursion. One principle underlying our
asymptotic analysis is that both psv(n) and pvsp(n) satisfy inequalities which bound
their rates of growth and express an approximate recursiveness. The following lemma
shows that a slow incremental rate of growth (as expressed by (2.1(i)))and an

approximate recursiveness (as expressed by (2.1 (ii))) are together sufficient to determine
the exact asymptotic behavior of a sequence. Even though the lemma appears technical,
we will later see that the two required conditions are quite natural to the objects under
study.

LEMMA 2.1. Ifp(1) 0 and there is a constant c >- 0 such thatfor all rn >- and k >-

-/a(i) p(n+l)<-p(n)+c,n

(2.1) and

(ii) md-p(k) md-k-)/r(k) <= p(mk),
where r( k) --> 0 as k --> , then as n ->

p(n).--, fln (d-1)/d

for a constant .
Proof From the hypothesis (2.1(i)) and the fact that p(1)= 0 we first note that

for -< <j < we have

(2.2)

j-

p(j)-p(i)= Z {p(k+l)-p(k)}
k:i

x-/" dx <= 5c(j<"-)/"

Letting i= 1 and j= n in (2.2) shows that p(n)<:5cln (d-1)/d, so if we define q(k)
p(k)/k(-/, then we see that O(k) < 5Cl for all k. We can then introduce a candidate
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for our limit by

(2.3) 3’- lim sup q,(k)

Inequality (2.1(ii)) tells us that for all k and m,

(2.4) O(k)- r(k) <= O(mdk),

so, given any fixed e > 0, we can choose a k such that 3’-e _-< O(k) and r(k)<= e,
thus obtaining from (2.4) that

(2.5) 3" 2e <-- d/( mdk
for all m _-> 1.

Next define jm mak and consider n such that jm =< n--<jm/. TO bound the
absolute difference [O(n)-O(j,,)l we use (2.2)"

.(-/ _j-/sup [p(n)-p(j,)l <- 5ctJ./
j,,, _--__

(2.6)
5cka-’)/a ma-’[(1 + l/m)a-’- 1]

or, in terms of q, the binomial expansion gives

(2.7) sup I(n)-q(jm)l<=5c{(l+l/m)a-’-l}<5c,m-2a-’.
j,,, =<j,,,

From (2.7) and (2.5) we find for j,, _-< n _-<j,,+ that

3"-2e 5clm-2d-1 -< t(rt),

and, hence, 3’ 2e =< lim inf,_. q(n). By the arbitrariness of e > 0, we have proved

lim sup b(n)=< lim inf O(n)

and the lemma is complete.

3. Minimal spanning trees. We will now show that PMST satisfies the hypotheses
of the preceding lemma. The key issue is the derivation of an inequality like (2.1(ii)).
This will be done by a recursive construction of a point set for which a minimal
spanning tree has near maximal length.

We first divide the d-cube Q [0, 1]d into md cells Q, where <=i<= m d and each
cell has side length 1/m. The boundaries oQg of the cells Q create a natural grating
in the unit d-cube which we denote by H, i.e., we set H== 0Q. For 0<a <I/m,
let H" denote the set of points of [0, 1] d which are within a/2 of H, thus H" is the
grating H fattened to a width of a. Similarly, we define subcells Q7 of Qg by Q7--
Qi- H’.

Inside each.of the Q we now place a set S of k points for which the length of
the minimal spanning tree is (m---a)PMST(k), i.e., inside each subcell we place a
copy of a set of k points that attains the worst-case bound on the length of a minimal
spanning tree of k points. The factor of (m-- a) equals the side length of QT, and
it reflects the scaling of PMST(k) down to the smaller cube. Next, we let T be a minimal
spanning tree of the set of mdk points LJ = S, and we let T denote a minimal spanning
tree of S. We will now develop a relationship between L(T) and L(LJ= T) that
moves us toward an inequality like (2.1(ii)) for PMST.
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First consider the forest that is obtained from T by deleting from T all the edges
that have length as great as c. We let , (c) denote the number of edges deleted from
T, i.e., we set

Since T was connected, the graph that remains following the deletion of A(c)
edges has at most A (c)+ connected components. Moreover, each of these connected
components is contained entirely in some subcell Q.

Next, if two or more connected components of T coexist in the same subcell ,
then we join them together to make a tree on the point set Si. Since, within any given
cell, we can rejoin any two components at a cost not exceeding dl/2tn -1, the total cost
of rejoining all the within-cell components is bounded by d l/2tn-lA ().

So far we have constructed a spanning tree for each Si, where 1 i_-__ rn. Since
the length of each of these trees must be at least as great as the length of the minimal
spanning tree Ti of the point set Si, we have the bound

E L(Ti)<-L(T)+d’/2m-’(o)
i=1

But we know L(T) (m-- c)PMsT(k) and L(T) <-_ PMST(mak), SO we can rewrite this
bound to provide

(3.1) rn (m -1 c )PMsT(k) d 1/2m-’, (c) _--< PMST(rn k).

In order to extract an equality like (2.1(ii)) for PMST from (3.1), we need some
elementary facts about sets of points in [0, 1] and their associated minimal spanning
trees. We begin by recalling an easy pigeonhole argument, which says that from any
set of n points in [0, 1], one can always find a pair that are close together.

LEMMA 3.1. 7-here exists a constant 2 such that for any {xl, x2, x,} [0, 1] d,
where n >= 2, one has

IXi Xj] C2 n-1/d

for some xi and xj, <= <j <- n.

Proof Cover each x with a ball of radius r centered at x, and note that such a
ball has volume tod rd, where to is the volume of the unit d-ball. If all of the balls
constructed in this way were non-intersecting, then each would cover at least 2-d-loodrd
of [0, 1] d, even if we generously assume that each of the balls were centered exactly
in a corner of the hypercube. In total, the n balls would cover at least a volume of
2--lwdrdn, and since [0, 1] d has unit volume, we have 2-d-lwdrdn _--< 1. The lemma is
therefore established with c 2(2d+l)/do0- /d.

One can easily improve the constant c2, but this simply derived constant is sufficient
for our purposes. It is now easy to give a bound on PMSV that shows the validity of
the first hypothesis of Lemma 2.1.

LEMMA 3.2. There exists a constant 3 such that for all n >= 1, one has the bound

(3.2) PMST(n + 1) --< PMST(n) + e3 n-lId.

Proof Let S {xl, x, , xn+} denote a set of n + points in [0, 1]d for which
the length of a minimal spanning tree is PMSV(n + 1). By Lemma 3.1, there exist x and
xj in S such that Ixi-xjl<-_e(n+ 1)-/d C2n-1/d. We form a minimal spanning tree T
of {x, x, , x_l, x+, , Xn+} and then augment the tree by adding to it the edge
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{xi, xj}. This construction provides a spanning tree of S at a cost of no more than
L( T)+ c2n -/a. Therefore, we have

PMST( n d- 1 _-< L(T) + 2n -1/d < PMST(n) + C2n-1/d

which proves our lemma with e3 c2.
Naturally we can sum inequality (3.2) to provide a bound on PMST(n).
COROLLARY. There is a constant c4 such that for all n >-_ 1, one has the bound

(3.3) PMST(n) ----< C4 n(d-’)/a.

Here we note that c4--2c3 is a sufficient choice for the constant 4.
The next lemma provides a tool for understanding how a minimal spanning tree

changes as edges are added or deleted. While the result is reasonably intuitive and
can be established by modification of Kruskal’s algorithm (see, e.g., Aho, Hopcroft,
and Ullman (1974)), the rigorous justification of the modified Kruskal algorithm does
not seem to be as easy as the characterization-based proof used here.

LEMMA 3.3. Let E be a subset of a minimal spanning tree of S=
{Xl, X2,""" Xn} [0, 1] d, and let S’ be the set of points incident with the edges of E.
Then, there exists a minimal spanning tree of S’ that contains E.

Proof The graph corresponding to the set E consists of k connected components
(S, T), ($2, T2),’’’, (Sk, Tk), where l<-_k<-IE [. We first show that for all l<=i<-_k,
T is a minimal spanning tree of Si. To see this, consider a minimal spanning tree T.
If we form a forest of two trees by removing an edge from T, then it is trivial to note
that each resulting tree is a minimal spanning tree of the respective set of points
incident with it. Now let T be a minimal spanning tree of S, and recursively apply
this fact by removing from the tree T all the edges of T-E. As each edge e T-E
is removed, the minimal spanning tree to which e belongs becomes two minimal
spanning trees. After removing all the edges of T-E, the result is the edge set E,
which is a forest of minimal spanning trees.

We first recall a well-known fundamental property of minimal spanning trees. If
{( V, El) (V2, E2),’"’, (Vk, Ek)}, where k> 1, is a forest spanning the point set S,
and e {xi, xj} is an edge of minimum length such that e has exactly one endpoint in
V, then there exists a tree T* spanning S and including U Ei U {e} such that
L(T*) min {L(T)" T is a tree spanning S and U/k_ E T}. We use this easily proved
fact (see Aho, Hopcroft, and Ullman (1974), or Papadimitriou and Steiglitz (1982))
to construct from the edge set E a minimal spanning tree of S’.

Begin with the edges of E, which constitute a forest of minimal spanning trees,
and iteratively add to T1 an edge of minimal length over all those edges having exactly
one endpoint in $1. Merging components this way, we obtain a tree T that spans S’.
Moreover, T is a minimum-cost tree over all trees that span S’ and contain E. Hence,
the only way we could lessen the cost of T would be lessen the cost of a tree T, where
1 <- -<_ k. But, since Ti is a minimal spanning tree, this is impossible, and we conclude
that T is a minimal spanning tree of S’. Since T contains E, the proof is complete.

We now use Lemma 3.3 and the corollary to Lemma 3.2 to bound the total length
of any k edges of a minimal spanning tree.

LEMMA 3.4. There is a constant c5 such that if E is any subset of the edges of a
minimal spanning tree of {x x2, x,} [0, 1]d, then

L(E) <= slEI(’-’v.

Proof Let S be the set of endpoints of the edges of E and note IS[_-< 21El. By
Lemma 3.3, there exists a minimal spanning tree of S that contains E. By inequality
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(3.3) we have therefore that

eF_.

so the lemma is proved with cs 2"-)/%4.

We require one more general inequality in order to bound A (a) in our key relation
(3.1). Formally, we let ’MST(X) denote the maximal value k such that there exists a
minimal spanning tree of some V, {x, x2, , x} c [0, 1] with k edges greater
than or equal to x in length.

LEMMA 3.5. ere is a constant c6 such that for all x > O, one has

(3.4) PMST(X) C6X-d.

Proof Let T be a minimal spanning tree of {x, x2,’", x,}, and set Or(X)=
{e e T: le x}l. By Lemma 3.4 any set of r(x) edges of T must have length bounded
by csr(x)(d-)/, so

(3.5) xr(x)
er

Clearing 6r to the left side gives
d(x)cx-",

and, since this bound holds for all minimal spanning trees T, the lemma is proved
with c6 c

Returning to our basic recurrence relation (3.1), we can write it in a form closer
to the hypothesis of Lemma 2.1 as follows"

(3.6) m"-’(k) {m"p.s(k) + ’/m-’a ()} ps(m"k).

By Lemma 3.2 and its corollary psv(k)N C4k(-)/, and by Lemma 3.5 A()N c6-,
so the bracketed expression of inequality (3.6) is majorized by

c4mdk(-)/ + c6d/2m--.
This quantity is approximately minimized by choosing m-k(-)/(+), and mak-
ing that choice proves that there is a constant c7 such that the inequality

(3.7) m"-PMsT(k) C7m

holds for all m 1 and k 1. This last inequality shows that the main hypothesis of
Lemma 2.1 is valid with r(k) c7
PMsv(n)+c3n-/, we have verified all of the hypotheses of Lemma 2.1. We have

(d-1)/therefore proved that Psv(n) svn as n for all d 2.
To see that sv 1, we just note that one can place n points in the unit d-cube

in such a way that no two are closer together than n-/ This proves that sv> 1
since any connected tree has n- edges.

4. The traveling snlesmn problem. Just as in the treatment of minimal spanning
trees, the central task is to prove the validity of (2.1(ii)). For the traveling salesman
problem the task actually turns out to be easier than it was for minimal spanning trees.

As before, we partition [0, 1]a into m e cells Q of edge length m -. We then obtain
a fattened grating H of width , where 0 < < m-, and define corresponding subcells
Q? with edge length m-1- ft. Into each subcell Q7 we insert a set S of k points having
an optimal traveling salesman tour with length pvsp(k)(m-- ), i.e., the set S attains
the maximal length of any set of k points in a cube of edge length m--



WORST-CASE RATES 285

Now, for each 1 _-<iN rod, we let T denote an optimal traveling salesman tour of
Si, and we further let T be an optimal traveling salesman tour of the mdk points of
U i=1 Si. We need to establish a relationship between the total lengths of the two sets
of edges T and U i=l T.

To build a heuristic tour TI through Si, we start by taking the set TI to be Ei, the
set of all of the edges of T that are completely contained in QT. If this set of edges
forms a graph Gi--(Si, E) with k connected components, then there is a set C of at
least kg vertices that are in different components of G and have degree one or zero.
The case of degree zero occurs exactly for those components consisting of a single vertex.

Since C has cardinality at least ki, we can apply Lemma 3.1 to find a pair of
-lidvertices in C that are separated by a distance of at most c2ki (m -oz). We now

add the edge determined by this pair of vertices to TI. Repeating this construction,
we can add a total of k- edges to E and obtain a path TI through all of the vertices
in S. The ends of this path can now be joined by one final edge in order to complete
the heuristic tour

This process shows that the length of TI is bounded by

ki
(4.1) L(TI) <- L(E) + c2 _, j-1/drn-1.

j=l. m"
L(Ei) < L(T) < PTSP(mdk) we can sumNow, since PTsp(k)(m-l--o) < L(T,) and =

(4.1) over 1 -<_ -<_ m" and obtain
k

(4.2) mdpTsp(k)(m-_a)<_pTsp(mdk)+c:m- y,, j-/d.
i=l .j=l

Next, let A(a) denote the number of edges of T that intersect H". The number of
connected components of U = Gi equals = k =< A (c); so, estimating the inner sum
of (4.2) by.; j-/a <= +’ x-/a dx <= 2kla-1)/a and then applying H61ders inequality,
we have

(4.3)
(d-1)/d

This inequality will now be put in the form needed to verify (2.1(ii)). The only
real issue which remains is that of bounding A(c), but some intermediate facts are
required. First, we note that we can show

(4.4) pxsp(n + 1)=< pxsp(n) + c8 n-’/a

by taking n + 1 points S such that RTSp(n + 1) is the length of the shortest tour through
S and then using Lemma 3.1 to exhibit a heuristic tour through S with cost bounded
by PTsp(n)+2c2n -I/d, so we have inequality (4.4) with c8 2c2. (For examples of this
type of argument, where more attention is given to obtaining good values for the
associated constants, one can consult Moran (1984). For an easier, but less quantitative,
version one can consult Few (1.955).)

One immediate consequence of (4.4) is that by summing over 1-<i < n, we have

(4.5) PTSp(n) <= C9 n(d-1)/d,
where c9 2c8.
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Now, for an edge of T to intersect Ha, it must have endpoints in two different
Q7 and therefore have length at least a. This gives the bound

(4.6) aA(a) <= Z ]e]<=PTsp(mdk)<=e9md-’k(d-l)/d.
eZ

When we apply (4.5) and (4.6) to (4.3) we have

(4.7) md-lPTsp(k <= PTsp(m dk) + omdc9k(d-1)/ q- Co0-(d-)/dm(d-)2/k(d-1)2/d2,
where Co 2C2C(9d-)/d. If we now choose a rn- k(1-d)/d(2d-) m-, we see that (4.7)
simplifies to give

md-1 k2(d-1)a/d(2d-1)(4.8) md- lpTSP(k) < tOTSp(m dk) + C,,

for a constant Cl.
From inequality (4.8) we see that the main hypothesis of Lemma 2.1 is justified

with r(k)= clk(l-a/a2d-l. Since (4.4) verifies the first hypothesis of Lemma 2.1, we
have completed the proof that PTsp(n)---vsi,n (d-l/ as n-. Naturally, since the
minimal spanning tree problem is a relaxation of the traveling salesman problem, we
have /MST TSP"

5. Summary and concluding remarks. The two classical examples that were studied
here follow a general pattern that can be used for other problems. One pursues the
following recipe: (1) divide the unit d-cube into md subcells of equal size that are
separated by a fattened grating; (2) fill the ithsubcell with Si, a set of k points on
which the geometric object being analyzed attains its worst-case length in the subcell;
(3) construct a graph G that is associated with the points i=l Si [0, 1] d’, (4) delete
all edges of G that are long enough to span the fattened grating; (5) in each subcell,
add edges to what remains following the deletion to form a heuristic graph G on S;
(6) derive from this construction a recursion involving the length of a worst-case edge
set; and (7) show that the recursion justifies (2.1(ii)) of Lemma 2.1. Of course, we
must also show that the worst-case length satisfies (2.1(i)) of Lemma 2.1 to guarantee
the result, although proving that the second recursion of Lemma 2.1 is satisfied is
usually the task of greater difficulty.

This recipe would be unacceptably vague in the absence of explicit examples, but,
be referring to the detailed treatment of the MST and TSP, the application of this
technique to other problems should be reasonably straightforward.

The fact that the traveling salesman problem is computationally difficult and the
minimal spanning tree problem is computationally easy serves to show that computa-
tional complexity is not at the heart of the technique used here. This intriguing
circumstance provided one of our motivations for illustrating our technique with these
particular problems. A second motivation came from the heuristic algorithms developed
by Held and Karp (1970), (1971) which are driven by the observation that the minimal
spanning tree problem is a relaxation of the traveling salesman problem.

Limit results like those given here seem to provoke two inevitable questions. The
first question concerns the determination of the constants MST and jTSP (for each
d >= 2), and the second concerns the possibility of providing convergence rates more
precise than p(n)= n(d-/a + o(nd-l/a). The experience of trying to deal with the
analogous questions under probabilistic assumptions leaves us with little hope for
progress on these points. In particular, one should note that to sharpen the results of
Moran (1984) to give the exact value of flTSP would seem to require new geometric
insights into the traveling salesman problem as well as improvements on the best
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available results on sphere packing. These steps would be major advances in their own
right. Perhaps the problem of improving the error term in our limit theorem to something
sharper than o(n (d-)/a) would be easier than determining /3; but, still, one would
have to develop a technique that would be completely different than that given here.
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OPTIMAL PARALLEL 5-COLOURING OF PLANAR GRAPHS*

TORBEN HAGERUP, MAREK CHROBAK$, AND KRZYSZTOF DIKS{

Abstract. We show that a 5-colouring of the vertices of an n-vertex planar graph may be computed in
O(log n log* n) time by an exclusive-read exclusive-write parallel RAM with O(n/(log n log* n)) processors.
Our algorithm, while faster than all previously known methods, is at the same time the first parallel 5-colouring
algorithm to exhibit an optimal speedup. Optimality is achieved through a method based on the accelerating
cascades technique and of independent interest. It should be emphasized that although input to the algorithm
is a planar graph, we do not require a planar embedding to be given as part of the input.

Other results concern the colouring of graphs of bounded genus and the construction of search structures
for triangular planar subdivisions.

Key words, planar graphs, graph colouring, parallel random access machines (PRAMs), optimal parallel
algorithms, planar subdivisions

AMS(MOS) subject classifications. 68C05, 68C25, 68E10

1. Introduction. The problem of colouring the vertices of a graph using few colours
has given rise to one of the most intensively studied areas of graph theory. It is also
important in practical terms because of its many applications in such fields as schedul-
ing, resource allocation, and the construction and testing of VLSI circuits. A frequentlY
encountered special case is that in which the graph to be coloured is planar. Computing
a colouring that uses the smallest possible number of colours is known to be an
NP-complete problem, even when restricted to the class of planar graphs [15] (more
precisely, it is an NP-complete problem to decide in general whether a given planar
graph is 3-colourable). Hence algorithms that colour planar graphs using a fixed and
small number of colours are of interest.

Although every planar graph is 4-colourable, this is the famous "4-colour conjec-
ture" whose lengthy proof [2], [3] seems so far to have put it somewhat out of the
reach of efficient algorithm design. The situation changes if one allows five colours.
A simple proof which establishes that every planar graph may be coloured using five
colours also directly yields a sequential O(n2)-time algorithm for doing so (n is the
number of vertices in the graph). The algorithm first disassembles the graph by
repeatedly removing a vertex of degree 5 or less. The vertices are then added back to
an initially empty graph in the reverse order of their removal while a 5-colouring of
the partially constructed graph is maintained. At each step it may be necessary to
search and recolour almost the entire graph, which accounts for the quadratic running
time. Lipton and Miller [19] reduced the running time to O(n log n) by a "batching"
method in which a large number of vertices are removed from (and later added to)
the graph in each step without increasing the time needed per step for searching and
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recolouring beyond linear. Since then a number of optimal O(n)-time algorithms have
appeared [7], [20], [14], [22], [8]; even a sequential simulation of the algorithm
presented in this paper could be added to the list. In general terms, most of these
algorithms revert to the idea of removing vertices one by one but introduce small
changes to the remaining graph in order to make it possible to later reinsert each vertex
at constant cost.

The parallel version of the problem did not attract much attention until fairly
recently. Bauern6ppel and Jung [4] described a colouring method that may be used
for several classes of graphs. When applied to planar graphs and run on a CRCW
PRAM with (R)(n4) processors, it yields an 8-colouring in O(log n) time. Pushing further
in the same direction and concentrating on planar graphs, Diks [12] reduced the
number of colours used to six. These algorithms were parallel "by birth," i.e., not
derived from sequential algorithms. Parallel 5-colouring algorithms based on various
sequential methods were subsequently discovered, for the most part independently, at
least five times [21], [6], [17], [8], [16]. Our algorithm, while using the batching idea
of [19], is largely a parallel implementation of the linear-time sequential 5-colouring
algorithm by Chiba, Nishizeki, and Saito [7], with ideas of [10] used crucially in the
parallelization. By generalizing a theorem due to Cole and Vishkin and based on the
accelerating cascades technique [10], we achieve a running time of O(log n log* n) on
an EREW PRAM with O(n/(log n log* n)) processors. This result is optimal in the
sense of having a linear product of time and number of processors and represents a
considerable improvement on previous work: The earlier algorithms mentioned above
have time bounds between O((log n)2) and O((log n)s) and miss optimality by a factor
of at least (R)((log n)2). Two of the algorithms show a better performance on graphs
that have already been embedded in the plane; however, here we do not consider a
planar embedding to be available for free.

2. Notation and definitions. We assume familiarity with basic notions concerning
directed and undirected graphs. Throughout, graphs are finite and without multiple
edges, and undirected graphs are without loops.

In the following, let G V,/) be a graph. If G is undirected, two vertices u, v V
are called neighbours in G if (u, v) E. If G is directed, we call u and v neighbours
in G if either (u, v)/ or (v, u) /. A set S

_
V is said to be independent in G if it

does not contain two vertices that are neighbours in G. S is maximal independent in
G if S is independent in G and there is no independent vertex set S’ in G with S c S’.
For w V, the graph obtained from G by removing w together with all edges incident
on w is denoted by G-{w}. In general, whenever vertices are removed from a graph,
the intended meaning is that edges incident on such vertices are removed as well.

From now on, let G be undirected. For u V, we use N(u) to denote the set of
neighbours of u and deg(u) to denote the degree of u, i.e., deg(u)= IN(u)l.

A (vertex) colouring of G is an assignment of colours to the vertices of G such
that adjacent vertices receive distinct colours, i.e., a function g defined on V with the
property that g(u)# g(v) for all (u, v)/, g uses Ig(V)l coiours, and for k => 1, G is
said to be k-eolourable if there is a colouring of G that uses at most k colours.

For u, v V with (u, v)/, the identification of u and v is an operation which
replaces u and v and their incident edges by a new vertex z, adjacent to exactly those
vertices in V\{u, v} that were adjacent to either u or v (or both) in the original graph.
Identification of more than two pairwise nonadjacent vertices is defined analogously
or may be thought of as repeated identification of two vertices. When C is an
independent vertex set, we denote the identification of all vertices in C by (C).
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A planar embedding of G is a function that maps the vertices of G to distinct
points in 2 and each edge e=(u, v) E to a Jordan curve in [2 from (u) to (/.))
such that for all e=(u, v) E, (e)(g(V)2 (E\{e}))_ {(u), (v)} (i.e., edges
do not cross). G is planar if there exists a planar embedding of G. Euler’s formula
[13] implies that if G=(V,E) is planar, then ]E[ _-< 3[ V[. We occasionally do not
distinguish between a vertex and its image under a given planar embedding.

Given a planar embedding of G and a vertex w V with N(w)={ul,..., ut},
the curves ((w, ul)), , ((w, Ul)) occur in a particular cyclic order around g(w),
namely the order in which they are encountered in a counterclockwise scan around
(w). If this cyclic order is ((w, ul)), , ((w, ut)), we also say that the neighbours
of w occur in the cyclic order u,. ., u around w in the planar embedding . The
faces of are the connected regions of 2_ (VtA E). All graphs introduced in
following sections, unless otherwise qualified, will be undirected.

A PRAM (parallel random access machine) consists of a finite number p of
processors (RAMs) operating synchronously on common, shared memory cells num-
bered 0, 1,.... We assume that the processors are numbered 1,...,p and that each
processor is able to read its own number. All processors execute the same program.
We use the unit-cost model in which each memory cell can hold integers of size
polynomial in the size of the input, and each processor is able to carry out usual
arithmetic operations including multiplication and integer division on such numbers
in constant time. In addition, we assume the existence of (constant-time) instructions
for bitwise logical operations on integers, which are then considered as represented
in the binary number system (e.g., 2’s complement), as well as for conversion from
the unary to the binary number system.

One distinguishes between various types of PRAMs. EREW (exclusive-read exclus-
ive-write) PRAMs allow no memory cell to be accessed simultaneously by more than
one processor. In contrast, CRCW (concurrent-read concurrent-write) PRAMs allow
simultaneous reading as well as simultaneous writing of each cell by arbitrary sets of
processors, with some rule defining the exact semantics of simultaneous writing. CREW
(concurrent-read exclusive-write) PRAMs allow simultaneous reading, but not simul-
taneous writing.

For k => 0, log(k denotes the k-fold iterated logarithm function, i.e., log) n n
and log(i)n=loglog(i-n, for i=>l. For n=>l, log*n=min{i>=lllogi) n=<l}. All
logarithms in the paper are to base 2.

3. 5-colouring using a linear number of processors. Before we explain the technical
details of the algorithm, we provide the following sketch of the main ideas involved.
Note that the description assumes the availability of n processors. A later refinement
reduces the number of processors needed to O(n/(log n log* n)).

Starting from the given planar graph Go- G, the algorithm produces in successive
stages a sequence Go, G, G2,’’’ of planar graphs. The size of each Gi is at most c
times that of its predecessor, for some constant c < 1. Hence after O(log n) stages there
remains a graph which is trivial to colour.

For i-> 0, Gi+ is derived from Gi by applying a number of reductions to vertices
of G. A reduction at a vertex w consists of the removal of w together with the possible
identification of certain neighbours of w.

Suppose that w is a vertex in a graph G. If we derive a graph G’ from G by
identifying sufficiently many neighbours of w to reduce the degree of w to at most 4,
then it is easy to extend any 5-colouring of G’-{w} to a 5-colouring of G. First undo
the identifications of neighbours of w, letting each new vertex created in the process
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inherit the colour of the vertex from which it is derived (note that vertices that are
identified are always nonadjacent). Then stick w back in place. By the colouring
convention just mentioned, the neighbours of w will be coloured with at most four
colours; hence the fifth colour may be used to colour w.

The above procedure cannot be applied indiscriminately. In order to be able to
even guarantee that G’-{w} is 5-colourable, one must ensure that it is planar. It turns
out that there is a possible reduction preserving planarity at every vertex of degree at
most 6; while such reductions are not always easy to determine, we identify a sufficiently
large set of vertices for which they can be found in constant time.

The reductions that produce Gi+ from Gi are all executed in parallel. The set W
of vertices at which reductions take place must be chosen with some care. First of all
it must satisfy the constraints imposed by the need to preserve planarity. Secondly,
the vertices in W must possess certain independence properties, both with respect to
the current planar graph G and with respect to its representation. And lastly, W should
contain a constant fraction of all vertices. The computation of a suitable set W is made
difficult by the presence of vertices of high degree. Therefore, we show that such
vertices are sufficiently rare that one may refrain from attempting certain types of
reductions in their vicinity. After the exclusion of such reductions, the problem may
be cast as one of finding a sufficiently large independent vertex set in a graph of
bounded degree. Using a technique first employed by Cole and Vishkin, we show how
to solve the latter problem in time O(log* n).

Our choice of W is such that the reductions at vertices in W can be carried out
in constant time. Hence each stage takes O(log* n) time, and the running time of the
entire algorithm is O(log n log* n).

Given a graph G, we formally define a reduction in G to be a set r=

{w, C,..., C}, where w is a vertex in G and C,..., Cs are pairwise disjoint
independent subsets of N(w). w is called the center of r. To execute the reduction r
means to remove w and to apply the identifications (C),..., (Cs) to the resulting
graph (in any order).

Now fix a constant K _>- 12. We call a vertex small if it has at most K neighbours,
large otherwise.

DEFINITION. A vertex w in a graph G is called reducible if one of the following
holds:

(1) deg (w)=<4.
(2) deg (w)= 5, and w has at most one large neighbour.
(3) deg (w) =6, all neighbours of w are small, and the subgraph spanned by N(w)

is Hamiltonian.
The last part of condition (3) states that G contains a simple cycle whose vertices are
exactly the neighbours of w.

DEFINITION. A reduction r centered at a reducible vertex w is called safe if one
of the following holds:

(1) deg(w)_-<4, and r={w}.
(2) deg (w)= 5, and r= {w, {x, y}} for some pair {x, y} of distinct, small neighbours

of w.
(3) deg (w) 6, and either

(a) r={w, C} for some C_ N(w) with ICI =3, or
(b) r {w, {x, y}, {x2, y2}} for some pairwise distinct vertices x, y, xz, y
N(w) that occur in the cyclic order x, y, x2, Y2 on a Hamilton cycle of the
graph spanned by N(w).

Note that by the definition of a reduction, the vertices to be identified in (2) and (3)
must be pairwise nonadjacent.
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The algorithm works by executing safe reductions centered at reducible vertices.
It is based on six lemmas given below. Lemma considers the problem locally and
shows that there is a safe reduction centered at every reducible vertex. Lemma 2
guarantees that safe reductions preserve planarity. Lemmas 3 and 4, technical in nature,
demonstrate that the number of reducible vertices is not too small, and Lemma 5 shows
that a large independent vertex set in an n-vertex graph of bounded degree can be
found in O(log* n) time. Lemma 6, building on the previous lemma, finally states that
reductions centered at a constant fraction of the reducible vertices can be carried out
in O(log* n) time.

LEMMA 1. Given a reducible vertex w in a planar graph G, there is a safe reduction
centered at w which can be determined in constant time by one processorfrom the adjacency
lists of w and its small neighbours.

Proof If deg (w) -<_ 4, there is nothing to show. If deg (w) 5, then we simply have
to find and identify two small nonadjacent neighbours of w. These necessarily exist
by Kuratowski’s theorem [13] since otherwise G would contain a complete subgraph
on five vertices, namely w and four of its small neighbours.

Suppose now that w has exactly six neighbours u,..-, u6, and let their cyclic
order on a Hamilton cycle of the graph spanned by N(w) be u,..., u6. Note that
this must also (up to reversal) be the cyclic order in which u,. ., u6 occur around
w in any planar embedding of G.

If N(w) contains an independent set of three vertices, then we can identify these.
Otherwise we may assume (after a cyclic renaming) that G contains the edge (u, u3).
Then G cannot also contain the edge (u, us), since in that case {u2, u4, u6} would
form an independent set, cf. Fig. 1. Hence {w, {u, us}, {u_, u4}} is a safe reduction
centered at w. [3

FIG. 1. If u is adjacent to both u and Us, then {//2, U4, U6} is an independent set.

LEMMA 2. The graph G’ obtainedfrom a planar graph G by the execution of a safe
reduction is again planar.

Proof Consider first the case of a safe reduction of the form {w, {x, y}, {x2, Y2}}.
Note as above that x and y as well as x2 and Y2 are adjacent in the cyclic order of
x, y, x2, and y2 around w in any planar embedding of G. The planarity of G’ is now
evident from geometric considerations (see Fig. 2). The remaining cases are easy.

LEMMA 3. Let G V, E) be a planar graph with n vertices and m edges, and let

Z--{w Vldeg (w)_-> 3 and the subgraph spanned by N(w) is not Hamiltonian}.

Then m <-- 3 n lZl.
Proof Take any planar embedding of G and observe that each vertex in Z lies

on the boundary of a face whose boundary contains at least four distinct vertices. Now
for each such face F, add to G a new vertex uz and edges joining uz to all vertices
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FIG. 2. Execution of the safe reduction {w, {xi, yi}, {x2, Y2}}.

on the boundary of F (if a vertex occurs more than once on the boundary, join it to

uF by just one edge). The resulting graph is obviously planar. Let n’ and m’ be the
total number of vertices and edges added, respectively. Clearly m’>= 4n’ and m’-IZI,
and Euler’s formula applied to the augmented graph gives

(m+m’)<=3(n+n ’)
or

’<3n 1/41zl. E]m<=3n+3n’-m’<=3n--m
LEMMA 4. Let A be the set of reducible vertices in a planar graph G on n vertices.

Then IAI >= n 196.

Proof For j -0, 1, , let nj be the number of vertices in G of degree j, and let
5 be the number of reducible vertices of degree 5, fi6 the number of reducible vertices
of degree 6, and /6 the number of vertices of degree 6 all of whose neighbours are
small. Then

4

j--=0

We first informally sketch why one has IAI- f(n). Let n’= no+’’’ + n4+ 5 +/6. As
was shown in [8] and in [17], n’=2(n). Now, if /6-- /6 is small, then Iml is close to
n’ and hence IAI- f(n). On the other hand, if 6-/6 is large, then we may conclude
from Lemma 3 that G is very sparse, i.e., contains considerably fewer than 3n edges.
It then follows immediately from Euler’s formula that G contains many vertices of
degree at most 5. With some care, one may even show that no +"" + n4 + 5--f(n).
The details follow.

Let m be the number of edges in G and put e --6- 2m/n. e >= 0 by Euler’s formula,
and

or

2m (6- e)n

, jnj=(6-e) E n.
-=0 -=0

Isolating the terms containing n5 gives
4

(1-e)n= (j-6+e)ni+ Z (j-6+e)n

4

(1) n5 >- Z (j-6+e)nj-6 , nj.
6 0

and hence
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Let m’ be the number of edges in G that have at least one large endpoint. By the
definition of 5 and 6,

m’_-> 2(n5 t5) + n6 --/6).
On the other hand,

and therefore

or

m’< Z jnj
,j= K+I

2(n- t5) + (n6- 6) <
j=K+I

(2) 25+/’6 - 2n+ n6- Jni.
j=K+I

Next add c times inequality (1) to the above inequality (2). The result is

25+6=>(2-c)ns+n6 E Jni+ E (j-6+e)nj-6oz E nj
j=K+I .i=6 j=0

//5 K 4

+ n6+ c E (j--6+ e)nj+ E ((or 1)j--6a + ae)nj--6a E nj
8 j=6 j= K + j=0

5 K 4

=>m+ //6( + tee)+ ce nj + ((ce 1)(g + 1)-6a)n-6a nj.
8 j=7 j=K+I j=0

Since (or 1)(K + 1)-6c _->, we finally get
4 n5 l2n)"(3) 6a JE=O//J+25+6>=-+n6(l+cee)+-j=7

Now consider two cases:
Case 1. e _-> . Since n6 =>

4

6a Y nj+2s_-> ns+ on6 1

7+-
’=o 8 32 8 i=

4and, after multiplication by 32/a > 8 and addition of =o n,
64 4

1931A1->(6 32+1) nj+m>= nj+ns+n6+ nj=n,
=0 O =0 j=7

from which the desired conclusion follows.
Case 2. e <. Since m=3n-(en/2), Lemma 3 implies that t76- 6_-<2en. Hence

from (3),
4 //5 1

ni-2en6or =o2 nj+25+ft6>=-+n6+-j=7
and

(6a+l)lAl>=(6a+l) nj+2/5+/6 >- -2e n>= -.
=o 16

The desired conclusion again follows since 16(6a + 1)= 196.
We use a standard representation of undirected graphs. Vertices are represented

by integers, and the graph itself is represented by a set of doubly linked adjacency
lists. The adjacency list of each vertex u contains exactly one entry for each neighbour
v of u in the graph. This entry contains, in addition to an identification of v, a pointer
to u’s entry in the adjacency list of v. Pointers of the latter type are called cross links.
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Each vertex has an associated processor with constant-time access to the adjacency
list of the vertex. Note that the presence of cross links enables conflict-free communica-
tion between processors associated with adjacent vertices.

We shall say that a graph is represented with vertex number bound q if each integer
representing a vertex in the graph lies in the range 0,..., q-1, and if q and log* q
are known to each processor associated with a vertex. Our model of computation is
the EREW PRAM.

LEMMA 5. Let a graph G V, E) with n vertices and maximum vertex degree
bounded by a constant d be represented with vertex number bound q. Then an independent
vertex set in G containing at least n/6d vertices may be computed by n processors in

O(log* q) time.
Remark. A highly elegant algorithm computing a maximal independent vertex set

within the stated resource bounds was found recently by Goldberg, Plotkin, and
Shannon [16]. In terms of constant factors, their algorithm is far superior to the one
given here.

Proof Consider G as a directed graph by treating each undirected edge (u, v) as
two directed edges (u, v) and (v, u). Each processor associated with some u V with,
say, outgoing edges labels these 1,..., in some arbitrary order. For j= 1,..., d,
let E. be the set of edges labeled j. For j 1,. ., d, we eliminate "conflicts" caused
by edges in E. More precisely, execute the following:

Vo := V;
forj:=l to d
do V :- an independent vertex set in the graph V_, E/(3 V/-1 x V_I))

Then Vd will be an independent set in G containing at least n/6d vertices. It hence
remains only to show that in any subgraph of G with vertices and maximum out-degree
1, an independent vertex set containing at least t/6 vertices may be found in O(log* q)
steps.

Consider such a subgraph and remove each vertex with in-degree_-> 2. This leaves
a collection H of vertex-disjoint simple paths and simple cycles. Note that H contains
at least t/2 vertices. A trivial extension of a result in [10], which considers the case
of a single simple path or simple cycle, shows that a maximal independent vertex set
in H can be found in O(log* q) time. This concludes the proof since a maximal
independent vertex set in H necessarily contains at least one third of the vertices in
H, i.e., at least t/6 vertices.

LEMMA 6. There is a constant y > 0 with the following property: Let A be a set of
reducible vertices in an n-vertex graph G (V, E) represented with vertex number bound
q and, for each u A, let ru be a safe reduction centered at u. Then at least y[AI of the
reductions in the set {ru[u A} may be executed by n processors in O(log* q) time.

Proof Consider first the execution of a single safe reduction. The identification
of vertices Xl,’" ", x is carried out by choosing a representative, Xl, say, renaming
all adjacency list entries for x2, , x to be entries for x, concatenating the adjacency
lists of Xl," ’’, x to obtain the new adjacency list for x, and removing x2,’" ", x as
well as duplicate entries of edges incident on x. Since the total number of vertices
and edges involved is bounded by a constant, the computation can be done in constant
time by a single processor. This also applies to the removal of w together with its at
most six incident edges.

We now introduce an undirected auxiliary graph H on the vertex set A and with
edges (u, v) intended to mean that the reductions ru and rv should not both be executed.
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For all u, v A with u v, H contains an edge (u, v) exactly if one of the following
holds:

(1) There is a path in G from u to v of length at most 4 and containing no large
vertices.

(2) There are small vertices x and y, x{u}t3 N(u), y{v}t_J N(v), such that x
and y have a common neighbour in whose adjacency list the entries for x and y are
consecutive.
The maximum vertex degree of H is clearly bounded by a constant, and it is not
difficult to see that H can be constructed in constant time, even in our chosen EREW
PRAM model. By Lemma 5, there is a constant y > 0 such that an independent set W
in H of size at least ylA] can be computed in O(log* q) time. We finish by letting the
processor associated with w execute the reduction rw, simultaneously for all w W, as
described above. The well-definedness of this, as well as the fact that the computation
can be carried out in constant time and yields the same graph as would have been
obtained by sequentially executing the reductions one by one in any order, follow
from the observation that processors executing reductions centered at distinct vertices
in W operate on (read and write) disjoint sets of memory cells (let us say that they
operate without contention). To see this, note first that if two such processors P1 and

P2 operate on the same adjacency list L, then by (1) above, L is necessarily the adjacency
list of a large vertex, the operations of P1 and P2 on L are limited to updating or
deleting certain sets of single list entries, and no entry in L is updated or deleted by
both P1 and P2; therefore updates cause no contention. And by (2), L does not even
contain two consecutive entries such that P deletes one, and P2 the other. Hence
deletion, which involves resetting pointers in successor and predecessor entries, causes
no contention either. ]

THEOREM 1. Given a planar graph G on n vertices, a 5-colouring of the vertices of
G may be computed in O(log n log* n) time by an EREW PRAM with n processors
using O( n space.

Proof We use the following algorithm, y being the constant from Lemma 6 and
/3 another constant:

(01)
(02)
(03)
(04)
(0)
(o6)
(07)

(o8)
(o9)
(10)
(11)
(12)
(13)
(14)

Go Vo, Eo):= G;
k :=/3 [log n ];
for i:=0 to k-1
do begin

Ai := the set of reducible vertices in Gi;
For all u Ai, compute a safe reduction ru centered at u;
Let G+I (V+, E+I) be a graph obtained from Gi

by executing at least ylA] of the reductions in
{r.luA};

end;
Colour Gk;
for := k- 1 downto 0
do begin

Reconstruct G from Gi+l;
Extend the colouring of Gi+l to a 5-colouring of G;

end;

We assume, as is standard, that G is presented to the algorithm in the form of a set
of adjacency lists, and that vertices are represented by integers of size O(n). An internal
representation of G with vertex number bound O(n) may then be constructed in
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O(1og n) time. In particular, cross links are computed by means of a sorting of the
(undirected) edges [1], [9].

Lines (05) and (06) take constant time, whereas line (07) can be executed in time
O(log* n) by Lemma 6. Since Iv,+,l_-<lvl-3,lal-<(1-3,/196)[vl for i--0, 1,..., a
suitable choice of the constant /3 ensures that wl--< 1, making the colouring of Gk
trivial (strictly speaking, if v, 1-0, Gi is no longer a graph). Hence lines (01)-(09)
take O(log n log* n) time. By running the process backwards, the reconstruction in
lines (10)-(14) may be done within the same time bound. The procedure for extending
a colouring of Gi+ to a colouring of Gi was already sketched: Whenever a vertex z
is split into two vertices x and y, x and y inherit the colour of z, and whenever a vertex
w is reinserted, it is coloured by a colour different from all of the at most 4 colours
with which its neighbours are coloured. This is easy except that in order to avoid read
conflicts, one must associate with each edge the colours of its endpoints. [3

4. The optimal algorithm.
THEOREM 2. Given a planar graph G on n vertices, a 5-colouring of the vertices

of G may be computed in O(lognlog* n) time by an EREW PRAM with
O(n/(log n log* n)) processors using O(n 2) space.

Proof An internal representation of G with vertex number bound O(n) may be
constructed in O(log n log* n) time. In particular, since it is no longer feasible to sort
the edges of G, cross links are established by the following simple method which uses
(R)(n 2) space: Each processor which initially discovers in the input the entry of a vertex
v in the adjacency list of a vertex u places a pointer to this entry in a cell Fu, associated
with (the ordered pair) (u, v) and proceeds, if desired, to copy the pointer to a cell
found using the information in F.u.

The remaining analysis is in fact identical to the proof of Theorem 5.1 in [10]. It
applies to any algorithm that has an n-processor implementation consisting of O(log n)
stages with the following characteristics:

(1) Each stage consists of some constant-time computation plus a constant number
of computations of maximal independent vertex sets in simple cycles or simple paths
by the Cole/Vishkin [10] method.

(2) For i-- 1, 2,. ., the number of active processors in the ith stage is at most
2-n. Once a processor has become inactive, it remains so.
To see how the algorithm of Theorem fits into this more general setting, note that
the number of active processors decreases geometrically (in the first loop of the
algorithm; the second loop may of course be treated analogously) because the number
of vertices does. If a sufficiently large but constant number of stages is considered as
a unit, each such unit will decrease the number of active processors by a factor of at
least 2.

Let us deal with the general case and use the word task for the computation
carried out by a single processor in the n-processor implementation. A task is said
to be active when its associated processor is active. Our method will be a stage-by-
stage simulation of the n-processor implementation using the available p--
O(n/(logn log* n)) processors, with each processor being responsible for (i.e.,
executing the instructions of) several tasks. Define the maximum load at a particular
point during the simulation to be the maximum number of tasks for which a single
processor is responsible. We need two preliminary results, both of which are proved
in detail in Cole/Vishkin [10].

LEMMA 7. Suppose that a set of m "items" is distributed among the p processors
with each processor holding at most h items. Then the set ofitems may be evenly distributed
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among the processors (i.e., such that each processor has either m/p or m/p items)
in time O(log p + h) O(log n + h).

LEMMA 8. Let G be a simple cycle or a simple path on vertices represented with
vertex number bound O(n). Then a maximal independent vertex set in G may be found
in O(log n) time by O( t/log n) processors.

We denote by REDISTRIBUTE the algorithm implied by Lemma 7. It is a
simple application of the standard "parallel prefix computation." The redistributed
items will be task descriptions or, equivalently, processor numbers of the processors
associated with the given tasks in the n-processor implementation. After a call of
REDISTRIBUTE, executed when the number of active tasks is m, the maximum load
will be O(m/p).

The algorithm guaranteed by Lemma 8 is much slower than the one used as a
subroutine in the algorithm of Lemma 5, but it possesses an optimal time-processor
product. A stage in which this algorithm is used instead of its faster counterpart will
be called an optimal stage. We may substitute at will optimal stages for usual stages.

Let k _>- 0 be the integer such that logk+ n < log* n =< logk) n. Note that k _-< log* n.
We execute the following algorithm:

(01) Distribute the n tasks evenly among the p processors;
(02) for i:=1 to [2logk+l) n]
(03) do begin
(04) Execute one optimal stage;
(05) REDISTRIBUTE;
(06) end;
(07) forj:=k-1 downto
(08) do begin
(09) Execute [2 log/+)n] (usual) stages;
(10) REDISTRIBUTE;
(11) end;
(12) Execute the remaining O(log n) (usual) stages;

It remains only to show that the execution time of the algorithm, using p processors,
is O(n/p).

Line (01) clearly takes constant time. For 1,. ., [2 logk+l n ], the maximum
load immediately before the ith execution of lines (04)-(05) is O(n/(2i-lp)). Hence
by Lemmas 7 and 8, the time needed for the ith execution of lines (04)-(05) is
O(n/(2i-lp)+ log n), and the execution of the entire loop in lines (02)-(06) takes time

O -r+log n =O(n/p).
i=1

The execution of lines (01)-(06) reduces the maximum load to O(n/(p(log(n)))
O(log n). Hence by Lemma 7, each execution of line (10) takes O(log n) time.
Furthermore, the maximum load immediately before the (k-j)th execution of line
(09), for j= k-l,..., 1, is O(n/(p(log+n))). Hence the time required for the
(k-j)th execution of line (09) is

( n log+) n log* n)O -p -lo---)+-i)n)
giving a total execution time for the loop in lines (07)-(11) of

O 1) +log n O(n/p).
logi+ n
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Finally, when line (12) is reached, the maximum load has been reduced to 1. Hence
the remaining stages may be executed as in the n-processor implementation in time
O(log n log* n)= O(n/p).

5. Further results. Techniques used in this paper may also be applied to the
following problems:

Computation of maximal independent sets in planar graphs. The 5-colouring pro-
duced by our algorithm easily yields a maximal independent vertex set S of the input
graph. Let S initially, and then step sequentially through the set of colours, for
each colour simultaneously adding to S all vertices of that colour that have no
neighbours in S. The test of whether given vertices have neighbours in S, although not
trivial in the EREW PRAM model, can nevertheless be carried out optimally in
logarithmic time.

Colouring graphs of bounded genus. One consequence of Euler’s formula [5] for
graphs with n vertices, rn edges, and genus g reads m =<3n +6(g-1), implying that
the number of vertices of degree at most 6 is at least (n 12g + 12)/7. Hence as long
as n is larger than some number depending only on g, there are at least n/8 vertices
of degree at most 6. As in the proof of Lemma 6, one may construct a conflict graph
H of bounded degree on the set of these vertices, find a large independent set, and
carry out reductions centered at the vertices in the independent set, thereby in O(log* n)
time reducing the size of the graph by a constant factor. If seven colours are allowed,
there is never any need to identify vertices. Hence the genus does not increase, and
the process may be repeated until the proportion of vertices of degree at most 6 drops
below . Assuming that g is bounded by a constant, the remaining graph may be
coloured optimally in constant time.

We conclude that an n-vertex graph G of bounded genus can be coloured with
at most max{x(G),7} colours in O(log n log* n) time by O(n/(log n log* n)) pro-
cessors. Here x(G) is the chromatic number of G, i.e., the smallest k such that G is
k-colourable. Note that for all g>-1, there are graphs of genus g that cannot be
coloured with fewer than seven colours. Hence the above procedure is in a certain
sense optimal with respect to the number of colours used.

Construction of search structures for triangular planar subdivisions. We are here
given a planar embedding of an n-vertex graph all of whose faces are triangles (i.e.,
the boundary of each face consists of three line segments), and the problem is to
construct a data structure that will allow a single processor to determine in O(log n)
time the face of containing a given query point. Our solution is a straightforward
parallel implementation of the sequential algorithm of 18]. As above, it has the same
resource requirements as the 5-colouring algorithm, O(log n log* n) time with an
optimal number of processors. Essentially the same algorithm was discovered indepen-
dently by Dadoun and Kirkpatrick 11].
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NONBLOCKING MULTIRATE NETWORKS*
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Abstract. An extension of the classical theory of connection networks is defined and studied. This
extension models systems in which multiple connections of differing data rates share the links within a

network. Conditions under which the Clos and Cantor networks are strictly nonblocking for multirate traffic
are determined. The authors also determine conditions under which the Bene network and variants of the
Cantor and Clos networks are rearrangeable. It is found that strictly nonblocking operation can be obtained
for multirate traffic with essentially the same complexity as in the classical context.

Key words, nonblocking networks, rearrangeable networks, multirate networks, fast packet networks
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1. Introduction. In this paper we introduce a generalization of the classical theory
of nonblocking switching networks to model communication systems designed to carry
connections With a multiplicity of data rates. The theory of nonblocking networks was
motivated by the problem of designing telephone switching systems capable of connect-
ing any pair of idle terminals, under arbitrary traffic conditions. From the start, it was
recognized that crossbar switches with N terminals and N crosspoints could achieve
nonblocking behavior, only at a prohibitive cost in large systems. In 1953, Clos [6]
published a seminal paper giving constructions for a class of nonblocking networks
with far fewer crosspoints, providing much of the initial impetus for the theory that
has since been developed by Bene [2], [3], Pippenger [16] and many others [1], [5],
[8], [11], [12], [13], [14].

The original theory was developed to model electromechanical switching systems
in which both the external links connecting switches and the internal links within them
were at any one time dedicated to a single telephone conversation. During the 1960s
and 1970s technological advances led to digital switching systems in which information
was carried in a multiplexed format, with many conversations time-sharing a single
link. While this was a major technological change, its impact on the theory of nonblock-
ing networks was slight because the new systems could be readily cast in the existing
model. The primary impact was that the traditional complexity measure of crosspoint
count had a less direct relation to cost than in the older technology.

During the last 10 years, there has been a growing interest in communication
systems that are capable of serving applications with widely varying characteristics.
In particular, such systems are being designed to support connections with arbitrary
data rates, over a range from a few bits per second to hundreds of megabits per second
[7], [10], [19]. These systems also carry information in multiplexed format but, in
contrast to earlier systems, each connection can consume an arbitrary fraction of the
bandwidth of the link carrying it. Typically, the information is carried in the.form of
independent blocks, called packets, which contain control information identifying to
which of many connections sharing a given link the packet belongs. One way to operate
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such systems is to select for each connection a path through the switching system to
be used by all packets belonging to that connection. When selecting a path it is
important to ensure that the available bandwidth on all selected links is sufficient to

carry the connection. This leads to a natural generalization of the classical theory of
nonblocking networks, which we explore in this paper. Note that such networks can
also be operated with packets from a given connection taking different paths; reference
[20] analyzes the worst-case loading in networks operated in this fashion. The drawback
of this approach is that it makes it possible for packets in a given connection to pass
one another, causing them to arrive at their destination out of sequence.

In 2, we define our model of nonblocking multirate networks in detail. Section
3 contains results on strictly nonblocking networks, in particular showing the conditions
that must be placed on the networks of Clos and Cantor in order to obtain nonblocking
operation in the presence of multirate traffic. We also describe two variants on the
Clos and Cantor network that are wise-sense nonblocking in the general environment.
Section 4 gives results on rearrangeably nonblocking networks, in particular, deriving
conditions for which the networks of Bene and Cantor are rearrangeable.

2. Preliminaries. We start with some definitions. We define a network as a directed
graph G V, E) with a set of distinguished input nodes I and output nodes O, where
each input node has one outgoing edge and no incoming edge, and each output node
has one incoming edge and no outgoing edge. We consider only networks that can be
divided into a sequence of stages. We say that the input nodes are in stage 0 and for
i> 0, a node v is in stage if for all edges (u, v), u is in stage i-1. An edge (u, v) is
said to be in stage if u is in stage i. In the networks that we consider, all output
nodes are in the same stage, and no other nodes are in this stage. When we refer to a
k-stage network, we generally neglect the stages containing the input and output nodes.
We refer to a network with n input nodes and rn output nodes as an (n, rn)-network.
We let Xn,, denote the network consisting of n input nodes, m output nodes, and a

single internal node. In this network model, nodes correspond to the hardware devices
that perform the actual switching functions and the edges to the interconnecting data
paths. This differs from the graph model traditionally used in the theory of switching
networks, which can be viewed as a dual to our model.

When describing particular networks we will find it convenient to use a product
operation. We denote the product of two networks Y1 and Y2 by Y1 x Y2. The
product operation yields a new network consisting of one or more copies of Y
connected to one or more copies of Y2, with an edge joining each pair of subnetworks.
More precisely, if Y1 has n outputs and Y2 has n: inputs, then Y x Y is formed by
taking n2 copies of Y numbered from 0 to n2- 1, followed by nl copies of Y2 numbered
from 0 to n- 1. Then, for 0_-< _-< n- 1, O-j _-< n 1, we join Y(i) to Y(j) using an

edge connecting output port j of YI(i) to input port of Y2(j). Next, we remove the
former input and output nodes that are now internal, identifying the edges incident
to them, and finally, we renumber the input and output nodes of the network as follows:
if u was input port of Y(j), it becomes input jnl +i in the new network; similarly
if v was output port of Y(j), it becomes output jn+ i. We also allow the product
ofmore than two networks, which we denote with the symbol N; the product Y1N YzN Y3
is obtained by letting Z1 Y1 x Y: and Z2 Y2 x Y3, then identifying the copies of Y2
in Z and Z2. This requires of course that the number of copies of Y2 generated by
the two initial products be the same.

A connection in a network is a triple (x, y, to), where x I, y 0, and 0-< w--< 1.
We refer to to as the weight of the connection and it represents the bandwidth required
by the connection. A route is a path joining an input node to an output node, with
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intermediate nodes in V-(I U O), together with a weight. A route r realizes a connec-
tion (x, y, w) if x and y are the input and output nodes joined by r, and the weight of
r equals co.

A set of connections is said to be compatible if for all nodes x I U O, the sum
of the weights of all connections involving x is _-<1. A configuration for a network G
is a set of routes. The weight on an edge in a particular configuration is just the sum
of the weights of all routes including that edge. A configuration is compatible if for
all edges (u, v)e E, the weight on (u, v) is _-<1. A set of connections is said to be
realizable if there is a compatible configuration that realizes that set of connections.
if we are attempting to add a connection (x, y, o9) to an existing configuration, we say
that a node u is accessible from x if there is a path from x to u, all of whose edges
have a weight of no more than 1- w.

A network is said to be rearrangeably nonblocking (or simply rearrangeable) if for
every set C of compatible connections, there exists a compatible configuration that
realizes C. A network is strictly nonblocking if for every compatible configuration R
realizing a set of connections C, and every connection c compatible with C, there
exists a route r that realizes c and is compatible with R. For strictly nonblocking
networks, one can choose routes arbitrarily and always be guaranteed that any new
connections can be satisfied without rearrangements. We say that a network is wide-sense
nonblocking if there exists a routing algorithm for which the network never blocks;
that is, for an arbitrary sequence of connection and disconnection requests, we can
avoid blocking if routes are selected using the appropriate routing algorithm, and
disconnection requests are performed by simply deleting the route.

Sometimes, improved performance can be obtained by placing constraints on the
traffic imposed on a network. We will consider two such constraints. First, we restrict
the weights of connections to the interval [b, B]. We also limit the sum of the weights
of connections involving a node x in I CJ O to/3. Note that 0-< b _-< B _<-/3 -< 1. We say
a network is strictly nonblocking for particular values of b, B, and/3 if for all sets of
connections for which the connection weights are in [b, B] and the total port weight
is /3, the network cannot block. The definitions of rearrangeably nonblocking and
wide-sense nonblocking networks are extended similarly. The practical effect of a
restriction on/3 is to require that a network’s internal data paths operate at a higher
speed than the external transmission facilities connecting switching systems, a common
technique in the design of high-speed systems. The reciprocal of/3 is commonly referred
to as the speed advantage for a system.

Two particular choices of parameters are of special interest. We refer to the traffic
condition characterized by B =/3, b 0 as unrestricted packet switching (UPS), and
the condition B b =/3 1 as pure circuit switching (CS). Since the CS case is a special
case of the multirate case, we can expect solutions to the general problem to be at
least as costly as the CS case and that theorems for the general case should include
known results for the CS case.

3. Strictly nonblocking networks. A three-stage Clos [6] network with N input
and output nodes is denoted by CN,k,m, where k and m are parameters, and is defined
as: CN,k,m Xk,mNXN/k,N/kNXm,k. A Clos network is depicted in Fig. 1. The standard
reasoning to determine the nonblocking condition (see [6]) can be extended in a
straightforward manner, yielding the following theorem.

THEOREM 3.1. The Clos network CN,k,,, is strictly nonblocking if

m > 2 max
boB S(

where s(a) max {1-o, b}.
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FIG. 1. Clos network.

Proof Suppose we wish to add a connection (x, y, 7) to an arbitrary configuration
C. Let u be the stage-1 node adjacent to x and note that the sum of the weights on
all edges out of u is at most/3(k-1)+(/3- 7)= jgk-7. Consequently, the number of
edges out of u that carry a weight of more than (1-7) is _-< [(k- y)/ s( 7)] and
hence the number of inaccessible middle stage nodes is

-< -< max < m/2.
s(,) <___< o)

That is, less than half the middle stage nodes are inaccessible from x. By a similar
argument, less than half the middle stage nodes are inaccessible from y, implying that
there is at least one middle stage node accessible to both. [3

Let us examine some special cases of interest. If we let b B =/3 1, the effect
is to operate the network in CS mode. The theorem states that we get nonblocking
operation when rn_-> 2k-1, as is well known. In the UPS case, the condition on rn
becomes m> 2(/3/(1-/3))(k-1). So m=2k-1 is sufficient here also if/3=1/2.

Using Theorem 3.1, we can construct a wide-sense nonblocking network for
unrestricted traffic by placing two Clos networks in parallel and segregating connections
in the two networks based on weight. In particular if we let m- 4k-1, the network
X1,2NCN,k,,,NX2, is wide-sense nonblocking if all connections with weight -<1/2 are
routed through one of the Clos subnetworks, and all the connections with weight > 1/2
are routed through the other.

A k-ary Beneg network [2], built from k x k switching elements (where logk N is
an integer), can be defined recursively as follows" B,k=X, and BN,=
Xk,NBu/,kNX, (see Fig. 2). A k-ary Cantor network of multiplicity rn is defined

x.(0)

((N:)-I)

Bu,, (0)

Bv/k,k (k-l

FIG. 2. Beneg network BN, I).
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as KN,k, --Xl,m BN,kXm,1. Note that this definition is expressed differently from
those given in [5], 13], but we find it preferable as it shows clearly the close relationship
between these two structures. Figure 3 depicts a binary Cantor network of multiplicity
three with one of its Beneg subnetworks highlighted. The next theorem captures the
condition on rn required to make the Cantor network strictly nonblocking.

THEOREM 3.2. The Cantor network KN,k, is strictly nonblocking if
2

tn -> (1 +(k- 1) 1Ogk (N/k)).
ks(B)

Proof Suppose we wish to add a connection (x, y, w) to an arbitrary configuration.
Note that there are mN/k nodes in the middle stage of the network. We will show
that more than half of these nodes are accessible from x if m satisfies the inequality
in the statement of the theorem.

FIG. 3. Cantor network.

Define W to be the set of all edges (u, v) in stage i, for which u is accessible
from x, but v is not. Define Ai to be the sum of the weights on all edges in W, and
note that Ai _-> Wls(o)). If we let h 1Ogk N, then the number of middle stage nodes
(stage h + 1) that are not accessible from x is given by

h

i=2

It is easily verified that
h

kh-iA(fl-to)kh-2+ , kh-’(k-l-ki-2)fl.
=2 =2

To see this, note that each term in the summation on the left gives the weight used
for blocking at stage weighted by kh-i. The terms in the summation on the right give
an upper bound on the total weight of the traffic that could possibly block connections
from x at stage i, similarly weighted by kh-. The initial term on the right corresponds
to the weight from input port x that is available for blocking. The right side of the
above inequality equals

k (-)+fi(k k )(-N)lOgk(N/k)< (k-1)lOgk(N/k)).
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Combining this with the first inequality above, the number of inaccessible middle stage
nodes is strictly less than

/3N
s(B)k(1 +(k-1)1Ogk (N/k))<-(mN/2k).

That is, fewer than half the middle stage nodes are inaccessible from x. By a similar
argument, fewer than half of the middle stage nodes are inaccessible from y, meaning
that there exists an available route from x to y.

COROLLARY 3.1. The Beneg network BN,k is strictly nonblocking if

<- ks(Bi(l+(k- 1) lOgk (N/k))

Proof Substitute 1 for m in the statement of the theorem and solve for/3.
When we apply the theorem to the CS case for k 2, we find that the condition

on m reduces to m _-> log2 N, as is well known. For the UPS case with k 2, we have
m >-(fl/(1-/3)) log2 N; that is, we again need a speed advantage of two to match the
value of m needed in the CS case.

We can construct wide-sense nonblocking networks for/3 by increasing m.
We divide the connections into two subsets, with all connections of weight -<
segregated from those with weight >1/2. Applying Theorem 3.2 we find that
m =>4((k- 1)/k) 1Ogk N is sufficient to carry each portion of the traffic, giving a total
of 8((k- 1)/k) 1Ogk N subnetworks.

4. Rearrangeably nonblocking networks. As mentioned earlier, a k-ary Bene
network [2], can be defined recursively as follows" Bk,k=Xk,k and Bu,k

Xk,kBu/k,kXk,k. The Bene network is rearrangeable in the CS case [2], and efficient
algorithms exist to reconfigure it 12], 14]. In this section, we show that under certain
conditions, the Bene network can be rearrangeable for multirate traffic as well. We
start by reviewing a proof of rearrangeability for the CS case, as we will be extending
the technique for this case to the general environment.

Consider a set of connections C {c, , Cr} for BN,k, where ci {xi, y, 1}. There
is at most one connection for each input and output port. The recursive structure of
the network allows us to decompose the routing problem into a set of subproblems,
corresponding to each of the stages in the recursion. The top level problem consists
of selecting, for each connection, one of the k subnetworks BN/k,k through which to
route. Given a solution to the top level problem, we can solve the routing problems
for the k subnetworks independently. We can solve the top level problem most readily
by reformulating it as a graph coloring problem. To do this, we define the connection
graph Gc Vc, Ec) for C as follows"

Vc {U, vlO<-j < N/k},

Ec {{utx,/, Vly,/k}[1 <= <= r}.

To solve the top level routing problem, we color the edges of Gc with colors {0,...,
k- 1} so that no two edges with a common endpoint share the same color. The colors
assigned to the edges correspond to the subnetwork through which the connection
must be routed. Because Gc is a bipartite multigraph with maximum vertex degree k,
it is always possible to find an appropriate coloring [4], [9]. In brief, given a partial
coloring of Gc, we can color an uncolored edge {u, v} as follows. If there is a color
i {0,.,., k-l} that is not already in use at both u and v, we use it. Otherwise, we
let be any unused color at u and j be any unused color at v. We then find a maximal
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alternating path from v, that is, a longest path with edges colored or j, which has v
as one of its endpoints. Because the graph is bipartite, the alternating path must end
at some vertex other than u or v. Then, we interchange the colors and j for all edges
on the path and use to color the edge (u, v).

To prove results for rearrangeability in the presence of multirate traffic, we must
generalize the graph coloring methods used in the CS case. We define a connection
graph Gc for a set of connections C as previously, with the addition that each edge
is assigned a weight equal to that of the corresponding connection. We say that a
connection graph is (, k)-permissible if the edges incident to each vertex can be
partitioned into k groups whose weights sum to no more than ft. A legal (, m)-coloring
of a connection graph is an assignment of colors in (0,..., m-1) to each edge so
that at each vertex u, the sum of the weights of the edges of any given color is no
more than/3.

Now, suppose we let Y= YI Y2 Y3, where Y is a (k, m)-network, Y2 is an
(N/k, N/k)-network, and Y3 is an (m, k)-network, and also let Ofllfl2 1. Then,
if Y1, Y2, Y3 are rearrangeable for connection sets with /3 f12, and every (1, k)-
permissible connection graph for Y has a legal (/32, m) coloring, then Y is rearrangeable
for connection sets with fl ill.

Our first use of the coloring method is in the analysis of BN.k. We apply it in a
recursive fashion. At each stage of the recursion, the value of fl may be slightly larger
than at the preceding stage. The key to limiting the growth of fl is the algorithm used
for coloring the edges of the connection graph at each stage. We describe that algorithm
next.

Let Gc (Vc, Ec) be an arbitrary connection graph. For each vertex u, let Cu be
the set of edges involving u. Next, number the edges in Cu from zero, in nonincreasing
order of their weight, and let C i,_ C, comprise the edges with indices in the range
{ik,..., (i+ 1)k- 1} for i->_ O. Our coloring algorithm assigns unique colors to edges
in each subset C i.. In particular, given a partial coloring of Gc, we color an uncolored
edge {u, v} belonging to C and C{ as follows. If there is a color a {0,..., k-l}
that is not already in use within C u and C-, we use it. Otherwise, we let al be any
used color within C. and a2 be any unused color within C+. We then find a maximal
constrained alternating path from v, that is, a longest path with edges colored a or a2
with v as one of its endpoints and such that for every interior vertex w on the path,
the path edges incident to w belong to a common set Chw. Because the graph is bipartite,
the last edge cannot be a member of either C . or C. Given the path, we interchange
the colors al and a2 for all edges on the path, and use a to color the edge {u, v}. We
refer to this as the CAP (constrained alternating path) algorithm. We can route a set
of connections through BN.k by applying CAP recursively. Our first theorem gives
conditions under which this routing is guaranteed not to exceed the capacity of any
edge in the network.

THEOREM 4.1. The CAP algorithm successfully routes all sets of connections for
BN,k for which

<- 1+ k (B/) log (N/k)

Proof Let Gc be any (/31, k)-permissible 6onnection graph with maximum edge
weight B, and/31 B(k )/k. We start by showing that the CAP algorithm produces
a legal (/32, k)-coloring for some/32 =</31 + B(k 1)/k.

Let u be any vertex in Go. Since each color is used at most once for each subset
C i. of the edges at u, the largest weight that can be associated with any one color at
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u is bounded by the sum of the weights of the heaviest edges in C iu for all i. Because
the edges were assigned to the Ciu in nonincreasing order of weight, the total weight
of like-colored edges at u is at most B+(kl-B)/k=-B(k-1)/k.

Given this, if we route a set of connections through BN.k by recursive application
of the CAP algorithm, we will succeed if

/3 +
k

B logk (N/k) <- 1,

or equivalently, <-_[l +((k-1)/k)(B/Ct) lOgk (N/k)]-.
As an example, if N 26, k =4, and B fl, it suffices to have -<0.16. We can

improve on this result by modifying the CAP algorithm. Because the basic algorithm
treats each stage in the recursion completely independently, it can in the worst-case
concentrate traffic unnecessarily. The algorithm we consider next attempts to balance
the traffic between subnetworks when constructing a coloring. We describe the algorithm
only for the case of k 2, although extension to higher values is possible.

Let Gc be a connection graph for BN,2. Gc comprises vertices Uo,"" ", U(N/2)-I
corresponding to nodes in stage one of BN,2 and vertices Vo, , v(N/2)-i corresponding
to nodes in stage 2(log2 N-1). We have an edge from ul to v corresponding to each
connection to be routed between the corresponding nodes of BN,2. We note that for
0 <-_ < N/4, the nodes corresponding to u2i and ui+ have the same successors in stage
two of BN,2. Similarly, the nodes in Bu,2 corresponding to vzi and v2i+ have common
predecessors. We say such vertex pairs are related.

Let a and b be any pair of related vertices in Gc. The idea behind the modified
coloring algorithm is to balance the coloring at a and b so that the total weight
associated with each color is more balanced, thus limiting the concentration of traffic
in one subnetwork. The technique used to balance the coloring is to constrain it so
that when appropriate, the edges of largest weight at a and b are assigned different
colors; hence the corresponding connections are routed through distinct subnetworks.
For any vertex v in Gc, let tOo(V)_>-O.)I(V ’’’ be the weights of the edges defined at
v, let Wo(v)=YioO)2i Wl(v)=,i>_oOOzi+, and W(v)= Wo(v). Also, let x(v)=
Wo(/) Wl() ).

The modified CAP algorithm proceeds as follows. For each pair of related vertices
a and b in Go, if x(a)+ x(b)> B, add a dummy node z to Gc with edges of weight
two connecting it to a and b. We then color this modified graph as in the original CAP
algorithm, and on completion we simply ignore the added nodes and edges. The effect
of adding the dummy node is to constrain the coloring at a and b so that the edges
of maximum weight are assigned distinct colors. We apply this procedure recursively
except that in the last step of the recursion we use the original CAP algorithm.

THEOREM 4.2. The modified CAP algorithm successfully routes all sets ofconnections
for Bu, for which

/3 -<[1 +1/4(Blfl) log N]-1.

Proof Let a and b be related vertices with Ooo(a)>-Ooo(b). Let zl=
max { W(a), W(b)} and let z be the total weight on edges colored 0 at a and b. If
x(a) + x(b)_-< B, no dummy vertex is added and we have that

z2-< Wo(a)+ Wo(b)<-(z,+x(a))/2+(Zl+X(b))/2<-z,+B/2.

Similarly, if x(a)+ x(b)=> B, a dummy vertex is added and we have that

Zz<-_Ooo(a)+ W(a)+ Wl(b)<-Ooo(a)+(Zl-X(a))/Z+(Zl-X(b))/Z<-Zl +B/2.
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Thus, the total weight on a node in stage is at most 2/3 +(i-1)B/2. In particular,
this holds for i= log2 N- 1. Also note that for a link (u, v) in stage j _-< log2 N-2, the
maximum weight is at most B plus half the weight on u. For a link (u, v) in stage
log2 N-1, the weight is at most B/2 plus the maximum weight at u, since in this last
step the original CAP algorithm was used. Consequently, no link carries a weight
greater than/3 + (B/4) log N. [3

Theorem 4.2 implies for example that if/3 B 0.2, a binary Beneg network with
216 input and output nodes is rearrangeable. Theorem 4.1, on the other hand gives
rearrangeability in this case only if/3 is limited to about 0.118. It turns out that we
can obtain a still stronger result by exploiting some additional properties of the original
CAP algorithm.

THEOREM 4.3. The CAP algorithm successfully routes all sets of connections for
BN,k for which

/3 _-<[max {2, h -ln I/J/B] }] -1,
where h 2 + In 1Ogk (N/k).

So, for example, if k =4, N 216, and fl/B 2, we can have/3 =0.3. The proof
of Theorem 4.3 requires the following lemmas.

LEMMA 4.1. Let r be any positive integer. If a set of connections for Bn.k is routed
by repeated applications of the CAP algorithm, no link will carry more than r connections

of weight > / (r + ).
Proof (By induction.) The condition is true by definition for the external links.

If the assertion holds at a given level of recursion, the connection graph for the next
stage will have at most rk edges of weight greater than fl/(r + 1) at any given node u.
These edges are all contained in CU"’’u U C r-lu implying that the CAP algorithm
will use a single color for at most r of them.

If is a link in Bn,k, we define S to be the set of links l’ in stage j for which
there is a path from l’ to I. If a given set of connections uses a link l, we refer to one
connection of maximum weight as the primary connection on and all others as
secondary connections. We note that if the CAP algorithm is used to route a set of
connections through BN,k, then if there are r + connections of weight -> to on a link

(u, v), there are at least + kr connections of weight ->to on the links entering u.
LEMMA 4.2. Let 0 =< --<_ 1Ogk (N/k), let be a stage link in B,k carrying connections

routed by the CAP algorithm, and let the connection weights be too-> to ->’’" >= toh. For
0 <- <- hand 0=< s_-<min {i, t}, thereareatleast (t-s+ 1)k + sk- connectionsofweight
>=_to, on the links in St

Proof The proof is by induction on s. When s 0, the lemma asserts that there
are + connections of weight _-> to, which is trivially true. Assume then that the lemma
holds for s-l; that is, there exist (t-s+2)k-+(s-1)ks- connections of weight

i--s+l i--s+l[ ks-l,->to, on the links in S Because IS by the pigeon-hole principle, at
least (t s + 1)k- + (s 1) k-2 of these are secondary connections. This implies that
there at least

k-’+ k[(t-s+ 1)k-’ +(s- 1)k-2] (t-s+ 1)k + sk-1

connections of weight -->tot in SI-. [3

Proof of Theorem 4.3. Consider an arbitrary set of connections for BN,k satisying
the bound on/3 given in the theorem, and assume that the CAP algorithm is used to
route the connections. Let be any link in stage i, where i--<lOgk (N/k), and let the
weights of the connections on be too->’" >= toh. Let r be the positive integer defined
by/3 / r + < B -</3 / r (equivalently, r [fl / B ). By Lemma 4.2, S carries connections
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with a total weight of at least

too + kto + k2to2 t- 4r k w + k to nt- nt- OJh ).

Since the total weight on S is at most flk, we have

i--1 h

k > kJtoj + k 2 toj
j=0 j=i

From this and Lemma 4.1, we have that

r--1 i--1 h i-1 1, toj + 2 wj + 2 wj<= Br+ 2 j--+fl=<2/3+flj=0 j=r j=i j=r

logt,. (N/k) 1
-.

j=r+l J

If [/B] >= IOgk (N/k), the summation vanishes and we have that the weight on is
--< 2/3. Otherwise, the weight is bounded by

=</3(2+1n 1Ogk (N/k)/r)=(1-1n [3/B]).

So, if/3 satisfies the bound in the statement of the theorem, the weight on is no more
than one. By a similar argument, the weight on any link in stage j for j-> logk N is at
most one. E]

We now turn our attention to the Cantor network and give conditions for
rearrangeability in that case.

THEOREM 4.4. Let e > 0 and [fl/B] <= logk (N/k). KN,k, is rearrangeable if
m=> [(l+e)(1-1n [fl/BJ)]+2(2+log21+log2(B/c)),

where I =2+lnlogk(N/k) and c= 1-/31/(1+e)(I-ln[fl/B]).
The proof of Theorem 4.4 requires several lemmas.
LEMMA 4.3. Let a, r be >= with r and ar integers. Br.k is rearrangeable for sets of

connections with weights to that satisfy fl/(ar+ 1) < to <-_ /r and a <- e(/t)-l.
Proof By Lemma 4.2, if BN.k is routed using the CAP algorithm, no link contains

more than ar connections. The sum of the weights of the connections on any given
link is

----<r(--fir)+ /3
+r+l ...+fl=fl+flmcer 1/i<=fl(l+ln a)---1. V1

i=r+l

LEMMA 4.4. Let a, r be >-1 with r and ar integers. KN,k, is rearrangeable for sets

of connections with weights to that satisfy

fl/(ar+l)<to<=/r and a_-<exp
rm

/?(r+m-1)

Proof The connections can be distributed among the m Beneg subnetworks using
the CAP algorithm; the resulting maximum port weight on the subnetworks is

fl,=<__+(m-1)fl fl(r+m-1)
m mr mr

By Lemma 4.3, each subnetwork can be successfully routed if

a--<exp
/3(r+m-1)

<e

LEMMA 4.5. KN,k, is rearrangeable if rn >= 2(2 + log2 (B/b)).
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Proof Define h, by letting

2h+-----i< B <__--- and < b_<-.
By Lemma 4.4, two of the Beneg subnetworks are sufficient to route connections with
weights in the interval (2-(J+l)fl, 2-Jfl] for any j_->0. For h <-j<=i then, we devote two
subnetworks for the connections with weights in (2-+1)/3, 2-J/3]. The total number
of subnetworks required is at most

2(i- h + 1)_-< 2(2 + log2 (B/b)) <- m.

LEMMA 4.6. KN,k, is rearrangeable if

(-)<_m<-
1-Bh =B’

where A 2+ln lOgk(N/k).

Proof We distribute the traffic among the m Beneg subnetworks using the CAP
algorithm. The resulting maximum port weight is fl’, where

m-1 fl-Bfl’<=ff-+ B= B+.
m m m

By Theorem 4.3, the maximum weight on any link is at most

/3’(A-ln[’/BI)<-BA+--
(/3 -B),

m
_-<1. [3

Proof of Theorem 4.4. Let B’= c/A. By Lemma 4.5, all the traffic with weight > B’
can be handled using

2(2 + 1OgzA + log2 Bc)

of the Beneg subnetworks. By Lemma 4.6, the remaining traffic can be carried using

(fl B’)h /3-c _-< I-(1 + e)(A -ln [//B])I
1-B’A 1-c

subnetworks, l-1
Theorem 4.4 holds when [//B] -< lOgk (N/k). When this condition does not hold,

Km,k,m is rearrangeable with rn between one and three, depending on the value of/3.
In particular, if fl_-<5, m=l is sufficient using Theorem 4.1. If (1/2)</3_-<
1-1(2 log (N/k)), m 2 is sufficient since in this case the traffic can be split among
the two subnetworks so that each experience a maximum port weight of at most 1/2.

The graph coloring methods used to route connections for BN. can also be applied
to networks that "expand" at each level of recursion. Let C* X and for N kk, k,

i> let * *CN/k,N/kC U,k,m Xk N N X.,k. The following theorem gives conditions under
which C* is rearrangeable.N, k,

THEOREM 4.5. C*N,,m is rearrangeable if

/3 _--< [1/T’+ m 1B 1_ = 1._/Y_f] -1
m fl 1-1/yJ

where "y m k and c log (N/k).
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Proof We use the CAP algorithm to route the connections. If we let /3, be the
largest resulting weight on a link in stage for =<iN 1Ogk (N/k), we have

k[3,_,-B m-1 m-1
fl _-< B + (/3,-1/y)+B _-< (/30/,)/i) ._[_ B _-< 1. [-]

m m m l-liT

So, for example, C:N,k,2k_l is rearrangeable, if B <-- 1/2.

5. Closing remarks. In recent years, there has been a growing interest in switching
systems capable of carrying general multirate traffic, in order to be able to support a
wide range of applications including voice, data, and video. A variety of research
teams have constructed high-speed switching systems of moderate size [7], [10], [19],
[21], but little consideration has yet been given to the problem of constructing very
large switching systems using such modules as building blocks. The theory we have
developed here is a first step to understanding the blocking behavior of such systems.

In this paper, we have introduced what we feel is an important research topic and
have given some fundamental results. There are several directions in which our work
may be extended. While we have good constructions for strictly nonblocking networks,
we expect that our results for rearrangeably nonblocking networks can be improved.
In particular, we suspect that the Bene network can be operated in a rearrangeable
fashion with just a constant speed advantage. Another interesting topic is nonblocking
networks for multipoint connections. While this has been considered for space-division
networks 1 ], [8], 11 ], 17], it has not been studied for networks supporting multirate
traffic. Another area to consider is determination of blocking probability for multirate
networks. We expect this to be highly dependent on the particular choice of routing
algorithm.
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MINIMIZING SCHEDULE LENGTH SUBJECT TO MINIMUM FLOW TIME*

JOSEPH Y-T. LEUNG AND GILBERT H. YOUNG?

Abstract. The problem of scheduling n independent tasks on rn => identical processors, with the
objective of minimizing the schedule length under the constraint that it must have minimum flow time, is
considered. For nonpreemptive scheduling, it is known that the problem is NP-hard. This paper shows that
the problem is a lot easier for preemptive scheduling. Specifically, an O(n log n) time algorithm to find an
optimal preemptive schedule is given. This algorithm generates schedules with at most m- preemptions.
It is also shown that an optimal nonpreemptive schedule can be almost twice as long as an optimal preemptive
schedule. The results suggest that preemption is extremely beneficial in simultaneously minimizing the flow
time and the schedule length.

Key words, schedule length, flow time, nonpreemptive scheduling, preemptive scheduling, NP-hard

AMS(MOS) subject classifications. 90B35, 68R05

1. Introduction. In deterministic scheduling theory, schedule length and flow time
are two commonly studied performance measures. Minimizing the schedule length has
the effect of increasing the processor utilization, while minimizing the flow time tends
to decrease the average number of unfinished tasks in the system. To obtain good
overall performance, a system should aim at optimizing both performance measures.
Unfortunately, the two criteria seem to conflict with each other. Scheduling algorithms
that do well with respect to one measure tend to do poorly for the other. For example,
the LPT rule [9] is known to produce schedules that are reasonably short, yet the
schedules produced tend to have large flow time. On the other hand, the SPT rule [5]
is known to be an optimal algorithm for minimizing the flow time, but it is usually
outperformed by the LPT rule in producing short schedules. With the exception of
[4], [7], [8], most of the scheduling algorithms studied in the literature have concen-
trated on just one of the two criteria. In this paper, we continue the work of [4], [7],
[8] by studying the scheduling problem of optimizing both performance measures
simultaneously.

Formally, our problem can be stated as follows" We are given a set TS-
{T, T2,’’’, Tn} of n independent tasks with execution times {p,p2,...,pn} to be
scheduled on m -> identical processors. If S is a schedule of TS on the m processors,
then f(S) denotes the finishing time of T. in S. The schedule length of S, denoted by
SL(S), is defined to be SL(S)-maxT {f(S)}, and the flow time of S, denoted by
FT(S), is defined to be FT(S)=i=1f(S). A minimum length schedule, S/, is one
such that SL(S/) <-_ SL(S) for all schedules S, and a minimum flow-time schedule, S-, is
one such that FT(S-)<-FT(S) for all schedules S. Our goal is to find a schedule, S*,
that has the minimum schedule length among all minimum flow-time schedules. That
is, S* is one such that FT(S*)= FT(S-) and SL(S*)<=SL(S-) for all schedules S-.

The set of tasks can be scheduled nonpreemptively or preemptively on the proc-
essors. In nonpreemptive scheduling, a task, once execution has begun, must proceed
to completion, in contrast, preemptive scheduling allows a task to be preempted;
execution is later resumed, sometimes on a different processor. It is assumed, however,
that there is no time loss in preemption. We shall use the symbols S+up and S+p to
denote a minimum-length nonpreemptive schedule and a minimum-length preemptive

* Received by the editors July 27, 1987; accepted for publication June 24, 1988. This research was
supported in part by Office of Naval Research grant N00014-87-K-0833.

Computer Science Program, University of Texas at Dallas, Richardson, Texas 75080.

314



MINIMIZING SCHEDULE LENGTH 315

schedule, respectively. Similarly, S-Np S, SNp, and S*p are defined analogously. It is
known that finding a S+Np is strongly NP-hard [6]. This problem, known in the literature
as the multiprocessor scheduling problem or the makespan minimization problem, has
been studied by many researchers [2], [3], [9], [10], [12], [13], [15]. Due to the
intractability ofthe problem, most research efforts have been directed towards designing
and analyzing fast approximation algorithms [2], [9], [10], [12], or studying special
cases of the problem which admit polynomial-time solutions [3], [13], [15]. Finding
a S, is a lot easier [14]; it can be done in O(n) time. In fact, the schedule length of
S, is simply given by SL(S-)=max {maxT=l {Pi}, (l/m) i-- Pi}. Recently, it has been
shown [11] that for any given set of independent tasks to be scheduled on m >_-1

identical processors, we have SL(S+Np)/SL(S,)<-2m/(m + 1). Furthermore, the bound
is achievable for every m_-> 1. Thus, when m gets large, a minimum-length non-
preemptive schedule can be almost twice as long as a minimum-length preemptive
schedule. Hence, preemption can reduce the length of a schedule by a significant
proportion.

Finding a S-p can be done in O(n log n) time. The well-known SPT rule [5]
always constructs a S-p and it works as follows: Add enough zero-execution-time
tasks so that n becomes an integer multiple of m. Sort the tasks in nondecreasing order
of their execution times. Divide the tasks into r= n/m ranks, with tasks T(j_l)m+l,
T(j_l)m+2, T(j_l)m+ in rank j, _<-j-< r. Assign the tasks to the processors rank by
rank, in order of increasing rank,.each task in a given rank being assigned to a different
processor. A schedule constructed by the SPT rule will be called an SPT schedule.
Since there are m! ways of assigning the tasks in any given rank, there are (m !) SPT
schedules for a set of rm tasks to be scheduled on m processors. Figure shows two
SPT schedules for a particular set of tasks. Observe that all SPT schedules give the
same minimum flow time, FT(S-Np)== (r-j+ 1) k=l P(j-)m+k. It has been shown
[14] that preemption cannot reduce the minimum flow time. Thus, FT(S,)=
FT(S-Np)=j=, (r-j+ 1) k=,

The problem of finding an S*Ne has been shown to be NP-hard 1]. In [4], several
fast approximation algorithms have been proposed and their worst-case performance
bounds analyzed. In this paper, we give an O(n log n) time algorithm to find an S.
Our algorithm generates schedules with at most m-1 preemptions. The set of tasks
given in Fig. 2 shows that SL(S*Np)/SL(S*p)=2m/(m+I). From the result in [11],
2m/(m+ 1) is also an upper bound of SL(S*p)/SL(S*p) for any given set of tasks.
Thus, preemption can be very beneficial in reducing the schedule length of a minimum
flow-time schedule.

Gonzalez [7] has given an O(n log n + nm)-time algorithm to find a preemptive
schedule with the minimum flow time subject to the constraint that the length of the
schedule is no more than a given parameter/3. It is tempting to suggest that Gonzalez’s
algorithm can be used to find an S*p by repeatedly calling his algorithm with the
parameter/3, where/3 is the schedule length obtained in a binary search on an interval
in which the minimum schedule length lies. However, the binary search may not
terminate in a finite amount of time because the schedule length of S*p may be a real
number even when the execution times of the tasks are integers. Moreover, even if the
number of iterations in the binary search can be bounded by a polynomial function
of the size of the input, the overall running time of the algorithm will be substantially
higher than that of our algorithm.

As will be seen in the next section, our algorithm employs a subroutine to
preemptively schedule a subset of tasks to meet a certain deadline. This subroutine is
actually a slight modification of Sahni’s algorithm 16], which has been shown to solve
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FIG. 1. Two SPT schedules for a set of tasks.

the Deadline Scheduling problem. In the Deadline Scheduling problem, we are given
rn => identical processors and a set of n independent tasks TS { T1, T2, , T,} with
execution times {Pl, P2,"" ", P,} and deadlines {dl, d2,. .__ dn}. The problem is to
determine if there is a preemptive schedule of TS on the rn processors such that all
deadlines are met. Such a schedule is called a feasible schedule. The idea of Sahni’s
algorithm is to schedule the tasks in nondecreasing order of their deadlines. Assume
the tasks have been indexed such that dl-< d -<... -<_ d,, and consider the scheduling
of task T. Let F(k), -< k =< m, denote the finishing time of processor k after T/_ has
been scheduled. (Initially, F(k) =0 for all _-< k=< m.) Let kl, k2," , k,, be the indexes
of the processors such that F(k) =< F(k) =<. -< F(kx,) < di. The scheduling of T is
done by one of the following four cases: (1) If Pi > di- F(kl), then output "infeasible"
(i.e., there are no feasible schedules for TS on m processors). (2) If p<= d-F(kx,),
then schedule T completely on processor k,, and set F(kx;) to be F(k;)+Pi. (3) If
p di- F(kt) for some 1 -< < x, then schedule T completely on processor kl and set
F(kt) to be di. (4) If none of the above three cases apply, let processor k be such that
di-F(kt+l)<pi<di-F(kt). Schedule di-F(kl+l) of Ti on processor kl+ and the
remainder of T on processor kl. Set F(k//l) to be d and F(kt) to be F(k)+
(pi-(di-F(kt+l))). The tasks are scheduled iteratively by the above procedure until
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FIG. 2. A task set such that SL(Sp)/SL(S)= 2m/(m+ 1).

it outputs "infeasible," or all tasks have been scheduled. In the latter case, the schedule
constructed by the algorithm is a feasible schedule.

We now define some conventions and notations that will be used consistently
throughout the remainder ofthis paper. For a given set of n tasks TS { T1, T2, , T, },
to be scheduled on rn processors, we always assume that the tasks have been indexed
such that pl -<_ p2-<-" "-< P,, and that n rm for some integer r-> 1. For each 1 _-<j _-< r,
we call the tasks T(j_l)m+l, T(j_l)m+2, T(j_l)m+ the rank j tasks. Furthermore, we
say that rank (Ti) =j if Ti is a rankj task. We define a particular SPT schedule, denoted
by SPT, as follows: For each < k <= m, assign the tasks Tk, Tin+k,’’" T(r-1)rn+k to
processor k. It is easy to see that SPT has the longest schedule length among all SPT
schedules for any given set of tasks. Furthermore, if F(k) denotes the finishing time
of processor k in the SPT schedule, then we have F(k)=j=p(j_m+k for each

_-< k _-< m. Clearly, we have F(k) <- F(k + 1) for each <- k < m. Finally, an optimal
schedule always means an S*p.

The organization of the paper is as follows. In 2, we describe our algorithm and
analyze its running time. In 3, we prove that our algorithm always constructs an
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optimal schedule for any given set of tasks. Finally, we draw some concluding remarks
in the last section.

2. The algorithm. In this section, we shall describe our algorithm and analyze its
running time. Given a set of n tasks, TS--{T1, T2,’’’, T,,}, to be scheduled on m
processors, our algorithm constructs a schedule as follows. First, we construct the
SPT

,
schedule for the tasks in the first r-1 ranks. Next, we compute the optimal

schedule length, denoted by OSL, using the finishing times of the processors in the
SPT- schedule and the execution times of the rank r tasks. As will be shown later,
OSL= maxkl {__ (F(1)+p,,-l+l)/k}, where F(1), 1 <_- _-< m, denotes the finishing time
of processor in the SPT schedule. Finally, we preemptively schedule the rank r
tasks into the SPT schedule such that (1) no two rank r tasks finish on the same
processor, (2) no processors have idle times before their finishing times, and (3) no
tasks finish later than OSL. Note that the first two conditions are to ensure that the
schedule has the minimum flow time. The last step of our algorithm is done by a
subroutine that is a modification of Sahni’s algorithm. The rank r tasks are preemptively
scheduled to meet the deadline OSL in the same manner as Sahni’s procedure, with
the following three exceptions. First, Case 1 of Sahni’s procedure no longer applies,
since all tasks can meet the deadline OSL. Second, if a task Ti is scheduled on processor
kx,. by Case 2 of Sahni’s procedure, then processor kx, will no longer be used to execute
any subsequent tasks. This is to ensure that no two rank r tasks finish on the same
processor. Finally, the tasks are scheduled in nonincreasing order of their execution
times. A full description of our algorithm, to be called Algorithm B, is given below.
A schedule produced by Algorithm B will be called a B-schedule.

ALGORITHM B
Input" A set TS--{T, T2,’’’, T,,} of n tasks to be scheduled on m _-> identical

processors.
Output: An optimal schedule of TS on the m processors.
Method:

1. Construct the SPT schedule for the tasks T, T2,’’’, T(r-)m.
2. F(k) 2r-1j= P(j-1)m+ for each < k < m.
3. OSLmaxm=l {2_ (F(l)+p,_,+l)/k}.
4. Initialize the set of available processors to be processors 1, 2, , m. Schedule

the tasks T,, T_I," , T-m+l in that order. Suppose we are scheduling task
T. Let k, k,..., k be the indexes of the available processors such that
F(kl) -< F(k2) _-<" _-< F(k,;) < OSL. T will be scheduled by one of the following
three rules: (1) If pi <- OSL-F(kx,), then schedule Ti completely on processor
kx,. F(kx, ’- F(kxi .-t- Pi. Delete processor kx; from the set of available processors.
(2) If pi OSL- F(kl) for some 1 _-< < x, then schedule T completely on
processor kl. F(k) OSL. Delete processor k from the set of available proc-
essors. (3) If the above two cases do not apply, then let be such that
OSL- F(kl+t) < P < OSL- F(k). Schedule OSL- F(k+l) of T on processor
kl+ and the remainder of T on processor k. F(kl)
F(kl) -Jr- Pi OSL F( kl+ 1))). F(kl+ l) OSL. Delete processor k+ from the set
of available processors.

Shown in Fig. 3 is a set of 12 tasks to be scheduled on four processors. Figure
3(b) shows the SPT schedule constructed in step of the algorithm. The finishing
times of processors 1, 2, 3, and 4 are 7, 9, 12, and 14, respectively. Step 3 of the
algorithm gives OSL=max {(7+ 16)/1, (7+ 16+9+ 16)/2, (7+ 16+9+ 16+ 12+ 10)/3,
(7+16+9+ 16+12+10+ 14+10)/4}=24. In step 4, Tz is scheduled by rule (3) on
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FIG. 3. An example showing Algorithm B.

processors and 2. Then, processor 2 is deleted from the available set of processors.
Tll is scheduled by rule (2) on processor 1, which is then deleted from the available
set of processors. Finally, Tlo and T9 are both scheduled by rule (1) on processors 4
and 3, respectively.

The running time of Algorithm B is determined as follows. Steps 1 and 2 take
O(n) time. Step 3 takes O(rn) time. Step 4 can be implemented to run in O(m log m)
time. Thus, the overall running time of Algorithm B is O(n + m log m) time. If we
include the time needed to sort the tasks into nondecreasing order of their execution
times, then the overall running time of the algorithm is O(n log n) time, since n is
assumed to be larger than m. It is easy to see that a B-schedule has at most rn-1
preemptions.

3. Algorithm correctness. In this section, we shall show that Algorithm B always
constructs an optimal schedule. We first show that a B-schedule always gives the
minimum flow time. Observe that in step 4 of Algorithm B, the rank r tasks are scheduled
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in such a way that no two tasks finish on the same processor. This follows from the
observation that if a task is scheduled by rules (1) or (2), then the processor to which
it is assigned will not be used to schedule any subsequent tasks. If a task is scheduled
by rule (3), then it finishes on processor kl+ but not on processor kl. Furthermore,
processor k+ will not be used to schedule any subsequent tasks. Since a task is
scheduled by one of the three rules, no two tasks can finish on the same processor.
With this observation in mind, it is readily verified that the flow time of a B-schedule
is Y=1 (r-j+ 1) Yk= P(j-)m+k, which is the minimum as stated in 1. For the remain-
der of this section, we shall concentrate on showing that a B-schedule has the minimum
schedule length among all minimum flow-time schedules.

Let S be a schedule of TS T, T2,’’’, Tn} on m processors.. With respect to
S, we can define an ordering of the tasks p(S)= (T,, T/2,... T/,,) such that f,(S)<=
f2(S) -<. -<_f,, (S). We call this ordering the finishing-time ordering of the tasks with
respect to S. Furthermore, we call the tasks T(j_, l, T_, ,’’’, Ti;_, the rankj
tasks, 1 <-j<-r, with respect to p(S). A schedule S is said to be in canonical form if
for each <=k<-m, the tasks Ti, T ,..,..., T,._, finish on processor k, where
T/,, -< =< n, is the/th task in p(S). The following theorem shows that every preemptive
schedule can be converted into one in canonical form with no change in schedule
length and flow time.

THEOREM 1. For every preemptive schedule S of TS on m processors, there is another
schedule S’ in canonical form such that FT(S’) FT(S) and SL(S’) SL(S).

Proof Let p(S)= (Ti,, Ti,..., T,,) be the finishing-time ordering of the tasks
with respect to S. We construct a new schedule S’ as follows. Suppose T finishes on
processor k in S. We interchange a small segment, 6, of T/, executed in the time
interval [f/,(S)- 6, f,(S)] with the task executed in the same interval on processor 1.
The new schedule is a valid schedule with no change in the finishing times of the tasks.
Repeating this operation for Ti, T3, , T,, gives a new schedule S’ such that FT(S’)
FT(S) and SL(S’) SL( S). [3

Let S be a preemptive schedule in canonical form and let p(S) (T,, T, , T,,)
be the finishing-time ordering of the tasks with respect to S. We divide S into r segments
E, E2,..., Er as follows. Segment E consists of all the time intervals from time 0
until a rank task (with respect to p(S)) finishes. That is, E1 consists of the time
intervals [0,f,(S)] on processor 1, [0,f2(S)] on processor 2,..-, [0, f,,, (S)] on proc-
essor m. For each 2-<j -< r, E/consists of the time intervals [f,.j_ ,(S),f(._, ,(S)]
on processor 1, [f,__ .(S),f,_, (S)] on processor 2,..., [f,._: (S),f(_, (S)]
on processor m. We use ES to denote the total length of all time intervals in
segment Ej.. Thus, ESI=k=f,(S), and for each 2<=j<=r, ES=
-’k=-I (f/(,i-) ,(S)-f/(i--2) k(S)). With these definitions in mind, we can prove the
following theorem, which characterizes the structure of a minimum flow-time
preemptive schedule.

THEOREM 2. Let S be a minimum flow-time preemptive schedule in canonicalform,
and let p(S)= Ti,, Ti2," ", T,,) be the finishing-time ordering of the tasks with respect
to S. For each segment E.i 1 <=j <- r, we have" (1) there are no idle processor times in E,
and (2) the tasks that are executed in E are rankj tasks (with respect to p(S)) only.
Furthermore, every rankj task (with respect to p(S)) has execution time no larger than
any rankj + task, <-_j < r.

Proof Let S, p(S), and E be as stated in the theorem. Let ES denote the total
length of all time intervals in E., and let R denote the total execution time of all tasks
in rankj (with respect to p(S) ), <-j <= r. It is easy to see that FT(S)=
.= (r-j+I)*ESi. Since S has the minimum flow time, we also have FT(S)=
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Yj=l (r-j+ 1) Yk=l P(j-l),,+k. Thus, we have

(1) (r-j+ I)ES= (r-j+ l) E P(j-)m+k.
j=l j=l

For each 1-<_j <_-r, let Xi, denote the total execution time of all rank tasks (with
respect to p(S)) executed in E, i>j, and let &j denote the total idle processor time
in E. Clearly, we have

ESj Rj + dpj + Z X,,j Z Xj,,,
i>j j>i

and hence

(2) , (r-j+I)ES= (r-j+l)R+ (r-j+l) b+2 Xi,j- X./,i
j=l j=l j=l i>j j>i

Since 2=1 R =1 P, we have

(3) (r-j+ 1)R-
j=l

From (1), (2), and (3), we have

(r-j+
j-----1

.j=l k=l

+ E x,,,- E x,,) <-_o.
i>j j>i

Observing that b >- 0 for each 1 _-<j -< r, and

(r -j + 1) E Xi, E Xj,, E E (i--j)Xi, >= O,
j=l i>j j> j=l i>j

we have &j 0 and X, 0, i> j, for each _-<j-< r. Therefore, each segment Ej can
only have rankj tasks (with respect to p(S)) executing in it, and it cannot have any
idle processor time. Finally, from (1) and (2), we have

(4) 2 (r-j+ 1)R;= (r-j+ 1)

From (4), we observe that no rankj tasks (with respect to o(S)) can have execution
time larger than any rankj+ 1 tasks; otherwise, (4) cannot hold. El

From Theorem 2, we see that a minimum flow-time preemptive schedule, S, in
canonical form is actually very similar to a B-schedule. The rank j tasks with respect
to p(S) are the same as the rankj tasks of the task system, <-j<-r. The tasks are
executed rank by rank in S, and there are no idle processor times before the finishing
time of a processor. If S is a schedule, we let P(S) denote the partial schedule obtained
from S by deleting all rank r tasks.

LEMMA 1. Let S be a minimumflow-time preemptive schedule in canonicalform and
let S’ be a B-schedule. Let F(k, S) and F(k, S’) denote the finishing time ofprocessor k
in P(S) and P(S’), respectively, l<-_k<-m. Then, we have k= (F(k, S’)-F(k, S))->0
for all <-_ <-_ m.

Proof. Both P(S) and P(S’) consist of the same set of tasks and both schedule
tasks rank by rank. The lemma will be proved if we can show that Yk=l (F(k, S’)-
F(k, S))_-< 0 for all 1-< l_-m. But this follows immediately from the observation that
P(S’) is an SPT schedule.
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THEOREM 3. Let S be a minimum flow-time preemptive schedule in canonicals, form
and let S’ be a B-schedule. Then, there is another schedule S such that FT(S)= FT(S),
SL() SL(S), and F(k, ;)= F(k, S’).,, 1 <_ k <- m, where F(k, ) and F(k, S’) denote
the finishing time ofprocessor k in P(S) and P(S’), respectively.

Proof Let S be a minimum flow-time preemptive schedule in canonical form and
let S’ be a B-schedule. We construct S using the following three steps: (1) Copy the
rank r tasks from S to ;. As shown in Fig. 4(a), the solid lines enclose the rank r tasks.
The solid staircase on the left is given by F(k, S), <_- k _-< m, where F(k, S) denotes the
finishing time of processor k in P(S). The dotted staircase is given by F(k, S’), 1 _-< k m.
Processor k is said to be a cross-hatched processor if F(k, S’) > F(k, S); the time interval
[F(k, S), F(k, S’)] is said to be a cross-hatched interval. Processor k is said to be a
dotted processor if F(k, S) > F(k, S’); the time interval [F(k, S’), F(k, S)] is said to be
a dotted interval. As shown in Fig. 4(a), processor is a dotted processor, whereas
processor m is a cross-hatched processor. (2) Move all portions of the rank r tasks
executed in a cross-hatched interval on a cross-hatched processor to a dotted interval
on a dotted processor. The moving is done systematically by starting from the highest
indexed cross-hatched (dotted) processor to the lowest indexed cross-hatched (dotted)
processor. From Lemma 1, we know that for any 1 <_-i m, the total length of all
cross-hatched intervals is no less than the total length of all dotted intervals on
processors to m. Therefore, we will always be moving from a higher indexed processor
to a lower indexed processor. We need to show that this transformation gives a valid
schedule with no change in the finishing times of the rank r tasks. Since each rank r
task has execution time larger than F(m, S’)-F(1, S’), no rank r task can finish by
F(m, S’) in S. Thus, the transformation will not change the finishing times of rank r
tasks. When we move portions of a rank r task, say Ti, executed in a cross-hatched
interval [t, t2] to a dotted interval [t, t_], we need to ensure that Ti is not executed
in [t’l, t] on some other processor. This can be done by swapping tasks among
processors in [t, t2] before the move to avoid possible conflicts. Since we are always
moving from a higher indexed processor to a lower indexed processor, we can always
swap tasks among processors in [t, tEl to avoid conflicts. Thus, the schedule after the
transformation is still a valid schedule. Figure 4(b) shows the schedule of the rank r
tasks after the transformation. (3) Construct the SPT schedule for the tasks in the
first r-1 ranks. Figure 4(c) shows the completed schedule S.

From the construction, it is easy to see that FT()= FT(S’)= FT(S), SL()=
SL(S), and F(k, S) F(k, S’) for each _-< k _-< m. [3

By Theorems and 3, an optimal schedule can always be found such that the
tasks in the first r- ranks are scheduled in the same manner that they are scheduled
by Algorithm B. Thus, to show that a B-schedule has the minimum schedule length
among all minimum flow-time schedules, all we need to show is that Algorithm B
schedules the rank r tasks in such a way that the resulting schedule length is minimum.
In the following, we shall show that: (I) An optimal schedule must schedule the rank r
tasks such that the resulting schedule length is at least OSL, which is computed in
step 3 of Algorithm B and (II) Algorithm B can always schedule the rank r tasks such
that no rank r tasks finish later than OSL.

Before we show the above, we need to introduce the following notations. Let
F(k), _-< k_-< m, denote the finishing time of processor k of a partial schedule S such
that F(1) -< F(2) _-<. _-< F(m). The m-tuple PF (F(1), F(2),. ., F(m)) is called the
processor profile of S. For a given D > F(m), the ordered pair (PF, D) is called a
block and it consists of the time intervals [F(1), D] on processor 1, [F(2), D] on
processor 2,..., [F(m), D] on processor m.
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FIG. 4. Illustrating the proof of Lemma 3.

THEOREM 4. Let PF=(F(1), F(2),’’. ,F(m)) be the processorprofile of a partial
schedule S, and let TS’ { T’, T, , T’} be a set ofm tasks such thatp >- P2 Pro"
Then, TS’ can be preemptively scheduled into the block (PF, D) only if D >

maxL, {2=, (F(1) + pl)/ k}.
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Proof Let j be such that 2= (F(1)+Pl)/j=maxkm= {/k--1 (F( l) + pl)/ k}. Since
D- F(1) _-> D- F(2) =>. _-> D- F(m), the processors are in nonincreasing order of
processing capacity. Therefore, if TS’ can be scheduled into the block (PF, D), then
we must be able to schedule T, T,. ., T completely on processors 1, 2,. .,j of
the block. Thus, D>F: (F(l)+p,)/j=max= {Y=, (F( l) +p)/ k}.

Theorem 4 shows that OSL computed in step 3 of Algorithm B is a lower bound
of the schedule length of an optimal schedule. We shall show in Theorem 5 that step
4 of Algorithm B can always schedule the rank r tasks into the block (PF, OSL), where
PF is the processor profile of the SPT schedule constructed in step 1 of Algorithm
B. Note that the rank r tasks are scheduled in nonincreasing order of their execution
times. Task Tn-t+ is scheduled at the/th iteration of step 4 of Algorithm B, -<_ 1-< m.
The next three lemmas are instrumental in proving Theorem 5.

LEMMA 2. In step 4 of Algorithm B, the number of available processors remaining
after the/th iteration is m l, 1 <-_ <-_ m.

Proof The lemma follows from the observations that we start out with rn proc-
essors, and that each iteration removes one processor from the set of available pro-
cessors.

LEMMA 3. Let F(k, l), 1 <= k <-_ m, 1 <-_ <- m, denote the finishing time ofprocessor k
before the/th iteration in step 4 ofAlgorithm B. Let processors k < k2 <... < km_l+ be
the available processors before the/th iteration. Then, we have F(kl, l)
F(k_+l, l).

Proof We shall prove the lemma by induction on 1. The lemma is clearly true for
1, since F(1, 1) -< F(2, 1) =<. _-< F(m, 1). Assume the lemma is true for j, we shall

prove it is also true for =j + 1. In the jth iteration, task Tn-j+l is being scheduled.
Let k < k. <. <k,,_..+ be the indexes of the available processors before the jth
iteration. By the inductive hypothesis, we have F(kl,j)_-< F(kz,j)=<’’" F(km_j+,j).
If Tn_j+ is scheduled by rules (1) or (2) in step 4 of Algorithm B, then the lemma is
clearly true for =j + 1. Thus, we assume that Tn_j+l is scheduled by rule (3) of step
4. Let processors kc and k.+ be used in the scheduling of T,_+. Then, we have
F(ke,j+l)<=F(k,.+l,j)<=F(k,.+z,j), and F(ki,j+l)=F(ki,j) for ic and c+l.
Thus, we have F(k,j+ l) _<- F(kz,j+ l) <= ...=<F(k,.,j+l)-<F(k.+z,j+l)=<...-<
F(km_+,j+ 1). Hence, the lemma is also true for l-=j+ 1.

LEMMA 4. Let processors k < kz <... < km-t+l be the available processors before
the/th iteration in step 4 of Algorithm B. If task T_l+ is scheduled by rules (1) or (2)
in the/th iteration on processor k,., or if T-I+I is scheduled by rule (3) on processors kc
and kc+l, then after T,_I+ is scheduled there are at least c-1 available processors that
have processing capacity at least p_t+.

Proof Let F(k, l) denote the finishing time of processor k before the/th iteration,
and let k < k <... < k,,_+ be the indexes of the available processors. If Tn_t+ is
scheduled by rule (1) or rule (2) on processor k, or if T,-l+l is scheduled by rule (3)
on processors k,. and ke+, then we must have OSL-F(k, l)>=p_l+l. Since OSL-
F(ki, l) >- OSL- F(kc, l) and F(ki, + 1) F(k, l) for each _-< < e, we have OSL-
F(k, + 1) ->_ P,-I+ for each 1 <- < c. Thus, we have at least c 1 processors that have
processing capacity no smaller than p,_+l.

THEOREM 5. Step 4 of Algorithm B can always schedule the tasks
T,,, T,_I," ", T-m+l into the block (PF, OSL), where PF is the processor profile of the
SPT schedule constructed in step and OSL is computed in step 3 of Algorithm B.

Proof We prove the theorem by contradiction and assume that at the/th iteration
Tn_l+ is the first task that cannot be scheduled into the block. We first observe that
none of the tasks T, Tn_, , T_t+2 were scheduled by rule (1) of step 4 of Algorithm
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B. For otherwise, since the tasks are in nonincreasing order of their execution times,
all tasks can be scheduled into the block. Let F(k, 1), <_-k <_-m, denote the finishing
time of processor k at the time Tn-+l is scheduled, and let processors kl < k2 <" <
k,,-l+l be the available processors. By Lemma 3, we have F(k, l)-< F(k2, 1)<’’" =<
F(km_+l, l), and hence OSL F(k, l) >= OSL F(k2, l) >=. >= OSL F(km_+l, 1).
Since Tn-+l cannot be scheduled, we have Pn-l+ > OSL-F(k, l).

By Lemma 2, kl -<-/. We want to show that k2 > 1. If k =< l, then, by Lemma 2, there
is a processor x > that has been deleted as a result ofscheduling some task T,_y+l, y < I.
By Lemmas 4 and 2, there are at least (x-2)-(y-1)=x-y-l>-_l-y available
processors among processors 1, 2,..., with processing capacity no smaller than
Pn-y+l. Since the tasks are in nonincreasing order of their execution times, we must
be able to schedule the tasks Tn_y+2 Tn_y+3,... T,-+I into one of these processors.
But this contradicts our assumption that T,_t+ cannot be scheduled. Thus, k2 > 1.

From the above discussions, there is only one available processor among processors
1, 2, , atthe time Tn_/l is scheduled. Since T, T_I, , Tn-/2 were all scheduled
by rules (2) and (3) of step 4 of Algorithm B, and since T,_/ cannot be scheduled,
we must have k=l (F(k)+p,_k+)/l> OSL, where F(k) is the finishing time of proc-
essor k in the SPT schedule. But this contradicts the definition of OSL.

From the above theorems, we have the main result of this paper, which is stated
in the following theorem.

THEOREM 6. Algorithm B always generates an optimal schedule.

4. Concluding remarks. In this paper, we have given an O(n log n)-time algorithm
to find a minimum-length preemptive schedule subject to the constraint that it must
have the minimum flow time. As a generalization of our problem, it will be interesting
to find a minimum-length preemptive schedule subject to the constraint that the flow
time is not larger than a given parameter a. One can also generalize this problem to
the case of uniform processors. We note that, for the case of uniform processors,
Gonzalez [8] has given an O(nm)-time algorithm to find a minimum flow-time
preemptive schedule subject to the constraint that the schedule length is not larger
than a given parameter/3.
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FAST PARALLEL ALGORITHMS FOR CHORDAL GRAPHS*

JOSEPH NAOR?, MONI NAOR$, AND ALEJANDRO A. SCH,FFER

Abstract. Techniques for parallel algorithms on chordal graphs are developed. An NC algorithm for
recognizing chordal graphs is developed, as are NC algorithms for finding the following objects in chordal
graphs: all maximal cliques, an intersection graph representation, an optimal coloring, a perfect elimination
scheme, a weighted maximum independent set, and a minimum clique cover. The recognition algorithm
presented in this paper is simpler than previous algorithms given by Edenbrandt and by Chandrasekharan
and Iyengar; the other problems were apparently open. The known polynomial-time algorithms for these
problems seem highly sequential, and therefore a different approach to find parallel algorithms is used.

Key words, parallel algorithms, chordal graphs, perfect elimination scheme, perfect graphs, maximum
independent set, chromatic number
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1. Introduction. An undirected graph is chordal if every cycle of length at least
four contains a chord, that is, an edge between two vertices that are not consecutive
in the cycle. Chordal graphs arise in the study of sparse matrices [ROT0], [Ro72] and
in the study of acyclic relational database schemes [Be83]. Many NP-complete problems
can be solved in polynomial time if the input graph is chordal, but the standard
algorithms seem highly sequential [Jo85]. We give fast parallel algorithms for several
problems on chordal graphs.

Chordal graphs comprise an important subclass of perfect graphs. Perfect graphs
are characterized by either of two min-max identities:

1) the chromatic number equals the maximum clique size for every induced
subgraph

2) the maximum independent set and the minimum clique cover are of the same
size for every induced subgraph.
These two characterizations were developed somewhat independently, but Lovsz
[Lo72] showed that they describe precisely the same graphs.

The problem of recognizing perfect graphs is open, but chordal graphs can be
recognized in polynomial time. Rose, Tarjan, and Lueker [Ro76] and Tarjan and
Yannakakis [TAB4] gave linear-time sequential algorithms for this problem based on
an alternative characterization of chordal graphs. To understand this characterization,
we need some definitions: a vertex, v, is simplicial if the graph induced by v and its
neighbors is a clique. We use the term clique to mean a completely connected subgraph;
we use the term maximal clique to mean a clique such that no vertex outside the clique
is adjacent to every vertex in the clique. An ordering of the vertices vl, v2,’", vn

Received by the editors April 13, 1987; accepted for publication (in revised form) July 19, 1988. Most
of these results were presented in preliminary form at the 19th Annual Symposium on Theory of Computing
in May 1987.

? Department of Computer Science, Hebrew University, Jerusalem 91904, Israel. Part of the work was
done while this author was visiting the University of California at Berkeley. Present address, Computer
Science Department, Stanford University, Stanford, California 94305.

Computer Science Division, University of California at Berkeley, Berkeley, California 94720. The
work of this author was supported by National Science Foundation grants DCR85-13926 and CCR88-13632.
Present address, AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974.

Computer Science Department, Stanford University, Stanford, California 94305. This work was done
while this author was a Research Student Associate at IBM Almaden Research Center. During the academic
year, the work of this author is primarily supported by a Fannie and John Hertz Foundation Fellowship
and is supported in part by Office of Naval Research contract N00014-85-C-0731.

327



328 JOSEPH NAOR, MONI NAOR, AND ALEJANDRO A. SCHFFER

with V simplicial in the graph induced by {vi, vi+, , vn} for all is called a perfect
elimination scheme or PES, for short. A graph is chordal if and only if it has a perfect
elimination scheme [Fu65], [GoS0].

Interval graphs, which arise in a variety of scheduling and resource-allocation
problems [Go80], form an important subclass of chordal graphs. An interval graph is
the intersection graph of intervals on the real line. There is a bijection between the
vertex set of the graph and a set of intervals such that two vertices are adjacent if and
only if the corresponding intervals overlap.

f e

FIG. 1. A chordal graph; one perfect elimination scheme is cadbefg.

Our parallel algorithms use an intersection graph characterization of chordal
graphs due to Buneman [Bu74] and Gavril [Ga74]. A graph G is chordal if and only
if it is the intersection graph of a family of subtrees of a tree. That is to say, there is
an undirected tree T, a family of subtrees b (S, $2," ", SIvI), and a bijection from
V(G) to the multiset ow with the property that two vertices in G are adjacent if and
only if the corresponding subtrees share a node in T. We use the convention that an
element of V(G) is called a vertex, and if T is fixed, an element of V(T) is called a
node or a tree node. Buneman [Bu74] and Gavril [Ga74] gave different polynomial-time
algorithms for building a tree-and-subtrees representation of a chordal graph.

A PES can be used to give polynomial-time algorithms on chordal graphs for
many graph problems that are NP-complete on general inputs [Jo85]. Algorithms to
build a PES and use it, appear hard to parallelize because they choose one vertex to
process at a time based on previous choices. Algorithms that build and use the tree
representation appear hard to parallelize because the tree may have long paths.

Our main results are:
THEOREM 1.1. Chordal graphs can be recognized in polylogarithmic time on a PRAM

(parallel random access machine) having polynomially many processors. Given a chordal
graph, it is possible to find the following objects in polylogarithmic time on a PRAM
having polynomially many processors:

all maximal cliques and the chromatic number ( 3),
a tree-and-subtrees representation ( 4),
an explicit optimal coloring ( 4),
a perfect elimination scheme ( 5),
unweighted and weighted maximum independent sets ( 5), and
a minimum clique cover ( 5).

Next to each item is the section in which we give its algorithm.
Sequential algorithms for all these problems, except building a tree representation,

follow directly from the PES, and to build a tree, the most important step is to find
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all maximal cliques from the PES. Our parallel algorithms that recognize chordal
graphs and find all maximal cliques use neither a tree-and-subtrees representation nor
a PES. The maximal cliques are used to build the tree and to find a coloring; we use
the tree to find a PES and a maximum independent set. The coloring algorithm uses
only the existence of the tree to guide the recursion, but does not require an explicit
tree or a PES. We present algorithms for both the unweighted and weighted independent
set problems because the algorithm for the unweighted case runs faster and uses fewer
processors in the worst case. In a longer technical report [Na87], we extend our results
to obtain simple parallel algorithms for three sample problems related to chordal
graphs: computing the chromatic polynomial of a chordal graph, deciding whether a
database scheme is acyclic [Be83], and finding a largest k-colorable subgraph of a
chordal graph [Ya87].

We take our processors to be Concurrent-Read Exclusive-Write (CREW) PRAMs,
and all our algorithms run within the bounds required for the complexity class
commonly known as NC, which means they use polynomially many processors, and
their runtime is polylogarithmic. All our algorithms except those for weighted indepen-
dent set and maximum k-colorable subgraph run in O(log2 n) time, where n is the
number of vertices.

Edenbrandt [Ed85], [Ed87] and Chandrasekharan and Iyengar [Ch86] gave NC
algorithms to recognize chordal graphs. Our recognition algorithm uses fewer pro-
cessors on sparse graphs, but its main advantage over the previous algorithms is that
its correctness proof is much simpler. The other seven problems appear to have been
open. Coincidentally with the preparation of this paper and independent from it,
Dahlhaus and Karpinski [Da86] discovered NC algorithms very different from ours
for finding a PES, all maximal cliques, and a tree representation; their algorithms are
sketched in [Da86]. They present their algorithms as polynomial-time algorithms on
a LOGSPACE-bounded alternating Turing machine. To make the algorithms deter-
ministic and suitable for a PRAM, they rely on the simulation of Ruzzo [Ru80]. The
resulting deterministic algorithms require at least f(n9) processors [Da87] and run in
O(log n) time, while our algorithms for all the problems we solve, except weighted
independent set and maximum k-colorable subgraph, use at most O(n 5) processors
to run in O(log n) time or O(n4) processors to run in O(log n) time.

After the publication of [Na87], Dahlhaus and Karpinski found a new maximal
cliques algorithm that simultaneously achieves O(1og2 n) time and O(n4) processors
[DK87]. Klein has announced more efficient NC algorithms for all the problems
mentioned in Theorem 1.1, except maximum weight independent set. His algorithms
run in O(log n) time using O(m+ n) processors on the more powerful Concurrent-
Read Concurrent-Write (CRCW)PRAM model [K188].

Finding a perfect elimination scheme in NC is explicitly left open in [Ed85],
[Ed87], and [Ch86]. The problems of finding maximal cliques and a maximum indepen-
dent set are mentioned in [Ch86].

Our algorithms for finding a PES and maximum independent set use a new
recursion technique on trees: at every stage we process and prune all terminal branches
of the tree that represents the chordal graph. A terminal branch is a path containing
only nodes of degree two and a leaf. A variety of parallel algorithms for graph problems,
expression evaluation, and language recognition use bottom-up recursion on rooted
trees [Mi85]. However, these algorithms change the edge structure of the tree during
the computation, so as to shorten long paths. Our algorithms, which process terminal
branches, do the computations without changing the tree structure (except for deleting
vertices already processed).
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To build the tree representation and to give an optimal coloring, we use recursion
around a centroid. This method has been used to give parallel algorithms for other
tree problems where the tree structure is completely known [Me83]. However, we use
recursion around a centroid to build the tree when we know only its nodes (and what
they represent in the graph), but not its edges.

2. Recognizing chordal graphs. We first consider the problem of recognizing a
chordal graph. The fastest sequential solutions rely on the existence of a PES [Ro76],
[Ta84].

Edenbrandt gives an NC-recognition algorithm that searches for certain types of
clique separators [Ed85], [Ed87]. Chandrasekharan and Iyengar give a recognition
algorithm similar to Edenbrandt’s [Ch86]. The main advantage of our algorithm is
that its correctness follows easily from the definition of chordal graphs as graphs that
contain no induced chordless cycles of length greater than 3. A secondary advantage
is that on sparse graphs it uses asymptotically fewer processors.

Let N(v) denote the set of vertices adjacent to a vertex v. Let G\v be the graph
induced by V(G)\{v}; if W is a subset of V(G), let G\ W be the graph induced by
V(G)\ W. The following lemma suggests a recognition algorithm.

LEMMA 2.1. The graph G is not chordal if and only if it contains a vertex v with
the property that a connected component of (G\v)\ N(v) is adjacent to two vertices

v N(v), and the vertices vi and v are not adjacent.
Proof If such a vertex v exists, then G has a chordless cycle including vl, v, v,

and vertices in the connected component of (G\v)\N(v) adjacent to v and vj. To
prove the converse, suppose that Vl- v2 vp vl with p >_- 4 is a shortest chordless
cycle of length at least 4 in G. In (G\v)\N(Vl), vertices v3," ", vp_ are in the same
connected component, which is adjacent to both v2 and vp in G. Letting v Vl, v v2,

and v =Vp satisfies the conditions of the Lemma.

1. For every vertex v V in parallel: Find all connected components of
(G\v)\N(v) and number them.

2. For every vertex V V in parallel: Compute the set of pairs (v, v), such that
vi and v are distinct neighbors of v, but vi and v are not adjacent.

3. For every vertex v V in parallel: For every neighbor v of v, compute a sorted
list of the connected components in (G\v)\N(v) to which vi is adjacent.

4. For every vertex v V in parallel: Test if there exist vertices v and v in N(v)
such that vi and v are not adjacent to each other, but there exists a connected
component A in (G\v)\N(v), such that both vg and v are adjacent to A.

5. If the test in step 4 is not satisfied for every vertex v V, then G is chordal; if
the test is satisfied for some vertex, then G is not chordal.

Correctness of the algorithm follows immediately from Lemma 2.1.

LEMMA 2.2. The above recognition algorithm can be implemented to run in O(log n)
time using O(mn2) processors, where m is the number of edges.

Proof In step we can use the connected-components algorithm of Hirschberg,
Chandra, and Sarwate [Hi79], which requires O(log n) time and O(n) processors.
We do n connected components computations in parallel, so we need O(n 3) processors
for step 1.

Steps 2 and 3 can be implemented O(log n) and O(log n) time, respectively, both
using O(mn) processors.

ALGORITHM TO RECOGNIZE A CHORDAL GRAPH
Input: A simple undirected graph G V,/).
Output: Is G chordal?
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Step 4 can be implemented with O(mn2) processors in O(log n) time. To every
triple (v, vi, vj) such that v is adjacent to vi, v is adjacent to vj, vi and vg are not
adjacent, and vi < vj, assign one processor for every component on the list of com-
ponents which we computed for the pair (v, v) in step 3. The total length of the
component lists for all pairs (v, v) is O(mn). To each entry on such a list assign at
most n- 2 processors, one for each choice of vj. The total number of processors is
O(mn2). A processor corresponding to entry C for the triple {v, vi, vg) does a binary
search for C on the component list of (v, vj) and records the result (1 if it finds C, 0
otherwise). For each fixed value of v, all processors corresponding to triples with v as
the first component do a boolean OR of their results. This leaves n boolean values for
step 5.

Step 5 can be implemented with O(n) processors in O(log n) time by doing a
boolean OR of the n values computed in step 4.

3. Maximal cliques. We now develop an algorithm to compute all maximal cliques
in a chordal graph. A chordal graph can have at most n maximal cliques [Go80].
Define a graph G to be a bi-clique if its vertex set can be divided into two disjoint sets
P and Q such that the induced graphs Gp and Go are cliques. We reduce computing
all maximal cliques in any chordal graph to computing all maximal cliques in a chordal
bi-clique using divide and conquer.

ALGORITHM TO COMPleTE ALL MAXIMAL CLIQUES (SUMMARY)
Input: A chordal graph G.
Output: A list containing each maximal clique of G exactly once.

1. Divide the vertex set of G arbitrarily into two disjoint sets A and B of equal
size. (If n is odd, then IAI-Inl--1.)

2. Recursively compute all maximal cliques in the induced graphs GA and
3. For every pair of maximal cliques P= A and Q= B, compute all maximal

cliques of A t.J B in the induced subgraph GPuo, which is a bi-clique.
4. Eliminate duplicates occurring in more than one bi-clique.

LEMMA 3.1. The above algorithm to compute all maximal cliques in a chordal graph
G is correct.

Proof Every maximal clique of G not contained entirely in either GA or Gn is
contained in the union oftwo maximal cliquesuone from A and the other from B. l-]

We now show how to compute all maximal cliques in a bi-clique. Let the vertex
set of the chordal bi-clique be CA t_J CB, where CA c A, CB B, and CA and CB
induce cliques. If v CA and w CB, then let NcB(V) be the set of neighbors of v in
CB, and let NcA(W be the set of neighbors of w in CA.

LEMMA 3.2. The ICA[ sets {NcB(V)[V CA} are ordered by inclusion. Similarly,
the [CB sets {Nca(X)lX CB} are ordered by inclusion.

Proof Suppose that there were four vertices v’, v" CA and w’, w" CB such that
w’ Nc( V’) and w" Nc(V") but, w’

_
Ncn( v") and w" Nc(V’). In this case, there

would be a chordless cycle v’-w’-w"-v"-v’, l-I

LEMMA 3.3. Let Q= QA QB be any maximal clique of the chordal hi-clique
Gcat3cB. Suppose that QA c CA, QB CB, and both are nonempty. Then QA is the
smallest set in the set ofsets {NCA x x QB}, and QB is the smallest set in {Ncn v v
QA}.

Proof. By Lemma 3.2, the sets {NcA(x)[x QB} are ordered by inclusion. If one
of these sets were a proper subset of QA, then Q would not be a clique. (There would
be a vertex in QA that is not adjacent to our vertex in QB.) If QA were not one of
the sets in {NcA(X)IX QB}, then Q would not be maximal.
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ALGORITHM TO GENERATE ALL MAXIMAL CLIQUES OF G OCCURRING IN A BI-CLIQUE
Input: Vertex sets CA, CB, and GAUB.
Output: A list of cliques that occur in GcAt_JcB and are maximal cliques in GAun.

1. Compute Nc(V) for every v CA. Sort these sets by inclusion and sort the
vertices of CA so that vertices with larger neighborhoods in CB are higher.
Do the analogous computation for every v CB. We treat CA and CB as both
sets and ordered lists.

2. Find those vertices in the list for CA such that the successor (and therefore
every vertex lower in the list) has a strictly smaller neighborhood in CB.

3. Each vertex v chosen in step 2 yields a different maximal clique Q(v)=
QA(v) t_J QB(v). QA(v) consists of v and every vertex in CA with the same or
a larger neighbor set in CB. Given QA(v), QB(v) is defined by Lemma 3.3.
We may also need to include the cliques CA and CB..

4. Decide which maximal cliques of the bi-clique GCAt_JCB are maximal in GAUB.
See the expanded version of this step below.

If GcAt_Jc is a bi-clique having Q as a maximal clique, Q need not be a maximal
clique in the graph GAun. There may be a vertex v

_
CA (.J CB adjacent to all the

vertices of Q but not to all the vertices of CA or CB. To eliminate these nonmaximal
cliques, in step 4 of the bi-clique subroutine, we use the following algorithm.

ALGORITHM TO ELIMINATE LOCALLY MAXIMAL CLIQUES THAT ARE NOT GLOBALLY
MAXIMAL
Input: A bi-clique GCAt_JCB, a list of the maximal cliques in GCAt_JCB.
Output: A list of the cliques that are maximal in both GCAtACB and G GAin.

4a. For each vertex v : CA (.J CB, find its neighbors in GCALJCB.
4b. Try to find the highest vertex u(CA, v) in the sorted list CA such that

Ncn(u(CA, v))c Ncn(V); there may be no vertex in CA with this subset
property, in which case u(CA, v) does not exist. Similarly try to find u(CB, v).

4c. For every clique Q that is maximal in GCAt_JCB and has a nonempty intersection
with both CA and CB, test if for every v : CA (.J CB, Q contains at most one
of u(CA, v) or u(CB, v). If either u(CA, v) or u(CB, v) does not exist, then
v automatically passes the test.

4d. Put every clique Q that passes the test in step 4c on the output list.
4e. If either CA or CB is an input clique, test it for maximality directly. That is,

test if any vertex not in the clique is adjacent to all the clique’s members. If
no vertex can be added, then copy the clique (CA or CB) to the output.

LEMMA 3.4. The bi-clique algorithm correctly identifies every maximal clique in
GCAt_JCB that is also maximal in G.

Proof. By Lemma 3.3 each maximal clique of GcAc consists of a (possibly
empty) prefix of the sorted list CA and a (possibly empty) prefix of the sorted list CB.
One maximal clique contains the entire set CA, and one maximal clique contains the
entire set CB. A prefix P CA of CA generates a maximal clique (i.e., is the intersection
of a maximal clique with CA) if and only if no vertex of CA\P has as neighborhood
in CB the intersection

t3 Nc(V).

This intersection is precisely the neighborhood in CB of the lowest vertex in P.
Moreover, the neighborhood in CB of the first vertex below P contains the neighbor-
hood in CB of all vertices below P. Thus, P generates a maximal clique if and only
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if the neighborhood in CB of the lowest vertex in P is different from the neighborhood
in CB of the highest vertex not in P. This is the test we implement in steps 1, 2, and 3.

It remains to show that in step 4 we properly eliminate cliques that are not maximal
in GAUB. The test in step 4e for the cliques CA and CB is the standard maximality
test. For the other cliques, we use a different test for the sake of efficiency.

Let Q be a maximal clique in GcAJCB that has a nonempty intersection with both
CA and CB. Let x be the last vertex in the sorted list CA that belongs to Q, and let
y be the last vertex in the sorted list CB that belongs to Q. The clique Q is not maximal
in GAUn if and only if there exists v CA U CB such that Qc N(v). Since CA and
CB are sorted by their neighborhoods, an equivalent rule is that Q is not maximal if
and only if there exists v e! CA U CB such that

NcA(Y)U NcB(X)= Qc NcA(V) t-J NcB(V)C N(v).

This is equivalent to the condition that

NcA(Y) NcA(V) and Ncn(x) Ncn(v).

Taking the contrapositive, Q is maximal in GAjB if and only if for every
v

_
CA LJ CB,

NCA(Y) NCA(V) or Ncn(X) - Ncn(V).

The condition NcA(Y) NCA(O) is satisfied if and only if u(CB, v) does not exist, or
u(CB, v) occurs strictly lower than y in the sorted list CB. Similarly, the condition
Ncn(X) - Ncn(V) is satisfied if and only if u(CA, v) does not exist, or u(CA, v) occurs
strictly lower than y in the sorted list CA. If u(CB, v) occurs strictly lower than y,
then Q does not contain u(CB, v); symmetric conditions hold for u(CA, v). Thus Q
is maximal in GauB if and only if for every v_ CA U CB, one of u(CA, v) and u(CB, v)
does not exist or they both exist, but Q contains at most one. This is precisely the test
that we implement in step 4c. [3

LEMMA 3.5. The bi-clique algorithm can be implemented to run in O(log n) time

using O(n 2) processors.
Proof Step 1 takes O(log n) time and step 2 takes constant time. Both use O(n2)

processors.
In each clique Q(v) obtained in step 3, QA(v) is a prefix of CA. The size of

QA(v) is the rank of v in CA. The set QB(v) is the same as Ncn(V). Thus for each
clique Q(v), we can compute its size in O(log n) time with one processor. For each
member of Q(v), we can then assign one processor responsible for listing that member
in the output. It follows from the existence of a PES that the sum of the sizes of all
maximal cliques in a chordal graph with m edges and n vertices is at most m + n
[Go80]. Therefore O(m+ n) processors suffice for step 3.

Step 4a can be implemented in O(log n) time using O(n 9) processors by assigning
one processor to each pair (v, w) such that v : CA U CB and w CA U CB. Step 4b
(for finding u(CA, v)) can be implemented as follows. If Ncn(V)= CB, then u(CA, v)
is the first vertex of CA. Otherwise, let h(CB, v) be the highest vertex in CB that is
not adjacent to v. If every vertex in CA is adjacent to h(CB, v), then u(CA, v) does
not exist. If there is a vertex in CA that is not adjacent to h(CB, v), then u(CA, v) is
the highest such vertex in the sorted list CA. The computation of u(CB, v) is analogous.
Testing if h and u exist can be done with O(n) processors in O(log n) time. Finding
their values can be done in O(log n) time with one binary search for each. Since there
are O(n) choices for v, the total processor requirement for step 4b is O(n2). Steps 4c
and 4d require O(log n) time and O(n) processors for each choice of Q; there are at
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most n choices of Q. Step 4e requires O(log n) time and O(n) processors for each
vertex not in CA CB; there are at most n such vertices. [3

Each of the O(n2) parallel subroutine calls may produce O(n) maximal cliques,
although there can be at most n distinct maximal cliques. One way to eliminate
duplicates is to sort the clique copies lexicographically. However, this may take
(Iog2 n) time, increasing the total running time to O(log n). We can eliminate
duplicates in O(log n) time using the following algorithm.

ALGORITHM TO ELIMINATE DUPLICATE MAXIMAL CLIQUES
Input: G, A, B, all maximal cliques in A and B without duplicates, all maximal cliques
in G with duplicates.
Output: A list of all maximal cliques of G with no duplicates.
Definitions/Assumptions: Let the maximal cliques in A be numbered CA1,
CA: , CAs. Let the maximal cliques in B be numbered CBI CB: , CB,. Assume
that each entry on the list of maximal cliques in G comes with a pair of indices
indicating which bi-clique generated it. Every step is done in parallel for every (copy
of a) maximal clique Q in G.

0. Assume that Q was generated from the bi-clique induced by CAi t_J CBj.
1. For each k <i test if Q fq CAk is a subset of CAi.
2. For each <j test if Q fq CBI is a subset of CBj.
3. If no successful k is found in step 1, and no successful is found in step 2,

then output Q.
LEMMA 3.6. The above algorithm to eliminate duplicate maximal cliques is correct.

Proofi For each maximal clique R in G, the algorithm implicitly finds the
lexicographically smallest pair (k, l) such that R is contained in the bi-clique induced
by CAk t_J CBI. If R A is contained in both CAi and CAk, then R is generated by
the bi-clique induced by CA U CBI as well as by the bi-clique induced by CAk t_J CBI.
Thus we can eliminate copies generated by bi-cliques with first part CAi, for i> k;
this is the test in step 1. Similarly, if R fq B is contained in both CB and CBI, then R
is generated by the bi-clique induced by CAk t5 CB as well as by the bi-clique induced
by CAk t.J CBI. We eliminate copies generated by bi-cliques with second part CBg, for
j > in step 2.

LEMMA 3.7. It is possible to eliminate duplicate maximal cliques in O(log n) time

using O(n4) processors or in O(log n) time using O(n 5) processors.
Proof. The first pair of resource bounds can be obtained by sorting the cliques

lexicographically [Co86] and eliminating any clique that is identical to its predecessor.
The second pair of resource bounds come from the algorithm given above. There are
at most O(n3) copies of maximal cliques in the input. Both A and B induce chordal
graphs and therefore have at most n (distinct) maximal cliques. Thus in each of steps
1 and 2, we compute at most n set intersections and subset tests for each input clique.
Each intersection and subset test can be done in O(log n) time using n processors.
This yields the bounds of O(log n) time and O(n) processors.

If we allowed our processors to write concurrently, then a subset test could be
done with O(n) processors in constant time, and we could eliminate duplicates in
O(log n) time using only O(n4) processors as follows. If there are more than 2n total
copies of cliques to consider, partition the cliques into sets of size between 2n and 4n.
Within each set, compare all cliques against each other, and within any identical pair,
eliminate the copy with the higher number. As there are at most n distinct maximal
cliques, these comparisons eliminate at least half of the O(n3) candidates with which
we started. At most O(log n) rounds of partitioning and comparing leave fewer than
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4n candidates that might be distinct. Each of these can then be compared against all
the others to eliminate the remaining duplicates.

LEMMA 3.8. The algorithm to compute all maximal cliques of a chordal graph can
be implemented to run in O(log n) time using O(n4) processors or O(log2 n) time using
O(n 5) processors. The bounds O(log n) and O(n4) can be achieved simultaneously if
the processors are allowed to write concurrently.

Proof There are at most O(log n) levels of recursive calls. At each fixed level, no
vertex occurs in the input graph G in more than one call. All the calls together at any
level produce at most n cliques, and generate at most O(n) calls to the bi-clique
subroutine. By Lemma 3.5, all these calls (at step 3) taken together can be implemented
to run in O(log n) time using O(n2) processors per call, for a total of O(n4) processors.
By Lemma 3.7, duplicate cliques can be eliminated in O(log2 n) time using O(n4)
processors or in O(log n) time using O(n) processors. As noted after Lemma 3.7, the
bounds O(log n) time and O(n4) processors can be achieved simultaneously if pro-
cessors can write concurrently. Multiplying these time bounds, for a single recursion
level, by log n yields the desired results. [q

Since chordal graphs are perfect, the size of the largest clique is the chromatic
number.

4. Optimal coloring and representing chordal graphs by trees. Although we just
showed how to compute the chromatic number of a chordal graph, obtaining an explicit
coloring in NC seems to be nontrivial. In order to do that, we represent a chordal
graph as an intersection graph of a family of subtrees. A graph G is the intersection
graph of a family be= ($1, S,. ., SIv(GI) of subtrees in a tree T if:

(i) there is a one-to-one correspondence between the subtrees ow and the vertices
in G.

(ii) two vertices in G are adjacent if and only if their corresponding subtrees
share a node in T.
The choice of T and 5e is not unique in general. Two members of 5e may be identical.

THEOREM 4.1 ([GOB0], [Ga74], [Bu74]). The following statements are equivalent:
(i) G is a chordal graph.
(ii) G is the intersection graph of a family of subtrees of a tree.
(iii) There exists a tree T= (K, E) whose vertex set K is the set of maximal

cliques of G such that for each v V the subgraph induced in T by the set Kv (consisting
of all maximal cliques that contain v) is connected, and hence, a subtree.
From now on, we assume that G is connected; otherwise, each component can be
processed separately.

Two members of 5e corresponding to vertices v and w will be precisely the same
when v and w are in exactly the same maximal cliques in G. Even with the three
restrictions given in the theorem, the tree T may not be unique. We adopt the convention

C4 C1 ={a,b,c}

C2 ={a,b

FIG. 2. One tree representation for the graph of Fig. 1.
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that if a tree node is denoted by a lowercase letter, then its corresponding maximal
clique is denoted by the corresponding upper case letter.

The sequential algorithms in [Bu74], [Ga74] that compute a tree representation
extend it node by node, but we use a different approach. Mark Novick recently pointed
out that a paper by Bernstein and Goodman [Be81] implicitly contains a different
algorithm to build a clique tree representation (given all the maximal cliques) that is
parallelizable. One advantage of our algorithm is that from it we can easily derive a

coloring algorithm.
Our tree-construction algorithm is based on the following idea. Deleting an internal

node of a tree makes the tree into a forest with trees of various sizes. A node whose
deletion results in a forest where the size of the largest component is minimized (over
all possible choices of one node to delete) is called a centroid. Removing a centroid
disconnects a tree into components, each including at most half of the nodes [Jo69].
Using properties of G, we decide if a node can be a centroid without knowing the
exact structure of the tree. We compute a tree representation using a divide-and-conquer
method that in each recursive call, finds a centroid of the tree we eventually construct
for the induced subgraph of G passed to that call. In each recursion step, a connected
input graph is divided into components such that in each component, the number of
maximal cliques decreases to at most a constant fraction of the number of maximal
cliques in the input. The recursion is based on the following lemmas and observation
regarding a tree T representing a chordal graph G.

LEMMA 4.2. Let C, C1, and C2 be maximal cliques ofthe graph G with corresponding
nodes c, Cl and c2 in the tree T. Ifthe nodes Cl and c2 are in different connected components
of T\ c, and the cliques C and C2 share a vertex v, then v C.

Proof The subtree corresponding to v consists of all tree nodes that correspond
to cliques containing v. Since T is a tree, there is a unique path between nodes Cl and
c, and it passes through c.

LEMMA 4.3. The removal of any maximal clique C that does not correspond to a

leaf in T disconnects the remainder of G.
Proof The proof is by contradiction. The removal of the node c disconnects the

tree T. Let T, T,. ., T denote the connected components (trees) of T\c. For each
j such that 1-<_j-< l, let W/ be the set of vertices of G occurring in a maximal clique
represented by a node of . Let X W/\C.

Suppose there were an edge v-w with v X, w Xk, and j k. The edge v-w
must belong to some maximal clique. Thus there is an such that v, w X. If i= j,
then by Lemma 4.2, w must belong to C, contradicting the choice of w. Similarly if
i= k, then v must belong to C, contradicting the choice of v. If i {j, k}, then both v
and w must belong to C, a contradiction. This shows that no two of the sets X,
Xz,..., X have adjacent vertices. Since c is an internal node with degree at least 2,
=> 2, and G must be disconnected.

Observation 4.4. If removing the maximal clique Q from G leaves G\Q with
components C, C,. ., C, then it is possible to build a tree T so that for each i,
with =< _-< l, the maximal cliques in Ci Q correspond to the nodes in one component
of the forest T\q plus one node for the clique Q.

Our recursion divides the problem into subproblems, each of which includes, at
most, half of the maximal cliques (plus one) of the original problem, by finding a
centroid node in the tree. At the bottom level we have a graph with exactly two
overlapping maximal cliques whose tree is simply two adjacent nodes. We compute a
centroid c as follows: for every maximal clique Q, count in parallel how many maximal
cliques are in each connected component of G\Q with a copy of Q added to each
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component. Let p(Q) be the maximum number of maximal cliques in any of these
components. We choose c to be that q such that p(Q) is minimized over all choices
of maximal clique Q.

To bound the depth of the recursion, we need to observe that every maximal
clique in each connected component of G\Q is either a maximal clique of G or is
contained in a maximal clique of G. Thus the number of maximal cliques in each
connected component is cut by at least half not counting the centroid clique.

ALGORITHM TO COMPUTE A TREE-AND-SUBTREES REPRESENTATION (SUMMARY)
Input: A connected chordal graph G and the list of maximal cliques of G.
Output: A tree representation for G.

1. If G has more than two maximal cliques, then find a maximal clique that
corresponds to a centroid c as explained above.

2. Let the connected components of G\C be C1, C2, , C. Compute recursively
the tree representation of Ci U C for every i.

3. Let T1, T2,’’ ", T be the trees that result from the recursion. T= UI=1 Ti,
where the T are disjoint except for c. The subtree corresponding to each vertex
is defined in Theorem 4.1 (iii).

In the base case of the recursion, we have two maximal cliques whose intersection is
not empty. Their corresponding tree consists of two adjacent nodes. The correctness
of the algorithm follows from Lemmas 4.2 and 4.3 and Observation 4.4.

62

C
{b,d,e {b,e’,g}

FIG. 3. Building the tree of Fig. 2 by using C as the centroid clique.

To keep the running time and number of processors down, we do not recompute
the maximal cliques and connected components from scratch in every recursive call.
Before making the recursive call in step 2, we compute the maximal cliques in each
graph of the form C t_J C with the following algorithm.

ALGORITHM TO UPDATE LISTS OF MAXIMAL CLIQUES
DEFINITIONS. Let Gj be the graph considered in the current call. Let c be the centroid
we chose in step 1 above. Let the connected components of Gj\C be C1, C2," , Ct.
Input: Gj, C, C1, C2,..., Ct, a list of maximal cliques in Gj.
Output: For each component C a list of maximal cliques in C U C.

1. Put C on each output list.
2. For each maximal clique Q # C of Gj in parallel: find a vertex v(Q) that.does

not belong to C.
3. For each maximal clique Q, let Ci(Q) be the unique connected component

among C1, C2,"" ", Ct that contains v(Q).
4. For each maximal clique Q # C of Gj in parallel: put Q on the list for Ci(Q)

(and on no other list).
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LEMMA 4.5. The algorithm to update the lists of maximal cliques is correct.

Proof Let Q C be a maximal clique in G. Because C separates G, the vertices
in Q/C must belong to exactly one connected component in G\C. That component,
Ci(Q), is identified in step 3, and Q must be a clique in Ci(Q) C.

If there were a vertex w (C(Q)U C)\Q adjacent to every vertex of Q, then Q
would not be maximal in G. This shows that Q must be maximal in C(Q) C. Since
Q is arbitrary, every maximal clique output is legitimate. We now show that no maximal
clique is omitted. Suppose, seeking to establish a contradiction, that there is a maximal
clique R C in some Ck U C such that R is not maximal in G.. Since R is not maximal
in G, there must be a vertex x Ck C such that every vertex is R is adjacent to x.
Since R # C, the graph induced by R Ck is nonempty. The previous two assertions
contradict the assumption that Ck is an entire connected component of G\C. [3

In step 1 of the main algorithm, we compute for each clique Q the connected
components of G\Q. In the first call, we use the algorithm in [Hi79]. In subsequent
calls, we compute the connected components more efficiently by reusing previous
computations.

ALGORITHM TO UPDATE CONNECTED COMPONENTS IN STEP 1.

Definitions Let G be the current input graph. Let G-I, a supergraph
of G, be the input graph for the recursive call that preceded this one. Let C_1 be the
centroid clique that we chose for G._I. Each component can be represented as a sorted
subset of the vertices of v. For each graph Gj, it is also useful to have a table showing
to which component each vertex belongs.
Input: The graphs G and G_; for each maximal clique Q in Gj_, a list of connected
components of G-l\Q (this was computed in the previous recursive call); a list of
maximal cliques in G, and the centroid clique C for G_.
Output: For each maximal clique R C in G, a list of connected components of G\R.

1. For each maximal clique R C in G, let L_(R) be the list of components
of Gj_I\R.

2. For each R in parallel; let w(R) be a vertex in C\R.
3. For each R in parallel: let _(R) be the component in L_I(R) that contains

w(R).
4. For each R in parallel: put every component on the list L_(R) except/-/_I(R)

on the output list for R.
5. For each R in parallel: compute/-/_I(R) G and add it to the output list for R.

LEMMA 4.6. The algorithm to update connected components is correct.

Proof Let T be a tree for G_ satisfying the conditions of Observation 4.4. Remove
a node c from T and reconnect c to each tree in the resulting forest. This yields a
forest of trees T, T2,’’" that are disjoint except for the common node c. Using
Observation 4.4, define a bijection the from the set of trees in the forest T\c to the set
of connected components G-I\C. Let Ti be one of the trees, and let W be the union
of maximal cliques whose corresponding nodes lie in W. Then 4c(T/):= W\C is a
connected component of G_\C.

Let c be the centroid we chose for G-l. Let a maximal clique R C in G be
given. Assume, without loss of generality, that the node r lies in tree T1 defined above.
Let d(r) be the degree of node r in T; r has the same degree in T1. Thus removing r
from either T or T would leave a forest of d(r) trees. Moreover, the only difference
between these two forests is in the tree containing c. Thus the bijection 4r, which
defines the connected components of G.i_l\R, also yields d(r)-1 of the connected
components of G\R. In each graph, there is one component left over. The one
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component that changes is found in step 3; the components that remain the same are
reported in step 4.

The component that changes in going from Gj_I\R to Gj\R is the one containing
C\R. In going from T to T1, we deleted all nodes representing cliques that did not
intersect G\C. Thus the component in G_\R that included C\R, loses all vertices
not in G when converting to G and keeps the rest. This is what we compute in step 5.

Since R C was an arbitrary maximal clique of Gj, the algorithm works correctly
for each candidate separating clique in G.. [3

LEMMA 4.7. The algorithm to build a tree representation can be implemented to run
in time O(log2 n) using O(n3) processors (assuming that all the maximal cliques are part
of the input).

Proof To update the maximal cliques, we use at most one processor per vertex
occurring in a clique. As remarked in the proof of Lemma 3.5, the sum of all the
maximal clique sizes is bounded by m + n. Each step of the maximal clique updating
algorithm takes O(log n) time.

The algorithm to update connected components can be analyzed as follows. Step
can be done in constant time by table lookup. In step 2, we may need as many as

m + n processors to find all the values w(R) in O(log n) time.. Step 3 can be done in
constant time by table lookup. In step 4, we just copy part of the input to the output.
The size of the output may be O(n) for each R, so we need O(n 2) processors and
O(log n) time. In step 5 we compute the intersection of two sets (represented by sorted
lists or bitmaps) of size at most n. This can be done in O(log n) time using n processors
for each R, for a total of O(rt 2) processors.

Finally, we analyze the main algorithm. The first time we do the connected
components computations in step 1, we use the algorithm in [Hi79]. Since we do at
most n such computations in parallel, O(n 3) processors suffice.

The maximum depth of recursion is O(log n). Assume that the recursive calls are
synchronized by level in the sense that for any level i, all calls at level are started
simultaneously, and no call at level is resumed (after its recursive calls) until all calls
one level deeper are complete. We show that for any recursion level i, O(log n) time
and O(n3) processors suffice for all the calls at level together. Each input graph at
level that has more than two maximal cliques includes a maximal clique that belongs
to no other input graph at level i. Since a chordal graph can have at most n maximal
cliques, the number of calls at level in which the input graph has three or more
maximal cliques is bounded by n. Each call in which the input contains exactly two
maximal cliques corresponds to a distinct edge in the final; thus, there can be at most
n- such calls on any level. In all, there can be at most 2n- 1 parallel calls at any
recursion level.

We showed above that updating the maximal cliques and connected components
can be done in O(log n) time and O(n2) processors per call. Thus the total cost per
level of these subroutines is O(log n) time and O(n3) processors. The only remaining
steps to analyze are the selection of the centroid and the union of the trees.

Once a maximal clique has been chosen as a centroid, it cannot be chosen again
because its removal cannot disconnect graphs deeper in the recursion. Thus for any
level i, the sets of candidate centroids in any two calls at that level are disjoint. Since
there are at most n maximal cliques, there are at most n candidate centroids among
all calls at any recursion level. For each candidate centroid q and each maximal clique
R Q, we have to decide which component of G\Q contains R\ Q. This can be done
in O(log n) time with O(n) processors by finding one vertex of R\Q and then finding
out which component of G\Q contains it. Altogether, at level of recursion, there are
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at most n candidate centroids and at most n cliques per candidate. Thus we need
O(n 3) processors to find out which clique belongs to which component. In order to
sum the results and find the minima, we again need O(n) processors.

To combine the trees, we identify the copy of c in each tree and append the
adjacency lists for copies of c together. The adjacency lists for the tree nodes need
not be sorted, so the copying and appending can be done in O(log n) time using O(n)
processors.

The coloring algorithm proceeds using exactly the same structure of recursive
calls as the tree-construction algorithm. For coloring, the tree is primarily a conceptual
tool used to design the algorithm, and there is no need to actually build a tree. The
coloring algorithm uses the same subroutines to update maximal cliques and connected
components as the tree-construction algorithm.

SUMMARY OF ALGORITHM TO COMPUTE AN OPTIMAL COLORING
1. Find a maximal clique Q that has the centroid property.
2. Let the connected components of G\Q be C, C2, , CI. Compute recursively

an optimal coloring for Ci Q for every i.
3. Merge the colorings so that each copy of Q is colored consistently. Since Q is

a clique, each of its vertices must have a different color, and we need only to
rename the color classes relative to one of Ci Q.

The base case of the recursion is the same as in constructing the tree. We color one
clique first and then the other.

LEMMA 4.8. The coloring algorithm is correct.

Proof Assume as inductive hypothesis that the colorings of CILJQ,
C2 (-J Q, , C1U Q are legal and optimal. By Lemma 4.3, the only edges in both Ci kJ Q
and C Q, for ij have an endpoint in Q. Therefore Q can always be colored the
same way, and the combined coloring is legal and optimal.

LEMMA 4.9. The coloring algorithm can be implemented in O(log n) time using
O(n3) processors if the maximal cliques are included as part of the input.

Proof The analysis of the subroutines and steps 1 and 2 is identical to that in the
proof of Lemma 4.7 analyzing the tree-construction algorithm.

We can implement step 3 as follows. Suppose that the graphs C kJ Q are numbered
in such a way that C1 kJ Q has the largest chromatic number. Take the coloring of
C Q to be fixed. For each other Ci kJ Q, compute a mapping F, represented as a
table, from colors to colors. Every vertex of Q must get a different color from all the
other vertices of Q. If v Q has color a in C (J Q and color a2 in Ci Q, then in the
table for C Q, set F(a2):= al; any vertex that used to be colored a: will be colored
a. Let A be the set of colors used in Ci t2 Q that are not used to color vertices of Q.
Define F on A so that it maps Ag injectively to (arbitrary colors in) A. A satisfactory
mapping Fi can be constructed in O(log n) time with O(n) processors for each graph
Cg kJ Q. Finally, recolor each vertex in Ci (_J Q by applying the mapping Fi. Recoloring
can be done in constant time using at most O(n) processors per graph. Since there
are at most O(n) parallel calls at any given level of recursion, the total processor
requirement for step 3 is O(n).

5. Perfect elimination scheme, independent set, clique cover. We use the tree-and-
subtrees representation constructed in 4 to give NC algorithms for finding a perfect
elimination scheme, a maximum unweighted or weighted independent set, and a
minimum clique cover in a chordal graph. The clique cover follows directly from the
PES and the unweighted independent set. The basic idea for the PES and the indepen-
dent sets is to process the tree in stages: in each stage, we first process and then delete
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all terminal branches of the tree in parallel. A terminal branch is any path consisting
of tree nodes of degree two or less and containing a leaf. After deleting the terminal
branches, the new tree has at most half as many leaves as the old tree; therefore, there
are at most O(log n) stages.

To process the terminal branches, we first need to identify them and number the
nodes on them. On each terminal branch we number the nodes 1, 2,... starting at
one leaf. Terminal branches can be identified and numbered with several applications
of path doubling. Details are given in the technical report [Na87].

LEMMA 5.1 [Na87]. The terminal branches can be identified and numbered in
O(log n) time using O( n 2) processors.

To process one terminal branch in polylogarithmic time, we use the following
observation.

Observation 5.2 [GIG4], [Go80]. If a chordal graph G has a tree-and-subtrees
representation T, 0 in which every tree node corresponds to a maximal clique, every
subtree in 0 corresponds to the set of maximal cliques containing a particular vertex,
and T is a path, then G is an interval graph. In an interval graph the vertex corresponding
to the interval with the leftmost right endpoint is simplicial.

Thus the cliques represented by nodes on any particular terminal branch induce
an interval graph. Kozen, Vazirani, and Vazirani explain how to build an interval
model for an interval graph [Ko85]. However, we want to build the models in such a
way that the partial perfect elimination schemes for each of the interval graphs induced
by the terminal branches fit together in a PES for the entire graph. The PES algorithm
implicitly relies on the fact (proved below) that the following algorithm yields a
representation of the interval graph corresponding to a terminal branch.

ALGORITHM TO CONSTRUCT AN INTERVAL MODEL FOR THE VERTICES ON A TERMINAL
BRANCH
Input: A chordal graph G, a tree representation T, a terminal branch B of T, the set
(B) of maximal cliques corresponding to nodes on B.
Definition: Let V(B) be the set of vertices of G occurring in some member of (B).
Output: An interval model for the interval graph

1. Let the size of (B) be pB. Index the members of C(B), by 1, 2,...,pB in
the order in which the corresponding nodes appear on B starting at a leaf clique.

2. For each v V(B), let J(v) be the interval corresponding to v. Let the left
endpoint of J(v) be the lowest index of a maximal clique containing v. If v
appears in a maximal clique of G that is not in (B), then let the right endpoint
of J(v) be pn + 1. Otherwise, let the right endpoint of J(v) be the highest index
of a maximal clique containing v.

LEMMA 5.3. The algorithm to construct an interval model for Gv(B) is correct.

Proof By Theorem 4.1, the nodes of B corresponding to maximal cliques contain-
ing a given vertex v induce a path. Therefore the interval J(v) contains the index of
a maximal clique K (B) if and only if v K. Let distinct vertices v and w V(B)
be given. If v is adjacent to w, then they must both occur in some maximal clique
K CO(B). The index of K must be in both J(v) and J(w), so the intervals overlap.
If v and w are not adjacent, they do not occur together in any maximal cliques, and
the intervals J(v) and J(w) are disjoint. [3

By Observation 5.2, the set V(B) sorted according to.the right endpoints of the
intervals J(v) is a PES for GvB). For any terminal branch B, let U(B) be the set of
vertices that are in no maximal cliques represented by tree nodes outside B.
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Observation 5.4. A vertex in U(Bi) can never be adjacent to a vertex in U(Bj) if

Bi and Bj are different terminal branches. [3

Since the vertices in U(B) occur in no cliques corresponding to tree nodes outside
B, a vertex in U(B) is simplicial in G if and only if it is sirnplicial in Gv(B). The
PES defined by sorting the intervals produced by the algorithm above puts all vertices
of U(B) first. Thus there must be a PES for all of G that puts U(B) first.

PERFECT ELIMINATION SCHEME ALGORITHM
Input: A chordal graph G, the maximal cliques of G, a tree representation T in which
every node corresponds to a maximal clique.
Assumption: The cliques are represented by a vertex versus a maximal clique incidence
matrix.
Output: APES for V(G).

1. In parallel, find all the terminal branches and number them arbitrarily, B1,
B2,’’’, Bk.

2. In each Bi, index the nodes (maximal cliques) 1, 2,... starting at a leaf.
3. For each B in parallel: Find the set U(B).
4. For each Bi in parallel: Sort the vertices in U(B) according to the highest index

of a maximal clique in which they occur. Vertices whose highest indexed clique
is lower come first. This sorted order is a PES for Gv(,.

5. Append the vertices in the perfect elimination schemes for U(B1),
U(B2),’’’, U(B,).

6. Delete every node in a terminal branch from T to get a new tree T’. Delete
every vertex in every U(B) to get a new graph G’. If T’ is not empty, compute
recursively a PES for the remaining nodes and append it to the partial elimina-
tion scheme computed so far.

3

FIG. 4. Terminal branches B, B2, B for the tree of Fig. 2 and their perfect elimination schemes.

LEMMA 5.5. The perfect elimination scheme algorithm is correct.

Proof As remarked after Observation 5.4 the sorted order on U(B) produced in
step 4 is not only a PES for Gc(;), but it is also the beginning of a PES for all of G.
From Observation 5.4, it follows that the perfect elimination schemes for the different
branches can be put together in any order. The tree obtained by deleting all tree nodes
in B1, B2, , Bk is a tree representation having the desired clique properties for the
graph induced by the vertices V(G)\(U(BI)LJ U(B2)I,.J""

Each ordering of the branches BI, B2, , Bk gives a different PES. For example
in Fig. 4, the perfect elimination schemes for the three branches are ca, d, and g. When
the branches are numbered as shown, the complete PES is cadgbef A different order
of branches would result in a different, equally correct scheme.
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LEMMA 5.6. The perfect elimination scheme algorithm can be implemented to run
in O(log2 n) time using O(n 2) processors (given all the maximal cliques and a tree

representation).
Proof Steps 1 and 2 can be implemented in O(log n) time using O(n2) processors

by Lemma 5.1.
If the entire tree consists of one branch B, then U(B)= V(G). Otherwise, step 3

can be implemented in O(log n) time using O(m) processors by assigning one processor
to every pair (v, Q), where v is in the maximal clique Q, and the node q is on a terminal
branch (Bi). The processor tests whether v also occurs in the maximal clique whose
node is one further away from the leaf. If v does not occcur in that clique, then it is
part of U(Bi).

If v is put in U(B) by the processor assigned to (v, Q) in step 3, then Q is the
highest indexed clique in which it occurs. The clique indices can be sorted in step 4
in O(log n) time using O(n) processors [Co86].

For step 5, we need to compute prefix sums of the sizes of U(B) in order to
decide where the PES for each branch starts in the final output sequence. This can be
done in O(log n) time using O(n) processors.

Step 6 requires copying every part of T and G and every maximal clique that
remains for the recursive call. To copy T, assign one processor to each entry on an
adjacency list for T. Keep the entry if and only if it is not a node on a terminal branch.
Ignore all adjacency lists for nodes on terminal branches. The surviving part of the
graph G can be copied similarly. If we represent G by an adjacency matrix, this
operation requires O(n2) processors. The maximal cliques that survive are precisely
those represented by nodes that are not on terminal branches.

As remarked at the beginning of 5 an algorithm that in each stage prunes all
terminal branches in a tree with at most n nodes is guaranteed to terminate after
O(log n) stages. Therefore the PES algorithm requires O(log2 n) time and O(n)
processors. 13

Next we turn to maximum independent sets. To find an unweighted maximum
independent set, we rely on the result of Gavril [Ga72] that the lexicographically first
maximal independent set, using the vertex numbering given by a PES, is a maximum
independent set. Our parallel algorithm computes a lexicographically first maximal
independent set with respect to the PES computed by the previous algorithm.

The special case of maximum independent sets in interval graphs, even if the
nodes have weights, can be solved by an algorithm of Helmbold and Mayr [He86] (or
a similar algorithm of Bertossi and Bonuccelli [Be87]), which we discuss in more detail
after showing how to use it for the unweighted independent set. In the unweighted
case, the algorithms in [He86], [Be87] find the lexicographically first maximal indepen-
dent set, which will be exactly what we need to make the independent set for the entire
chordal graph lexicographically maximal, that is, maximum by Gavril’s result.

If I is an independent set in G, and B is a branch of T, let R(B, I) be U(B)\{v
V(G)[v N(I)}, where N(1) is the set of neighbors of vertices in L

UNWEIGHTED MAXIMUM INDEPENDENT SET ALGORITHM
Input: A chordal graph G, the set of maximal cliques of G, a tree representation T
for G.
Output: An unweighted maximum independent set for G.

1. Set I:=.
2. In parallel, find all the terminal branches and number them arbitrarily, B1,

B,. ", B,.
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3. In each Bi, index the nodes (maximal cliques) 1, 2,... starting at a leaf.
4. For each Bi in parallel: Find the set U(B).
5. For each B in parallel: Find the set R(B, I).
6. For each branch B, use the algorithm in [He86] to compute a lexicographically

first maximal independent set on R(Bi, I) with respect to the lexicographic
ordering given by the PES on U(Bi).

7. Add the independent sets computed in step 6 to L
8. Delete every node in a terminal branch from T to get a new tree T’. Delete

every vertex in every U(B) to get a new graph G’. Set T := T’. Do not overwrite
the input copy of G, since we need it to compute the sets R(B, 1) in step 5.

9. If the new T is empty, return I; otherwise, go back to step 2 with the new
values of T and L

LEMMA 5.7. The unweighted maximum independent set algorithm is correct.

Proof Let Vl, v2," , vn be the PES we would get ordering the terminal branches
the same way throughout both the PES and independent set algorithms. Partition V(G)
into sets U1, U2,. ., U! of vertices that occur consecutively in the PES so that each
set U consists of precisely the vertices coming from one terminal branch. That is,
U1 U(B1), Uz= U(B2), and so on.

We prove by induction on j that the unweighted maximum independent set
algorithm chooses a lexicographically first maximal independent set among the vertices
in UI U... U... Ui. It then follows from Gavril’s [Ga72] observation
mentioned above that the algorithm computes a maximum independent set.

For the base case, consider UI= U(B). The algorithm in [He86] yields a
lexicographically first maximal independent set on the interval graph Gu,. Let / :=
I71(U1UU2U...U). Assume as the inductive hypothesis that -1 is the
lexicographically first maximal independent set for the vertices in U [2 U U-I.
Any vertex v U(Bj) that is adjacent to a vertex w in /_ should not occur in the
output. By Observation 5.4, any such vertex w must be in some U(Bk) where Bk is a
terminal branch that is processed before Bj and not in parallel with B. Thus the set

R(B, I) computed in step 5 contains precisely the vertices in U(B) that are not
adjacent to any vertex in /-1. The Helmbold and Mayr algorithm computes a
lexicographically first maximal independent set for R(B, I). Adding this set to/_ to
obtain / ensures that Ij is indeed the lexicographically maximal independent set for
U U A A U. It follows by induction on j that the final independent set 11 I is
the lexicographically first maximal independent set for the entire graph G.

Before analyzing the resource requirements of our unweighted independent set
algorithm, we describe the Helmbold and Mayr algorithm in more detail for both the
unweighted and weighted cases. Let H be an interval graph with vertices u, u2, , Up
ordered by the left to right order of the right endpoints of the corresponding intervals,
il, i2,..., ip. Construct a directed graph D(H) on the same vertex set as follows. Put
in the arc uj--> Uk if j < k and the right endpoint of ij comes before the left endpoint
of ik, so that the intervals ij and ik do not overlap. The edge set of D(H) is a partial
order, often called the interval order, associated with {i, i2,’’" ip} [6080].

Helmbold and Mayr observed that the lexicographically first maximal unweighted
independent set of H contains exactly the vertices on the lexicographically first maximal
path in D(H). At most one outgoing arc from each vertex can possibly occur in the
maximal path, namely the arc to the vertex with the lowest index (subscript). Thus
the computation can be restricted to a subgraph D’(H) of D(H) where every vertex
has outdegree at most 1; the outdegree of a vertex is the number of outgoing arcs
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incident to it. The lexicographically first maximal paths of D’(H) and of D(H) coincide.
The subgraph D’(H) can be computed in O(log n) time using O(V(D(H))2) pro-
cessors. Since each vertex of D’(H) has outdegree 1, one can find the lexicographically
first maximal path by path doubling in O(log n) time using a linear number of
processors.

In the weighted independent set algorithm, we will need to allow H to be weighted,
and to find the heaviest independent set containing only vertices in {u, u2, ur} for
different values of r <= p. We build D(H) as before with two minor differences. First,
we add a source vertex Uo and an arc Uo-* u for each j, 1 _-<j_-< p, having as its. weight
the weight of u in H. Second, we give arc u --> uk the weight that uk has in H.

A maximum weight independent set in H corresponds to a maximum weight path
in D(H). Helmbold and Mayr do the computation by applying a max-plus closure to
the weighted adjacency matrix for D(H). Max-plus closure produces a (p+ 1) (p+ 1)
matrix, and is algebraically analogous to multiplying p copies ofthe weighted adjacency
matrix for D(H) together, except that the usual operations of addition and multiplica-
tion are replaced by max and addition, respectively. The weight of a heaviest path will
be the largest number in the final result. The weight of the heaviest path using only
vertices in {u0, u, , ur} for some r < p, is given by the maximum among the entries
in the submatrix of the final result induced by rows 0, 1, , r and columns 0, 1, , r.

LEMMA 5.8. The unweighted independent set algorithm for chordal graphs can be
implemented to run in O(log n) time using O(n2) processors (if the maximal cliques and
a tree representation are included in the input).

Proof Step can be implemented in constant time using O(n) processors. Steps
2, 3, and 4 are identical to steps 1, 2, and 3 of the PES algorithm. In step 5, we compute
R(Bi, I). This can be done by checking all the neighbors of each vertex in U(Bi),
assigning one processor per edge. If v U(B) has a neighbor w that is already in 1,
then v should not be in R(B, I). This computation takes O(log n) time and O(m)
processors. In the unweighted case, the Helmbold and Mayr algorithm used in step 6
takes O(log n) time and use O(m) processors. The augmentation of I in step 7 can
be done in constant time using O(n) processors. Step 8 is identical to step 6 of the
PES algorithm, except that in this case we do not overwrite the original copy of G.

In each iteration of the loop in steps 2 through 9, we process and delete all terminal
branches. Thus, there are O(logn) iterations, and the total running time is
O(log n). I-]

Our algorithm for maximum weighted independent sets in a chordal graph is a
parallelization of the following sequential algorithm of Frank [Fr75] (see also [Lo85]).
Let w(v) be the weight of vertex v.

SEQUENTIAL MAXIMUM WEIGHTED INDEPENDENT SET ALGORITHM
Input: A chordal graph G with vertex weights and numbered as in a PES.
Output: A maximum weight independent set for G.

1. Let v be the first vertex in the PES.
2. Delete all vertices u N(v) such that w(u) =< w(v).
3. For all remaining vertices u N(v), set w(u):= w(u)-w(v).
4. Recursively find a maximum weight independent set in the remaining graph

with the updated weights.
5. If no vertex in N(v) is in the set computed in step 4, then add v to the weighted

independent set.

To implement this algorithm in parallel, we again process all terminal branches
of the tree in parallel, but the computation for each branch is more complicated than
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in the unweighted case.
SKETCH OF A PARALLELIZATION OF FRANK’S WEIGHTED INDEPENDENT SET
ALGORITHM
Input: G, all maximal cliques, a tree representation, a weight function w on V(G).
Output: The maximum weight independent set that Frank’s sequential algorithm would
compute, assuming the vertices are numbered according to the PES that our parallel
algorithm would compute.

1. If the tree is a path, use the algorithm of Helmbold and Ma)‘r to compute a
maximum weighted independent set on the interval graph G. Otherwise, proceed
to the following steps.

2. Identif)‘ and number the terminal branches B1, B2,"" ", Bk.
3. Index the nodes on each terminal branch as in the previous algorithms.
4. For each branch Bi in parallel: Compute the set U(Bi).
5. For each U(Bi) in parallel: Find its subset S2(Bi) of vertices that would survive

step 2 of the sequential algorithm if it were to process the vertices in U(B) in
the same order as in the PES. Ignore any vertices of weight less than or equal
to zero.

6. Update the weights of all vertices, as in step 3 of the sequential algorithm.
?. Delete the terminal branches and recursivel)‘ compute the maximum weight

independent set of what remains.
8. For each S2(B) computed in step 5, decide which vertices can be added to the

independent set, as in step 5 of the sequential algorithm.
We now elaborate a bit on steps 5, 6, and 8 that are especiall), sketch),. Suppose

U(B) contains the vertices v,, vc,’", .,, which are consecutive in the PES we
construct. We need to decide for each of those vertices whether it would get deleted
in step 2 of Frank’s sequential algorithm. To do this, we use the weighted version of
the Helmbold and Ma)‘r algorithm. Recall that we mentioned that the Helmbold and
Ma)‘r algorithm also allows us to determine the maximum weight independent set of
an)‘ of the subgraphs induced b)‘ {,, i2,""", j} for each j, 1 <j < s. The vertex

v!j is eliminated in step 2 of Frank’s algorithm if and onl)‘ if there is a maximum weight
independent set in that does not contain ;. This can be determined b)‘ comparing
the maximum weight for Hi_1 and for /-!. An analogous computation works for all
terminal branches.

In step 6, we update the weights of all the vertices as in step 4 of Frank’s algorithm.
For each B and each vertex S2(Bi), the fact that survives step 5 forces us to
update the weights of its neighbors not )‘et processed. If u is one of its neighbors, we
want to change the "current" weight of u b)‘ the following assignment: w(u):=
w(u)- w(). Each assignment is an arithmetic expression using one subtraction and
no additions, divisions, or multiplications. We can compute all the assignments s)‘mboli-
call)‘ and order them as we would have done them in the sequential algorithm. All the
assignments required by vertices in S2(Bi) are listed before those for S2(Bi+). The list
of assignments is a straight-line program for the weights involving no multiplications
or divisions. By evaluating this program, we can compute the weight of each vertex
after all vertices in U(B), U(B2),’’’, U(Bk) have been processed as far as step 7.
The program can be evaluated using the methods of Miller and Reif [Mi85]. In their
framework, our straight-line program becomes an expression tree. One subtlety is that
we may need O(n) processors at each of the O(n) nodes in the expression tree because
each time we consider one vertex, we may change the weight of any of its neighbors.

To do step 8 fbr S2(B), we first delete any vertex in S2(B) adjacent to any vertex
in the maximum weight independent set returned by the next deepest recursive call.
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What remains is a subset of S2(Bi) that again induces an interval graph. We number
the vertices in the reverse order to that in which they were processed. This order
corresponds to the fact that in the sequential algorithm the vertices are chosen in the
PES order at step 1, and considered in reverse PES order at step 5. Once we have the
remaining vertices in reverse order, we run the unweighted version of the Helmbold
and Mayr algorithm to find the lexicographically maximal independent set among
them. This set contains precisely those vertices that would be chosen in step 5 of the
sequential algorithm.

Summarizing the above discussion, gives us Lemma 5.9.
LEMMA 5.9. The parallel algorithm to compute a maximum weight independent set

is correct.

Proof We process the vertices in the order of a PES as is done in Frank’s sequential
algorithm. Vertices that come from two different terminal branches that are processed
in parallel have no effect on each other in the sequential algorithm. The fact that step
5 of the parallel algorithm correctly simulates the test in step 2 of the sequential
algorithm follows from the correctness of the algorithm in [He86]. In step 6, we do
the same weight updates as in step 3 of the sequential algorithm. In step 8, we consider
adding vertices in reverse order exactly as in the sequential algorithm. The correctness
of our implementation of step 8 follows from correctness of the algorithm in
[He86].

LEMMA 5.10. The maximum weight independent set algorithm can be implemented
to run in O(log n) time using O(n4) processors (given the maximal cliques and a tree
representation).

Proof Step can be implemented in O(log n) time using O(n3) processors which
are the bounds for computing the necessary max-plus closure. Steps 2, 3, and 4 are
identical to steps 2, 3, and 4 in the unweighted case. In step 5, we instantiate one copy
of the Helmbold and Mayr algorithm for each vertex in U(Bi), where Bi is some
terminal branch that we are processing. This takes O(log2 n) time and O(n3) processors
per instance. The total processor requirement is O(n4) for all the instances that we
run in parallel.

In step 6, we evaluate the straight-line program containing the weight updates.
The program can be evaluated in O(log n) time with O(n 2) processors using the
methods of Miller and Reif [Mi85]. Step 7 is similar to step 8 in the unweighted
independent set algorithm. In step 8, we instantiate one copy of the unweighted version
of the Helmbold and Mayr algorithm for each terminal branch. No vertex occurs in
more than one of the parallel instances, so they can be implemented in O(log n) time
using O(n) processors altogether.

Multiplying the time requirements for each step by O(log n) to account for the
recursion depth yields the desired results.

To conclude this section we explain how to compute a minimum clique cover for
a chordal graph.

LEMMA 5.11. Given a perfect elimination scheme for a chordal graph G and the
corresponding lexicographically first maximal independent set, it is possible to compute a
minimum clique cover for G in O(log n) time using O(m) processors.

Proof Given a perfect elimination scheme vl, v2, , Vn, and any vertex v V(G),
let X(v) be the neighbors of v that are listed after v in the scheme. Gavril [Ga72]
observed that if {wl, wz,..., Wk} is the lexicographically first maximal independent
set corresponding to the given elimination scheme, then the sets {w} CI X(w), {w2} (-J
X (w2), , { wk t3 X (Wk) form a minimum clique cover for G.

These k cliques can be computed in parallel by assigning one processor to every
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edge v-w. If v comes before w in the PES, then wX(v); otherwise veX(w). [3

This concludes the proof of Theorem 1.1. Combining Lemmas 2.2, 3.8, 4.7, 4.9,
5.6, 5.8, 5.10, and 5.11 yields:

COROLLARY 5.12. All the objects listed in Theorem 1.1, except a maximum weighted
independent set, can be computed in O(log2 n) time using O( n 5) processors. All the objects
can be found in O(log n) time using O(n4) processors. [3
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ON THE WORST-CASE ARITHMETIC COMPLEXITY OF
APPROXIMATING ZEROS OF SYSTEMS OF POLYNOMIALS*

JAMES RENEGAR’

Abstract. Let d, , d,, be positive integers. Let denote the set of systems of polynomials f: C" C"
that have only finitely many zeros, including those "at infinity," and that satisfy degree (f)--di for all
Let 0 < e =< R. It is shown for fixed d, , d,,, that with respect to a certain model of computation, the
worst-case computational complexity of obtaining e-approximations to at least those zeros : satisfying
I1_- R for arbitraryf 5, is (R)(log log (R/e)); that is to say, both upper and lower bounds are proved. An
algorithm for proving the upper bound is introduced. The number of operations required by Otis algorithm
is

O[n4(log)(loglog(R/e))+n24(l+ndi)41, where =
i=1
lI di"

Key words, polynomials, computational complexity, resultants
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1. Introduction. Let Pa(R) denote the set of degree-d univariate complex poly-
nomials with all zeros : satisfying 1:1 _-< R. It was shown in [10], for fixed d-> 2, that
with respect to a certain model of computation, the worst-case arithmetic complexity
of obtaining e-approximations to either one, or to each, zero of arbitraryf Pa (R) is
(R)(log log (R/e)). More specifically, in terms of d as well, a lower bound of [l(log-
log (R/ e))- O(log d) operations was proven, and a new algorithm, requiring
O(d2(log d)(log log (R/e))+ d log d) operations, was introduced for the problem of
obtaining e-approximations to all of the zeros. We refer the reader to Renegar [10]
for the general model of "computation tree" used to prove the lower bound, but we
remark that it encompasses algebraic RAMs (raw,dora access machines) whose
operations are +,-, , +, complex conjugation, and inequality comparison. (See
Borodin and Munro [1] as a reference.) Arithmetic operations are assumed to be
performed with infinite precision over the complex numbers. The coefficients of the
polynomials are not assumed to be rationals; therefore, in terms of the "length" of
the coefficients, simplifying properties such as lower bounds on the distance between
distinct zeros cannot be used. For rational coefficients of fixed length, a uniform
log log (R/e) upper bound is fairly straightforward to prove, but for arbitrary complex
coefficients it is not.

The purpose of this paper is to present appropriate generalizations of the above
results to the several-variable setting.

Of course, systems of polynomials are not nearly as simple as univariate poly-
nomials. For example, univariate polynomials have finitely many zeros but polynomial
systems f" C - C can have infinitely many zeros, so we cannot hope to approximate
all of the zeros unless we restrict attention to "nice" systems. The nice systems to
which we restrict our attention in this paper are those systems having only finitely
many zeros, including the zeros "at infinity." Formally, if F’Cn+->C is the
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homogenization of f (i.e., if degree (f)= di, then the terms of Fi are obtained by
multiplying the terms of f by the appropriate powers of zn+l so as all to become a
degree di), then f is said to have finitely many zeros, including those at infinity, if the
zero set of F is the union of finitely many complex lines through the origin in C n+l.
We refer to these lines as the "zero lines" of F; in the literature they are often referred
to as the "solution rays" of F. The zero lines of Fthat are in Cnx {0} correspond to
the zeros of f at infinity. There is an obvious correspondence between the other zero
lines of F and the zeros of f in C.

Let dl,’",d, be positive integers. Let denote the set of systems f=
(f,... ,fn):C"-C" with only finitely many zeros, including those at infinity, and
satisfying degree (f)= d for all i. (Of course g depends on the specific values of
dl,’", d,.)

We consider the following problem. Let R>_-e >0 and assume f:C"-C" is a
polynomial system satisfying degree (f)= d for all i. First determine iff g. If so,
determine e-approximations to a subset of the zeros of f containing at least all zeros

: satisfying [scl _-< R. (An e-approximation of a zero is a point within Euclidean distance
e of the zero.) More specifically, determine points X(1, , X(") C for which there
exist zeros s(), s(’) of f with [l(’- (11 <-- , where each zero of f satisfying
.Is1 _-< R is listed among the s(i) a number of times exactly equal to its multiplicity, and
where no zero off is listed among the s(i) a greater number of times than its multiplicity.
(Thus, if each zero s of f satisfies [[-<_ R, then each zero can be considered as being
approximated by several points (), the number of such points being equal to its
multiplicity.)

We refer to the above approximation problem as "the (e, R)-approximation
problem for f"

We present a test involving

operations, where D d
M i=1

for determining iff . The validity of this test follows straightforwardly from well-
known facts regarding resultants. (Resultants are discussed in 2.) For those f’s that
pass this test, that is, for f , we also present an algorithm for solving the (e, R)-
approximation problem for f The operation count for this algorithm is

O[n4(log)(loglog(e/e))+n2@4(I+n di)4]"
Note that coefficient "sizes" do not enter into this bound in any way.

A significant fact about the bound is how it depends on e and R, that is, the
log log (R/ e) term. The lower bound in Renegar [10] showed that in the univariate
setting this is the best possible dependence on R and e that can be obtained. However,
that lower bound implies the same lower bound for the several-variable setting. Assume
that one of the di _-> 2, say, d ->_ 2. If g Pd,(R) (i.e., a degree-d univariate polynomial
with all zeros satisfying [sol-<R), then f:C"-->C" defined by f(z)=g(zl), fz(Z)--
d d

z2 ,... ,f, (z)= z," satisfies f e . Any e-approximation to a zero of f easily gives an
e-approximation to a zero of g. Hence, the (e, R)-approximation problem for arbitrary
fe is at least as hard as the e-approximation problem for arbitrary g Pa,(R), and
thus, in the worst case, requires f(log log (R/e))-O(n +log dl) operations. (The "n"
occurs to account for the cost of conversion to the several-variable problem.)

Together, our upper and lower bounds give the main theorem.
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MAIN THEOREM. Fix dl dn and assume @ I] di > 2 Let O< e < R. Thei=1

arithmetic complexity of obtaining, e-approximations to at least those zeros of arbitrary
f6 satisfying I1 <- R is O(log log (R/ e)).

Another noteworthy fact about the upper bound is that it is not doubly exponential
in n, in contrast to bounds for classical approaches using elimination theory (e.g., see
the sections on elimination theory that appear in Van der Waerden 11 ]--these sections
do not appear in newer editions of the book).

The algorithm for obtaining approximations to the zeros off is actually an
algorithm for obtaining approximations to all of the zero lines of the homogenization
F:C"+I- C" off, along with a few operations to transform the approximations for F
to those for f By "e-approximations to all of the zero lines of F" we mean nonzero
vectors Zi) C"+, 1,..., , for which there exists a one-to-one correspondence
with nonzero vectors C"+, 1, , say, corresponds to ), where the
zero lines of F are precisely the lines {&; & C}, i= 1,..., , each occurring
according to its multiplicity, and where

denoting the Euclidean norm on C "+. (The fact that F has zero lines, counting
multiplicities, is immediate from Theorem 2.3.)

Assuming e R, in the appendix we show that if Z, 1, , are e/4(R +
1)Z-approximations to all of the zero lines of F, then the set of vectors

is a solution for the (e, R)-approximation problem for f.
Let dl, , dn be positive integers. Let 9 denote the set of systems ofhomogeneous

polynomials F:C"+C that have only finitely many zero lines and that satisfy
degree (F) d for all i.

Henceforth, we focus on the following problem. Given a system of homogeneous
polynomials F:C"+-Cn, where degree (F)= d for all i, is F ? If so, determine
e-approximations to all of the zero lines of F.

We present a test involving O[n@2( +2. ’)] operations for determining if F ,
where @ 1-I= di. For F Y, we present an algorithm for obtaining e-approximations
to all of the zero lines of F. The operation count for this algorithm is

(1.2) O [n4(log )(log log (1/e))+n24( l+n di)4]"
From these bounds and (1.1), follow the upper bounds stated earlier to determine if

f and to solve the (e, R)-approximation problem for arbitraryf .
Using the lower bound of Renegar 10], one can prove that as regards e, the term

log log (I/e) occurring in (1.2) is the best possible.
Our algorithm is similar in spirit to the algorithm of Lazard [6]; both algorithms

work by factoring the "u-resultant." Lazard only sketches a complexity analysis,
avoiding degenerate situations and implicitly assuming that the zeros ofa single-variable
polynomial can be calculated exactly. It is not very difficult to determine "reasonable"
complexity bounds for his algorithm if one is only concerned with rational coefficients
and is satisfied with a bound on the number of arithmetic operations that grows with
the coefficient "lengths." However, his algorithm and analysis are far from providing
a uniform bound on arithmetic operations that is independent of the coefficients.
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It should be mentioned that Lazard does not restrict attention to the field of
complex numbers. Chistov and Grigor’ev [3], [4] extended Lazard’s analysis to the
problem of approximating a point in each component of the zero set of an arbitrary
system ofpolynomialsf" C C" with rational coefficients. Their bound on the required
number of arithmetic operations has the maximal coefficient length as a factor. Similarly,
this length appears as a factor in the arithmetic operation bound for the recent algorithm
of Canny [2]. Canny’s algorithm approximates zeros of systems f’Cn- C also via
the u- resultant.

Ofrelated interest is Grigor’ev and Vorobjov 5], where the problem ofconstructing
approximate solutions to systems of real polynomial inequalities with rational
coefficients is cons’idered. Their arithmetic operation bound has the maximal coefficient
length as a factor.

It is certainly not the case that our upper bound can be obtained by rounding
coefficients to rationals (where the rounding is a function of R and e) and then applying
the results mentioned above. Because those results have arithmetic operation bounds
(not just bit operation bounds) with the maximal coefficient bit length as a fundamental
factor, proving our log log (R/e) result in this manner would require showing that
every polynomial system can be perturbed to one with rational coefficients of length
bounded by log (R/e), where each zero :, ]1]1 --< R of the original system is approxi-
mated within distance e by a zero of the perturbed system. For example, assuming
R 1 and e (1/2) L, in the univariate case of degree d one would at least need each
point in the unit disk in C to be within distance (1/2) L of a root of one of the
[O(L)]2(d+ polynomials d/=o aiz’ with ai complex rationals of bit length O(L). Of
course this is not possible for L large compared to d.

In Renegar [9], a probabilistic analysis of an algorithm for approximating all of
the zeros of systems of polynomials is given. The bounds are polynomial in n, @, and
L, where L is the number of nonzero coefficients in the considered systems. Hence,
by focusing on "sparse" systems, a probabilistic bound independent of can be
obtained. (Note that (+y, a;) grows like @" when, for example, all polynomials except
one are linear.)

Our algorithm relies on the univariate algorithm of Renegar [10]. The reliance on
that particular algorithm is not crucial. What is needed is an algorithm for approximat-
ing all zeros of arbitrary f Pa (R) with worst-case operation count growing only like
log log (R/e) with respect to e and R.

2. A few facts about resultants. Let )g,],,...,<, denote the set of all homogeneous
polynomial systems G" C C satisfying degree (Gi) di. The resultant R for systems
in ,,...,d,, is a homogeneous polynomial in the coefficients of these systems. It has
the property that R(G)=0 if and only if G has a nontrivial zero, i.e., G(x)=0 for
some x 0. In this section we state a few facts regarding the resultant that are crucial
for our algorithm.

Let d-1-n+id and consider a, the vector space consisting of all
homogeneous polynomials g’Cn-C of degree d, along with the zero map. A basis
for this space is easily seen to be given by the set of terms

B Z l’Z za’, i d, each i is a nonnegative integer

It is easily shown by the definition of d that each of the terms in B satisfies ia -> da for
at least one j. Partition B into the disjoint union U= Ba, where Ba contains all terms
z,’.., z,’ satisfying i, < d, ,..., !j_ < dj_l, ij dj.
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To each system G ,,...,d,, we can associate a linear map from to itself,
defined for the basis terms in B by

i.-dZll" Z’--> Ztll" Zj Z’" Gj(Z1,""" Z.),

Let aj(il,’", i,) denote the coefficient in Gj of the term zi z. In terms of the
basis B, the matrix corresponding to the above linear map is simply the following: the
entry in the intersection of the column and row corresponding to zi z;, B and
z, z,,, respectively, is av(k il,... k + ,..., kn i,) if kl," =<
k + d,..., in =< kn, and equals zero otherwise. Let D(G) denote the determinant of
this matrix. Then D(G) is a homogeneous polynomial in the coefficients of G Yg],,...,d,,.
In fact, it is homogeneous in the coefficients of G and has degree, in those coefficients,
equal to the number of terms in B. Its total degree equals the number of terms in B,
that is, d+n-ln_l n-’)d

Assume that the linear map associated with G a,,...,a,, is nonsin$ular, so that
for each i= 1,. o., n some polynomial in , is mapped to the term za. Hence, for
each i,

z= p(,...,lG(,...
j=l

for some polynomials p,..., Pn (dependent on i). It easily follows that G(x) 0 if
x 0. Thus D(G)= 0 is a necessary condition for these to exist a nontrivial zero for
G. However, it is not a sufficient condition, but we do have the following remarkable
theorem.

THEOREM 2.1 (Macaulay, 1902, Theorem 6). Let M(G) denote the determinant of
the submatrix (of the matrix corresponding to the linear map induced by G) consisting
ofentriesfor which both the row and column correspond to terms in B oftheform z
with at least two i and ik satisfying i >-d, ik >-d. Then M(G), a polynomial in the
coefficients of G ,...,,,, is a factor of the polynomial D(G). Moreover, letting R(G)
be the polynomial satisfying D(G)= M(G)R(G), then having R(G)=0 is a necessary
and sufficient condition for G to have a nontrivial zero.

Remark. Macaulay’s Theorem 6 actually does not state the last conclusion of
Theorem 2.1. This was well known to him, and is stated in the introduction to his
paper. A proof of the last conclusion is given in Van der Waerden 11], 82. (Beware
that in some editions of Van der Waerden’s book this section on elimination theory
has been eliminated!)

The polynomial R(G) is the "resultant." Both it and M(G) are homogeneous in
the coefficients of each Gi. The degree of R(G) in the coefficients of G is Hi d.
Also, M(G) is independent of the coefficients of

We now turn our attention to systems of homogeneous polynomials F :C
c-)n +satisfying degree (F)= d. Let ,d,,...,d,, denote the set of these systems. Here we are

concerned with the question, "Does F d,,...,d,, have only finitely many zero lines?"
Let u,. ., u,+ denote variables. For specified values of these variables, consider

the system z(F(z), u. z), where u. z= uiz. This is a system in y(n+d,,...,d,,,. Let
R(F, u) denote the resultant of this system. For D and M as in Theorem 2.1, define
D(F, u) and M(F, u) analogously. These are polynomials in the coefficients of F

d,,...,,, and the variables u. In the literature, R(F, u) is sometimes referred to as "the
u-resultant of F."

We remark, for future reference, that the determinant M(F, u) is independent of
dthe variables u. Also, D(F, u) is the determinant of a (’+;’)x( ’+ ’) matrix, and

M(F, u) is the determinant of a smaller matrix.
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n+ Then R(F, u)= 0 for all u if and only if F hasPROPOSITION 2.2. Fix F ,a,,...,a,,.
infinitely many zero lines.

Proof. This is well known. Here is a short proof.
Assume that F has finitely many solution lines. For each of these lines, choose a

nonzero vector on that line Assume a(, , a(’ are the chosen vectors. There exists
x C/1+ such that x. a (i) #’0 for all i. Then the system z(F(z), x. z) has no nontrivial
zero and hence R(F, x) # 0.

Now assume that F has infinitely many solution lines. Choose nonzero vectors
a, a 2), on each line in an infinite, but countable, subset of the zero lines. Fix
x C/1+ satisfying x U i{y; a). y =0}. There exists a complex line L containing x
that has infinitely many intersection points with (.J {y; a). y 0}. However, for each
of these intersection points y, the map z(F(z), y. z) has a nontrivial solution so
that R(F, y)=0. Hence, the univariate polynomial obtained by restricting R(F, u) to
uL has infinitely many zeros, and thus must be the zero polynomial.
Consequently, R(F,x)=O. Finally, if xt_J{y; a. y=0} then it is easy to prove
that R (F, x) 0. [3

The following theorem is the cornerstone for our algorithm.
c/1+1 has only finitely many zero lines. ForTHEOREM 2.3. Assume that F e c,t,d,,...,d,,

u C/1+ 1, let R (u) R (F, u). Then R (u) has factorization
D

R(u) I] (’" u),
/=1

where (’. u E ll)ui, --Hi=I di, and each (t) is a nontrivial zero of F. Moreover,
for each zero line of F, the number of the ((t) that are contained in that zero line equals
the multiplicity of that zero line.

Proof A proof can be found in 83 of Van der Waerden [11]. (Again, be careful
to choose an edition of Van der Waerden’s book containing the section on elimination
theory.) [3

3. Computing R(u). Using the notation of the previous section, assume that
con+lF a,,....a,, has only finitely many solution lines and let R (u) R (F, u), where R(F, u)

is the u-resultant of F. Our algorithm depends on being able to compute R(u) and
some of its derivatives along certain complex lines. In this section we discuss procedures
for doing this.

Let a,/3C/1+, where c #0. We first discuss a procedure for obtaining an
expansion of the single-variable polynomial A R(,a +/3).

Referring again to the notation of the previous section, begin by computing the
determinant M(F, u)mthis determinant is independent of the variables u, depending
only on the fixed coefficients of F. It can be computed with O[(a+/1)3] operations, where
d= 1--n-Fi di.

If M(F, u)#0, then by Theorem 2.1, R(u)=D(F, u)/M(F, u). Noting that
D(Aa+)’--D(F,)ta+I) is defined as the determinant of a certain (+2, di)( +yd’)/1
matrix, and is of degree @ in the variable A, compute the coefficients of the polynomial
D(,a +) by evaluating this determinant at @+ 1 distinct values of A, and then
interpolating. Thus, assuming M(F, u)# 0, we can obtain the coefficients of a nonzero
multiple of R(aa + fl) with O[@( +y d,)3] operations (using @ < (1+2 d,))

Now assume M(F, u)=0. For tR, let Fl(z)=tza’+(1-t)F(z) for i= 1,... ,n.
Then M(F’, u) is a polynomial in alone, and is of degree not exceeding (l+2a,) It
is nonconstant since M(F, u) 0 and M(F, u) 1. Determine the coefficients of
M(F’, u) by evaluating the corresponding determinant for (1+2 d,)+ distinct values
of t, and then interpolating.
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Determine the least integer 0 =< k_-< (l+y d,) such that

dtk M(Ft, u) O.
t--0

Then, using Theorem 2.1 and the product rule for differentiation,

dkD(Ft, u) dkM(Ft, u)
dt k R(F, u) k

t=o dt t=o

as polynomials in u. Hence, R(Aa +/3) equals

dkD(F’, Ac + fi)
dt k

t=0

divided by the already computed nonzero constant

dkM(F’, u)
dt k

t=0

Finally, we examine the computation of

dkD(F’, Aa + fl)
dt k

t=0

Since D(F’, Aa +/3) is a polynomial in the variables A and t, of degree not exceeding
@ in A and of degree not exceeding (I+Y d,) in t, D(F’, Aa + fl) can be expanded as
follows"

D(F’,c+fl)= Y aijA i.
i= j=o

We wish to determine Yo akJAj for k, as defined earlier.
Choose @ + distinct values A C and (+ di) + distinct values t For fixed A,

evaluate the determinant D(F’,,,,Aa+) for all pairs {(A/, tm)}m. Interpolate in to
determine the expansion of the single-variable polynomial D(F, Aa +), thereby
obtaining the valueo akA. Do this for each A. Then interpolate in A to obtain the
expansion Zo aA.

Thus, we have a method for computing the coefficients of R(Aa + ). The total
operation count is dominated by the operation required to compute the + ][(+ ’) +
1] determinants D(F’,,,, A,a +fl). Hence, the total operation count is O[(+ di)4].

Besides an expansion for R (Aa + fl ), we will also need expansions for the multivari-
able polynomials R(Aa + pei + pzej + ), where p and p are variables over C and
where ei and e are ith and jth unit vectors. Defining F’ as before, and writing

D(F’,Aa+plei+p2ej+fl)= amlm2m3m4p4 p3 m2 tml,
m2=0 =0 m4=0

we wish to obtain the triple summation which is a multiple of k, where k is the smallest
integer such that dkM(F’, u)/dtk]=oO. Dividing that triple summation by the con-
stant dkM(F’, u)/dtk],o gives R(Aa + pei + p2e + fi). However, to obtain the triple
summation we can use the generalization of the procedure we used for computing
dkD(F’, Aa +fl)/dtk,=o. First, interpolate in to obtain

amlm2m3kfl4 p3 m2
m2=0 =0 m4=0



SOLVING POLYNOMIAL SYSTEMS 357

for fixed values of the parameters p, p2, and A. Then interpolate in A to obtain

am,,n2m3kP p, m2 1,...,
---=0 m4-----0

for fixed values of the parameters pl and p2. For each m2, interpolate in pl to obtain

arnm2m3kP2 m, m 1,..., @
m4

for fixed values of the parameter P2. Finally, for each pair (m2, m3) interpolate in p
to obtain all of the coefficients am, m2m,,. Altogether, O[@3(’+2n ai)4] operations suffice.

4. The algorithm. In this section we present the algorithm which, given F

,,...,d,,, determines if F has only finitely many solution lines and, if so, obtains
e-approximations to all of them.

The idea underlying the algorithm is rather simple, although the technicalities
that must be dealt with are not. Here is the idea. Assume that F has only finitely many
solution lines and, for simplicity, assume that each of these are of multiplicity 1. By
Theorem 2.1,

(4.1) R(u)= 1-I ((’)" u),
/=1

where the (1 are vectors on the solution lines. Let

(4.2) H(!) {x C n+’, (). x 0}.

Assume that a’,/3’ Cn+, a’ # 0, and assume that the complex line {Aa’+/3’; A C}
intersects each of the hyperplanes H(, but does not intersect H() H( if # m.

Compute the zeros A’ of the degree single-variable polynomial R(Aa’ + ’)for the
moment we assume that these can be calculated exactly. There is a one-to-one corre-
spondence between the A’ and the defined by the relation A’a’+fl’ H(. For A’
corresponding to l, the vector

=h’a+fl OUn+l =h’ +fl

is a nonzero scalar multiple of (( and hence is on the zero line {h((; h C}. This is
the main idea behind the algorithm.

Of course the algorithm must be able to work without relying on the above
simplifying assumptions.

We present the steps of the algorithm and state propositions regarding the steps
simultaneously in hopes that this will better motivate what the steps are designed to
accomplish. Proofs are relegated to 5. Some of the propositions rely on O( notation
for upper bounds and ( notation for lower bounds. The constants are independent
of n, d,. , dn and hence independent of F. Specific constants can be obtained with
more lengthy proofs.

For nonzero X, Y Cn+l, define

dis (X, Y)=min
llwXll IIwgll

, wc{0
Using the homogeneity of F, it is easily shown that N(), 1, , are e-approxima-
tions to the zero lines of F if and only if dis (N(, () N e for all i, where the ( are
as in (4.1).
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For x C, define

/x(x) (1, x,x2, ).

We use h to denote a complex variable.
Step 1. Compute R(a)for all ae{/x(j);j=0, 1,..., n}.
From the results in 3, Step 1 can be accomplished with O[n@2(’+d;)4] operations.
PROPOSITION 4.1. All numbers computed in Step are zero if and only if F has

infinitely many zero lines.
Proof Since for any distinct integers j, ,j,+ the (n + 1) (n + 1) matrix with

ith row /x(ji) is invertible, there are at most n@ integer values j such that /x(j)e
tO, { u; ’’. u 0}.

Hereafter, we assume that F has only finitely many zero lines.
The purpose of the next two steps is to determine a vector a’ for which the "angle

of incidence" of a’ with any of the complex hyperplanes H) can be bounded away
from zero. This property of a’ will be relied on in the analysis in two ways. First, it
will provide a bound on the absolute value of the zeros of any univariate polynomial
a R(aa’+/3). We will need this bound when we call on the univariate algorithm of
Renegar 10]. Second, the property of a’ will guarantee that for any/3, if dis (:<, s:{m))
is small, then so is la ()- a (m)] where h ()a’ + fl H(), h (ma, + fl H(m). This will be
important for proving the correctness of the procedure for determining the number of
lines in a "clustered" set of zero lines.

More specifically, for a’ as determined by Steps 2 and 3, we have the following.
PROPOSITION 4.2. For any fl C n+, all zeros h’ of R(ha’+ fl) satisfy

Moreover, if h )a’ + H), h ")’+ HCm), then

dis (s’), :m))).

Proof Proposition 5.4. [3

If we are only concerned with polynomial systems with rational coefficients, an
analogue of Proposition 4.2 with bounds depending on the bit lengths of the coefficients
is easily proven. Bounds, such as ours, which hold for all polynomial systems require
more detailed arguments.

Step 2. For each j=0,1,...,n@ and each i=l,...,n+l, compute the
coefficients ak(i,j) of R(ha + ei)-- k,k=l ak(i, j)h where a =/, (j).

From the results in 3, Step 2 can be accomplished with O[n2@2(l+d’)4]
operations.

Note that a i, j) R (/, (j)).
Step 3. Let J__ {0, 1,. ., n@} denote the subset J {j; R(i(j)) 0}. By Proposi-

tion 4.1, J . Determine j’ 6 J satisfying

ak(i,j’) ak(i,j)
max sin max

R(i(j’)) , R(I.t(j))
k< k<

Let a’=/x(j).
The reduction to the univariate case occurs in the next step. However, rather than

a reduction to a single univariate polynomial, we are forced to consider n@(@ 1)/2 + 1
univariate polynomials, approximating the zeros for each of these for the following
reason. Recall the "idea" behind the algorithm as discussed at the beginning of this
section. Assume fl’ is such that the complex line {ha’+/3’; h eC} intersects H() and
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H(m) at nearly the same point, yet dis (7(1), (m)) is large. Then even if y() is a close
approximation to the point X tl), for which x tl)a’+13’ H(l), it is not likely that
dis (X (t), .tl)) is small where

X)=(O__R(u 0R(u) )y(l)ce ,+[3, 0 bl + T(/)ce ’+[3’

To guarantee good approximations, we need {,a’+/3’; A c} to intersect H) and
H’ at nearly the same point only if dis (sc), sc") is small. (Furthermore, in that
case, we need to define X) by appropriate higher-order derivatives.) As will be proven,
at least one of the /3’s considered in Step 4 has this property; the large amount of
computation required in Steps 4, 5, and 6 is to determine which one. (What these steps
are designed to accomplish can be achieved easily if we restrict ourselves to rational
coefficients and are only concerned with bounding the number of required arithmetic
operations in the algorithm by a polynomial in the bit length of the coefficients.)

Step 4 involves a new parameter, e’> 0.
Step 4. For each k =0, 1,..., n@(@-1)/2 apply the algorithm in Renegar [10]

(or any other algorithm with an O(log log (R/e)) bound) to obtain e ’- approximations
Tl(k),"" ", y(k) for all of the zeros Al(k),’’’ ,A(k) (counting multiplicities) of
R(Aa’+fl), where 3 =/x(k).

We will later show that any value e’= O(e4+l/[n@]1+3+3) suffices for our
purposes.

The algorithm in Renegar [10] requires an a priori bound on the IAi(k)l. However,
since II(k)ll <[n]", such a bound can be obtained from Proposition 4.2. Using this
and the O(d(log d)(log log (R/e))+ d log d) bound for the algorithm in Renegar
[10], we find that Step 4 can be accomplished with O(n@4(log@)(loglog(1/e’))+
n@ log @) operations.

In the next step we partition the approximations yl(k),""", y(k) into clusters
for each k. Roughly, a cluster of the approximations is a subset of the approximations
that is contained in a disk and for which none of the other approximations is contained
in a much larger concentric disk. The radius e" of the smaller disk and the magnitude
6 of the quotient of the radius of the larger disk to that of the smaller disk will be
crucial in our analysis.

In Step 6 we will single out a k for which Step 5 has produced the largest number
of clusters. As we will prove, this k has the property that {Aa’+/x(k); )t C} intersects
H(l and H(’ at nearly the same point only if dis (s:(t, s:(") is small.

Step 5 requires the cluster parameter 6 mentioned above. As will be proven, all
r3=f([n@]l/e) will suffice for our purposes.

Step 5. Initially, let e"= e’, where e’ is as in Step 4.
Step 5.1. Determine if there exists i, j, k such that

(e") < ly,(k)- y (k)l 2 _-< (1I") 2.
If so, let 3e"- e" and repeat Step 5.1.
Step 5.2. For each k, partition the approximations into disjoint subsets Ph(k),

h-1,..., h(k), where y(k) and y;(k) are in the same subset if and only if I%(k)-
y;(k)l<= e". (To establish the existence of this partition, we need the property that
I’yi(k)- ys(k)l _-< e" and ITs(k)- y,,(k)l <- e" together imply I)’i(k)- Tm(k)l e".) But this
is trivial, assuming 6 _-> 2, since Step 5.1 has been passed through.

It is easily seen that Step 5.1 will be passed through after at most O(n@4) iterations,
and hence the final value of e" satisfies e"<-_ 6"e ’. Since each iteration of 5.1 involves
O(n@4) operations, as does Step 5.2, the operation count for Step 5 is O(n2@s).
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Step 6. Determine k’ satisfying h (k’) maxk h (k), i.e., a k with the largest number
of clusters. Let /3’=/(k’). For each h fix a yhpth(k’). Let xhl=yha’+fl ’. (If
h(k’) 1, we define x[h] =0 to simplify the analysis later.)

To ease the exposition, we now alter our notation slightly. There is a one-to-one
correspondence between the points Ai(k’), k’ as in Step 6, and the complex hyperplanes
H(t), where Ai(k’) corresponds to H(1) only if Ai(k’)o’+fl’H(I). Re-indexing the
hyperplanes if necessary, we may write A(I) for the Ai(k’) corresponding to H(1), and
y(l) for the approximation yi(k’) of that Ai(k’). Also, we replace Pthl(k’) by pth.

The goals of all preceding steps are summarized in the following proposition.
PROPOSITION 4.3. For any 6 =O([n]ln) and for e" as given at the end of Step

5.1,
(4.3) T(I) Pt"l(’.
(4.4) 7(’) Pehl(’). xC  l-
(4.5) 7(), 7(m) peh?dis ((l), (m))= O(e,,[n]3n+).

Proof Proposition 5.6.
Combining Proposition 4.3 with the following two propositions will motivate the

final step of the algorithm. The first of these two propositions covers a "trivial" case.
PROPOSiTiON 4.4. Assume that for all l, rn {1, @} we have that

dis ((l, ,))<__ e’". For all e’"= O(1/x/-), the following is then true. Let i’ be an index
satisfying

OR(u) OR(u)
m/x

and let N C+ be the vector

OR(u)
i=1,...,n+l.i OU"@i-lobli u-=O

Then dis (X, (())= O(ne’") for all I.
Proof Proposition 5.8.
PRoPOSrro 4.5. Let So{I,...,@} contain N elements, where 0<N<@.

Assume that for all l, rn S, we have dis ((, ((m)) <__ e’". Let x C "+1, x # O. Assume
that if 1: S, then I(l). x I<=p[l((’)ll Ilxll, and assume that if 1: S, then [(!. xl>=
P211(’II Ilxll, where p2>0. Then for all e’" O(1/,/-) and for all p/pz=O(e’"/@!n),
the following is true. Let i’ be an index satisfying

OUR(u) ONR(u)
Ou =m/ax OUi

N

and let N C+ be the vector

ONR(u)
i=l,...,n+l.Xi ouiN’ -Ioui

Then dis (N, (()= O(n@e’") for all S.
Proof Proposition 5.9.
Now we combine the last three propositions to motivate and prove the correctness

of the final step of the algorithm.
Assume that 0 < C -< is sufficiently small so that for all n, @ and 0 < e <= 1,

Ce
(4.6) e’" n
satisfies the conditions required for Propositions 4.4 and 4.5.



SOLVING POLYNOMIAL SYSTEMS 361

Forh=l,...,h(k’),let

Sth]= {1; y(t) pth]},

i.e., the "indices" of the approximations in pth. We now show that for all

(4.7) 3 1 ([n]l")’e
and for all

(4.8)

the conditions required for Proposition 4.4 (if h(k’)= 1) or the conditions required for
Proposition 4.5 (if h(k’) > 1) are satisfied by S SthJ, x xthJ for e’" as defined by (4.6).

First note that combining the bound e"=< 6"4e (as discussed after Step 5) with
(4.5) gives

(4.9) 1, m S[h]:=>dis (sc(), :(m)) o(n4[M]3n+2e,).
Assume h(k’)= 1. Then assuming 3 is of the form (4.7) (to meet the requirement

of Proposition 4.3) by choosing e’ of the form (4.8), we have from (4.9) that
dis (t), sc,,)) =< e"’ for all l, m, where e’" is as in (4.6). Hence the conditions required
for Proposition 4.4 are then satisfied.

Now assume h(k’)> 1 and fix h {1,..., h(k’)}. Define

(4.10)
pl max {]:(’) xel/I1(’)11 IlxCll; sC},

/92 min {1(’). xCl/I1(’)11 Ilxe311; sC3).
By (4.3) and (4.4),

P._}.I O l 2n+ + / ),
Pe

and hence, assuming (4.7), we find that Pl/P2 is sufficiently small as required by
Proposition 4.5 for e’" as in (4.6). Also, assuming fixed and of the form (4.7), by
choosing e’ of the form (4.8) we have from (4.9) that

I, rn s[h]==:=>dis ((l), (m)) : Ettt,

for e’" as in (4.6). Finally, we note that x[h]# 0 since otherwise we would contradict
(4.4) for = S[hI. We have thus established the conditions required for Proposition 4.5
in the case that h(k’)> and for Proposition 4.4 in the case that h(k’)= 1.

Step 7. If h(k’)= l, then determine the index i’ satisfying

and let []

aR(u)
u=O

C"+ be the vector

=max
aR(u)
au u=O

u=O
i=l,...,n+l.

If h(k’) > 1, then perform the following for each h { 1,. , h(k’)}. Let N Nh, where
Nh is the number of indices in Sthe. Determine the index i’ satisfying

OUR(u)
au

2 oUR(u)
[h]
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and let X be the vector

x[h]_ oNR(u)
ou iN, oui [hI

i=1,...,n+1.

Letting X(i), i= 1,..., @ be the vectors Xh, h 1, h(k’), where X occurs

Nh times, we find from the conclusions of Proposition 4.4 and 4.5 that if C in (4.6)
is sufficiently small, then X(i), i= 1, @ give e-approximations to the zero lines of
F, accounting for their multiplicities.

We assume the computations in Step 7 are carried out as follows. (If h(k’)= 1,
redefine a’=/3’=xl=0.) First compute the coefficients for the three variable poly-
nomials R(Aa’+plei+p2ej+’), i,j=l,...,n+l, using the method of 3. This
requires O[n2@3(l+Y 4)4] operations From these compute the required derivatives. In
all, Step 7 requires O[n2@3(1+2 d,)4] operations.

Relying on (4.7), (4.8) and the operation counts already given for each of the
steps, the total operation count for the algorithm is

O [n4(log )(log log (1/e))+n2a+n23(l+n di)4]"
5. Proofs. In this section we prove the propositions that we relied on in the

previous section. In the course of doing this we will need to prove several lemmas.
In our calculations we sometimes implicitly use the assumption @ => 2. For example,

under this assumption we may write n@ + n + -<_ 2n@. The following lemma will also
occasionally be used implicitly in the analysis

We retain the notation :(t) and H(t as in (4.1) and (4.2).
LEMMA 5.1. Assume R(u)O (i.e., is not identically the zero polynomial). Let

t (n+l. Then a LJ Ht) implies R(Aa +) is of degree less than for all C n+l,
and a LJ H! implies R(Aa +) is of degree exactly for all fl C/1+1.

Proof Follows immediately from the identity

R(Xa +/3) H ((’)" (xa +/3). v1

Recall that/z (x) (1, x, x2, ., xn).
LEMMA 5.2. Let At be any set of complex hyperplanes M in C n+l. Let N denote the

number of hyperplanes in At. For at least one j" {0, 1, , nN}, i(j") satisfies
Iltz(j")-xll >= 1/(1 + nN)/1+1 for all x M At.

Proof For each j {0, 1,..., nN}, let v(j) be a vector of smallest length such
that tz(j)+v(j) lies in a hyperplane in At. Note that for some distinct j,’",j/1+l,
each of the/z(ji) + v(ji) must lie in the same hyperplane. Thus, letting A, respectively,
B, be the matrix with ith row/z(ji), respectively, v(ji), we have that A + B is singular.
Hence,

min IIAwII-< max IIBwll<-,/n/l max IIv(J,)ll.
Ji

Letting j" {jl,""’ ,jn+l} denote an index satisfying ]lv(j")][ maxj, [Iv(j,)]], we thus
have

1
(5 1) (J") x > min Aw for all x M At.

x/n + Ilwll=l

Note that for any w # 0, Aw has coordinates equal to the values taken on by the
nonzero polynomial of degree at most n, zi=o wi+lz, at the n + 1 distinct integers
ji. Since this polynomial can have at most n zeros, Aw 0 and hence A is invertible.
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Finally we note that for each i, A-lei gives the coefficients of the degree-n
polynomial p satisfying P(ji)= 1, P(jk)=0 if k # i, that is, the coefficients of p(z)=
I-Iki (Z--jk)/I]ki (ji--jk). Writing p(z)=Z aiz and noting II]kiji--jkl > 1, we thus
have

Hence

IlA-le, I ,l (nN)J=(l+nN) ".
j=0 j

1 1

maxllwll=, [[a-wll=n/n+ 1 max/Ila-’ell-v’n+ 1(1 + nN)n"

Together with (5.1) this gives the lemma.
LEMMA 5.3. Assume R (u) O. For at least one j" {0, 1,. , n@}, "=/ (j") has

theproperty thatfor all i, R(Aa"+ el) is a degree-@ polynomial with all zeros A" satisfying
IA"l<=(l/n@)n+’.

Proof. Let J//= {H(t; 1,. ., } and let j" {0, 1,. ., n} denote an integer
such that a"= (j") satisfies the conclusion of Lemma 5.2. Then a" CIH(t and
hence, by Lemma 5.1, R(Aa"+ ei) is of degree for all i. Moreover, for all and l,

:min{llx- "11; x H(’)} > 1/(1 + n)n+l.

Hence, if A"a"+ ei H(l), so that 6(1). (A"a"+ ei) 0, then

I/ "I I(l>" e,! (1 + nO)n+l

PROPOSITION 5.4. Assume R(u)O. Let a’ be as chosen in Step 3 of the algorithm.
Then for all l,

(5.2) I<t)"

Moreover, for any fl C"+1, letting A (/), A (m)

H<m), we have
6 C satisfy

(5.3)

(5.4) IA(/)- A()I O(ll,ll[n@]n dis (:(’), :(m))).
d k,Proof For any polynomial Ek=0 akA ad # 0, with zeros A, , Ad we of course

have lak/adl =l Ai,’’’Aikl, where the summation is over all tuples il < i2<’’’ < ik.
Hence if IAi]----< R for all i, then lag/ad] <= ()R k. In particular, letting j" be as in Lemma
5.3, then for j’ as in Step 3 of the algorithm

ak(i,j’) ak(i,j")
(5.5) max

,)
--<_max

j,,)
--<(l+n@)

i,k a i, j i,k a i,

For each zero A’ of a polynomial d k,k=O akA ad O, one has the property that

I ’l =< 1 + max {lag/adl; 0 _--< k < d} (cf. Marden [7, Thm. 27.2]). In particular, using (5.5),
we find that for each i, every zero A’ of R(Aa’+el) satisfies

(5.6) Ix’l O([n](n+l))
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Fix and assume that I}’>1 II(’>ll/,/n + (this is certainly true for some i). Assume
c’+ ei H(l). Then ]A (’)] ](l). c’] ]scI. el -> I1(11/,/ / 1. Thus, using (5.6),

from which (5.2) is immediate.
Since R(Aa’+ ei) is of degree exactly @ (for any i) by choice of c’, Lemma 5.1

implies R (Aa’ +/3) is of degree exactly @ for any/3 C n+. Fix/3 and assume A (1) c’ +/3
H(l). Then

Substituting (5.2) into this inequality gives (5.3).
Finally, let yl)= w(l), ym)= WZ(,,)(W, w2C) be such that lY(l)] lYnl 1

and IlYl)- Ymll dis ((l, (m)). Then

O=y(). (a.()c’+/)
=(y(m>+Ey(>_y(]). ([; (m>, +/] + [;t (>_ ;t (]C,)

However, using (5.3) and ’11 < (n)"+, we have

I[(’>->)] [(a>’+t)]l O([n@]3n )l/3ll" dis ((’), (m))),

and by (5.2),

;<>I/[n]2nd)).

Now (5.4) follows.
The next lemma will be used in proving Proposition 4.3.
LEMMA 5.5. Assume R( u) O. Let a’ be as in Step 3 of the algorithm. For some

k" {0, 1,. ., n@(@- 1)/2},/3"=/x (k") has the property that for all and m, if A(1)a’+
vt H(l), A (m)OV_ t, H(’), then

dis ((,

Proof For all pairs < m, l, m {1, , @} such that H(l) # H(m) let

M(l’n) {,ka’+ y; A C, y H(l) CI H(m)}.

Let 3//= {M(l’m)}. Let k" {0, 1,. ., n@(@- 1)/2} denote an integer such that/x(k")
satisfies the conclusion of Lemma 5.2 with this choice of . Let fl"=/x(k").

If H(l)= H(m), then the bound on IA (l)_ A (m) provided by the lemma is trivial. So
assume H(l) H(m). By a change of coordinates x Qx, where Q is a complex unitary
matrix (to preserve distances), and by replacement of ((l) (respectively, (,n), a,, fi,,)
with Q-1 (l) (respectively, Q-lsc(m) Qo’, Q") we may assume without loss of generality

(l),)that l)=0,..., n+. =0, " =0,..., (’ =0 and

H(l) ["] H(m) {x G (n+l., Xl X2 0}.

Let x A(l)a’+" H(l). Then by the definition of M(l’’) and the choice of fl"
(satisfying the conclusion of Lemma 5.2), we must have the distance from x to
H(l fl H(") bounded below by 1/(1 + n2)n+l, that is,

(5.7) (Ix,12 / Ix21=)’/2 > 1/(1 + n)2) n+’.



SOLVING POLYNOMIAL SYSTEMS 365

Let N(t)= Wl(l),N(m)= W2:(m> be such that IlY(’>))- )ly(m>ll and dis (sc(), sc(m>)
<>- (>ll. Since N(). x 0, N(m). [x + (,t (m_ A ()a’] 0 and the last n 1 co-

ordinates of both N(t and N(m) are zero, we have

solving for x via Cramer’s rule and then using (5.7) gives

IA (’)- h (’)l N(’) a’l 1
>

]o(l)o,g(m) Oy(/) oy(m) 2)n+loo : -: l (l+n@

Noting that {to(-(ff),m));toC} is the orthogonal complement
{to(Nm), N(m)); tO C} when considered as subspaces of R4, we have

of

(1), N(21))__ D(Nm), N(2m))_it_ W(_(2m), m)),

where v _-> 0, w e C and /9 2-t- IWI 1. (In stating v >- 0 we are using the fact that
Lr()- N(’)I[ dis (N), N(m)).) Substituting for N) in the denominator of (5.8) gives

(5.9) Ih (l)_ A (m) IN(m)" Otl> 1

Iwl (l+n@2)"+1"

Observe that

dis2 (((,), ((m))= i1(/)_ ()11__ (1_ v)2+iw12 21wl=,
where the inequality follows from v2+ w12- and v_-> 0. Substituting for wl in (5.9)
and using IN(m). ’1 =< IIc’ll -<,/n/l(n) gives the proposition, r-I

We can now give the proof of Proposition 4.3, which relies on the notation
introduced just prior to that proposition. For the reader’s convenience, we restate the
proposition as

PROPOSITION 5.6. For all fl([n@]1’) andfor e" as given at the end ofStep 5,

(5.10) ,)/(l)

(5.11)

($.12) e,ePtdis ((, ()= O(e"[n]3"+).

Proof We begin by recalling that for each k =0, 1,. ., 9(@- 1)/2, Step 5 parti-
tions the approximations %(k) into "clusters" p[h](k), h 1, h(k), where

(5.13) Ti(k), yj(k) P’(k)=lyi(k)-yj(k <- e",

(5.14) yi(k) nh)(k), yj(k)_ nh(k)=l%(k)-yj(k)l> 6e".

To prove (5.10), note that since x= y(m)a’+fl’ for some y(m) ph, where
approximates A ) within distance e’, we have

I(/) x"l <__ I’). (y(")-y(/))c’l +l(!) (y(’)-,t(/))c’l +1(’). (,t (’) c + /7 ’)

--<("+’)11’)1111’11+0 (using (5.13)).

Since e ’-< e" by the construction of Step 5 and Ila’ll < (n)n+l, (5.10) follows.
Now we prove (5.11). Again assume xthT= y(")a’+’, but now assume y() pthT.

Then ty(m)- y()l > ie" by (5.14). Using this and (5.2) along with I<>-<>1 _-< e’ and
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I1’11 < (n)"/, we have

I( ’>" xr"l--I(’>" xrl + 1’>" ( (’>’+ ’)1

1’>" ((>- (’>)’1-l(’>" ((’>-

Assuming 6 =([n]3") and using e" e’, (5.11) follows.
Now we turn to proving (5.12). Let " be as in Lemma 5.5. Let P[](k"),j=

1, , h(k") be the sets determined for " at the end of Step 5. Assuming h (>(k") e C
satisfies h((k")a’+fl"H(, let 7((k’’) denote the e ’- approximation to h(>(k’’)
obtained in Step 4. We will show that if T(>(k"), T(>(k") P[J](k") for some j, then

T(), T() Pin] for some h. However, since the union U P[Y](k") contains the same
number of elements as the disjoint union U h p[h], and since h(k’) h(k") by choice
of ", it follows that the converse is also true: that is, if T(o, T(m> ph for some h,
then T(>(k"), y(>(k") e P3(k") for somej. Then [T(>(k")- T(>(k")[ N e"by (5.13) and
hence [h (>(k") h (>(k")[ N 2e’ + e". Thus, since " satisfies the conclusion of Lemma
5.5,

dis (s(’>, s#(m>) O(e"[n@]3n+2),
establishing (5.12).

Finally, we prove that if y(>(k"), T(m)(k") E PtJl(k") for some j, then
for some h. Assume otherwise. Then ]y(- y(m)[ > 6e" by (5.14) and hence [h (t)- h (m[ >
e"--2e’. Assuming 6 => 3 and thus e"- 2e’=> 3e"/3, and using 11/3"1[ < (n@2) n, we
conclude from (5.4) that

dis (s#(’>, s#(’>) (e"/[n]7n).
However, since 7(>(k"), y(m>(k") PJl(k"), we have that [h(>(k")-h(m>(k")[<=2e’+ e",
and hence, since the conclusion of Lemma 5.5 holds for/3",

(5.16) dis (s(’>, s(m>) O(8"[glj]3n+2).
But for =-([/]lOn), (5.15) and (5.16) contradict one another, concluding the
proof of the proposition.

Finally, we turn to proving Propositions 4.4 and 4.5. We begin with a lemma.
LEMMA 5.7. Fix (m) alld assume (Im)# O. If dis (sc(’), sc(m)) _-< Isclm[/Z[[sC("]], then

(5.17) list(! 2ll(m)ll,

(5.18) i[scl, :i5,, iim>l =
Proof. Assume N(I)= w(l), 2m)= w2s(m) satisfy I1’)11--IIm)ll , and

dis ((l), m))__= i1/)_m)11 Since dis (s(), Cm))_--<lm)l/2, it is easily shown that
II’)1 => IIm)l/2, and hence (5.17).

Note that _
_i 1 3[

_Oa(l)_o. (m) !

dis (’(’), ’))+ iiA,>l ,]
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However, 21I’1 II)1- I1/11()11 Now (5.18) follows. [3
Here is Proposition 4.4 restated as Proposition 5.8.
PROPOSITION 5.8. Assume that for all 1, m {1, , } we have that

dis ({t), {r,,))<= e’". For all e’"= O(1/v/-ff), the following is then true. Let i’ be an index
satisfying

u=O
=m,ax

u=O

and let X Cn+l be the vector

OR(u)
OU-Ioui u=0

i=l,...,n+l.

Then dis (N, sc(’)) O(ne’") for all I.
Proof Fix me{l,...,@} and let i" denote an index satisfying ISCl,,m)]_-->

II(m)ll/v’n/l. Then, by (5.17), assuming e’"<-l/2v/n+l, we have that I:I,’,)1 ->
11(’)ll/2,/n / for all {1,. ., @}.

Next, note that by definition of i’ and using R(u)= [Ii (sc(l)" u),

OR(u)
Ou u=0

OR(u)
u=0

Hence, for at least one k e{1,...,@}, we have that II,11=I,,>1. Since
11(">ll/2,/n / 1, we thus have I:I,>1 _-> ll(>ll/2,/n / 1. It thus follows from (5.17) that if
e’" -< 1 /&/n + 1, then

(5.19) II!>1 11(’>11/44n + for all I.

Consider the identity

OR(u)
u=O

Defining as in the statement of the proposition, we thus have

(5.20)

However, using (5.18) and (5.19), if e ’’’<- 1/8/n + 1 we have that for any m,

e -:,-2 _-<64(e-(+ ’".

Hence, for any m, (5.20) gives

Since I1()11/1:,)1 1, it follows that dis (N, (")) O(ne’"). [3

Finally, we prove Proposition 4.5 restated as Proposition 5.9.
PROPOSITION 5.9. Let Sc {1, , @} contain N elements, where 0< N< @.

Assume that for all l, m S, we have dis (sc(t, sc(")) _-< e"’. Let x C n+l x O. Assume
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that if 1 S, then I(’. x I<-plllsc(’)ll Ilxl], and assume that if I_ S, then I(’. xI>=
o211(’)11 lixll, where p2>0. Then for all e’"= O(1/v/-ff) and for all pl/p2= O(e’"/@!n),
the following is true. Let i’ be an index satisfying

OUR(u)
=max

OUR(u)
N

OUi

and let 3 C’+ be the vector

OUR(u)
OUiN, -Ioui

i=l,...,n+l.

Then dis (N, :(l)) O(n@e’") for all S.
Proof The proof is analogous to, but much more complicated than, the proof of

Proposition 5.8.
We begin by showing that if e" and pl/p2 are as small as certain prescribed

quantities, then II!1 _-> 11(’ll/8,/n / for all S.
Fix m S and let i" denote an index satisfying I,l,,ml > II(ll/,/n + 1. Then, by

(5.17), if e’"_-< 1/2x/n + 1 we have that

for all S.

Consider the identity

(5.21)
OUR
ou

where the summation is over all ordered N-tuples (l,. , IN) of distinct indices from
{ 1, , @}, and where L is used to denote {ll, , ls }. Let* denote summation
over the N! N-tuples with /l,’", 1N S, and let ** denote summation over the
remaining tuples. Then from (5.21)

(5.22)
OUR

(l)(II, l!))(II, x) ou
Note that (i)I(1. x/l!)l2#n+lllxll for all lS since

for all lS; (ii)Ill,,)/sc(l). xl_-< 1/ollxll for all lS; (iii) L\S and S\L have the same
number of elements; (iv) at least one S satisfies L for each of the tuples defining
Y,**; (v) 2"* is a summand over fewer than @! N-tuples; and (vi)

> 0NR
ouiN,,

by choice of i’. Assuming pl<=p2/8/n+ 1@!, it follows from (5.22) that

OUR
(1) X) OUiN’(H, :I!)(H, => N!--.

4

Relying on the identity (5.21) with i’ replacing i", this becomes

(5.23)
1

=> NI--.
4
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Making use of the above observations (i)-(v) with i’ replacing i" in (ii), as well
as I)/sc?)l _<- 2x/n + 1 for all S (since [sol!) >_- ll#(’)ll/2v’n + 1 for all e S), and assuming
that p _-< p/4(2x/-n-T)u@ !, it follows from (5.23) that

N’ ,s sc? >N’-1
sol! "2"

Hence, for at least one m eS .we must have
11(’)ll/2v/n + 1, it now follows from (5.17) that if ’"< /8,/. + 1, then

(5.24) [sc?)[--> [[(i)ll/8x/n q- 1 for all 16 S.

Consider the identity, for any i,

1 oNR
(1) X) oqUi

N-1 dui(II, I!)(II,
(5.25)

, , g( g(x, lv),

where L[]={ll,...,/U-l} and

’ if lv e S
g(x, lrv) it,)/(tN) x if 1N S.

Making use of the above observations (iii)-(v) and (5.23), we find from (5.25)
that if pl/p2 <- e’"/8x/n + 1, then for N as defined in the statement of the proposition,
we have

However, using (5.18) and (5.24), if e’"_-< 1/16/- + 1 we have that for any mS,

Hence, for any m e S, (5.26) gives

so(l){1-I, I!){II,, x) :I, II * + 16{N 1){ + 1)"’

Since IlSC(’II/IScS,mI _--> 1, the proposition follows.

6. Appendix. Here we prove the claim (1.1). Let e’= e/4(R + 1)2, 0<e _-< R, and
assume that , 1, @ are e ’- approximations to all of the zero lines of F. In
the notation of 1, I1<’/I1<’11- <’/I1<’1111 _-< ’ where the zero lines of F are precisely
the lines {asc{}; a e C}.

For each sc{} such that s,+1
c{ # 0, let

i) (ni),...,.
Sn+l Sn+ll

Then < is the zero of f corresponding to the solution line {a<); a e C} of E Define
{ analogously.

We show that
v(i 3

(6.1) I1<’)11RllX’ll =4(R + 1)’
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and

(6.2) IX) 3 i)
I1 ’ 11 4(R’+ 1)

Together, (6.1) and (6.2) imply that the points +1/] 3/4(R + } are a
solution for the (e, R)-approximation problem for

To prove (6.1), first note that I111 R if and only if I(’i1= (R= 1)1’=+112.
Thus, if I1<11 R, then

* I’,1 3

I1  ’ 11 I1(’ 11 4(R + 1) R + 1-4(R + 1)"
In proving (6.2), let and = (i/ll(’ll, Then assuming that
> 3/4(R + 1), we haven+l

,. ,,

N-(R+I) e’+
3 3-e’

4
(by substituting e’= e/4(R + 1)2 < 1/4(R + 1)
in the denominator)

< 4(R + )2e’= e.

Hence, (6.2) is proven.
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provided by an anonymous referee.
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PARTITIONING SPACE FOR RANGE QUERIES*

F. FRANCES YAO, DAVID P. DOBKIN:, HERBERT EDELSBRUNNER,
AND MICHAEL S. PATERSON

Abstract. It is shown that, given a set S of n points in R3, one can always find three planes that form
an eight-partition of $, that is, a partition where at most n/8 points of S lie in each of the eight open regions.
This theorem is used to define a data structure, called an octant tree, for representing any point set in R3.
An octant tree for n points occupies O(n) space and can be constructed in polynomial time. With this data
structure and its refinements, efficient solutions to various range query problems in two and three dimensions
can be obtained, including (1) half-space queries: find all points of S that lie to one side of any given plane;
(2) polyhedron queries: find all points that lie inside (outside) any given polyhedron; and (3) circle queries
in R2: for a planar set S, finpl all points that lie inside (outside) any given circle. The retrieval time for all
these queries is T(n) O(n" + m), where a =0.8988 (or 0.8471 in case (3)), and m is the size of the output.
This performance is the best currently known for linear-space data structures that can be deterministically
constructed in polynomial time.

Key words, range query, half-space query, partition, equipartition, Borsuk-Ulam

AMS(MOS) subject classifications, primary 68U05’ secondary 55M20

1. Introduction. Consider a database that contains a collection of records with
multidimensional keys. Given a range query, which is specified by certain constraints
on the value of the multidimensional key, the database is expected to return the set
of all records (or some function of the set of all records) whose keys satisfy those
constraints. Efficient solutions to range queries are important both in themselves and
also as subroutines for solving other multidimensional search problems. In this paper
we will consider solutions to range queries that use only linear space for data structure
storage.

There is an extensive literature on efficient algorithms for handling orthogonal
queries, that is, queries with constraints of the form al --< kl--- bl, ad <= kd <= bd,
where the key is (kl,. , kd). Relatively little is known about solving queries of more
general types, such as half-space queries, where the constraints are linear inequalities
alkl +" / adkd <= C. Willard [W] was the first to consider half-space queries for d 2,
and gave a solution with linear space and sublinear query time O(n), where a 0.774.
Edelsbrunner and Welzl [EW] improved a to log2 (x/+1)/20.695. Both of these
results are based on the fact that a set of n points in R2 can be partitioned by two
lines so that each open quadrant contains at most n/4 points.

For d 3, the first nontrivial time bound was O(n) for a 0.98 by Yao [Y]. The
data structure is based on a partition of any point set by three planes into eight regions
with the property that no seven regions together contain more than 23/24 of the points.
Such a partition was obtained by making use of the concept of a centerpoint of a set
(see [YB]).

In this paper, we prove a stronger result on partitions in R by using the Borsuk-
Ulam theorem of topology. It is shown that, given a set S of n points in R3, one can
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always find three planes that form an eight-partition of S, that is, a partition where at
most n/8 points of S lie in each of the eight open regions. This theorem is used to
define a data structure, called an octant tree, for representing any point set in R3.
Efficient solutions to various range query problems in Re and R can be obtained by
using this data structure and its refinements. For example, one can solve in time
O(n8988-k m), where m is the size of the output,

1) half-space queries: find all points that lie to one side of a query plane;
2) polyhedron queries: find all points that lie inside (outside) a query polyhedron;

and
3) circle queries in R2: given a planar set, find all points that lie inside (outside)

a query circle.
An octant tree for n points occupies O(n) space and can be constructed in O(/’/6 log n)
preprocessing time.

The paper contains five sections. In 2 we define the concepts necessary for
discussing space partitions in both the continuous case and the discrete case. Section
3 contains the proof of the main theorem of the paper. In 4 we present and analyze
several data structures based on the main theorem for representing point sets. Finally
we comment on open problems and related results in 5.

2. Preliminaries. We use Sa-1 to denote the unit sphere {(x, x2," , xa)lx+ x2+
..+x/= 1} in R a. An oriented hyperplane (or hyperplane for short) h in R d with

normal vector v v, v2, va) c Sa-t is defined by an equation vix t. If v has
length 1, then the real number is the. distance of h from the origin; it is the unique
scalar for which the point t. v lies on h. The hyperplane h separates R a into a positive
half-space h+ defined by Y ViX > and a negative half-space h- defined by Y ViX < t.
When we consider continuous functions defined on the collection of hyperplanes in
R d, we assume that the latter is endowed with the topology of S-x R through the
representation of h by (v, t). Corresponding to h (v, t) we let -h denote the hyperplane
(-v,-t); thus, -h is a hyperplane defined by the same equation as h but with the
opposite orientation.

We shall limit our discussions to R d with d =< 3 in this paper. A hyperplane in R
will simply be called a plane. For. a set S of n points in R3, we are interested in finding
three planes h, h2, h3 so that at most n/8 points lie in each of the eight open regions
defined by the three planes. Such a triple (hi, h2, h3) is termed an eight-partition of S.
We shall prove the existence of an eight-partition for any finite point set by first
transforming the problem to a continuous framework. Thus, let A be a positive density
function defined on some bounded, connected region in R3, and let an eight-partition
of A be a triple of planes (h, h2, h3) that partitions A into eight parts of equal mass.

LEMMA 2.1. If every positive density function over a bounded connected region in
R has an eight-partition, then every finite point set in R has an eight-partition.

Proof We replace a set S of n points with a density function A by placing at
each point pc S,a small ball b(p) of uniform mass (1 6)/n with radius e and center
p. We choose e to be small enough so that a set of balls can intersect a common plane
only if their centers are coplanar. Let C .be a large sphere of volume IIcII "which
contains all the balls, and place additional density /llcII uniformly inside C..Thus
the total mass over C is 1, and the mass outside of the union of the balls is less than
3, which is chosen to be less than 1/2n. Suppose we find an eight-partition for A with
planes (hi, h2, h3). Then we can find (hi, h2, h3) with the property that (1) p c he if
b(p) intersects he, and (2) pc/ t_J/e (or/;t.J/e) if b(p) lies in h- (or h;). This is
possible by the choice of e. The partition (hi, h2, h3) has the property that there are
at most n/8 points in each of the eight open regions of the partition. [3



PARTITIONING SPACE FOR RANGE QUERIES 373

Because of Lemma 2.1, it suffices to prove the existence of eight-partitions in the
continuous setting. Let A be a density function as described in the lemma. Any triple
of planes (hi, h2, h3) partitions A into the eight proportions denoted by axyz(hl, h2,
for x, y, z {0, 1}, where the {th subscript is 0 or 1 depending on whether the region
lies in h or hT. We shall abbreviate axyz(hl, h2, h3) as axyz whenever possible. Thus,
aolo denotes the mass contained in h-fq h fq h-, and a11 denotes the mass contained
in h- fq h f3 h-. (See Fig. 1, where vi is the normal vector to hi.) The a,yz’S are continuous
functions of hi, h2, and h3. We use as a subscript to indicate a summation of the
ayz’S where that subscript can assume both 0 and 1. For example, we write ay. for

z axyz axyo + axyl, and a,y, for Y,,,z axyz aoyo + aoyl + alyo + alyl, etc.

FIG.

DEFINITIONS. Let A be a positive density function on R3, and consider the axyz’S
defined by three planes (h, h2, h3). We say that

1) h is a bisector of A if ax** =1/2 for x{0, 1};
2) the pair (hi, h2) forms a four-partition of A if ay.= for all x,y{O, 1};
3) the triple (h, hz, h3) forms an eight-partition ofA if ayz 1/2 for all x, y, z {0, 1}.
In order to achieve ayz =g for all x, y, z, it is convenient to form eight linear

combinations of the ayz’S as follows. Let fik ,yz exYZirk ayz, where "YZik (-- 1) b with
b (i, j, k) (x, y, z) ix +jy + kz. For example, fooo a*** 1, floo ao** a**, and

flo = aoo, aol, alo, +a,.

The fijk’S, like the axyz’S, are continuous functions of hi, h, and h3. Note that f0 is
symmetric in the first and the second arguments: fifo(hi, h2, h3) --fllo(h2, h, h3). Also,
when we flip the sign of an argument he, the function f,yz either changes sign or not
depending on whether the corresponding subscript in fyz is or 0. For example, for
{- 1, flo(-hl, h2, h3)---fo(h, h2, h3); while for {- 3, fllo(hl, h2,-h3)--
fo(hl, h, h3). We state these symmetry properties in the next lemma.
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LEMMA 2.2.
) f,(h,, h, h)=,(h, h, h).
2) fj,(-h,, h2, h3)= (-1)jk(h,, h2, h3).
Proof Immediate from the definition of fijk. [’]

In seeking an eight-partition for A, we shall make use of the following characteriza-
tion in terms of the fjk’S.

LEMMA 2.3.
1) h is a bisector ofA if and only iffloo O.
2) the pair (hl, h2)forms a four-partition ofA if and only iffloo=foo=fo=O.
3) The triple (h, h2, h3) forms an eight-partition ofA if and only iffjk =0 for all

(i,j,k)(O,O,O).
Proof 1) ao** a** 1/2 if and only if ao** al** =foo 0 since ao** + al**

2) Note that

’floo 1 -1 -1 aoo,\
fOlO 1 -1 1 -1 aol , |/
flo 1 -1 -1 1 aao,!
fooo 1 1 al,/

If aoo, ao,, a,o, all, 4!, then foo =fo,o =fllO 0 and fooo--- 1. Since the 4 x 4
matrix is nonsingular, indeed orthogonal, the converse is also true.

3) We show that the matrix of the coefficients xyz,e ij, is orthogonal, and so
nonsingular. Since

xyz xyz (x,y,z)(i+i’,j+j’,k+k’)

xyz xyz

0 unless i’, j =j’, and k k’,

the inner product of any two distinct rows of the matrix is zero.

3. Eight-partition in R3. It is well known that a four-partition can always be found
for a positive density function over a bounded connected region in R2. (See, e.g.,
[Me].) We first show this as a lemma and then prove a slightly stronger version in R
for later use.

LEMMA 3.1 (Four-Partition). Let Ao and A be two positive density functions on
the plane whose domains are bounded, connected, and separable by a line L. There is a
unique unoriented) line L’ that bisects Ao and A simultaneously.

Proof For any point p on L, let gp and rp be the (unique) lines that go through
p and bisect Ao and A, respectively. We can assume that L is vertical and that,A is
to the right of L. As p moves up L from bottom to top, the slope of rp decreases
continuously and monotonically from oe to -oe, while that of gp increases continuously
and monotonically from - to . Hence there is a unique p for which gp and rp
coincide, giving the desired L’.

We next consider four-partitions in R 3.
LEMMA 3.2. Let Ao and A be two positive density functions in R whose domains

are bounded, connected, and separable by a plane h. Let Sh --S denote the set of unit
vectors in R that are parallel to h. Then,

1) for any u Sh there is a unique plane p(u) parallel to u which bisects Ao and A
simultaneously and has an orientation induced by u;

2) the mapping f: Sh S which maps u Sh to the normal vector ofp(u) gives a

continuous antipodal mapping of Sh into S, i.e., f(-u) -f(u) for all u S.
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Proof For any u Sh, a plane p(u) parallel to u bisects Ao and A simultaneously
if and only if the projection of p(u) along the direction u (onto a plane normal to u)
gives a line that bisects the projections of Ao and A simultaneously. The intersection
of h and p(u) is a line parallel to u. The orientation of u gives it a natural orientation
which can be used to define the left and right half-planes of h with respect to this line.
The orientation of p(u) is chosen so that these lie respectively in the positive and
negative half-spaces determined by p(u). By Lemma 3.1, p(u) is unique.

it is easy to see that the functionf defined in (2) is continuous and antipodal. I-]

We shall make use of the d 2 case of the following topological theorem in
proving that every density function A in R can be eight-partitioned.

THEOREM (Bursuk-Ulam). Let f: Sd --Rd be a continuous, antipodal map, i.e.,
f(-p) -f(p) for p Sd. Then there is a point p Sd such that f(p) O.

A proof of the Borsuk-Ulam theorem can be found in textbooks on algebraic
topology such as Munkres [Mu]. The theorem does not extend in general to mappings
defined on direct products of spheres. However, we can establish the following extension
for mappings defined on the torus S S which satisfy certain additional symmetry
properties. This lemma is sufficient, as we shall see, for establishing the existence of
eight-partitions in R3.

LEMMA 3.3. Let f: SI S1.- R2 be a continuous map such that
1) f is symmetric, i.e., f(u, v) f(v, u),
2) f is antipodal in each argument, i.e., f(u, -v) f(-u, v)= -f(u, v), and
3) f is constant on the diagonal {(u, u)lu S1}.
Then there is a point p S S such that f(p) O.
Proof. We can represent S S by the square [0, 27r] [0, 27r] with opposite

sides identified. Consider the rectangle ={(u, v)lTr<= u+v<=37r, u <- v<= u+Tr} con-
tained in with vertices A=(Tr/2, Tr/2), B=(0, Tr), C=(37r/2,37r/2), and D=
(Tr, 27r) (Fig. 2). Note that f is constant on side AC by property (3), constant on side
BD .since f(u, u+ 7r)=-f(u, u) by (2), and defined identically on AB and CD since
f(u, v) =f(u + 7r, v+ 7r). The involution (u, v)--(v, u + 7r) maps square ABFE to
FECD and vice versa, while f(v, u+ 7r) =-f(v, u)=-f(u, v). Consider any map
ce: -S which identifies sides AB and CD, contracts BD and AC to points, and
maps every pair of points of the form (u, v) and (v, u + 7r) in to a pair of antipodal

D

0 x 2
F. 2.
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points (p,-p) on S2. Such an a yields an induced continuous function f’: $2- R
where f’(a(p))=f(p) for pc . Since f’ is an antipodal map, it follows from the
Borsuk-Ulam theorem that f’, and hence f, must map some point onto the origin
of R.

MAIN THEOREM. Let A be a positive density function over a bounded connected
region in R 3, and let Woe S be given. Then there exists a triple of planes (h.1, h, h3)
which forms an eight-partition for A, and where the normal vector of h is wo.

Proof. By Lemma 2.3, this is equivalent to finding hi, h2, h3 such that
fik(hl, h2, ha)=0 for all (i,j, k) (0, 0, 0). Since h, h, and ha must be bisectors for
A, and for any u S there is a unique bisector hu for A with normal vector u, we can
define functions gijk $2 x S2 S R by

(1) gik(U, V, W)=fk(hu, h, hw).

the gijk’S are obviously continuous. It suffices to find Uo and Vo such that glo-glOl--

goll gl =0 at (Uo, Vo, Wo). We can limit the choice of Uo (or Vo) to the set {u} (or
{v}) for which (hu, hwo) (respectively, (h, hwo)) forms a four-partition, i.e.,

(2) gol(u, v, Wo)=0 and goll(u, v, Wo)=0.

By Lemma 3.2, the set of (u, v) that satisfies (2) is homeomorphic to S S. Our goal
is thus to find a point (Uo, Vo)S S where both of the functions

def def

Go(U, v)= gllo(u, v, Wo) and G(u, v)= gll(U, v, Wo)
def

are zero. Let G (Go, G1): S S - R2. Note that G is symmetric in its two arguments
and antipodal on each S by Lemma 2.2 and (1):

G(u,v)=G(v,u),

G(u,-v)=-G(u,v).

Furthermore it is easy to verify that on the diagonal we have

G(u,u)=(,O).

It follows from Lemma 3.3 that there exists (Uo, Vo) S S such that G(uo, Vo) (0, 0).
We conclude that (h,o, ho, hwo) yields the desired eight-partition.

LEMMA 3.4. Consider a partition of R into eight open regions by three mutually
intersecting planes. Any plane h in R can intersect at most seven of these eight regions.

Proof Define the origin O to be the point where the three planes meet, and axes
X, Y, and Z to be the lines where pairs of planes intersect. Then O divides each axis
into two half-axes {X/, X-}, {Y/, Y-}, and {Z/,Z-}. Without loss of generality,
assume that h intersects the half-axes X/, Y/, and Z/. Then h does not intersect the
open region bounded by X-, Y-, and Z-

The Borsuk-Ulam theorem also leads to the following well-known corollary (see,
e.g., [E]), which we shall employ in defining a data structure in 4.2. We state it in
the discrete version for convenience.

THEOREM (Ham-Sandwich Cut). Let S, $2,’." Sd be d finite point sets in R d.
There exists a hyperplane which simultaneously bisects S1, S,. ., Sd.

4. Data structures and algorithms. Let S be a finite set of points in R 3. We will
describe several tree structures for representing S, based on partitions of S by planes.
These partitions are obtained by recursive applications of the theorems proved in the
last section, and the resulting tree structures are suitable for the purpose of half-space
retrieval and related searches on S.
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We first present a recursive partition scheme based on the main theorem, giving
a data structure termed an octant tree. Two variations of this basic scheme are derived
by applying recursion in more intricate ways. The retrieval time is analyzed for each
scheme, with the last variant achieving a retrieval time of (n8988) for half-space query.

4.1. Octant tree. An octant tree is a recursively defined structure for storing a
finite set S of points in R 3. If S is empty the octant tree is the special node NIL,
otherwise the root of the octant tree contains a plane h, and its left, middle, and right
children represent the subsets S f’) h-, S f) h, and S f-) h/, respectively. More precisely,
the middle child points to a two-dimensional data structure for S h (such as a polygon
tree [W] or a conjugation tree JEW]), while the left and right children point to the
root nodes of octant trees for S fq h- and S h/, respectively. We define the domain
of any node v, denoted by dom (v), to be the intersection of the "regions" on the path
from the root to v. That is, the domain of the root is the whole space, and if v is a
child of w, and h is the plane stored at w, then dom (v) is the intersection of dom (w)
with h-, h, or h/, depending on whether v is the left, middle, or right child of w. The
set stored at v, denoted by S(v), is S ["1 dom (v).

The plane h at each node v of the octant tree is chosen so that both IS(v)f)h-I
and IS(v)fq h+l are at most IS(v)l/2. There is no difficulty in finding planes with this
property, but, without further conditions, such a data structure would have poor
worst-case performance for half-space retrieval. (For example, k-d trees [B] require
O(n) time in the worst case.) In the schemes to be described, we achieve better
performance by appropriately grouping the tree nodes so that all nodes within a group
can share a common plane. For this purpose, we build octant trees recursively from
small primitive trees and define the grouping among the nodes of a primitive tree. The
data structures pointed to by middle children represent the corresponding two-
dimensional sets efficiently for a retrieval time of O(ta) for a set of size t, where
6 0.695 [EW]. These substructures are ignored in the recursive structures described
below and contribute just O(na) terms to the recurrence relations given.

OCTANT TREE A. In this basic scheme, the primitive tree is of height 3 and all
nodes on the same level share the same plane (see Fig. 3). The existence of such
primitive trees is implied by the Main Theorem. The octant tree is obtained by applying
recursion at the leaves of the primitive tree. In the figure solid nodes represent the
roots of primitive trees.

Oh2 Oh2

Oh3 Oh3 Oh3 Oh3

FIG. 3.
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A search algorithm for the octant tree can be derived recursively from a search
algorithm for the corresponding primitive tree. The general search strategy for primitive
trees, with respect to a query plane q, is to identify those leaves in the primitive tree
which need not be searched further. More precisely, a leaf v can be excluded from
future search if dom (v) lies completely in a half-space of q, since the entire set S(v)
can be either reported or discarded. A leaf satisfying this condition is said to be free
with respect to q.

By Lemma 3.4, the primitive tree has at least one free leaf with respect to any
query q. Furthermore, the time required to identify the free leaves is bounded by a
constant. Thus the search time for the derived octant tree is proportional to the total
number of nodes visited. The recurrences below yield upper bounds for the search
time. The reporting time, which is always linear in the size of the result, is not included
here. Let f(n) denote the maximum number of nodes visited in an octant tree for a
set of n points. The constant 6 arising from the two-dimensional subtrees has value
at most 0.695.

LEMMA 4.1. f(n) satisfies the recurrence relation

f(n) <= 7 + 7f(n/8) + O(n),

which gives a search time of O(f(n))= O(n) for ce log8 7 0.9358.

Proof In Fig. 3, the seven upper nodes of the primitive tree are visited, followed
by visits to the seven substructures of size at most n/8 corresponding to the non-free
leaves. The total number of nodes visited from middle children is at most O(n). The
linear recurrence relation is solved by standard techniques (see, e.g., Knuth [K]).

4.2. Refined octant trees.
OCTANT TREE B. In this variant of the basic scheme, we apply recursion to the

four sets at level 2, while requiring that the same h3 be used as the first plane for all
four sets. The primitive tree is of depth 2 (see Fig. 4). Here we take advantage of the
strength of the Main Theorem, which allows one of the three partitioning planes to
be an arbitrary bisector.

To estimate the search time for scheme B, letf(n) (and g(n)) denote the maximum
number of nodes searched for any query, when the search starts at a root-level (and,
respectively, second-level) node v of the primitive tree with S(v)= n.

C)h2 iDh2

FIG. 4.
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LEMMA 4.2. f(n) and g(n) satisfy the recurrence relations

f(n) =<4+ 3f(n/4) + g(n/8) + O(n ),

g(n)<= 1 +2f(n/2)+ O(n),

which give a search time under scheme B of O(f(n))= O(nt3), where fl 0.9163.
Proof Suppose without loss of generality that the rightmost of the eight lowest

nodes, r, is free. The algorithm visits the three upper nodes and the parent of r, then
recurses from the root level in the three left subtrees. In the fourth subtree, since r is
free the search can begin at the second-level node which is r’s sibling. This yields the
first inequality. For the second, a search begun at second-level node searches that node
and recurses on its children, which are root-level nodes. Substituting the second
inequality into the first, we have

f(n) <= 5+ 3f(n/4)+ 2f(n/16)+ O(n).

The recurrence yields f(n)= O(nt), where/3 0.9163. [3

OCTANT TREE C. This is a hybrid of schemes A and B with some further
refinements. The primitive tree has six leaves on level 3 and one leaf on level 2. (See
Fig. 5.) The six leaves on level 3 are divided into two triplets, where each triplet is to
share a common first plane in the recursion. This is possible since, by the Ham-Sandwich
theorem, any three point sets in R can be bisected by a single plane. We choose each
triplet to consist of three octants that do not share any common faces; indeed the six
octants can be divided into two such triplets as shown in Fig. 6, where the octants are
represented as the vertices of a cube.

C) h3 O h3 O h3 h3

h4 h5 h5 h4 h5 h4 C O
A a b B c C U V

FIG. 5.

Again, define f(n) and g(n) as in the analysis of scheme B. We have the following
bound for f(n).

LEMMA 4.3. Under scheme C, f(n) satisfies the recurrence relation

f(n) <- lO+f(n/4)+4f(n/8)+4f(n/64)+O(n),

which gives a search time of O(f(n))= O(n) for y 0.8988.
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a

h 3

A

B

hl

V

U

FIG. 6.

Proof There are a number of cases to consider depending on which of the eight
nodes is free.

If A is free then the intersection of the query plane q with the other domains will
be similar to Fig. 7. The domains A, B, and C are bisected by h4, while h5 bisects a,
b, and c. In the worst case, q will intersect both halves of B and C but, by our choice
of the triplets, q cannot intersect both halves of a, b, and c. (In Fig. 7, the intersections
of q with a, b, and e form three regions which cannot be simultaneously intersected
by the line representing the intersection of q and hs.) For the case detailed in Fig. 7,
our algorithm is to search the six non-leaf nodes of the primitive tree; recursively

h5 hi
h3 /

h2

h4
FIG. 7.
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search from the parent of U and V; recursively search a, b, B, and C; search the node
labelled c; and search from the second-level node corresponding to the child of c
which is intersected by q. This yields the inequality

(3) f(n)<=7+f(n/4)+4f(n/8)+g(n/16)+O(n).

If U is free the intersection with q is similar to Fig. 8. Here at most two of A, B,
and C and two of a, b, and c can have both of their halves (with regard to ha and hs,
respectively) intersected by q. For the case detailed in Fig. 8, our algorithm is to search
the upper seven nodes; search the nodes labelled B and b; recursively search a, c, A,
and C; recursively search the single children of B and b which are intersected by q;
and recursively search V. The corresponding inequality is

(4) f(n)<=9+4f(n/8)+2g(n/16)+g(n/8)+O(n).

We also have two inequalities for g(n), depending on whether the second-level node
where the search starts is the left child or the right child of a root node.

(5) g(n) =< 3 + 4f(n/4) + O(n),

(6) g(n) <= 2 + 2f(n/4)+f(n/2)+ O(n 8).

The worst case is obtained by substituting (5) into (3), resulting in

f(n) <- lO+f(n/4)+4f(n/g)+4f(n/64)+ O(n).

This yields f(n) O(n ), where 3/ 0.8988.

4.3. Preprocessing cost. We look at the time it takes to construct an octant tree
for a set S of n points. First consider the computation of an eight-partition (hi, h2, h3)
for S. The first bisector hi can be found in O(n) time by a median-finding algorithm.

h2

h3

C

h5 t"11

A

V
B b

FIG. 8.
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We may assume that h2 and h are each determined by three points of S. For each of
the O(n6) possible choices of (h2, h3), we decide in O(n) time whether it forms an
eight-partition together with hi by explicitly counting the number of points in each
octant. This amounts to a total time of O(n 7) with linear space. The time can be
reduced to O(n6) by lowering the cost due to counting as follows. For any two fixed
points a, b, of S, order the remaining points as cl, c2,’’’ by projecting the points of
S onto a plane perpendicular to ab and sorting them radially. Coplanar sets of more
than three points introduce some complication but no significant difficulty. With such
orderings imposed on h3 during the search, the task of counting associated with each
pair (h2, h3) becomes that of doing simple updates, with constant cost per pair on
average. The total cost for finding an eight-partition, with sorting included, is thus
O(n6) time using O(n3) storage. The storage could be made O(n) by repeating the
sorting operations whenever needed, but at a cost of O(/16 log n) time.

The octant trees of schemes A and B can be constructed by applying the above
procedure recursively, in total time O(n6 log") for n points with linear space. The same
bounds hold for scheme C since a "ham-sandwich cut" can be computed in O(n log n)
time.

4.4. Circle queries. The problem of finding all points (x, y) in a planar set S which
lie inside a query circle C with center (a, b) and radius r can be transformed to a
three-dimensional half-space problem in the following way. Since

(x,y) lies inside Cce(x-a)2+(y-b):<r2

:-2ax 2by + (x2 + y) < rz- a- b2,

if we represent each point (x, y) S as a three-vector v (x, y, X2-" y2) then the query
with respect to circle C can be expressed by the half.space query"

(-2a, -2b, 1) v < (r2 a b2).

A geometrical interpretation of this is that, when the xy-plane is projected upwards
onto the paraboloid z x2+ y, the image of any circle in the plane is the intersection
of the paraboloid with a suitable plane. The same technique is applicable to other
"algebraic" queries, but the dimension required is the number of degrees of freedom
of the defining polynomial.

Rather than transform the circle query problem to three dimensions, we can also
recast our three-dimensional results in two dimensions. An eight-partition of the n
points on the paraboloid can be projected down to the xy-plane yielding a partition
by three circles. Our main theorem implies the following.

COROLLARY 4.4. For any finite point set and any bisecting circle in the plane, there
are two circles such that each open region defined by the three circles contains at most
one eighth of the set.

Any query circle intersects at most six of the eight regions since it meets the three
circles in at most six points. Using (the two-dimensional projection of) octant tree A
we therefore get O(f(n)) query time, where

f(n) <-_ 7 +6f(n/8)+ O(log n)= O(n),

for a log8 6 0.8617. Here the O(log n) term takes care of the one-dimensional
queries needed for points lying on the partitioning circles.
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We get the same worst-case time using scheme C, but using octant tree B yields
a slight improvement. The query time is O(f(n)), where

f(n)<=7+2f(n/4)+4f(n/16)+O(log n),

which solves to f(n)= O(nt3), with/3 (log2 ,,/+ 1)/2 0.8471.

4.5. Polyhedron queries. Based on our half-space query schemes, we may derive
a generalization to queries for convex polyhedra defined by the intersection of r

hyperplanes. For fixed r, the query time will be of the same order as for half-space
queries, but the constant increases with r. Since every (not necessarily convex) poly-
hedron can be decomposed into (possibly unbounded) tetrahedra (see, e.g., [Chl]),
it would suffice to consider at most tetrahedral queries, i.e., r =< 4.

Let f,(n) be the number of nodes of the data structure for n points which may
be searched in a query with a polyhedron C which is the intersection of r half-spaces,
where we already have by our scheme C above that fl (n) O(n) for some 7--< 0.8988.
We prove by induction on r that fr(n)= O(n) for all r.

Suppose fr_(n)= O(n) and consider a query with respect to the intersection of
r half-spaces. In the case that some level-three node is free with respect to all r planes,
the recurrence relations considered above hold for f. In the alternative case, there are
two level-three nodes, each free with respect to some plane or planes. Now the
recurrence terms in fr are diminished and so correspond to some exponent y’< y,
while the remaining terms are of size O(f_(n))= O(n). The result is that f(n)
O(n) and the induction is complete.

Of course the same general argument is valid for any similar scheme in any finite
dimension.

.5. Conclusion and related results. We showed that an eight-partition with three
planes exists for any finite point set in R3. It was brought to the authors’ attention
that .a continuous version of this theorem was proved earlier by Hadwiger with a more
complicated argument [H]. As far as generalization to higher dimensions is concerned,
Avis [A] showed that 2a-partitions are not always possible in dimensions d->_ 5. A
different and simpler proof is as follows (stated here for d 5 but adaptable to any
larger d). Take thirteen small balls of equal mass and place them in general position
so that no hyperplane in R can intersect more than five of the balls. Now, in any
25-partition, each ball must be cut by at least two hyperplanes, otherwise some orthant
will contain at least one half of a ball, with at least 1/26 of the total mass, which is
larger than the 1/32 required. Therefore, for all thirteen balls, at least 26 instances of
hyperplane-ball intersections are needed. Since the balls are in general position, five
hyperplanes can provide at most 25 such instances and we have a contradiction.

The case of d 4 still remains an intriguing open question, that is, given any finite
point set in R4, whether one can always partition it with four hyperplanes such that
each orthant contains at most 1/16 of the points. Our proof for d 3 makes use of
the Borsuk-Ulam theorem of algebraic topology; the case of d 4 is likely to draw
further upon classical mathematics for its resolution.

Generalizations of eight-partition to higher dimensions have also been studied
along a different line, by relaxing the number of hyperplanes used in the partition (see
Cole [Co] and Yao and Yao [YY]). Deterministic partition schemes in three dimensions
that are different from those described in this paper can be found in [EH]. Their main
construction is based on the existence of a six-partition for every planar point set, that
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is, a partition by three concurrent lines so that every wedge contains at most one sixth
of the points. The best such scheme achieves O(n) query time, where c 0.9089.

Haussler and Welzl [HW] used random sampling to demonstrate the existence of
partitions in Ra which afford the best query time currently known. In particular, for
d 3 their scheme gives query time O(n) for c =0.857. As their algorithms are
probabilistic, it is an interesting open question to find deterministic algorithms for
constructing partitions to realize similar or even better query time in R.

Chazelle [Ch2] established a lower bound under a rather general model for range
search in d dimensions. His bound in three dimensions assuming O(n) space is
(n2/3 log n) query time.
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Abstract. The average-case performance of an algorithm for CNF SAT, recently introduced by the
author, is discussed. It is shown that the algorithm takes polynomial average time for a class of CNF
equations satisfying the condition that for0a constant c, p2v >-In t-c, where v is the number of variables,
is the number of clauses, and p is the probability that a given literal appears in a clause. It was known that
backtracking plus the pure literal rule, a common way of solving CNF SAT, takes polynomial average time
if p => e (any small constant) or p -< c (Invbut no algorithms were known to take polynomial average
time (for all t) in the range c (In v/v) 3/:z < p < e. For reasonable (t <= v for some constant a > 0) the new
algorithm runs in polynomial average time for p> (a In v/v) 1/2, so the unfavorable region is reduced to

c(ln v/v)3/2<p<(a In v/v) 1/2.

Key words. CNF SAT, average time, independent sets, backtracking

AMS(MOS) subject cle,ssifications. 68Q20, 68Q25, 68R05

1. Introduction. A number of approaches to attack hard (typically NP-hard)
combinatorial problems are known, most of which are claimed to be "realistic" in the
sense that they work well in most average cases. However, if, as is widely believed,
there are no good algorithms which work efficiently for all instances, those approaches
should have some weak points. This seems to be true. For example, when trying to
solve CNF Boolean equations (or their satisfiability, SAT) by backtracking [3], [4],
[5], [9], [10], [11], [12], [13], it is known that the number of literals in each clause
plays an important role. The more literals, the less efficiently backtracking works, which
is clearly due to the fundamental structure of the approach. Probabilistic approaches
to the Hamiltonian circuit problem [2], [7] also depend on the average degree of given
graphs. (For example, [7] shows that there is a polynomial-time algorithm which almost
surely finds a Hamilton circuit for the graphs whose average degree is greater than
In n.) They seldom work for the graphs such that Hamiltonian circuits exist, but the
average degree is small.

Knowing some specific weak point of one approach, it is quite natural to look
for another approach which will compensate for that weak point. It is a little surprising,
however, that there have been very few articles focusing on this complementary nature
of algorithms for hard combinatorial problems. (Trivial ones like sequential searches
in opposite directions usually do not help in the case of hard problems.) In solving
CNF SAT, most efforts have been made to improve backtracking by means of heuristics
or to analyze the efficiency of backtracking, which has not changed the approach’s
fundamental weak points.

Recently the author introduced a completely new approach, called IS, to solve
CNF SAT [6]. In [6], it was shown that (i) IS is complementary to backtracking in
that it becomes faster as the number of literals in each clause increases, and (ii) there
is evidence that IS is actually faster than backtracking in a certain class of instances.
In this paper, we look into the IS approach from a slightly different angle. It is shown
that IS takes polynomial average time for CNF equations satisfying the condition that
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This work was supported by the Science Foundation Grant of the Ministry of Education, Science and
Culture of Japan.

f Department of Computer Sciences, Kyoto Sangyo University, Kyoto 603, Japan.

385



386 KAZUO IWAMA

for a constant c

p2v >=ln t-c

where v is the number of variables, is the number of clauses, and p is the probability
that a given literal appears in a clause (the same for all literals).

Among others, Purdom and Brown have investigated extensively the performance
of backtracking for CNF SAT [3], [5], [9], [10], [11], [12], [13], [14]. In [13], [14] it
is shown that backtracking (with the pure literal rule) takes polynomial average time
when any of the following conditions is satisfied: (1) t<=cln v, (2) t>=exp(ev), (3)
p _-> e, and (4) p _-< c(ln v v) 3/2, where c is any large constant and e any small constant
(see [13], [14] for the dependence of bound (4)). In discussing a practical class of
instances, it is common to introduce the assumption v for some positive constant
a [3], [12]. Then the above (1) and (2) do not apply because neither c nor e can be
constant. (3) and (4) leave the range

c(ln v v) 3/2 < p < e

where there are no known algorithms which take polynomial average time. Our present
result makes this unfavorable gap smaller, i.e.,

cl(ln v v) 3/ < p < c2(ln v v)1/2.

It should be noted that this gap is the worst case (when (2 In 2)v/ln v). For example,
when v it becomes

el/v < p < ez(ln v v)1/2.

The algorithm, as well as some preliminaries, are described in the next section.
In 3 we analyze the performance of IS and prove our main result. In 4 we present
a preprocessor to reduce the number of clauses and discuss its advantages. Analysis
of several heuristics other than this preprocessor (see [6]) will be given in future reports.

2. Algorithm IS. The following small example will clarify the basic idea of the
algorithm. Let

fo (Xl + x2) (x3 -[- x4) (-32 -1- -4) (-31 -- -2) ()1 -[" x3 t_ ..4) (21 _[_ x2 _[_ -3’3)

and remember the Karnaugh map [8] used to minimize logic functions. Note that the
first clause (xl + x2) offo covers four maxterms (or cells of the map), (Xl + x2 + x3 + x4),
(xl + x2 + )3 + x4), (xl + x+ x3 + )4) and (Xl + x2 + 3 + )4). The second clause also covers
four cells and so on. Note that cell (Xl + x2+ x3 + x4) is covered by both the first and
the second clauses. It is a fundamental fact that fo is satisfiable if and only if the
number of cells covered by at least one clause is less than 24 (4 is the number of
variables). In fo, the first and second clauses overlap on one cell, as do the second
and fourth clauses, the third and fifth clauses, the fourth and fifth clauses, and the
third, fourth, and fifth clauses; the third and fourth clauses overlap on two cells.
Therefore by the inclusion-exclusion principle we can calculate that

4+4+4+4+2+2-(1+ +2+ 1+ 1)+ 1 15

cells are covered, which means that fo is satisfiable since 15 < 24. In fact, one can verify
that no clauses cover cell (xl + 2 -[" 33 -11" X4)" That means that (xl, x2, x3, x4) (0, 1, 1, 0)
makes the whole fo logical (true). The efficiency of this approach clearly depends
on the number of overlaps, which can be exponentially large in general.
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With the predicate f0 we can associate the graph G(fo) of Fig. 1, where the nodes
nl through n6 correspond to the clauses sl through s6 (sl--(x + x2), s2 (x3 + x4) and
so on). Edges between two nodes show that the corresponding two clauses do not
overlap. Hence two or more clauses that overlap are represented on the graph by two
or more nodes that construct an independent set (IS stands for independent sets).

More formally, a (CNF) predicate is a product (logical and) of clauses, each of
which is a sum (logical or) of literals (variables x or their negation 2). For the problem
set, we assume, as in [5], [11], [13], a set of random predicates with parameters v (the
number of variables), (the number of clauses) and p (the probability that each literal
appears in a clause). A random clause is formed by independently selecting each of
the 2v literals with probability p. A random predicate is formed by independently
selecting random clauses. Thus the clause may consist of no literals (false) or may
include both x and for some variable x (tautological).

For a clause s and a set S of clauses, we define

LIT (s)- {zls includes literal z},

LIT(S)= LJ LIT(s).
sins

A set S([S] _>- 1) of clauses are said to be independent if there is no variable x such that
both x and ff are in LIT (S). Thus, if S is not independent then no two clauses in S
overlap on the Karnaugh map and if S contains a tautological clause then it is not
independent even if [S] 1. For an independent set S of clauses of predicate f with v
variables, we define

SIZEc (S) 2 v-ILIT(s)I.

For an integer i, INDj (i) is defined as

INDj- (i) ={S[S is an independent set of clauses}.

SIZEy and INDy can be written as SIZE and IND, respectively, if predicate f is clear.

n I

n 6
n 2

n 5

n 3

n 4
FIG. 1. Graph G(fo).
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For the predicate fo above,

IND (2)= {{s,, s2}, {s2, s4}, {s3, s4}, {s3, ss}, {s4, ss}},

LIT ({s3, $4})

SIZE ({s3, S4}) 24-3-- 2.

Now here is the algorithm:

procedure IS
begin
sum :- O; := 1;
repeat
compute IND (i);
sum:= sum+ (-1)i-1 SIZE (S);

S in IND (i)

i:=i+1
until IND (i) qS;
if sum 2 then answer "unsatisfiable" else answer "satisfiable"

end.

Note that SIZE (S) is the total number of the cells on the Karnaugh map that are
covered by all the clauses in S. Then it is not hard to see that the algorithm is correct,
namely, it counts the number of cells covered by at least one clause of the given
predicate f in the repeat loop. There seem to be several methods to compute IND (i)
efficiently. For example, the following way, although elementary, does not recompute
the same element more than once. Suppose that f consists of clauses sl, s2,"" ", st
and that S={sj,,s2,...,s.,_,},jl <j2<’’’<ji_, is in IND(i-1). Then check for
each Sh, h>ji-, whether S{sh} is independent. If so, we put SI,.J{s} into IND (i).
Clearly IND (1)= {{s}ls is any clause but a tautological one}.

Now let us take a look at the number of steps IS needs. For a single member S
of IND(i-1), we have to check for O(t) clauses s whether or not S{s} is
independent. To check if S {s} is independent, O(Ish I) steps are enough by computing
in advance LIT (S) for all S in IND (i-1) and LIT (s) for all clauses off Thus it
takes O(t. lIND (i- 1)l) steps to compute IND (i) if we consider Is[ a constant. (That
is a usual and reasonable assumption since the real size parameter for given predicates
is their length, but instead we now take the number of clauses as the size parameter.)
To compute sum, O(t. [IND (i)l) steps are obviously enough. Therefore IS takes

O(t. Nz)
steps where N. is the number of all independent sets or

N.= lIND (1)1 +lIND (2)1+1’’’.
The above method of computing IND (i) is simple and easy to implement but requires
a lot of memory to hold the whole IND (i) and IND (i-1). Note that we can use a
standard technique (recursive tree search) to save memory while increasing the number
of steps only by a constant factor (see, e.g., pp. 64-69 of [1] for a general idea of this
technique).

3. Polynomial average time. In this section, we obtain the expected number Nf
of all independent sets of clauses for’the predicate f such that the number of variables
is v, the number of clauses is t, and the probability that a literal appears in a clause
is p. Let P(k) be the probability that k clauses are independent. One can see that the
k clauses are independent if, for all variables x, x appears in none of the k clauses or
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appears in none of the k clauses. The probability that x appears in none of the k
clauses is (1 _p)k and the same for 2. The probability that neither x nor ff appears is
[(1-p)(1-p)] k. Hence

P(k) {(_p)k+(l_p)k_[(l_p)(l_p)]k}

{(1--p)k(2--(1 _p)k)}v
(1)

11.\

={(1--p)k(l+kp--t)p2+ .)}v

<--_ {(1--p)k( + kp)}.
Let (k)={(1-p)g(l+kp)}. (Note that/5(k)<1 for O<p<-I and k>_-l.)

The value Ny we want can be written as Ny=k ([) P(k). Let

and

Then it is not hard to observe that, as k increases, N(k) first increases, becomes
maximum at some point k ko and then decreases. To obtain ko we compute

t(t-1)’’’(t-k+l)(t-k)
[(1 --p)k+l(1 +(k+ 1)p)]

S(k+l) (k+l)k"" 1

N(k)

t-k
(3)

k+l

t(t-1)... (t-k+l)
k(k-1) 1

(1-p) + p
1+

t-k
<- (1-p)(1 +p)
-k+l

[(1-p)( + kp)]

t-k
-(1 _p2),.
k+l

One can see that ko is the least integer that satisfies N(ko+ 1)/N(ko) <- 1. Hence kl _-> ko
if kl satisfies

t-k1(4)
kl +

(1- p-) <_- 1

or

(5)
t(1 -p2)’
+(l_p2) --kl.

The sum in (2) is less than times the biggest term, so N/=< for some constant c if

kl c-1. The condition can be rewritten by (5) as

(6)
t(1 _p2),_ 1

<_ c- 1.
l+(1-p2)
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Clearly +(1-p2)V=> and therefore (6) holds if

(7) t(1-p2)<-_c
or

(8) p2v_->ln t-ln c,

since In (1-p2) <= -p. Condition (8) guarantees that NF<_-t c. We have already shown
that it takes IS O(t. Nf) steps in Section 2; hence, the following theorem follows.

THEOREM 1. IS takes O( ’+) steps on average for the class ofpredicates satisfying
the condition that p2v >- In In c for the constant c.

4. Clause reduction. Consider the following predicate fl
fl (Xl -[- ’4) (Xl -- ’2) (’1 -[- X2 -[" X3)(X3 -[- -4) (Xl -It- X2 -" 3)(X2 -It- X4).

Note that the first clause offl, (xl + )4), can be removed without changingf’s satisfiabil-
ity since the four cells covered by (x +)4) are also covered by the conjunction of the
second, fourth, and fifth clauses

(x +)(x+ z)(x + x+ ).
We can prove this through another satisfiability test, i.e., by showing that predicate

igT(fl (X -t- )4))--- ’2" X3" (X2-JV ’3)

is not satisfiable. F(f, (xl +:4)) is obtained by (i) picking clauses s out of f such
that s and (x + 4) are independent and (ii) deleting the literals x and ’4 (of (X + 4))
appearing in those clauses.

Since removing such clauses clearly makes the given predicate simpler, it is worth
trying, if testing of F(f, s)’s satisfiability for each clause s off is much easier than to
test the whole f’s satisfiability. (The test need not be done for all clauses but for some
chosen by a certain heuristic.) Clause reduction may lead to a large saving, and the
author believes that it should be investigated further.

5. Concluding remarks. Our main result clearly indicates the complementary
nature between backtracking and IS: Backtracking works well for small p and IS for
large p. However, there still remains the gap, c(ln/)//))3/2 <p < c2(ln v/v) 1/:z, where
no polynomial-time algorithms are known. Just as the lower bound of this gap has
long been raised by improvements of backtracking itself and its performance analysis,
the upper bound also will possibly be lowered by future research on IS. Some candidates
are (i) to include the close reduction (in 4) in the algorithm systematically and (ii)
to take into account in the analysis another heuristic [6] that makes it possible to stop
the main loop before IND(i) becomes empty.

Acknowledgments. The author thanks Y. Okabe for his help in computing Ny in
Section 3 and P. Purdom for pointing out an inappropriate approximation in an early
version of this paper.
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RELATIVIZED POLYNOMIAL TIME HIERARCHIES
HAVING EXACTLY K LEVELS*
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Abstract. It is proved that for every integer k => 0, there is an oracle Ak relative to which the polynomial
time hierarchy collapses so that it has exactly k levels. Furthermore, sets Bk and C may be constructed so

that, relative to B, the polynomial time hierarchy has exactly k levels and the class PSPACE coincides
with the polynomial time hierarchy, and, relative to C1,, the polynomial time hierarchy has exactly k levels
and the class PSPACE is different from the polynomial time hierarchy.

Key words, polynomial time hierarchy, relativization, oracle

AMS(MOS) subject classification. 68C25

1. Introduction. One of the main goals in complexity theory is to develop proof
techniques to separate complexity classes. While it is well recognized that most
separation results are beyond today’s proof techniques, interesting progress has been
made recently on separation results for relativized complexity classes. Baker, Gill, and
Solovay [2] showed that the relativized P-?NP question may be answered in both
ways depending on the oracles; i.e., there exist sets X and Y such that P (X) NP (X)
and P (Y) NP (Y). Baker and Selman [3] extended it to the second level of the
polynomial time hierarchy showing that there exists a set Z such that Eze(Z) Z’(Z).
The proof technique of Baker and Selman’s result is a complicated counting argument
which, however, does not seem powerful enough to be applicable to separating the
third level of the relativized polynomial time hierarchy.

More recently, Furst, Saxe, and Sipser [4] and Sipser [9] proposed the idea of
applying probabilistic arguments to this problem. They reduced the problem of separat-
ing the relativized polynomial time hierarchy to the problem of proving lower bounds
on the size of constant depth circuits. The major breakthrough in this direction is due
to Yao 12] who, based on Furst, Saxe, and Sipser’s idea, showed an exponential lower
bound on the size of constant depth parity circuits and hence exhibited an oracle A
which separates the class PSPACE (A) from PH (A). Hastad [5], [6] simplified Yao’s
proof and gave a proof for the claim made in [12] that there exists an oracle B such
that for all k > 0, PH (B) E ’(B). We summarize the known results about the relativ-
ized polynomial time hierarchies as follows:

(1) IAIk>O[E(A)=H(A)PH (A) =E’(A)] (Stockmeyer [10]).
(2) EIB PSPACE (B)= P (B) (Baker, Gill, and Solovay [2]).
(3) ::IC/k>OPSPACE(C)#PH(C)#E(C) (Yao [12] and Hastad [5], [6]).
(4) ’k 1, 2, ::iDk PH (Dk)= E’(D) # F-’_I(D) (Baker, Gill, and Solovay [2],

Heller [7]).
From the above results, the relativized polynomial time hierarchies may have quite

different structures depending on the oracles. However, these results have not exhausted
all possible structures of the relativized polynomial time hierarchies. For example, the
following question remains open: does there exist a set Dk for each k => 3 such that
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(4) above holds? Furthermore, if such sets Dk exist, can we construct them to also
separate PSPACE (Dk) from PH (D)? In this paper, we show that the probabilistic
arguments developed by Yao 12] and Hastad [5], [6] are powerful enough to construct
oracles D with the above required properties. More precisely, we prove the following
results.

(5) Vk > 1EIEk PSPACE (Ek): E(Ek) Z_,(Ek).
(6) EIFo PSPACE (Fo) NP (Fo)= P(Fo).
(7) Vk _-> 1EIFk PSPACE (Fk) # PH (Fk) E(Fk) # ZkP_,(Fk).
The proof techniques for these results are the combination of the encoding scheme

of Baker, Gill, and Solovay [2] and the probabilistic arguments of Yao 12] and Hastad
[5]. The main complication comes from the possible interference between the two
constructions, which can be handled by using slightly different formulations of Yao
and Hastad’s basic lemmas.

2. Preliminaries.
2.1. Basic notation. In this paper, all sets A are sets of strings over the alphabet

Z {0, 1}. For each string x, let Ix[ denote its length. Let Z" be the set of all strings of
length n. We assume that there is a one-to-one pairing function (,... ,) that encodes
an arbitrary number of strings x,..., x, into a single string (x,..., x). We assume
that [(Xl,""" ,Xn>[i%l]Xi[. For each set A, let /’A be its characteristic function; i.e.,
for each x, XA(X) if X A, and XA(X) 0 if X A.

2.2. Complexity classes. We assume that the reader is familiar with Turing
machines (TMs), nondeterministic TMs, oracle TMs, nondeterministic oracle TMs,
and their time and space complexity (see, for example, [8]). Let be a class of sets.
We let P (c) (NP ()) denote the class of sets that are computable in polynomial time
by a deterministic (nondeterministic, respectively) oracle TM using some set A : as
an oracle. If c= {A} then we write P (A), NP (A) for P ({A}), NP ({A}), respectively.
Also,. if A then we write P, NP for P (), NP (), respectively. Let PSPACE ()
denote the class of sets that are computable in polynomial space by a deterministic
oracle TM using some set A as an oracle. The relativized polynomial time hierarchy
is defined as follows. For any class , let co-re be the class of sets whose complements
are in .

X’() IIoP() AoP() P(f);

X’+() NP (X’( ));
nL,(f): co-Xf+l(f);
A+I() P(Xf()).

Let PH () be the union of all of the above classes. When {A} or {}, we
also use simpler notation Y ’(A) or 2 ’, respectively, for 2’(), etc.

The relativized polynomial time hierarchy PH () can be characterized by alternat-
ing quantifiers. Let R(A; x) be a predicate over a set variable A and a string variable
x. We say that R(A; x) is a P-predicate if R is computable in polynomial time by a
deterministic oracle machine that uses set A as the oracle and takes string x as the
input. (The superscript 1 indicates that the predicate is on a type-1 object.) Let k >- 1.
We say tr(A; x) is a zl’-predicate if there exist a P-predicate R(A; x, y,..., Yk)
over a set variable and k + string variables and a polynomial q, such that for all sets
A and all x with [x n, r(A; x) is true if and only if

(3yl, [Yl[----< q( n ))(Vy2, ly=l--< q( n ))... QkYk, lykl <= q( n ))R(A; x, Yl, Y),
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where Qk- " if k is odd, and Qk ’ if k is even. It is well known that a set B is in
Z’(c) if and only if there exist a E"l-predicate o- and a set A c such that for all x,
[x BCtr(A; x)] [10], [11].

2.3. Enumerations of machines. We will assume a fixed enumeration {Pi} of poly-
nomials, a fixed enumeration {Mi} for all polynomial time oracle TMs, a fixed enumer-
ation {Ni} of all polynomial time nondeterministic oracle TMs, and, for each k_-> 1, a
fixed enumeration {trk} of all E"l-predicates. We assume that the ith machine M or

Ni has its runtime bounded by the ith polynomial p. Without loss of generality, we
may assume that pi(n) <- n for sufficiently large n. Let k > 1. We assume that the ith
E"l-predicate trek(A; x)=--(Zly,[y[<---q(n))(Vy,[y2]<----q(n)) (QkYk,[Yk[q(n))
R(A; x, Yl," ", Yk) has the property that both the length-bonding polynomial q and
the runtime of the deterministic oracle TM that computes the predicate R are bounded
by the ith polynomial pi. We say that the computation of rk on input x queries about
the string z if the computation of the corresponding P-predicate R(A; x, Yl," Yk)
queries about the string z for some y,. ., Yk of length =<p(n) and for some oracle A.

2.4. Complete sets. For any of the above defined class @, a set A @ is
(<= P)-complete for @ if for every set B @ there exists a polynomial time computable
function f such that for all x, x B if and only if f(x) A. We will use some specific
complete sets for these classes. Define, for each set A, the set K(A) to be {(i, z, 1)]
the nondeterministic oracle TM N accepts z in j moves when A is used as the oracle}.
Then, it is obvious that K (A) is complete for NP (A). Furthermore, for any string x,
the question of whether x K(A) depends only on the set {y A]]y[ < Ix]}, because
x=(i, z, 1) implies j <lxl. (In other words, if B agrees with A on strings of length
<]xl, then x K(A) if and only if x K(B).) We can extend this to E’(A)-complete
sets for k> 1. Let K(A)= K(A) and Kk(A)= K(Kk-I(A)) for k> 1. Then, for each
k ->_ 1 and each set A, Kk(A) is complete for E’,A, and the question ofwhether x Kk(A)
depends only on the set {y A I]y < Ix]} (this can be proved by induction).

Define, for each set A, the set Q(A) to be {(i, x, 1)] the ith oracle machine M
accepts x using at most j cells}. Then Q(A) is complete for the class PSPACE (A) and
the question of whether x Q(A) depends only on the set {y Ally < Ixl).

2.5. Circuits. We will deal with circuits of unbounded fanin which have only
AND and OR gates and which have variables or its negations as inputs. We formally
define a circuit as a tree. Each interior node of the tree is attached with an AND gate
or an OR gate, and has an unlimited number of child nodes. Unless otherwise specified,
it is assumed that the gates alternate so that all children of an OR (or AND) gate are
AND (or OR, respectively) gates. Each leaf is attached with a constant 0, a constant
1, a variable v, or a negated variable . In this paper, we will relate circuits to oracle
TMs. So, each variable in C is represented by a string z Z*. We write v to denote
the variable, which will eventually be given the value XA(Z) for some set A, and write

v to denote its negation, which will eventually be given the value 1--)A(Z). Each
circuit computes a boolean function on its variables. The depth of a circuit is the length
of the longest path in the tree. The size of a circuit is the number of gates (or, the
number of interior nodes) in the tree. The fanin of a gate is the number of children
of the node. The bottom fanin of a circuit is the maximum fanin of a gate of the lowest
level in the tree.

Each circuit C has a dual circuit t which has the same tree structure as C but
computes the negation of the function computed by,C. Formally, the dual circuit of
a single variable v is its negation 5. The dual circuit C of a circuit C of depth ---1 and
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with a top OR (AND) gate is the circuit with a top AND (OR, respectively) gate and
its children being the dual circuits of the children of the top gate of C.

Let V be the set of variables which occur in a circuit C. Then a restriction p of C
is a mapping from V to {0, 1, ,}. For each restriction p of C, C [o denotes the circuit
C’ obtained from C by replacing each variable vx with p(vx)=0 by 0 and each vy
with p(vy)= 1 by (and each Vz with p(Vz)=, remaning a variable). Assume that p’
is a restriction of C [o. We write C [no’ to denote (C [) [,. We also write pp’ to denote
the combined restriction on C with values pp’(v) p(v) if p(v) and with values
pp’(v)=p’(v,,) if p(Vx)=,. If a restriction p of C maps no variable to ,, then we say
p is an assignment of C. Let p be a restriction of C, we say that p completely determines
C if C [o computes a constant function 0 or 1. An assignment p of C always completely
determines the circuit C.

There are some specific circuits that are useful in our proofs. A particularly
interesting class of circuits has been used by Sipser [9], and later adopted by Hastad
[5], to define the functions f’. Our definition of function f is a little different from
those defined in [5] and [9]. Let C’ be a depth-k circuit having the following properties:

(a) the top gate of C is an OR gate with fanin v/,
(b) the fanin of all bottom gates of C’ is v/-,
(c) the fanin of all other gates is m, and
(d) there are m k-1 variables each of which occurs exactly once in a leaf in the

positive form.
Let the function computed by C’ be f’.

2.6. Circuits and relativized complexity classes. The following relation between
the relati-vized polynomial time hierarchy and constant depth circuits is due to Furst,
Saxe, and Sipser [4].

LEMMA 2.1 [4]. Let k >- 1 and q(n) and r(n) be two polynomial functions. Let
(A; x) (y,, lyl <-- q( n ))(Vy, ly21 <-- q( n ))... QkYk, lyl <- q( n ))R (A; x, y, Yk
be a ,’l-predicate, where n lxl and R(A; x, y, Yk) is computable in time r(n) by
a deterministic oracle TM M using oracle A. Then, for each string x, there exists a circuit
C having the following properties"

(a) the depth of C is k / 1,
(b) the fanin of each gate in C is 2q(n)+r(n),
(c) the bottom fanin of C is <-r(n),
(d) the variables ofC are represented by strings queried byMon input (x, y, , Yk)

for some y1,..., Yk of length <-q(n) and some oracle A, and
(e) for each set A, if we use XA(Z) as the input value for each variable v in C then

C outputs 1 if and only if tr(A; x) is true.
Sketch of Proof The proof is done by induction on k. For the case k 1, let

or(A; x) (Zly, lYl <- q(n))R(A; x, y), where R is computable by a deterministic oracle
TM M in time r(n). Then, for each y of length _-<q(n), consider the computation tree
T of M(x, y). Each path of T corresponds to a sequence of answers to queries made
by M. For each accepting path in T, let U be the set of strings answered positively
by the oracle and Uo the set of strings answered negatively by the oracle. Define an
AND gate with Uo UI many children, each attached with a variable v, with z U,
or the negation Vz of a variable v, with z Uo. Then, the OR of all these AND gates
is a circuit Gy (depending only on x and y) which computes R(A; x, y) when each
variable v in Gy is given the value XA(Z). Note that each AND gate of the circuit Gy
has <-_r(n) children. Now consider the circuit C which is the OR of all Gy’s for y of
length <-_q(n). We know that C computes tr(A; x) when each variable Vz in C is given
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value /A(Z)" Furthermore, combining all OR gates of Gy’s into one, C can be written
as a depth-2 circuit with top fanin <=2qn)+rn) and bottom fanin <=r(n).

For the inductive step, assume that

o-(A; x) (::ly,, lYl[-<- q(n))(/Y2, lyl <-- q(n))"" (Q,y,, lyl <- q(n))R(A; x, Yl,""", Yk).

Then, for each Yl of length <=q(n) there is a depth-k circuit Cy, satisfying the conditions
(a)-(e) with respect to predicate

(A; x, y,)--(y2, ly21--< q(n))... (Q,-ly,, lyl--< q(n))[not R(A; x, yl,..., y)].

Take the dual circuits y, of Cy, and let C be the OR of all these circuits. Then, C is
the circuit we need.

Another interesting relation between circuits and sets in relativized polynomial
time hierarchies is about complete sets K(A). The following lemma will not be used
in 3. The reader may wish to skip it until 4.

LEMMA 2.2. Let k >= 1. For every x of theform i, y, ), there is a circuit C such that
(a) the depth of C is <=2k,
(b) the fanin of each gate is C is _-<2

(c) the bottom fanin of C is

(d) the variables of C are vz’s over strings z of length =<Ix], and
(e) for each set A, if we use XA(Z) as the input value for each variable Vz in C then

C outputs 1 if and only if x K (A).
Proof We prove the lemma by induction on

K(A) if and only if the machine Ni accepts y in _-<j moves using A as an oracle. That
is, x K(A) if and only if (EIw, ]w] <=j)R(A; y, w) for some P-predicate R which is
computable in time _<-j-]w] (without loss of generality, we may assume that Ni is a

specific machine which first uses wl moves to generate the witness string w and then
uses <=j-lw] moves to compute R). By Lemma 2.1, there is a depth-2 circuit C such
that its top gate has fanin =<2J-<_ 2Ixl, its bottom fanin is _-<j =< Ix], the variables in C
are represented by strings of length <-_j<-]x], and for each set A, if we use )A(Z) as
the input value for each variable vz in C then C outputs 1 if and only if x K(A).

Assume that k > 1. Let x (i, y, 1) be given. Then, x K k(A) if and only if the
machine Ni accepts y in =<j moves using K-(A) as an oracle. As in the case k 1,
there is a depth-2 circuit C1 such that its top gate has fanin _-<2 _-< 2Ixl, its bottom fanin
is _-<j <_-Ix], its variables are represented by strings of length -<-]xl, and for each set A,
if we use XK"-’A)(Z) as the input value for each variable Vz in C then C1 outputs 1
if and only if x K (A).

Now, by the inductive hypothesis, for each string z of the form (i, u, 1 ,) such
that variable v occurs in C, there is a circuit Cz of depth 2(k-1) such that

(a) the fanin of each gate of Cz is _-<2 Izl,
(b) the bottom fanin of Cz is
(c) the variables in Cz are represented by strings of length _-<]z], and
(d) for any set A, if we use XA(W) as the input value for each variable v in C,

then Cz outputs 1 if and only if z K-(A).
For each variable v in C such that z is not of such a form, let Cz be the constant 0
(because z : K-(A)). Replace each variable Vz in C1 by the circuit C (i.e., each leaf
with the variable v is replaced by,the tree Cz, and each leaf with the negated variable

Vz is replaced by the dual circuit Cz of C). Since strings z corresponding to variables

vz in C1 have length ]z] _-< Ix], we obtain a circuit C of depth 2k such that the fanin of
each gate of C is _-<2 Ixl, the bottom fanin of C is <_-]x], and the variables in C are
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represented by strings of length =<[xl. (It should be pointed out that in circuit C, a
child of an AND gate is not necessarily an OR gate. If we combine all adjacent AND
gates and OR gates, then the resulting circuit may have fanin -<-Ixl, 21xl-)

Finally, for any set A, if we use XA(W) as the input value for each variable Vw in
C, then for each variable Vz in C1, the circuit Cz outputs 1 if and only if z Kk-I(A);
therefore, the circuit C outputs 1 if and only if x Kk(A). This completes the
proof.

3. Relativized hierarchy having exactly k levels. In this section we prove that for
each k => 1, there exists an oracle A such that E’(A)= II’(A) E’_I(A). We need a
lower bound result on constant depth circuits. Hastad [5] has proved that there exists
a functionf computable by a polynomial-size depth-k circuit but not by any depth-k
circuit with small bottom fanin. The following lemma is a stronger form of this result.
It states that no depth-k circuit with small bottom fanin can compute any of an
exponential number of f’ functions. The main idea of the proof is the same as that
of Hastad’s proof. We give the formal proof in the Appendix.

Recall that C’ is a circuit defining the function f’. Let CIR(k, t) be the class of
depth-k circuits which have size -<2’ and bottom fanin -<t.

LEMMA 3.1. For every k >-2 there exists a constant nk such that the following holds
for all n > nk. Let nlg n, m < 2 t, and Co, C1, Cm be m + 1 circuits each defining
a f" function, with their variables pairwisely disjoint. Let C be a circuit in CIR(k, t).
Then, there exists a restriction p on C such that p completely determines C but it does
not completely determine any Ci, O-< <- m.

THEOREM 3.2. For each k>-_ 1, there exists a set A such that E’(A)=II’(A)
_,(A).

Proof. The case k 1 has been proven by Baker, Gill, and Solovay [2]. We assume
that k_-> 2. (Actually, the case k 2 has been proven by Baker and Selman [3] and
Heller [7].)

Recall that {p} is an enumeration of polynomial functions, {M} is an enumeration
of all polynomial time deterministic oracle TMs, and {o-k-l} is an enumeration of all
E’l-l-predicates which are of the form

rk-l(A; x) (::iyl, lYI -< q(n))(Vy, ]YI -< q(n))
(Qk-,Yk-1, lY-I =< q(n))R(A; x, Yl,""",

where n-- Ixl, q(n)-<pi(n), and R(A; x, yl,’’" ,Yk-1) is computable in time pi(n) by
some deterministic oracle machine M. Also recall that Kk(A) is a complete set for
Z ’(A) which has the property that the question of whether x K k (A) depends only
on the set {y A Ilyl < Ixl}. Let

Lk(A) {1" (:lzl, Izll n)(Vz, Iz21- n) (QkZk, Iz l-- n)lnz, z2 Zk A}.

Note that Lk(A) is in Z’(A).
The construction of the oracle A will be done by stages. At each stage a--

(k + 1)n + 1, we will satisfy the requirement

Ro, :for all strings u of length n, u K k (A)
( Zl, I:’I IZ21---- ")""" (QkZk, Iz l- n)Ouz, z=... A.

At stage a (k+ 1)n, we will try to satisfy the following requirement Rl,i with the
least integer for which Rl,i is not yet satisfied:

Rl,i" there exists an ni such that I n, Lk(A) if and only if crk-l(A; n’) is false.

The requirement Ro A n=lRo, states that Kk(A) is in H’(A) and hence E’(A)
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II’(A). The requirement R1 Ai=lRl,i states that Lk(A) is not in E’_I(A). Therefore
a set A satisfying all requirements has the property E’(A)= rI’(A)# E’_(A).

The main difficulty of the construction is that when we try to satisfy requirement
Rl,i in stage a--(k+ 1)n, we may have to simulate some oracle machine M which
may query about strings of length longer than a. We cannot arbitrarily assign answers
to the queries made by M because such an assignment may conflict with requirement
Ro, for some m > n. What we need is an assignment of answers to queries which does
not conflict with future constructions at stage a’> a. The existence of such an assign-
ment will be proved by using Lemma 3.1.

In each stage a, we will determine an initial segment of set A by putting some
strings into set A and some into A. We let A(a) denote the set of strings reserved for
A by stage a and A’(a) denote the set of strings reserved for A by stage a. Sets A(a)
and A’(a) are defined so that A(a) is always an extension of A(a 1), A’(a) is always
an extension of A’(a 1), and A(a) (3 A’(a) . Also, in stage a we do not add any
string of length <a to A(a) or A’(a). Eventually, we will define set A to be the union
of all A(a). That is, a string x is in A either if it is put in A’(a) at some stage a or
if it has never been touched in the construction.

In the construction, we keep track of all integers for which the corresponding
requirement R,i has been satisfied. We let all integers for which R, is not yet
satisfied be uncancelled. If the requirement R, is satisfied in stage a, then we cancel
this integer at this stage. To avoid the potential interference between requirements
R,i and R,j for i#j, we set a pointer/3, in each stage a. The integer/3, is defined
to be an upper bound of the maximum length of strings added to A(m) or A’(m) in
stages rn_-<a. When a >/3,_, the construction in stage a can be done without
interfering with the constructions made in earlier stages.

Prior to stage 1, assume that A(0) A’(0) , and let/30 1. Let all integers be
uncancelled.

Stage a, where a does not have the form a (k+ 1)n+l or a (k+ 1)n. Do
nothing. Let A(a):= A(a 1), A’(a):= A’(a 1) and/3 := fl_l.

Stage a (k + 1) n. Let be the least integer that is not yet cancelled. If
or n <-nk (nk is the constant defined in Lemma 3.1) or 2kp(n)_-> n lgn, then do
nothing. Let A(a) := A(a 1), A’(a) := A’(a 1), and ft, :=

If a >/3,_1 and n > nk and 2kp(n) < n’g ", then consider the following circuits:
(1) For each u of length n<=lul<-_p(n), the circuit Cu of depth k is defined as

follows:
(a) the top gate of Cu is an OR gate,
(b) the fanin of each gate of Cu is 2I"1,
(c) the variables of C, are exactly those in {VylyOuEklul}; each occurred posi-

tively in exactly one leaf of C, in the increasing order (under the lexicographic order
on y).
There are totally _-<2,< 2’ many such circuits C. Note that each circuit C. has the
property that for all sets A, if we use XA(Y) as the input value for each variable vr
then C, outputs if and only if

Iz,l Iz l I ,I) (QkZk, Iz,,l A.

Also note that each circuit Cu contains a subcircuit computing a function f,".
(2) The circuit Co has the same tree structure as the circuit C, defined above,

with lul n, except that the variables of Co are those in {vyly l"Ek"}. Note that if
we use XA(Y) as the input value for each variable vy then Co outputs 1 if and only if
1 Lk(A).
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(3) The circuit C is the circuit associated with the E’-l-predicate r-(A; 1 n) as
defined in Lemma 2.1, with the restriction that each variable Vy with ]y] < a (k + 1)n
is replaced by the constant value XA(o-I)(Y). In particular, C has depth k, has size
<22t‘pi(n), and has the bottom fanin <-pi(n). The variables in C are represented by
strings of length <=pi(n). For each set A which agrees with A(a 1) on strings of length
<a, if we use XA(Y) as the input value for each variable Vy then C outputs 1 if and
only if o--l(A; 1 n) is true.

It is easy to see that each circuit Cu or Co contains a subcircuit C’ or C,
respectively, which defines a f," function. Choose a restriction p such that for each
u, C’= Cu [, computes exactly a f," function and C= Co[p computes exactly a f,"
function. We observe that by the choice of n such that 2kp(n) < nlg n, C E CIR (k, t).
So, C’= C [p is also in CIR (k, t). Furthermore, the number of circuits C’ is <2’. Thus,
we can apply Lemma 3.1 to the circuits C and C’,, n<=lul<=p(n), and the circuit C’
to obtain a restriction p’ of C’ such that p’ completely determines the circuit C’ but
not circuit C nor any circuit C, n<-]ul<-_p(n). Finally, we find an assignment p" of
variables of C[o, such that C[p,o,, computes a constant function 1 if and only if C’[o,
computes a constant function 0. Note that p" only assigns values to variables corre-
sponding to strings in nEkn, and so none of C’ [, is completely determined by p".

Define A(a):=A(a-1)U{ylpp’p"(vy)=l} and A’(a):=A’(a-1)U
{y]pp’p"(Vy) 0}. Let /3, max {a, p(n) + 1} and cancel i. This completes stage a

(k+ 1)n.
Stage a =(k+l)n+l. For each u of length n, we determine whether u

Kk(A(a-1)). Then, we find a subset B_{yOuEknjyA(a-1)A’(-l)} such
that u Kk(A(a --1))C(:iz,, Iz,l n)(Vz2,1z21= n) (QkZk, lZkl n)Ouz, z2 Zk
A(a l) B. (We will show that such a set B always exists.) Let A(a) A(a l) B
and A’(a)= A’(a-1). Let flu =max {a, fl-l}. Stage a =(k+ 1)n+ 1 is complete when
we finish the above construction for each u of length n.

Let A =1 A(a). First, we claim that in each stage a =(k+ 1)n+ 1; for each
u of length n, the set B can be found.

Proof of claim. If none of strings in OuEkn has been assigned to A(a-1) or
A’(a- 1), then certainly such a set B exists. Assume that some strings in Ou,kn have
been assigned to A(a l) or A’(a 1). Then, by the choice of fl, there is at most one
stage a’= (k + 1)m < a in which these assignments are made.

In that stage, the assignments are made such that the corresponding circuit C,
after applying the restriction pp’p", is not completely determined. Note that the circuit
C and the predicate

’r(A; u)= (::Iz,, I ,I n)(Vz2, n)... (Qkz, n)Ouz, z2 z A

has the relation that when assigning value XA(Y) to each variable Vy, circuit C. outputs
1 if and only if the predicate z(A; u) is true. The fact that the restriction pp’p"
does not completely determine C. implies that there exist assignments po and pl

such that C. p,’,",o outputs 0 and C. PP’P"Pl outputs 1. Let Bo
{yOu,knlpp’p"(Vy)=*, p0(Vy)-- 1} and B,= {yOu.,knlpp’p"(Vy)=*, pl(Vy)-- 1}.
Then, Boand B are disjoint from A(a- 1) and A’(a- 1) and r(A(a- 1) U Bo; 1")=0
and r(A(a- 1)U B1; 1 )- 1. This proves the claim. [3

Next we observe that after stage a, we never add any string of length _-<a to A(a)
orA’(a). From this observation and the fact that the question of x Kk(A) does not
depend on the strings of length ->[x[, we see that each stage a- (k + 1)n + 1 satisfies
requirement Ro,,.
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Finally, for each i, we observe that eventually we will cancel it in some stage
a=(k+l)n, since the inequality 2kpi(n)<t=ngn holds for almost all n. In that
stage, we add strings to A(a) or A’(a) (by pp’p") so that when we use XA(Y) as
the input value for each variable Vy, the circuits C and Co are completely determined
and circuit C outputs 1 if and only if circuit Co outputs 0. By the relation between
circuit C and predicate trk-(A; n) and the relation between circuit Co and the predi-
cate I"Lk(A), we know that trk-l(A; 1") is true if and only if nLk(A).
This shows that the requirement R1, is satisfied by A and ni n. This completes the
proof of Theorem 3.2.

The above proof can easily be modified to construct an oracle A such that
PSPACE (A)= Z’(A) # E’_I(A).

COROLLARY 3.3. For each k>-_ 1, there exists a set A such that PSPACE (A)=
E(A) # X_,(A).

Proof. First consider the cases when k > 1. The proof is similar to that of Theorem
3.2. All we need to do is to replace the se Kk(A) bythe set Q(A), which is =< raP-complete
for PSPACE (A). Furthermore, note that Q(A) has the same property as Kk(A) for
any x, the question of whether x Q(A) depends only on the set {y Ally <

The case k 1 can be similarly proved. Baker, Gill, and Solovay [2] have shown
that there exists a set A such that NP(A)=co-NP(A)#P(A). To extend it to
PSPACE (A)= NP (A)# P (A), all we need to do is to replace the set K(A) used in
that proof by Q(A). We omit the details.

4. Relativize8 hierarchies and PSPACE. In this section, we show that for each
k=> 1, there exists an oracle A such that E’(A) II’(A) # E’_(A) and also
PSPACE (A) # PH (A). The proof also uses the lower-bound results on constant depth
circuits developed by Yao [12] and Hastad [5]. The following lemma is from [5]. We
say a circuit C computes the parity of n inputs if C has n variables and for all inputs
to those varibables, C outputs if and only if the number of l’s in the input is odd.

LEMMA 4.1 [5]. There exist an integer n’o and a real number e > 0 such thatfor any
k > 0 and any n > (no) k, no depth-k circuit C of =<2en’/-’) gates can compute the parity
of n inputs.

COROLLARY 4.2. For any constant c, there is an n’ such that for all n> n, no
depth-k, k c log log n, circuit C of <--2’/-’ gates can compute the parity of n inputs.

Proof Let n. be the smallest integer m such that m> (n/) lgg’, where n is
the absolute constant of Lemma 4.1.

We first consider the simplest case that the relativized polynomial time hierarchy
collapses to the class P(A).

THEOREM 4.3. There exists a set A such that PSPACE (A) # NP (A) P (A).
Proof Recall that {Ni} is an enumeration of all polynomial time nondeterministic

oracle TMs, and the machine Ni has its runtime bounded by polynomial Pi. Without
loss of generality, we assume that pi(n)<-n i. Recall that K(A) is a set =re<P-complete
for NP (A) such that the question of x K (A) depends only on the set {y Ally
Let Load(A)= {1"1 the number of strings of length n which are in A is odd}. Note that
Load(A) is in PSPACE (A).

The construction of A is done by stages. At stage n- 2t, we want to satisfy the
requirement

Ro,," for each u of length t, u 6 K (A) if and only if O’u A.
At stage n- 2t + 1, we will try to satisfy the following requirement R,i with the least
integer for which R,i is not yet satisfied"

R,i" there exists an mi such that m; Load(A) if and only if Ni rejects m’.
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The requirement Ro =/ ,; No, states that K (A) is in P (A), and hence NP (A)
P (A). The requirement R1 =/i=1 R,i states that Lodd(A) is not in NP (A). Therefore
a set A satisfying all requirements has the property PSPACE (A) NP (A) P (A).

In each stage n, we will define, in terms similar to the ones used in the proof of
Theorem 3.2, two sets A(n) and A’(n) and an integer/3n. Sets A(n) and A’(n) contain
strings reserved by stage n for sets A and A, respectively. The integer/3n is defined to
be an upper bound of the maximum length of the strings added to A(m) or A’(m) in
stages m _-< n.

Prior to stage 1, assume that A(0)= A’(0)=0, and let/30 2. Let all integers be
uncancelled.

Stage n 2t, > 0. We will satisfy requirement Ro,,. For each string u of length
t, we determine whether uK(A(n-1)). Then, we let A(n)=A(n-1)U{O’u} and
A’(n) A’(n 1) if u K(A(n 1)); and A(n) A(n 1) and A’(n) A’(n 1) U {0’u}
if u : K(A(n 1)). After this is done for all u of length t, let/3, =max {n,/3,_}.

Stage n 2t+ 1. Let be the least integer which has not been cancelled. Let
m=2ilogn. If n_-</3n_l or 2"_-<ni or e2"/(m-l<-_2(m+l)pi(n) (where n is the
constant defined in Corollary 4.2), then do nothing. Let A(n)=A(n-1), A’(n)=
A’(n- ), and

If n>/3n_ and 2"> n and e2’/(m-)> 2(m+ 1)p(n), then consider the machine
Ni on input 1". From Lemma 2.1, we know that for machine Ni and input n, there is
a circuit C of depth 2 such that

(a) the top gate of C is an OR gate with fanin 22pi(n),
(b) the bottom fanin of C is <=pi(n),
(c) the variables in C are those corresponding to strings queried by Ni on input

x under some oracle A, and
(d) for each set A, if we use XA(Y) as the input value for each variable Vy then

C outputs if and only if NA accepts
We are going to modify this circuit to a new circuit C’ having the following

properties. During the modification of C to C’, we also define a set B.
(a’) C’ has depth _-<m 2i log n.
(b’) The number of gates in C’ is 22(m+l)pi(n).

(c’) The variables of C’ are represented by strings of length n.
(Circuit C’ and set B also have nice properties related to the computation of Ni(1 ")
and set Lodd(A). We will prove them later.)

Recall that m 2i log n. The modification of the circuit C is done in m/2 steps.
Let C C. In each step j rn/2-1, assume that a circuit C is given. For each variable

Vy in C such that lY] > n and y 01Ulu for some u, we do the following.
By Lemma 2.2, there is a depth-2 circuit C such that
(a") the top fanin of C is _-<2 lul,

is(b") the bottom fanin of Cy

(c") the variables in C are represented by strings of length =<lul, and
(d") for any set A, if we use XA(Z) as the input value for each variable Vz in C

then C outputs 1 if and only if u K (A).
Replace Vy by the circuit C. (That is, the leaf node of C with variable vy is replaced
by the tree C, and the leaf node with the negation y of variable Vy is replaced by
the tree of the dual circuit Cy of Cy.) Let C+ be the new circuit with all such variables
Vy in C replaced by circuit C.

Assume that a variable vy is C with y 01Ulu is replaced by C. Then, by Lemma
2.2, each variable Vw in circuit C corresponds to a string w of length Iwl--< [ul [yl/2.
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Note that all strings y such that vy C1= C have length <=pi(n)<-n i. So, after
log (pi(n))- 1 <= log n 1 m/2-1 steps, none ofthe variables vy in C,,,/2 corresponds
to a string y of length [y] > n and of the form 01Ulu for some u.

In step m/2, we replace each variable vy in C,,,/2 such that [y[ < n by the constant
XA(n-1)(Y), and replace each variable vy in C,,,/2 such that [y[ > n by a constant 0 (note
that none of these y such that [y[ > n is of the form 01Ulu). Also, each V is replaced
by the opposite value. Let C’ be the resulting circuit, and let B {y][y[ > n, vy occurs
in Cm/2}.

We verify that the final circuit C’ satisfies the properties (a’)-(c’) listed above.
First, in each step j <= m/2-1, we replaced some variables in C3 by depth-2 circuits.
So, C3+1 has depth 2 plus the depth of C3. Thus, C,,/2 has depth at most m. Since we
only replaced variables in C,,/2 by constants, the final circuit C’ also has depth at most

Next, to check (b’) we note that every gate in C has fanin 22p(n). Furthermore,
by Lemma 2.2, every gate in circuit C has the same bound for its fanin. Therefore,
without combining adjacent gates of the same type, each gate of C’ has fanin <-_22p,("3.
That is, the total number of gates in C’ is at most (2P,))"+= 2

For condition (e’), we note that all variables Vy such that lYl n are replaced by
constants or other circuits. So, the only variables left in C’ are those Vy with lYl n.

Now from the inequality e2"/("-) > 2(m+ 1)p(n), we can apply Corollary 4.2 to
circuit C’ and conclude that C’ does not compute the parity of the 2" variables v,
with x:". So, we can find a set D___Z" such that 1" Lodd(D) if and only if C’
outputs 0 when variables v are given values XD(Z).

Define A(n)=A(n-1)LJD, A’(n)=A’(n-1)LJB, fl,=max{n,p,(n)+l}, and
cancel i. Stage n 2t + 1 is complete.

Let A LJ= A(n). We need to verify that A satisfies every requirement Ro,,,
> 0, and R,, > 0. For requirement Ro,, > 0, we note that in Stage n 2t, we have

assigned all strings Otu, lul t, to A(n) or A’(n) such that u K(A(n 1)) :0’u A(n).
Since A agrees with A(n 1) on strings of length <n, we have u
K(A). Furthermore, once a string 0tu is added to A(n) or A’(n), its membership in
A is never changed in later stages. So, 0’u A(n) 0’u A. The only thing left to check
is that in earlier stages n’ < n, no string of the form 0’u, with lul t, has been put in
A(n’) or A’(n’). This is true because in an even stage n’= 2t’ we never add any string
of length longer than n’ to A(n’) or A’(n’), and in an odd stage n’= 2t’+ 1 we only
add strings of length n’, or strings which are not of the form 01"lu to A(n’) or A’(n’)
(note that none of the strings in B is of the form

To verify requirement R1,;, we note that the inequality e2"/(’-)>2(m+ 1)p(n)
is satisfied by almost all integers n. Therefore, each integer will eventually be cancelled.
Assume that is cancelled in stage n 2t + 1. We want to show that 1"6 Lodd(A) if
and only if Na rejects 1". To show this, we claim that circuit C’ constructed in stage
n satisfies the following property.

(d’) When we use XA(W) as the input value for each variable v in C’, C’ outputs
1 if and only if Nff accepts 1". (Note that the set A here is the fixed set defined by
A kJ ,--o A(n) which satisfies requirements Ro, for all > 0.)

In fact, property (d’) is satisfied by all circuits C, 1 <=j <-_ m/2, constructed in
Stage n. We prove it by induction. First, for j- 1, we observe that this claim is exactly
the property (d) of circuit C.

Now, assume that property (d’) is satisfied by C, for some j <- m/2-1. To obtain
C+, assume that some circuit C has replaced a variable v in C with y 01lu. Then,
by Lemma 2.2, if we use XA(Z) as input value for each variable Vz in C, then C
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outputs 1 if and only if u K (A). Since A satisfies the property Ro,lul that u K(A)
if and only if 01"lu A, C outputs exactly the value XA(Y). This means that Cs+ outputs
the same value as C. So, the induction proof is complete.

Finally, in step m/2, we replaced all variables Vy by 1 if yeA(n-l), all variables

Vy by 0 if [lYl =< n 1 and y A(n 1)] or y B. Since A agrees with these assignments,
circuit C’ outputs the same value as C,,/2. This completes the proof of property (d’).

Now, observe that, in stage n, the set D is chosen such that In Lodd(D) if and
only if C’ outputs 0 when each variable Vz is given the input value Xo(z). Since we
have added set D to A, the following holds when each variable v in C’ is given the
input value A(Z)"

1" Loo(A) 1" Loe(D) C’ outputs0N rejects

Thus requirement RI, is satisfied when is cancelled. This completes the proof of
Theorem 4.3.

Now we extend Theorem 4.3 to more general cases.
TnzozM 4.4. For each k > O, there exists a set A such that PSPACE (A) Eft(A)

Hff(a) Z_(a).
Proof First, assume that k > 1. The proof is a combination of the constructions

in the proofs of Theorems 3.2 and 4.3. We only give an outline of the proof. We will
construct a set A to satisfy three sets of requirements:

Ro,," for all strings u of length n, u K(A)(z, [zl= n)
(Vz2, Iz=l n) Qz, Izl n)Ouz,z2 z a.

Ri" there exists an n such that 1", E L(A) if and only if the ith Z#’ predicate
i (A; 1 ,) is false.

R2, there exists an m such that m Lo(A) if and only if the jth Z#’-predicate
;(a; ],) is false.

As we argued before, the requirement Ro

_
Ro,, implies E #(A) H #(A) and

the requirement R = R, implies that E#(A) E#_(A). Furthermore, the require-
ment R== R2, implies that Lo(A)E#(A) and hence PSPACE (A) E#(A).

In each stage a, we will define, in terms similar to the ones used in the proof of
Theorem 3.2, two sets A(a) and A’(a) and an integer ,. Sets A(a) and A’(a) contain
strings reserved by stage a for sets A and A, respectively. The integer , is defined
to be an upper bound of the maximum length of the strings added to A(m) or A’(m)
in stages m a.

In our construction, we will consider three types of stages. At stage a (k + 1)n,
we try to satisfy requirement R, for the integer such that 2i is the least uncancelled
integer. (If the least uncancelled integer is an odd integer, then do nothing.) Assume
that 2i is the least uncancelled integer and a is sufficiently large (so that > ,_,
n> n, and 2kp(n)< ng"). Then, we satisfy R,, with n= n, by doing almost the
same thing as in stage a of the construction in the proof of Theorem 3.2; the only
difference is that at the end of the stage we turn on a flag: F true, and cancel the
integer 2i (instead of i).

At stage a (k + 1)n + 2, we try to satisfy requirement R2, for the integer j such
that 2j+ 1 is the least uncancelled integer. The action in this stage is similar to the
construction in an odd stage of the proof of Theorem 4.3.

More precisely, when a is sufficiently large (so that a > fl_, 2> ny and
e2/(-) > 2(m + 1)p(), where m 2k log py()),we consider the jth E#’-predicate
g#(A; 1). By Lemma 2.1, there is a circuit C associated with #(A; ") having the
following properties"

(a) the depth of C is k+l,
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(b) each gate of C has fanin
(c) the bottom fanin of C is
(d) the variables in C are represented by strings of length _-<pa(a), and
(e) for every set A, if every variable Vy in C is given the value hA(y), then C

outputs 1 if and only if r)(A; 1 s) is true.
Using a method similar to the construction in Theorem 4.3, we modify circuit C

into C’ and define set B to satisfy the following properties"
(a’) the depth of C’ is -<m 2k log p(a),
(b’) the number of gates in C’ is 22(rn+l)p;(a), and
(c’) all variables in C’ are represented by strings of length a.

The modification of C into C’ is similar to the modification in an odd stage of
the construction in Theorem 4.3. The main idea is to replace each variable having
[y[> a and y =Ouz, for some u and z with [z[ k[u[, by the dual circuit C of the
circuit C, where C is a depth-2k circuit satisfying conditions of Lemma 2.2 (with

of C’ instead of C’respect to the string u). (The reason for using the dual circuit Cy y y

itself is that we want to get the relation u

_
Kk(A)Cy6 A.) Note that for each y of

the form Ouz, with [z k]u[, the variables in circuit C correspond to strings of length
<-_[u[<-Iy[/(k+ 1) _-< [y]/2. Thus, as argued in the proof of Theorem 4.3, the circuit C
will be expanded into a new circuit with depth =<2k log p(a) such that no variable Vy
in it is represented by a string y of length >a and of the form y =Ouz, [vl k[u[. By
replacing all other variables Vw such that [w[ > a by constant 0 (and form the set B’)
and all other variables Vw such that [w[ < a by value XA(-I)(Z), we obtain a new circuit
C’ satisfying the above conditions (a’)-(c’). Choose a set D

_
such that 1" Looo(D)

if and only if C’ outputs 0 when each variable Vz is given value h’(z). Let A(a)=
A(a-1)U D, A’(a)=A’(a-1)U B’, and fl=max{a,p(a)+l}. Finally, we cancel
integer 2j + and turn off the flag: F false.

We can prove, as we did in the proof of Theorem 4.3, that circuit C’ satisfies the
following property:

(d’) Assume that A is an extension of A(a) and Af"lA’(a)=. Also assume that
for all u of length n <[u[<=p(a)/(k+ 1), (Vz, [z k[ul)[u _: Kk(A)zOuz E A]. Then,
if we give XA(W) as input value for each variable Vw in C’, then C’ outputs 1 if and
only if o-;(A; 1) is true.

At stage a =(k+ 1)n+ 1, we satisfy requirement Ro, For each u of length n, we
determine whether u Kk(A(a 1)), and try to find a set B

_
0uEkn such that

(*) u:K;’(A(a-1))(3z,[z,I=n) (Q;,z;,,[z;,I=n)Ouz Zk6A(a-1)LJ B.

This set B will be determined as follows: if the flag F is true, then search for a set B
satisfying both (*) and B
when u Kk(A(a 1)) and B =0uY_,kn when u : Kk(A(a 1)). Finally, let A(a)
A(a-1)LJ B and A’(a)=A’(a-1).

Note that the flag F is turned on whenever an even integer 2i is cancelled. When
2i is cancelled in stage a’, some strings of the form Ouz, [u[ n and [z[ kn, may have
been added to set A(a’) or A’(a’). However, later in stage a =(k+ 1)n+ 1, before the
flag F is turned off, a set B satisfying both (.) and B f"l (A(a 1) LJ A’(a 1)) can
always be found, as proved by Lemma 3.1. (Note that by setting/3, to be an upper
bound of the maximum length of strings added to A(a’) or A’(a’), we know that the
flag F will not be turned off until in some stage a >/3,.)

The flag F will be turned off when we cancel an odd integer 2j + 1. Suppose we
cancel 2j + 1 at stage a", then we must have a">/3,,_1, and hence no string of length
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_->a" is in set A(a"-l) or in set A’(a"-l). Thus, in a later stage a=(k+l)n+l,
before the flag is turned on, we have OuEk"(A(a-1)tAA’(a-1))= for all u of
length n. So, in stage a, the choice of the set B can be made free from interference of
earlier stages.

This completes the construction of set A. Note that by setting /3 be an upper
bound of the maximum length of the strings added to A(m) or A’(m) for all m <- a,
we prevent the possible interference between stages (k + 1)n and stages (k + 1)n + 2.
By the discussions in the construction, set A satisfies requirements Ro, for all n and
Rl,i for all i. The only thing left to check for requirement R2,j is that after we cancel
2j + 1 in stage a- (k + 1)n + 2, we construct A in later stages such that, for all u of
length n < [u[ -<_ pj (a)/(k + 1), (Vz, [z[ k[ u[)[ u K k (A):Ouz A]. This is stronger
than the requirement Ro,lul. However, we note that by the definition of/3, the flag F
is off at stage a’= (k + 1)[u[+ 1. Therefore, in stage a’, we satisfy the requirement
by letting 0uEklul A if u Kk(A) and 0uElul A if u K(A). This shows that
the assumption, and hence the conclusion, of property (d’) of stage a is satisfied by
A. As a consequence, requirement R2, is satisfied when 2j+ 1 is cancelled. This
completes the proof of the cases k > 1.

The proof of the case k- is almost identical to the general case k > 1, except
that the requirement Rl,i is actually easier to satisfy. We may simply use Baker, Gill,
and Solovay’s [2] original proof for the result (:IA)[NP (A) co-NP (A) P (A)]. We
omit the details.

5. Open questions. In the last two sections, we have constructed oracles which
collapse the polynomial time hierarchy to exactly the kth level. Furthermore, relative
to different oracles, the class PSPACE may either collapse to the kth level of the
polynomial time hierarchy or may be different from the polynomial time hierarchy.
Several questions about the relativized polynomial time hierarchy, however, remain
open. First, note that the set Lodd(A) is actually in the class D#P (A) (see, for definition,
Angluin [1]). Thus, our results together with Yao’s [12] result actually showed that
relative to some oracles, the class D#P may be separated from the polynomial time
hierarchy while the hierarchy may have either finite or infinite levels. An interesting
question here is to find an oracle to separate the class PSPACE from D#P.

Heller [7] has constructed oracles X and Y such that E’(X)= II(X) Ae(X)
and E;(Y) A’(y) Ee(y). It would be interesting to see whether these results could
be extended to the kth level of the polynomial time hierarchy.

Appendix. In this appendix, we give a proof for Lemma 3.1. The proof will be
done by induction on k. The induction proof is easier on the following stronger form
of Lemma 3.1.

LEMMA 3.1 (stronger form). For every k >- 2 there exists a constant n such that the
following holds for all n> n. Let ngn, m <2/, and Co, C1, ", C, be m+ 1 circuits
each defining a f" function, with their variables pairwisely disjoint. Let C be a depth-k
circuit such that the bottom fanin is <- and the number ofgates in C of distance at least
2 from the leaves is <-2’. Then, there exists a restriction p on C such that p completely
determines C but it does not completely determine any C, 0 <- <- m.

First we need some definitions from Hastad [5]. Let V be a set of variables, and
Y3- {B}__I a partition of V. Let q be a real number, 0 < q < 1. Define R/

q, to be the
probability space of restrictions which take values as follows. To define a random
restriction p in R/q,., first, for each B, <-j =<r, let s =. with probability q and sj 0
with probability 1- q; and then, independently, for each variable x B, let p(x)=s
with probability q and p(x)--1 with probability 1-q. Similarly, a Rq-, probability
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space of restrictions is defined by interchanging the roles played by 0 and 1. Further-
+more, define for each p Rq, a restriction g(p)" for all Bj with sj =., let V be the

set of all variables in B; which are given value by p; g(p) selects one variable y in

V and gives value to y and value 1 to all others in V. For p Rq,, g(p) is similarly
defined by interchanging the roles of 0 and 1.

Now, for given circuits Ci, 0-<_ -<_ m, let @ {Bj} be the partition of all variables
that occurred in Ci, 0_-< i-<_ m, such that each B; is the set of all variables leading to a
bottom gate in some G, 0-< =< m (when k is even, the bottom gates of G’s are AND
gates). Also let nlgn and q= 1/(24t). We will prove two lemmas which state that

+ (or, from R,) has thewith a high probability, a random restriction p from Rq,
properties that C [,g, is equivalent to a depth-(k-1) circuit with bottom fanin _-<t

and that each C [pg,), 0 _-< _-< m, contains a subcircuit computing a f"-I function. Thus
an induction can be used.

In the following, the first lemma is exactly Lemma 6.3 of Hastad [5], and the
second lemma is a stronger form of Lemma 6.8 of [5]. The main difference is that we
use a smaller bound for the bottom fanin, and hence a bigger probability q of
assigning to variables, so that the probability of a circuit G [p, having a subcircuit
computing a f,"-i function is bigger.

LEMMA A.1. Let s, be integers and q a real number, 0 < q < 1. Let G be an AND
of ORs with bottom fanin <-t, and 3 {B;} be a partition of variables in G. Then, for
a random restriction pfrom +Rq,., the probability that G [,g,) is not equivalent to a circuit

of OR of ANDs with bottom fanin <=s is bounded by c s, where c < 6qt.
Lemma A.1 also holds with +Rq, replaced by R,, or with G being an OR of

ANDs to be converted to a circuit of an AND of ORs.
Proof See Hastad [5].
LEMMA A.2. For each k > 2, there exists an integer nk such that the following holds

+for all n > nk. If k is even and p is a random restriction from Rq,, then the probability
that every circuit C [,g,, O <= <- m, contains a subcircuit computing an f"-i function is
>-_ . If k is odd, then the same probability holds for a random restriction p from R,.

Proof Assume k is even and p is a random restriction from +Rq,. Note that the
subcircuits of the twolower levels of a C," circuit are ORs of ANDs with bottom
fanin exactly 2n/2. There are 2k-5/2)" such depth-2 subcircuits in C,".

(i) We first show that with a high probability all bottom AND gates
(corresponding to block B;) of all circuits G [pg,, 0--<i--< m, take the value sj (the
value assigned to block B; by p). Note that each [,g,) has 2"/2 inputs. Also note
that tog(P) has value # s if and only if all inputs to [ogp are 1. Therefore, we have

Pr [/-/ r,g(, has value # sj] Pr [all inputs to/4 [,g(, are 1]

(( __l )24nlg") 2’’/2/(24nlg’’)

=(l--q)2’’/2=
24nOg

e-2[(’’/2-5(1’’g’’)2] 2 -2’’/4

if n > 20(log n)2. In the above, the first inequality comes from the observation that
(1-1/n)" < e-1 for all n.

Note that there are exactly m + 1 many circuits G, and each has exactly 2(k-3/z)n

many bottom AND gates. So the probability that all bottom AND gates [gp) of
all circuits Ci [g,), 0-<_i-< m, take the value sj is

=> 1--2-2"/4. 2(k-3/2)"" (m+ 1)> --2-2"/>,
if 2n/8> r/g + kn and n _>- 16.
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(ii) Next we show that with a high probability all OR gates at level 2 of circuits

Ci [pg(o), 0 =< _-< m, have at least 2"/2 many child nodes [g(o) of AND gates having
values sj .. Let G be an OR gate at level 2 of some Ci, 0--<i=< m. Note that G [g(o)
has 2" many children log(o), each having probability q of having the value sj ..
Let Pt be the probability that G log(o) has exactly many AND gates H log(o) having
values s .. Then,

p, (2)q (1- q)2"-’.

Note that when =< 2"/2+1, we have Pt < 1/2 and

p 2" + 1 q=> (2n/2- 1)q > 2,
p_ q

if 2"/4> 10nlg". So, we have

2/2 2/2

Pl <= P2’’/z 2 -! <- 2 p2,,/2 2 2-2"/2. p2,,/2 <- 2-2’’/.
/=0 /=0

Thus the probability that all OR gates at level 2 of circuits Ci[,g(,), 0<= i<= m, have at
least 2"/2 many child nodes of AND gates having value s =. is

_-> 1 2 -2’’/2 2-s/2)" (m + 1) > 1 2-2"/4> ,
if 2"/4> nlg" nt- kn and n _-> 8.

Combining results (i) and (ii) and letting n be the smallest integer which satisfies
all the inequalities of the "if" clauses above, we have proved Lemma A.2 for even k.
The case for odd k is symmetric.

Now we are ready to prove the stronger form of Lemma 3.1. Note that the integer
nk chosen in Lemma A.2 is so large that 2"/4> nign+ kn. First let k 2. Assume that
C is an OR of ANDs which does not compute a constant function 0. Then we define
a restriction p that maps all variables which are children of the first AND gate of C
to 1, and maps all variables whose negations are the children of the first AND gate
of C to 0, and all other variables to *. This makes C computing a constant function
1. However, this restriction p only assigns =<t nlg" many variables to 0 or 1. Since
each circuit Ci, 0 <_-i=< m, has both the bottom fanin and the top fanin 2"/2> t, it has
the following properties"

(a) For each AND gate of Ci, there is at least one variable assigned by p.
(b) There is at least one AND gate of C having all variables assigned by p.

From these two properties, we know that C[(p), O<-i<=m, does not compute a
constant function.

The argument for a depth-2 circuit C which is an AND of ORs is similar.
For the inductive step, let k> 2. Recall that q 1/(24t). Assume, without loss of

generality, that the bottom gates of C are OR gates. Then, by Lemma A.1, for any
+random restriction p from R, or from R,, the probability that any single subcircuit

G of the two lower levels of C log(o) is not equivalent to an OR of ANDs with bottom
fanin <_-t is at most c’. Since there are at most 2’ such subcircuits, the probability that
at least one such subcircuit is not equivalent to an OR of ANDs with bottom fanin
<-t is at most (2c) < (12qt)’ 2-’. Thus, with probability at least , the circuit C
can be written as a depth-(k-1) circuit with the bottom fanin -<t. Furthermore, the
number of gates in C log(o) of distance at least 2 from the leaves is exactly the number
of gates in C of distance at least 3 from the leaves and is <2’.
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Assume that k is even, then we choose a restriction p from +Rq,.O such that (a)
C [pgp) is equivalent to a depth-(k-1) circuit with the bottom fanin -<_ and with -<__2’
gates of distance =>2 from leaves, and (b) every Ci [pg,), 0=<i -< m, has a subcircuit
computing an f"-i function. (By Lemma A.2 and the above argument, there are at
least of restrictions from +Rq, having these properties.) Similarly, if k is odd, we can
choose a restriction p from R,,o which has these properties. By the inductive hypothesis,
we can find a restriction p’ such that p’ completely determines the circuit C [pg but
none of Ci [og,, O=< =< m. The combined restriction pg(p)p’ satisfies our requirement,
and Lemma 3.1 is proven. [3
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EXPONENTIAL AVERAGE TIME FOR THE PURE LITERAL RULE*

KHALED M. BUGRARA, YOUFANG PANt, AND PAUL WALTON PURDOM, JR.

Abstract. This paper gives exponential lower bounds for the average time of an algorithm
based on a simplified version of the pure literal rule from the Davis-Putnam procedure. It is shown
that this algorithm requires an average time that is exponential in v, the number of variables, when
p, the probability that a literal is in a clause, is proportional to 1Iv and t, the number of clauses in
the predicate, is at least a linear function of v. The time is greater than any polynomial in v over
a somewhat larger range of parameters. For the two cases O(ln v) and p O(ln v/v3 the
results of this lower-bound analysis are the same (to within a constant factor) as the upper-bound
results in [SIAM J. Comput., 14 (1985), pp. 943-953]. The results of this and other papers show that
the fastest analyzed algorithm for random satisfiability problems depends on the parameters of the
distribution. Backtracking, the pure literal rule, and the new algorithm of Iwama [Report KSU/ICS
88-01, Institute of Computer Science, Kayoto Sangyo University, Kyoto, Japan, 1988] each have a
large region of parameter setting where it is exponentially faster than the other two.

Key words, average time, backtracking, combinatorial search, Davis-Putnam, pure literal rule,
NP-complete, satisfiability, searching

AMS(MOS) subject classifications. 68P10, 68Q20, 68Q25, 68T15

1. Introduction. Many of the ideas that are used in practice for solving satis-
fiability problems are related to the Davis-Putnam procedure: the problem instance
is solved directly if it has no clauses (in which case the problem is satisfiable) or if it
has a clause of length zero (in which case it is unsatisfiable). Otherwise, a variable
is selected and two subproblems are generated: one with the variable set to true and
one with it set to false. The original problem has no solutions if and only if both sub-
problems have no solutions. The subproblems are simplified by removing all clauses
with true literals (because they are satisfied with the present partial assignment of
values to variables) and by removing all false literals from clauses (because a false
literal cannot contribute to making the clause true). The subproblems are solved by
recursive use of the algorithm.

The Davis-Putnam procedure uses four additional techniques that often speed up
the algorithm: 1) the unit clause rule, 2) the pure literal rule, 3) subsumption, and
4) a dynamic order of assigning values to variables. The unit clause rule says that a
variable that appears in a clause with only one literal must be set so as to make that
literal true. The pure literal rule says that a variable that appears only in positive
literals or only in negative literals needs to be set only in the way that makes its
literal true. The pure literal rule does not find all the solutions to a problem, but it
does find a solution if one exists. Subsumption removes each clause whose literals are
a superset of the literals of some other clause. The search order is dynamic because
whenever possible the Davis-Putnam procedure sets a variable that generates only
one subinstance (a variable associated with a unit clause or a pure literal).

For several models of random satisfiability (SAT) problems, it is well known that
the Davis-Putnam procedure can solve some random sets of SAT problems in polyno-
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mial average time. The first result was that of Goldberg [4]. He showed that a variant
of the Davis-Putnam procedure that uses only the pure literal rule and splitting re-
quires polynomial average time for one probability distribution. His Pure Literal Rule
Algorithm uses a fixed order for assigning values to variables. The main feature of
the algorithm is that only one subproblem is generated when the splitting variable is
a pure literal.

Goldberg’s analysis was later extended in [5]. Additional analysis of the Pure
Literal Rule Algorithm was done in [9], where it was shown that the algorithm could
solve a much larger class of problems in polynomial average time. This behavior is a
direct result of two factors: the ability of the pure literal rule to recognize variables
that are relevant to the solution, and the large (exponential) number of solutions
associated with these problem sets. The previous upper-bound studies show that
the pure literal rule plus splitting is more efficient than backtracking [8], [11] for
some random sets of problems. (The version of backtracking that was analyzed was
required to find all solutions.) The lower-bound results in [2] showed that there are
some random sets of problems where backtracking is more efficient. The lower-bound
results of this paper show that there is a large region in parameter space where the
pure literal rule is known to be slower than backtracking, and they show that there is
a large region where neither the pure literal rule nor backtracking runs in polynomial
average time.

So far it has been too diificult to analyze the complete Davis-Putnam procedure.
Instead, investigators have simplified the algorithm in various ways that reduce its
performance. When the simplified algorithm is fast, the original one is also fast.
When the simplified algorithm is slow, the complete one may or may not be slow.
One might suspect, however, that the Davis-Putnam procedure is slow in that region
where neither backtracking nor the pure literal rule is fast.

Figure 1 is a diagram of the parameter space (p, the probability that a literal is
in a clause, and t, the number of clauses, as functions of v, the number of variables)
that shows where both backtracking and the Pure Literal Rule Algorithms take large
amounts of time to solve random conjunctive normal form SAT problems. The only
points that are significant are those where lines intersect. The axes are labeled with
various functions of v. The e on the diagram is a positive constant that can be
as small as one wishes. (In the text, the results that use are expressed with the
more formal o and w notations.) Constants have been suppressed in these functions
(except for In 2Iv on the p axis, and v on the axis). For example, the points marked
with p- (ln v)2/(v3/2) and t= v/lnv have a much larger constant associated with
the formula for than has the point marked with p (1/e)[(lnv)/v]/. Problems
in the lower right region (small p and large t) can be solved in polynomial average
time by backtracking [11]. For these problems the average number of solutions per
problem is exponentially small. Problems in the lower left region (small p and small
t), in the left region (small t), and in the upper region (large p) can be solved in
polynomial average time by the Pure Literal Rule Algorithm [9]. The analyses for
the superpolynomial region (the region where the average running time grows faster
than any polynomial in v) and the exponential region are from this paper. The left
boundary of the exponential region (t ev) is definite; problem sets to the left of
it require superpolynomial, but nonexponential average time. The upper boundary
is not definite. Problem sets below the boundary require exponential time, while
those above the boundary definitely require superpolynomial average time and might
require exponential average time. In the two regions marked with question marks it is
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e(vlnv)l/2

p(v)
In 2

(lnv)
eva/2

v

In v

Polynomial

?

Superpolynomial

Polynomial Polynomial

FIG. 1. The regions where both backtracking and the pure literal rule need polynomial, superpolynomial,
and exponential time are shown.

not known whether the time for the pure literal rule is polynomial or superpolynomial.
Backtracking takes exponential average time in all of the regions marked exponential,
superpolynomial, or unknown. In most of these regions it is also the case that the
average number of solutions per problem is exponentially large [9], but there is a region
to the right of the v line where the average number of solutions per problem is
exponentially small (see the diagram in [9]).

Recently, Iwama [6] analyzed a SAT algorithm that is based on counting solutions.
The average time of his algorithm is polynomial when p > v/(lnt)/v. Thus, Iwama’s
algorithm is better than the pure literal rule and backtracking when p is not small.
The pure literal rule is better than (the upper limit analysis of) Iwama’s algorithm
when p is small, and it is better than backtracking when is not too large. Finally,
backtracking is better when is large and p is small. In practice, these three techniques
should be combined into a single algorithm, which would be fast where any one of the
three is fast.

2. Random problems. We compute the average time required to find solutions
to a predicate with v variables, clauses, and with probability p that a literal is in a
clause. The predicates are in conjunctive normal form. A random clause is formed
by including each literal with probability p. A predicate consists of independently
selected random clauses. Since there are 2v literals altogether, and since each literal
is included with probability p, the expected clause size is equal to 2vp. The expected
clause size is linear in v whenever p is fixed; it is fixed when p varies inversely with v,
i.e., p O(v-1). (The asymptotic notations O, O, f, o, and w are given in [7].)

The Pure Literal Rule Algorithm generates a search tree, giving values to the
variables in a fixed order. At each step it is working with a simplified predicate where
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each clause with a true literal is eliminated and each false literal has been removed
from all of its clauses. The simplified predicate contains only those literals whose
variables do not yet have a value. If the simplified predicate contains the current
variable in both positive and negative literals, then two subproblems are generated,
one with the variable set to true and one with it set to false. If the variable only
occurs positively, then only the subproblem with the variable set to true is generated;
if the variable only occurs negatively, then only the subproblem with the variable
set to false is generated. If the variable does not occur at all, then one subproblem
identical to the current predicate is generated.

The average time for the Pure Literal Rule Algorithm is given by [4], [5]:

(1) A(t, v) tv + (1- p)2tA(t, v -1) + 2E
5>=1

1 p)t-SA(t j, v 1)

with boundary conditions A(O, v) A(t,O) 0. This implies that A(1, v) _>_ v for
v => 1 and A(t, 1) for => 1. The first term in the recurrence corresponds to
the time of one step of the recursion; the second term corresponds to the case where
the selected variable does not occur in any clause of the predicate; the sum is the
weighted sum of those cases where a literal that corresponds to the selected variable
occurs j times in the predicate. Although there is no obvious way to solve the full
history recurrence, the behavior of the solution can be determined from upper- and
lower-bound methods.

3. Lower bound. Since the algorithm considers variables in fixed order, adding
a clause to the predicate can only increase the size of the pure literal rule search tree
(or leave it unchanged). Notice that the algorithm only looks for pure literals. If a
predicate includes the pair of clauses x A 2, then x will not be selected because x is
not a pure literal. Thus, A(t, v) is an increasing function of t. Also, it is an increasing
function of v [9]. Therefore,

A(t,v) >=max{t,v} fort_>_l, v 1.

Since each term in the right-hand side of (1) is positive, we obtain a lower bound
by taking selected terms (the tv term is dropped, and only the first n terms of the
sum are retained)"

A(t,v) >= (1 p)2tA(t,v- 1) + 2 E
I "n

1 p)t-SA(t j, v 1).

This equation is still too complex to solve.
Since A(t, v) is an increasing function of t, we replace A(t- j, v) by A(t- n, v) to

obtain an equation that is easier to solve. This gives the lower bound

A(t, v) >= An(t, v) fort__>to, v=>vo,
where

(2) An(t,v) [(1-p)2t+2 E
X=j=n

and with boundary conditions such that

1 p)t-J An(t-n,v- 1),
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An(to, v) < A(t, v) fort_>_to and An(t, vo) <= A(t, v) forv_>_Vo.

This equation is first-order linear in An. Let a be some number such that a __<
min{v- 1, (t- 1)/n} (a is the depth of the recursion). Choose to t-an, vo v-a,
and An(to, v) An(t, vo) 1. By iterating for a steps, the solution

(3) An(t,v)- H [(l-p)2(t-n)+2 E (t-nk)pb(I-p)t-n-j]
0_k< 1< "< J

a

is obtained (see [10]). The function An(t, v) depends on a as well as on n, t, and v,
but we do not show the dependence on a because we intend to set a to obtain a large
value for An(t, v).

4. Asymptotic analysis. This section gives derivations of the asymptotic be-
havior of the bound given by (3), determining conditions where the average time is
a rapidly increasing function of v. We consider p and to be functions of v, but to
avoid notational clutter, we call the functions p and rather than p(v) and t(v). We
determine conditions for which A(t, v) is superpolynomial, i.e., greater than vn for
large but fixed n, and conditions for which A(t, v) is exponential, i.e., greater than
(1 + )v for small positive . Since A(t, v) is polynomial if p is a fixed constant as v
goes to infinity [9], we restrict the analysis to the case where p approaches zero.

4.1. Approximations. We will show that when pt is small enough, setting n
2 includes enough terms to obtain an exponential lower bound (setting n 1 does not
lead to an exponential lower bound). When n is equal to 2, a lower bound is given by

(4) A2(t, v) H
O<_k<a

(l_p)2(t-2k)

where a _<_ min{v- 1, (t- 1)/2}.

-+- 2(t 2k)p(1 p)t-2k-1

+ (t- 2k)(t- 2k- 1)p2 (1

We show that A(t, v) is large for some small pt by first showing that the factor in
brackets is larger than 1 plus a small quantity, f(v), over a range of k, 0 <= k <= g(v).
The functions f and g must be in the ranges 0 =< f(v) =< 1 and 0 =< g(v) < v. That
is, for the various values of g(v) and f(v), we want to show that

A:(t, v) >= [1 + f(v)] a(v) v(f()()/n),

so the bound is exponential [(1 + e) v for some e > O] if and only if

(5) f(v) O(1) and g(v) O(v).

The function A2(t, v) is polynomial if f(v)g(v) O(ln v). This can occur over a range
of functions. For g(v) O(v) [the largest value for g(v)], polynomial time results if
and only if f(v) O([ln v]/v). For f(v) O(1) [the largest value for f(v)] polynomial
time results if and only if g(v) O(ln v). In what follows, let N(v) be an increasing
function that goes to infinity very slowly. So, N(v) w(1) 1/o(1), but it is not too
large. If

(6) f(v)g(v) N(v) In v,
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then the bound is superpolynomial (larger than any polynomial).
We now find the conditions on p and that lead to large running times. First

concentrate on the size of the factor in square brackets from (4)" replacing t- 2k by- gives

(7) (1 p)U + 2pv(1 p)V--1 + p2T(T 1)(1 p)-.

Each term in (7) can now be expanded with the binomial theorem. Assume that
there is an upper-bound on pv and that 7 goes to infinity as v goes to infinity. Then
the terms with a power of p larger than the power of v go to zero, and the following
expansions are obtained:

(1 p)2

2pv(1 p)T--1
pv(v 1)(1 p)-

4331 2p7 + 2p272 -p T + O(p47"4),

2pT 2p27"2 + p3v3 O(p4T4),
p2r p3T3 + O(p4"r4).

Adding the terms gives

(1 p) + 2p-(1 p)r-1 + p2_(. 1)(1 p)-2 1 + p27 O(p3-3).

Therefore, the factor in square brackets from (4) is larger than 1 + f(v) when

p27 O(pZ’rz) > f(v).

If C is the larger constant implied by the 0 so that O(p3v3) <= Cp373, then this
equation has a solution for V/(2f(v)) < pv < 1/(2C). In particular, for f(v) <
1/(128Cu) there exist solutions for a range of pv where the upper-bound is at least
four times the lower bound. So, if f(v) is below the appropriate constant, we can find
the lower bound on pT by factoring out the pv2 term from the left-hand side and
taking the square root to obtain

p- > v/f (v)[1 CpT]-i/2.

Taylor’s theorem with a remainder gives (1 x) -1/ 1 + 1/2x(1 c) -3/ for some c

in the range 0 < c < x. For 0 < z < 1/2, this gives (1 x)-/ < 1 + x/x. Thus, for
pT < 1/(2C),

pv > v/f(v)[1 +
If we require pT to be less than or equal to Nv/f(v for some constant N, then the
rightmost term, x/CpT, is no more than x/cgf(v). So, a lower bound on pv is

(8) pr > v/f(v)[1 + O(v/f(v))].
For f(v) < 1/(128C), the upper bound on pv is at least four times larger than the
lower bound.

Since p approaches zero, requiring (7) to be larger than 1 + e is equivalent to

(1 p) + 2p7(1 p)-I + pv(v 1)(1 p)-
(e-2pr -t- 2pTe-pr + p272e-Pr)[1 + O(p)] > 1 + .
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Solving this numerically gives a solution for all p7 such that

(9) 0 < pr < 2.304602987.

Equations (8) and (9) say that in order for A2(t, v) to be superpolynomial or expo-
nential, p7 must be bounded from above and below.

4.2. Results and comparisons. Since A(t, v) is an increasing function of t, the
critical question is, for each p, how small can be and still have A(t, v) be large? If
A(to, v) is large, then A(t, v) is at least as large for > to. Since r t- 2k, 0 __< k =< a,
and 7 must be greater than zero, we would like a to be as small as possible, but we
cannot make it too small because then we would not have enough factors that would
lead to a large bound. From (8), if (t-2a)p is small (below Nv/f(v for some N) and
slightly greater than v/f(v), and if pt is also small (below Nv/f(v for some N), then
the term in square brackets from (4) is larger than 1 + f(v) for t- 2a < t- 2k __< t.
All these conditions are satisfied by setting

(10) pt- 2v/f(v)+ 2ap

and requiring that __> 4a and that f(v) be small (below 1/(128C)). The lower bound
on ensures that pt and p(t- 2a) are about the same size (pt >= p(t- 2a) _>_ pt/2). To
keep the formulas simple, the number 2 is used in all places where a constant factor
bigger than 1 is needed; slightly better results could be obtained by using smaller
constants. Setting a g(v) in (4) gives us g(v) terms, where each term is larger than
1 + f(v).

Recall that (6) says that the bound is superpolynomial for f(v)g(v) N(v)In v,
so we set g(v) (N(v)In v)/f(v), giving superpolynomial time when

2pN(v)lnv
(11) pt--2+

f(v)

for t >= 4g(v). The right side of (11) is as small as possible when f(v) is chosen so
that

(12) f(v) [pN(v) In v] /3.

Applying (12) to (11) gives superpolynomial time for

4IN(v)In v]l/3p-/3,

provided pN(v)In v is bounded by a small constant (because f (v) must be small) and
provided that [N(v)In v]l/3p-2/3 < v (because g(v)must be smaller than v).

The time for the algorithm is an increasing function of t, thus we have superpoly-
nomial time whenever

(13)

and

>__ 4[N(v)In v]l/3p-2/3,

(14) N(v)l/2v_a/2(lnv)l/2 < P <
1

N(v) lnv"

Since N(v)= w(1), (13)and (14) give superpolynomial time whenever

(15) w((ln v)l/3p--2/3), p o(1/In v), and p o)(v-3/2(lIl v)l/2).
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Equation (13) corresponds to the line in Fig. 1 that separates superpolynomial average
time from the lower left unknown region, and (14) leads to the boundary that separates
polynomial average time from the upper unknown region.

The small upper-bound result of [9, Eq. (19)] shows that for any p the time
for the Pure Literal Rule Algorithm is polynomial if O(ln v). This is essentially
the same as the lower-bound result of (15) when p is just below f(1/lnv). Thus,
we conclude that for p of this form the time for the Pure Literal Rule Algorithm is
polynomial if

O(ln v),

and superpolynomial if

w(ln v).

When p is below the lower bound of (14), the best results come from the case when
g(v) v- 1 and f(v) [N(v)In v]/v, which gives

(16) pt 21N(v In v
+ 2pv 2p.

V

The first term on the right side dominates for p O(v-3/2(lnv)1/2). The small pt
upper bound of [9, Eq. (28)] is the same, except for the N(v) factor, as the lower
bound results of (16) for p O(v-3/2(ln v)l/2). Thus, for p O(v-3/2(ln v) 1/) the
time for the Pure Literal Rule Algorithm is polynomial if

t=O

and it is superpolynomial if

t--c0

There is no boundary line for (16) in Fig. 1, because it applies to a region where
backtracking uses polynomial average time.

To show exponential time we need a g(v) cv and f(v) (: (see (5)). Applying
this to (10), we have exponential time when

pt (:1/2
__

2cpv.

This equation has no solution unless > 2cv. Therefore, for =/3v with/3 > 2c, the
bound is exponential whenever

(:1/2p<
2 )v"

If (19) and (28) of [9] are modified to obtain an exponential bound rather than
a polynomial bound, then the same equation is obtained (within a constant factor).
Thus, for p O(1/v) the time for the Pure Literal Rule Algorithm is exponential if

(1)(17) t= ft
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and subexponential if

(18) t--o().
Equations (17) and (18) define the left boundary of the exponential average-time
region, as shown in Fig. 1.

Our lower-bound analysis does not give a lower bound to match the large p up-
per bound of [9, Eq. (24)]. These results and the results from previous analyses of
satisfiability algorithms are shown in schematic form in Fig. 1.

Numerical calculations similar to those used to derive (9) show that for the case
when n is equal to 3 the lower bound is exponential whenever

0 < pt < 3.536962614.

This shows the tendency to extend the range of pt for which we have an exponential
lower bound as n increases. (Since we must have t- na _>_ 1, increasing n decreases
the range of over which the resulting lower bound is exponential.) If this result is
used in the previous analysis only the size of some constants change.

Finally, one should note that when pt is large, it is possible to use the technique
of [1] to approximate the sum in (2). If n is slightly larger than pt the sum is near

2, whereas if n is slightly smaller than pt then the sum is near zero. Unfortunately,
this approach does not lead to smaller bounds on for large p [i.e., p (1/ln v)].
That is because ng(v) must be larger than 1. If n pt, this implies that pg(v)
is smaller than 1. Therefore, this approach does not produce interesting results for
p- (1/In v), since the smallest value for g(v) that leads to superpolynomial time is
w(ln v).

5. Conclusion. For the random clause model of generating random predicates,
where there are v variables, clauses, and probability p, each literal is in a clause; the
average time of the Pure Literal Rule Algorithm is exponential in v when the average
clause size is constant (p O(1/v)) and the average number of clauses per literal is
constant or growing (t (1/p)) (see Fig. 1). The average time grows faster than
any polynomial function of v over a much larger region. For p O(1/In v) the results
of the upper- and lower-bound analyses are the same except for the region between
p o(1/In v) and p co((ln V)/V3/2), and they are close in this region. More work is
needed on the upper and lower bounds for p w(1/In v).

This work, combined with the analyses of backtracking algorithms [8], [111, show
that the region where the average clause size is constant (p O(i/v)) and the average
number of clauses is proportional to the number of variables (t O(v)), is the most
difficult region for a satisfiability algorithm to handle. Backtracking algorithms can
handle a portion of this region efficiently. The design of satisfiability algorithms should
concentrate on algorithms that can handle more of this region efficiently.
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A NEW PARALLEL ALGORITHM FOR THE
MAXIMAL INDEPENDENT SET PROBLEM*
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Abstract. A new parallel algorithm for the maximal independent set problem is constructed.
It runs in O(log n) time when implemented on a linear number of EREW-processors. This is the
first deterministic algorithm for the maximal independent set problem (MIS) whose running time is
polylogarithmic and whose processor-time product is optimal up to a polylogarithmic factor.

Key words, parallel computation, A/C, efficient, deterministic, maximal independent set,
matching

AMS (MOS) subject classification. 68R10

1. Introduction. When researchers investigate the parallel complexity of a
problem, one of the main questions they ask is whether a polylogarithmic running time
is achievable on a PRAM containing a polynomial number of processors. If the answer
is positive, then the problem and the corresponding algorithm are said to belong to
class N introduced in [22] (see also [8], [25]). Having constructed an N-algorithm
for a given problem, it is natural to try to improve its computational complexity. The
complexity of a parallel algorithm is characterized by the pair (T, P), where T T(N)
is the worst-case running time, P P(N) is the number of processors used, and N is
the size of the input. It has been traditional to consider the product W T(N)P(N)
as a unified measure for different parallel algorithms solving the same problem. W
represents the total amount of work that the parallel algorithm does; it is also the
running time of the sequential algorithm into which the algorithm can be converted.

Let a sequential algorithm A with running time Ts and a parallel algorithm Ap
solve the same problem. The relative efficiency E(Ap,As) of Ap with respect to As
measures the amount of extra work that AB does, and it is given by E Ts/Wp. The
value of E(Ap) E(Ap, A), where A is the fastest known sequential algorithm for
the problem, characterizes the efficiency of Ap. Thus, in general, this characteristic of
a parallel algorithm depends on the progress in designing a sequential algorithm, but
for the problems with a linear sequential algorithm, E(Ap) is absolute. Clearly, the
optimal algorithms introduced by Galil in [9] have the maximum relative efficiency
of O(1). We should expect that for many problems, achieving the speedup from a
polynomial to a polylogarithmic running time is only possible if the efficiency E(Ap)
is a function that tends to 0 when N oc. Consequently, the algorithms whose
relative efficiency is large enough may be called efficient. In particular, we call an
NC-algorithm ecient if it has relative (to the fastest sequential algorithm) eificiency
at least Vt(1/log N), where is a constant.

In this paper, we present an efficient deterministic parallel algorithm for the
Maximal Independent Set problem (MIS). Recall that a subset I of the vertices of
a graph G is independent if there are no edges between any two vertices in I. An
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independent set I is maximal if it is not a proper subset of any other independent set.
MIS is the problem of constructing a maximal independent set of a given graph.

Karp and Widgerson were the first to prove that MIS is in A/C. On graphs
wit.h n vertices and rn edges, their algorithm [17] runs in O(log4 n) time and uses
O(n3/log3 n) processors. In [19] Luby constructed a probabilistic algorithm that runs
in O(log n) time when implemented on a linear number of processors under the CRCW
PRAM model of computation. In the EREW PRAM model, it runs in O(log2 n) time.
The deterministic version of the algorithm uses O(n2rn) processors. A still different
probabilistic algorithm for MIS was described by Alon, Bahai, and Itai in [4].

Since there is a trivial sequential algorithm that runs in linear time, every efficient
algorithm for MIS must use at most a linear number of processors (up to a polyloga-
rithmic factor). A deterministic algorithm that uses a linear number of processors was
proposed by Goldberg in [12]; its running time is O(n), where c > 1/2 is arbitrary.
Using the deterministic coin-flipping technique introduced by Cole and Vishkin in [6],
Goldberg, Plotkin, and Shannon [11] developed algorithms for MIS as well as for the
vertex-coloring problem, VC, which run in O(log* n) time on graphs with bounded
maximum degree. Unfortunately, when the degree is allowed to grow, the algorithms
become inefficient.

The algorithm we present in this paper runs in O(log4 n) time on an EREW PRAM
consisting of O(rn + n) synchronous processors that share a common memory [8], [22],
[25], [26]. Each processor is a standard random access machine [2] capable of doing
elementary operations on words of length O(log(n + rn)).

We follow the usual graph-theoretic terminology [7]. Our graphs are without loops
or parallel edges. The vertices of a graph on n vertices are represented by integers
0, 1,..., n- 1; the edges are given by a list of pairs {(i, j)}, where 0 < < j < n- 1.
Given a set T of vertices of a graph G (V, E), the neighborhood N(T) is defined
as the set of all vertices in V that are adjacent to at least one vertex in T. Thus, a
set I is independent if I fq N(I) 0. A subgraph of a graph G induced on a set A of
vertices is denoted by G[A]. A matching is a collection of disjoint edges.

A partial coloring q5 of a graph G is given by a collection of disjoint independent
subsets (C1,..., Cp) of G. We say that the vertices in C have color i (1 < i < p); thus,
the colors are always positive integers. If V (G) t_lP__l C, then b is called complete.
A trivial partial coloring is that for which p [V(G)I; hence, for a trivial partial
coloring, every vertex is its own color class. Given a partial coloring b (C1," ", Cp),
we define matrix D(b) (d.) and function Q(qS) by

d. IN(C) C CI, (i, j 1,..., p);

Q(O) max
l<i<p

For h > O, we define a graph B(qS, h), on p vertices, by setting vertices i and j adjacent
if and only if both di. >_ h and di >_ h (0 <_ i, j <_ p- 1).

If L is a list of items sorted according to a key function f, then a maximal sublist
of L with identical values of the key is called an interval of L. Every sorted list L can
be viewed as the concatenation of its intervals.

A pair (r, s) is lexicographically smaller than another pair (r’, s’) if and only if
either r < r -r sor r and s <

We write log n for log2 n and log* n for the minimum such that the ith iteration of log function

applied to n is < 2.
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2. The algorithm. All parallel algorithms for MIS mentioned above as well as
our algorithm have the same top-level description as the very first algorithm developed
by Karp and Widgerson in [17].

begin
I := ; A := V(G);
(, I is an independent set ,)
while A : do

begin
C := FINDSET(A);
I := It..JC;
A:=A-(CN(C))

end;
end;

It is not hard to prove that an algorithm with such a structure will have a polylog-
arithmic running time if every application of FINDSET runs in polylogarithmic time
and produces independent set C such that ICt2N(C)l- ft(IAI/log IAI) for some fixed
s _> 0. Later, we will see that for our version of FINDSET, s 1.

Informally, FINDSET works as follows. Starting with a trivial partial coloring o
of graph g G[A], it constructs a sequence of partial colorings . (j > 0). For each
j >_ 0, the procedure checks whether

(,) > cok
log k

where k IAI. If (,) holds, FINDSET outputs the color class C’ for which IC’I 4-
IN(C’)I > cok/logk; otherwise, it constructs a new partial coloring by decoloring
some of the vertices and uniting some of the color classes. The construction is done
by the procedure REDUCE. The input to REDUCE is a partial coloring and a
matching M in the complement/} of graph B(, h) (the selection of h > 0 is specified
later). The matching M supplies a collection of pairs of color classes of . For each
pair (C, C’), either the set C A N(C’) or the set N(C) C’ (whichever is smaller) is
decolored and the remaining vertices in C {_J C are declared to be a new color class.
The new color classes obtained in this way, and the old color classes that were not
changed, comprise the set of color classes of the new partial coloring.

A procedure MATCH finds a matching in B(, h). It will be seen that the running
time of the whole algorithm depends on the size of the matching delivered by this
procedure as well as on its running time. In the context of our algorithm, each graph
B to which MATCH is applied is such that its complement B contains a quadratic
number O(IV(B)] 2) of edges even if the original graph G is sparse. This is our reason
for not using any of the known algorithms for constructing a maximal matching (see
[1], [10], [14], [15], [16], [18], [19], [20]). The subroutine MATCH runs in O(log n) time
on an EREW PRAM with O(n+ m) processors. For graphs with a dense complement,
MATCH constructs a matching of size ft([Y(B)]), which is maximum up to a constant.
On the other hand, it is not necessarily maximal.

Our algorithm uses O(n + m) processors; every vertex and every edge of a graph
has a processor associated with it; abusing the language, we identify a vertex or an
edge with the corresponding processor. Each edge has, for each of its endpoints, a
pointer to a record that stores the color of that vertex. If A(v) is the degree of a
vertex v, then there are A(v) records containing the information related to v. Thus,
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each edge can access its endpoints independently. An uncolored vertex has its color
set to 0; a vertex that has been deleted by an earlier iteration of the top-level loop
has its color set to -1.

A Pascal-like description of FINDSET is as follows:

function FINDSET(A);
begin

k := ]AI; H ::= G[A];
:= trivial coloring of H;

while Q() < cok/log k do
begin

p:= the number of colors of ;
h := clk/(plog k);
B := BUILD(C, h);
M := MATCH(B);
:= REDUCE(C, h, M)

end;
C := a color class with Q(C) >_ cok/log k;
FINDSET := C

end;

In the description of FINDSET and MATCH we use two constants, co and Cl;

their values, which guarantee the necessary performance behavior, are defined in 3.
The function BUILD accepts a partial coloring and a number h > 0 and con-

structs the auxiliary graph B(, h). It does this by computing the values of the dij
that are nonzero, and then finding out which di. and. d.i are both greater than h.

To calculate the di., BUILD first creates a list of records containing, for each
edge, its endpoints and their colors written in increasing order. Next, BUILD sorts
this list lexicographically by color. Each interval of the resulting list consists of the
edges with the endpoints colored by the same pair of colors. Let Lij be the interval
containing the edges whose endpoints are colored i and j. To calculate di., BUILD
sorts Li. by the vertex colored j; the number of intervals of this list is the value of di..
Similarly, d.i is the number of intervals that result when Li. is sorted by the vertex
colored i.

To find the intervals of a sorted list, every member of the list compares itself
with the element on its right and the element on its left. This indicates the elements
that are the ends of the intervals. Then, every other member assigns itself to the
corresponding interval. This can be done in O(log n) time using the path-doubling
technique of Wyllie [27].

function BUILD(C, h);
begin

L := a list of the edges with the colors of their endpoints
listed in increasing order;

sort L lexicographically by the colors of the endpoints;
determine the set of intervals of L;
for each interval Lij in parallel do

(, the subscripts i, j are the corresponding colors ,)
begin

sort Li. in increasing order of the endpoint colored by j;
set dij to be the number of intervals of Lij;
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sort Li in order of the endpoint colored by i;
set di to be the number of intervals of Li.;
if dij > h and dji > h then

include (i,j)in E(B(,h));
end;

end;

All sorts are done using Cole’s algorithm [5]; thus, BUILD runs in O(log n) time
on an EREW PRAM with a linear number of processors.

The idea of the procedure MATCH is as follows. Let the vertices of B be numbered
by 0, 1,..., p- 1, where p IV(B)I, let Kp be the complete graph on V(B), and let

X P if p is odd, and X P- 1 if p is even. It is well known that there is a partition of
the edges of Kp into X matchings Po, P1,’" ", Px-1, each of size exactly [p/2J. We give
an explicit construction of such a partition in terms of the function "index" defined
below, where the edge (i, j) is assigned to the matching Pindex(i,j). If the total number
of edges of/) is quadratic, the set h:/t of the maximum size contains f(p) edges. For
the same t, the size of Mt is a minimum. When such a is found, we can check every
of [p/2J pairs of Pt to compute Mr.

function index(i, j, p);
begin

if p is odd then
index := (i + j) mod p

else
if j p- 1 then

index := 2i mod (p- 1)
else

index := index(i, j, p 1)
end;

function MATCH(B);
begin

M "-O; p "-IV(B)I;
if p is even then X P 1 else X P;
for each edge (i, j) of B in parallel

compute index(i, j, p);
for l’-0 to X- 1 in parallel compute 9(I)

the number of edges (i, j) with index(i, j, p) l;
find such that g(t) is minimized;
compute M Pt C B;
remove all but IV(C1- co)/(2Cl)1 edges from M;

end;

Computing the number of the edges with a given index is done by sorting the
edges of B according to their indices and then determining the lengths of all intervals.
Finding a for which the corresponding color class Pt contains the fewest number
of edges can be done using Valiant’s algorithm [24]. To determine Pt 71 , MATCH
appends a list of edges in Pt Cl B to the list of the edges in Pt. Then, the list is sorted
lexicographically to bring the duplicates next to each other. If a pair (a, b) occurs in
the list twice, then both occurrences are removed. The remaining pairs are a list of
the edges in B 71 Pt.
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It turns out that the analysis is simpler if the matching returned by MATCH has
a known size. We will show in 3 that, for our choice of co and cl, the size of/ 71Pt
is at least p(cl -co)/(2c). Thus, after removing a few edges from/ 71Pt, MATCH
returns a matching with exactly [p(c -co)/(2c)] edges. It is easy to see that every
application of MATCH is executed on a linear number of processors in O(log n) time.

The matching M calculated by MATCH is used by REDUCE to construct a new
partial coloring with a smaller number of color classes. In particular, REDUCE does
the following three things:

(1) Decides which vertices are to be decolored;
(2) Merges the appropriate color classes; and
(3) Renumbers the color classes.

It is easy to implement REDUCE so that it runs in O(log n) time on a CRCW
PRAM with a linear number of processors, which also yields an implementation on
an EREW PRAM running in O(log2 n) time. A more elaborate technique is needed
to implement REDUCE so that it runs in O(log n) time on an EREW PRAM.

Intuitively, each vertex of color needs to know which color, if any, is matched to
by M. We use a routine called BROADCAST to deliver this information. Specifically,
BROADCAST is given a list L of ordered pairs of the form (l, m), where l is a
color, m is a "message," and each color appears on the list at most once. The task
of BROADCAST is to label each vertex of color l with the message m. For this
purpose, BROADCAST first creates a new list L with one record for each colored
vertex. Each record is of the form (lv, v), where Iv is the color of vertex v. Then, it
sorts the concatenation of L and L by color, that is by first coordinate; if two pairs
from L and L, respectively, have the color, the pair from L is declared to be smaller.
Next, BROADCAST uses the standard path-doubling technique to give m to each
element of the list with color l. Finally, each element from L that received a message
labels its vertex with the message. Clearly, BROADCAST runs in O(log n) time and
uses O(n + m) processors.

In the context of REDUCE, the procedure BROADCAST is used to decide, for
each edge (i, j) E M, whether to decolor vertices with color or with color j. Recall
that the vertices of color j are decolored if and only if dij _< dji. Both values
and dj can either be obtained from BUILD, or REDUCE can calculate them itself.
Having obtained these values, REDUCE orients each edge (i, j) of M so that dj < dj;
hence the color of the vertices to be decolored is listed second. Then, REDUCE calls
BROADCAST(M) to tell which vertices need to change color. If a vertex v receives
a color as a message, it checks to see if it has a neighbor of color 1. If it does, it
decolors itself; otherwise it changes its color to I.

Finally, REDUCE renumbers the surviving color classes by consecutive integers,
starting with zero. This is necessary for the next application of MATCH to be done
correctly. To do this, it sorts all the vertices by color and removes duplicates. The
result is a list of all the colors in use. This list is then numbered, and the position of
each color in the list is broadcast. Each colored vertex then changes its color to the
color it receives.

A Pascal-like description of REDUCE is as follows:

function REDUCE(C, h, M);
begin

orient each edge (i, j) of M so that dj <_ dj;
BROADCAST(M);
for each vertex v that received a color, l(v), in parallel do
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if v is adjacent to a vertex of color l(v)
then decolor v

else change the color of v to/(v);
sort the vertices by their (new) colors;
number the colors in use;
make L, a list (/, n(/)), where n(1) is the number of l;
BROADCAST(L);
each colored vertex changes its color to the message it received;

end;

3. Analysis. Our goal is to show that using O(n+m) processors and in O(log2 n)
time FINDSET constructs an independent set C such that [C U N(C)[ > cok/log k,
where IA] k and co is a constant. Once this is established, it is easy to see that
FINDSET is called O(log2 n) times and that the running time of the algorithm is
O(log4 n).

First, let us estimate the size of the set that MATCH returns. Recall that
FINDSET calls MATCH on the graph B(,h). Let i be the value of at the
beginning of the ith iteration of the body of the while loop in FINDSET, and let pi

be the number of color classes in @. If the body of the loop is executed then

cok<
log k"

Let Ai be the maximum degree of a vertex in B(,hi), where hi clk/(pilogk). If
the degree, in B, of a vertex corresponding to a color class C is Ai, then N(C) must
contain at least Ahi vertices. On the other hand, IN(C)I < cok/log k. Therefore,

C k cok coAi < and Ai < --Pi.log k log k’ Cl

This implies that the degree of every vertex of/(@, h), is at least pi(cl -co)/cl,
yielding

IE(/(, h))] > Cl co 2

2Cl Pi

Recall that MATCH divides the edges of B(@, hi) into at most p classes and finds
Pt n B, the class with the most edges. Thus,

and MATCH can discard edges from this set to return a matching Mi with

iMil
Cl --Co

Pi2C

When REDUCE creates +, it decolors at most

Clk (Cl -co)k
Pi log k 2 log k

vertices and reduces the number of color classes to api, where a (Cl --C0)/(2Cl).
The initial partial coloring o has k color classes with a total of k vertices. Thus the
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while loop in FINDSET will be executed at most -log k/log a times. If none of the
partial colorings i with more than one color class satisfies

then FINDSET decolors at most

> cok
log k’

logk (Cl Co)k
-loga 21ogk

vertices while reducing the number of color classes to one. Thus, the size of the only
color class of the last coloring is at least

cl co k log k Cl CO k
Qo-k- =k-

2 log k (- log a) 2 (- log a)"

If we choose co and c such that

log a log ( 2Cl
Ca -C0) Cl CO> (1 + e)2c1 (1 Co)’

for some fixed e > 0, then
CokQo> k>

1 + log k’

for suificiently large k. The criterion will be satisfied, for example, if Cl 1 and
co 1/3.

Since every application of the while loop is executed in O(logn) time and the
number of times the loop is iterated is O(logn), we have that the running time of
FINDSET is O(log2 n). It implies that the running time of the whole algorithm is
O(log4 n).

4. Open problems. This work addresses several interesting unresolved ques-
tions, including the following:

(1) The processor-time product for our algorithm is O((n + rn)log4 n). We would
like to reduce the total amount of work that our algorithm does by reducing the
number of processors it requires while not increasing its running time. We note that
the technique developed by Miller and Reif in [20] does not seem to apply to this
algorithm.

(2) There is a trivial sequential algorithm that colors a given graph G in at most
A + 1 colors, where A is the maximal degree of a vertex in G. Using the standard
reduction of VC to MIS, we get an NC-algorithm for A + 1-coloring which is run on
O(nA2 + mA) processors. However, no efficient NO-algorithm for A + 1-coloring is
known.

(3) In [23] Tfiran proved that every graph with n vertices and m edges contains
an independent set of size _> n2/(2m + n). Such a set can be constructed by a linear
sequential algorithm [13]. Can it be constructed by an NC-algorithm using a linear
number of processors? So far, the best approximation is achieved by an algorithm
COLOR from [12]. It produces a coloring such that the size of at least one color class
is n/2 if m <_ n/4, and n/(32m) otherwise. The algorithm uses a linear number of
processors and runs in O(log3 n) time.
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A DESIGN THEORY FOR SOLVING THE ANOMALIES PROBLEM*

EDWARD P. F. CHAN?

Abstract. A theory is proposed for designing database schemes that are free of update anomalies. Unlike
previous approaches, insertion and deletion anomalies are investigated in the context of a relation scheme,
while replacement anomalies are studied in the context of a database scheme. Two simple models are

developed for analyzing when a relation scheme is free of insertion and deletion anomalies. Techniques are
also proposed for obtaining desirable decompositions that are free of insertion and deletion anomalies.
A class of database schemes that is free of replacement anomalies is also proposed. This class of schemes
is highly desirable with respect to constraint enforcement when attribute values of some tuple are being
changed. By making different assumptions on the modifiable attributes, several important classes of database
schemes that are free of replacement anomalies are characterized. Throughout, we assume update operations
are performed on relation schemes at the conceptual level.

Key words, schema design, update anomalies, relational database, functional dependencies

AMS(MOS) subject classification. H21

1. Introduction. Database design theory began with the pioneering work of Codd
[Codl], [Cod2]. Codd observed that in the presence of functional dependencies,
updating a relation at the conceptual level may result in certain problems that are
widely known as update anomalies [Cod2]. Codd argued that the cause of such problems
is due to several independent facts being stored in the same relation, causing the
relation to be semantically overloaded. He proposed normalization as a way of separat-
ing independent facts into different relations and reducing logical data duplication.
Since then, normalization has generated a great deal of interest among researchers as
well as practitioners IDa], [Ma], [TL], [U]. Various normal forms and other desirable
properties related to normalization have been proposed [ABU], [B], [BDB], [Codl],
[Cod2], [Cod3], IF1], IF2], [Z]. To illustrate the problem of update anomalies, let us
consider the following example from Codd [Cod2].

Example 1. Let us consider R(Emp, Dept, Manager, Contract-type), and let the
functional dependencies imposed on R be {Emp-> Dept, Dept-> Manager Contract-
type). With this set of functional dependencies, the primary key of R is Emp. In this
relation, Codd assumed the following facts or relationships are being stored: The
Emp_Dept relationship, which tells the department for whom an employee is working;
the Dept_Manager relationship, which gives the manager of each department; and the
Dept_Contract-type relationship, which indicates the type of contracts a department
is handling. For semantic reasons, Codd further assumed that each inserted tuple
cannot be null on the primary key of the relation [Cod2]. Hence under Codd’s
assumptions, partial tuples are allowed in a relation, but the tuples cannot be null on
the primary key. With these assumptions, certain problems arise when the relation is
being updated.

When a new department is set up to handle a particular contract type, the data
cannot be entered into R unless an employee has been hired for the new department.
The cause of this problem is the assumption that tuples in a relation cannot be null
on the primary key. This phenomenon may be considered an anomaly because setting
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up a new department should not imply that some employee has been hired for the
department. On the other hand, when the last employee working in a department is
fired, the tuple representing the employee is deleted. Consequently, the associated
department information will cease to exist. This event may again be considered an
anomaly since department information should be independent of employee informa-
tion. The inability to insert data into a relation and the unexpected deletion of data
are widely known as insertion anomalies and deletion anomalies, respectively.

Now consider that the manager of a department is being replaced. Such a change
necessitates a series of modifications to the manager for each employee working in
that department. This event may again be considered an anomaly, since modifying an
attribute value of a tuple results in an unpredictable number of tuples being updated.
This phenomenon is called a replacement anomaly in the literature [BG], [LP].

Codd argued that the cause of updated anomalies is due to several independent
facts being stored in the same relation. Normalization is an attempt to separate
independent facts into different relations and to reduce logical data duplication using
constraint information, such as functional dependencies. Until Bernstein and Goodman
[BG] questioned the benefit of normalization, it was widely held that normalization
eliminates update anomalies. In fact, normalization has never proven to solve the
anomalies problem [BG], [LP]. The following example shows that a relation scheme
R in BCNF does not necessarily mean that R is free of insertion and deletion anomalies.

Example 2. Let R(Course, Student_name, Grade) and F {Course Student_name- Grade}. R clearly is in BCNF. If we assume that Student_name information can
be recorded independently, then R has insertion and deletion anomalies since
Student_name information cannot be inserted and deleted independently of {Course,
Student_name, Grade}.

The above example illustrates that basic facts or relationships stored in a relation
may not be completely determined by constraints like functional dependencies. To
capture.a portion of database semantics that is not captured by functional dependencies,
Sciore [Sc] introduced objects to define basic facts in a relation. Maier and Ullman
[MU] argued that not all objects can be related, and they suggested maximal objects
to limit the scope of connections among objects. Maier and Warren [MW] went a step
further by proposing a semantically richer model called the association-object data
model. Associations are basic facts recorded in a database and are nondecomposable.
Objects are decomposable relationships defined from associations. Various semantically
motivated considerations have been discussed to constrain how objects and associations
can be syntactically related. Desai, Goyal, and Sadri [DGS1], [DGS2] studied the
problem of insertion and deletion anomalies, nevertheless, with assumptions that are
different from Codd’s. They introduced the primary fact structure of a relation as a
semantic structure describing nondecomposable information represented by a relation.
Primary fact structures are essentially associations in the association-object data model.
Having introduced primary fact structures, Desai et al. investigated how to insert and
delete facts from a relation without any "side effects." An important difference between
Codd’s assumptions and the aforementioned authors’ assumptions is that Codd
assumed each relation has a primary key, while the concept of key is not inherent in
other approaches. Since our work is primarily based on Codd’s assumptions, the
problem as well as results obtained here are different from those mentioned above.

In this paper, we present an alternative to the update anomalies problem. In the
same way as Bernstein and Goodman [BG], we view insertion and deletion anomalies
as a problem that is different from replacement anomalies. For instance, if we assume
in Example that tuples are only inserted and deleted, but not modified, then the



SOLVING THE ANOMALIES PROBLEM 431

insertion and deletion anomalies still exist but the replacement anomalies as conceived
by Codd will disappear. Similarly to Codd [Cod2], we regard insertion and deletion
anomalies as a problem of the ability of a relation scheme to record independent facts,
whereas replacement anomalies are considered as a problem of independent modi-
fication of tuple values in relations. As we will show later, the replacement anomaly
problem is closely related to the constraint enforcement problem. Because of this
difference, insertion and deletion anomalies will mainly be analyzed in the context of
a single relation scheme. On the other hand, it is not meaningful to discuss replacement
anomalies with respect to a relation scheme; instead, we have to study the problem in
the context of a database scheme.

In 2, we define the necessary notation needed throughout this paper. In 3, we
investigate insertion and deletion anomalies. Depending on the assumption of whether
null values are allowed in an inserted tuple, two simple models are developed for
analyzing when a relation scheme is free of insertion and deletion anomalies. Tech-
niques are also proposed for constructing desirable decompositions that are free of
insertion and deletion anomalies. In 4, we study replacement anomalies and show
that this problem closely relates to the constraint enforcement problem. In view of the
desirability of replacement-anomaly-freedom, we characterize several important classes
of database schemes that are free of replacement anomalies. Finally, we give our
conclusion in 5.

2. Definitions and notation.
2.1. Basics. Following standard notation [Ma], [U], we fix a finite set of attributes

U={A1,...,An} and call it the universe. We use Z, Y,X,... to denote sets of
attributes in U and A, B, C,... to denote attributes in U. A relation scheme R is a
subset of U. A database scheme R {R1,..., Rk} is a collection of relation schemes
such that the union of the Ri’s is U.

Associated with each attribute Ai c U is a set of constants called the domain of

As or. dom (As). A tuple over Rs {A, , Am} is an element of dom (A) x. x
dom (Am). A relation rs over Ri is a set of tuples over Ri. A database state for a database
scheme R is a function r that maps every relation scheme Rs in R to a relation on
we write r=(r,. ., rk)=(r(R),. ., r(R)).

If is a tuple over Ri and X is a subset of Rs, t[X] is the restriction of to the
attributes X. If ri is a relation over Ri, the projection of ri onto X is

Given a relation I defined on U and a database scheme R {R,..., R}, rrR(I)=
(,(I),..., ,()>.

2.2. Tableaux. Tableaux were originally proposed by Aho, Sagiv, and Ullman to
represent relational expressions [ASU]. A tableau consists of a body and a possibly
empty summary row. The body of a tableau is a relation over U’= U (_J { TAG}. Each
tuple in the body is simply called a row. The tableau domain of As e U, tdom (As), is
the disjoint union of dom (As), the set {as}, where as is called the distinguished variable
(dr) for As, and a countable set Ndv (As) of nondistinguished variable (ndv’s) for
The tag domain tdom (TAG)= R CI {U}. The elements of tdom (As), for all As e U, are
ordered by a partial order << such that we have the following:

all elements of dom (As) are pairwise incomparable.
c << v, for c 6 dom (Ai) V tdom (Ai) dom (Ai).
a << b, for a the dv for As, b c Ndv (Ai).
Ndv (As) is a linear order set under
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The summary row of a tableau is a tuple over a subset of U called the target
relation scheme. Where it is defined, the summary row may contain only dv’s and
constants that appear in the body of the tableau. Let R {R1,’’ ", Rk}. The tableau
for R, denoted by TR, is a tableau of k rows tl,. ., tk such that ti[A] is a dv exactly
when A Ri and distinct ndv otherwise, for all 1-<i_-< k. The summary row of TR is a
tupleofalldv’s (a,...,

Given a database state r (r, , r), we define a tableau Tr on U U { TAG} and
call it the tableau for database state r. For each relation r r, and for each tuple r,
there is a row u in Tr corresponding to it. The tuple u is said to originate from r or

R and is defined as follows:
u[Ri] t.

u[A] bo, bi is an ndv that appears nowhere else in T, A U-R.
u[ TAG] Ri.

The summary of T is empty.

2.3. Dependencies and chasing. The kinds of constraints considered are functional
dependencies (fd’s) and join dependencies (jd’s). Associated with each fd or jd is an
F-rule or J-rule, respectively. Given a tableau T and a set of fd’s and jd’s , we can
use the J-rules to infer additional tuples that must be in T if it is to satisfy , and the
F-rules to infer equalities among symbols of T for the same reason. These transforma-
tion rules are defined as follows and their properties are described in [MMS].

F-rule: For each fd X- A, there is an F-rule corresponding to it. Suppose a
tableau T has rows t, t2 that agree in all X-columns. Let Vl, v2 be the
values in the A-column of t, t2, respectively. Furthermore, vl v2. Apply-
ing the F-rule corresponding to X A to rows t, t2 of T yields a trans-
formed tableau S. S is the same as T except Vl, v2 are replaced as follows.
If one of vl or v2 is a constant (or a dv) and the other is not, then replace
all occurrences of the other by the constant (or the dv, respectively). If
both are ndv’s, then replace all occurrences of the variable with the higher
subscript by the variable with the lower subscript. If both are distinct
constants, the result of applying the rule is usually defined to be the empty
tableau and an inconsistency is said to be found.

J-rule: LetS={S1,...,S},withtheunionofS’s yielding U. Rows t,...,t
of T (not necessarily distinct) are joinable on S if there exists a row w
not in T that agrees with t on S, _-< i_-< k. Row w is the result of joining
ti’s. An application of the J-rule corresponding to the jd ]IS allows us
to take rows t,. ., t of T that are joinable on S and to add their result
w to T. The added tuple is assumed to have U as its tag.

Suppose Z is a set of fd’s and/or jd’s. CHASE(T) is the tableau obtained by
applying the F-rules and/or J-rules corresponding to the members of Z exhaustively
to T.

Given a set of dependencies Z, there are additional dependencies implied by this
set in the sense that any relation that satisfies this set must also satisfy the additional
dependencies. The set of dependencies that is logically implied by Z is the closure of
Z, denoted by Z+. Z is said to be equivalent to a set of dependencies if += +.
A set G of fd’s is a cover of F if G is equivalent to F. Given a set of attributes X, the
closure of X with respect to Z, denoted by X, is the set of attributes {A IX -, A Z+}.

+We shall use X+ instead ofX if Z is understood. Let 5: be a set of fd’s F. If A X+

then there is a sequence of fd’s Y1 - A1,. ., Yn - An A such that Y- Ai F, for
all i.
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Let be a set of dependencies defined on a relation scheme R. An fd X -+ A e +
is nontrivial ifA X. A set of fd’s is nontrivial if each of its members is. An fd X -, A e +
is left-reduced if X-+ A is nontrivial and there is no proper subset Z of X with
Z-+ A e +. A set of fd’s is said to be left-reduced if each of its elements is. K c_ R is
a candidate key of R if K -+ R e + and there is no proper subset of K that has this
property. X c_c_ R is a superkey of R if X contains a candidate key of R. A relation
scheme R is said to be in BCNF with respect to if whenever X -+ A e E+ is nontrivial
implies X is a superkey of R. A relation scheme R is single-key with respect to E if
X and Y are candidate keys of R implies X Y.

Let be a set of dependencies on the universe U and let R {R,. ., Rk} be a
database scheme on U. +lRi denotes the set of dependencies in I;+ that is defined
on Ri, for some Ri e R. +[Ri is the set of projected dependencies onto Ri. R is said
to be single-key with respect to Z if each of its relation schemes Ri is single-key with
respect to E+IRi. Ris in BCNFwith respect to if each RieR is in BCNF with
respect to +[Ri. R is said to be cover embedding with respect to a set fd’s F if there
is a cover G of F such that every g e G is embedded in some relation scheme in R.
G is said to be an embedded cover of R. R is said to be lossless with respect to if
CHASEs(TR) has a row of dv’s. R is said to be dependency preserving or to preserve
a set offd’s F if for any relation I on U, l satisfies F implies "rrR,(I)IIX[[’’. IIx II,(I)
also satisfies F [BMSU]. It has been proved that R is cover embedding implies R is
dependency preserving [BMSU].

2.4. Consistency of data in a database. Let r be a state for a database scheme
R {R1," ", Rk}. Let I be an instance defined on U. Then I is a weak instance for r
with respect to a set of dependencies if

rrR, (I)
_

ri, for each -< -< k.
I satisfies E.

Under the weak instance model, a database state r is said to be consistent with a
set of dependencies E if a weak instance exists for the state with respect to E [GMV],
[H], [V]. Otherwise r is inconsistent with respect to . It has been shown that
CHASEs(Tr) is nonempty if and only if r is a consistent state [GMV]. CHASEs(
is called the representative instance for state r.

3. Insertion and deletion anomalies. In the Introduction, we have argued that
whether a relation exhibits insertion and deletion anomalies depends on the types of
partial tuples allowed in the relation. Following other authors [BMSU], [DGS1],
[DGS2], [LP], [MW], [MU], [Sc], we need an additional concept to capture the idea
of "basic facts" in a relation. We shall borrow the concept of insertion sets [LP] to
denote basic facts we want to store in a relation. Insertion sets are similar to update
sets in [BMSU], except that insertion sets are basic units of insertion and deletion,
but not of update. So insertion sets are primarily associations or primary fact structures
referenced elsewhere in the literature [DGS1], [DGS2], [MW]. We also assume each
tuple in a relation represents an identifiable object in the real world. Codd suggested
that an identifiable object in a relation is represented by a primary key value. Con-
sequently Codd’s assumptions on relational systems are as follows [Cod2], [Cod4].
A relation scheme R is assumed to have a candidate key designated as the primary
key of R. A relational system is assumed to allow users to insert partial tuples into a
relation with the restriction that the primary key cannot contain any null value. On
the other hand, when a tuple is deleted, the whole tuple will be removed.

Most existing relational systems, for instance SQL-lookalike systems, support
Codd’s assumptions. However, several researchers [LP], [M] have felt the assumption
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that a partial tuple inserted into a relation must have non-null values on the primary
key is too restrictive. Instead, they proposed that this assumption should be relaxed
by requiring inserted tuples to be non-null on a candidate key only.

These two different sets of assumptions lead to two different models for analyzing
insertion and deletion anomalies and they are presented, respectively, in the following
two sections. In both cases, a definition of anomalies-freedom is first given. We then
address the question of how to obtain a desirable anomalies-free decomposition from
an anomalous relation scheme.

Since insertion and deletion anomalies deal with the problem of whether some
facts could be inserted and deleted independently in a relation, we shall consider this
problem within the context of a relation scheme in the remainder of this section.

3.1. The case of non-null primary key values. In this section, we study the case
that when a partial tuple is inserted into a relation R, it must be non-null on the
primary key of R. We first define when a relation scheme is free of insertion and
deletion anomalies. We then investigate how to find a decomposition that is free of
insertion and deletion anomalies from a relation scheme.

3.1.1. A definition of anomalies-free schemes. In this section, we first define when
a relation scheme is free of insertion and deletion anomalies under our assumptions.
We then compare our approach with classical normalization theory by showing the
condition under which normalization guarantees the resulting decomposition is free
of insertion and deletion anomalies.

We have shown in the Introduction that independent facts cannot always be
represented by constraints such as functional dependencies. To Solve the problem of
insertion and deletion anomalies formally, we need to define explicitly the meaning
of independent facts. Let X be a subset of a relation scheme R. We call X an insertion
set (on R) if X denotes a nondecomposable relationship by which data may be
recorded. Several authors have studied the problem of how to find insertion sets
[DGS1], [DGS2], [MW], [Sc], while others have addressed the question of how to
convert a decomposable fact into a collection of insertion sets [B], [BDB]. In this
paper, we assume insertion sets have been identified and we shall concentrate on how
to find desirable decompositions that are free of the anomalies problem.

Informally, a relation scheme R is free of insertion anomalies if tuples on any
insertion set on R can be inserted independently into R. R is free of deletion anomalies
if no fact on an insertion set on R is "unexpectedly" deleted. Following LeDoux and
Parker [LP], we capture these ideas formally as follows. A relation scheme R is

anomalies-free if every insertion set on R contains the primary key of R. First we want
to argue that R is anomalies-free exactly when R does not exhibit insertion and deletion
anomalies illustrated in Example 1.

From this definition, R is anomalies-free if and only if R is free of insertion
anomalies. To show that R is anomalies-free exactly when it is free of deletion
anomalies, let us consider the following. If R is anomalies-free, then deleting a tuple
from R will delete facts that contain the same primary key value. Under the assumption
of this model, a primary key value of a tuple represents an object and the nonprimary
attribute values are properties of the object. Therefore deleting a tuple results in deleting
an object and its associated properties from the database. Hence no fact on an insertion
set on R is "unexpectedly" deleted. On the other hand, if R is not anomalies-free,
then R has an insertion set ! defined on it which does not contain the primary key of
R. Since the primary keys of the relation schemes represent objects in the real world,
I is an insertion set which is different from any insertion set on R containing the
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primary key. As a result, deleting a tuple on R will result in deleting a fact on I that
is supposed to have independent existence from any insertion sets containing the
primary key of R. So some fact on I is deleted "unexpectedly" when the last tuple
containing the fact is deleted from R. Therefore in the sense of Codd [Cod2], R is
not free of deletion anomalies. Hence R is anomalies-free exactly when R is free of
deletion anomalies. This shows that our definition captures the essence of insertion
and deletion anomalies. A database scheme or a decomposition R is anomalies-free if
each of its relation schemes Ri is anomalies-free.

In this model, determining if a relation scheme R exhibits insertion and deletion
anomalies is simple once the primary key and the insertion sets are identified. Although
constraints such as fd’s do not play an explicit role in this model, it is often the case
that fd’s convey some information about insertion sets, and this is assumed in the
older literature [BMSU], [B], [Cod2]. So it would be interesting to see how this relates
to our work. Under this model, the following result characterizes when a relation
scheme is anomalies-free if every nontrivial fd is assumed to be an insertion set on a
relation scheme.

THEOREM 1. Let R and Z be a relation scheme and a set of constraints on R,
respectively. Suppose every nontrivial fd represents an insertion set on R. R is anomalies-

free if and only iffor every nontrivial fd X - A +, X does not contain the primary key
implies XA R.

Proof This theorem is proved by showing that every nontrivial fd embeds the
primary key of R if and only if for every nontrivial fd X- A Z+ such that X does
not contain the primary key implies XA R.

"If." The proof is trivial.
"Only if." Assume there exists some nontrivial fd X- A Z+ such that X does

not contain the primary key and R- XA # . If XA does not contain the primary key,
what we want to prove follows trivially. If XA embeds the primary key, then A is a
primary key attribute since X does not contain the primary key. Since R-XA
let .B R- XA. Since XA contains the primary key, X- B +. By assumption, X
does not embed the primary key and A is an attribute of the primary key, X- B E+

is a nontrivial fd that does not contain the primary key. Therefore in all cases, there
is a nontrivial fd that does not embed the primary key of R.

In many cases, an fd in a nontrivial cover denotes an insertion set [BMSU]: the
following result characterizes when R is anomalies-free under such an assumption.

THEOREM 2. Let R and F be a relation scheme and a set of nontrivial fd’s on R,
respectively. Ifevery fd X -> A Frepresents an insertion set on R, then R is anomalies-free
if and only iffor every X-> A F, XA embeds the primary key of R.

Proof The proof is trivial.
From Theorems 1 and 2, if we assume nontrivial fd’s denote insertion sets on a

relation scheme, then the classes of anomalies-free relation schemes are subclasses of
BCNF relation schemes.

3.1.2. Synthesizing anomalies-free decompositions by grouping. From 3.1.1, there
is a simple test to determine if a relation scheme is anomalies-free once the primary
key and its insertion sets are identified. In this section, we consider the problem of
constructing an anomalies-free decomposition from a relation scheme R using the
insertion sets. We implicitly assume that candidate keys of insertion sets are given and
we are free to choose any candidate key to be the primary key in the design of
anomalies-free decompositions. The technique proposed here is to group together
insertion sets with a common candidate key.
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Given a relation scheme R and associated insertion sets D, then clearly D forms
an anomalies-free decomposition of R. However, there are cases where such a design
is poor. For example, suppose we have insertion sets AB and ABC, both with key A.
Then all we really need is a relation over ABC. Similarly, if we have insertion sets AB
and AC both with key A, it makes sense to combine them into a single relation ABC.
Thus our goal is to decompose an anomalous relation scheme R into a minimal
collection of anomalies-free schemes.

Minimality and anomalies-freedom are important criteria for a decomposition, as
is the property of preserving insertion sets. An insertion set I is preserved in a
decomposition if I is defined on some relation scheme. However, if ! is defined on
more than one relation scheme, then whenever tuples on I are inserted into the database,
more than one relation is updated. Storing duplicate data at the conceptual level is
not desirable in general; hence each insertion set should be defined on exactly one
relation scheme in the decomposition.

D is an insertion-set-preserving decomposition of R if every insertion set on
R is defined on exactly one element in D. A decomposition D of R is minimal-
insertion-set-preserving if for all decompositions E of R with anomalies-free and
insertion-set-preserving properties, ]DI--< ]El. It is worth mentioning that the cardinality
of a minimal-insertion-set-preserving decomposition of R is one if and only if R is
anomalies-free.

In view of the desirability of minimal-insertion-set-preserving decompositions, it
is interesting to know if a minimal-insertion-set-preserving decomposition D of R can
be found efficiently. A straightforward solution is to identify all subsets S of candidate
keys of the insertion sets such that every insertion set has at least one candidate key
in the subset S. The candidate keys in such subset S partition the insertion sets into
groups such that insertion sets in each group share a common candidate key. The
union of elements in each group forms a relation scheme in an anomalies-free decompo-
sition with the. common candidate key designated as the primary key of the relation
scheme. Each insertion set is defined on the relation scheme corresponding to the
partition in which it is included. It is easy to verify that a decomposition formed this
way is anomalies-free and insertion-set-preserving. We call this technique of finding
minimal-insertion-set-preserving decompositions the grouping technique. Having found
all such subsets, we select a subset S with minimal cardinality and the decomposition
resulting from S is a minimal-insertion-set-preserving decomposition of R.

Example 3. Let R(A, B, C, D) and the insertion sets be AB, AC, BC, and BD.
Suppose every attribute functionally determines the others and therefore each attribute
is a candidate key. Then a minimal subset of candidate keys such that the subset
contains at least one candidate key from each insertion set is S {B, C}. A partition
induced by S is {AB, BD} and {AC, BC}. Note that the partition induced is not unique.
For instance, {AB, BD, BC} and {AC} is another partition induced by S. The resulting
anomalies-free relation schemes from the former partition are ABD and ABC, with B
and C as the primary keys of the relation schemes, respectively. The sets of insertion
sets {AB, BD} and {AC, BC} are assumed to be defined on ABD and ABC, respectively.
It is easy to see that {ABD, ABC} is a minimal-insertion-set-preserving decomposition
of R. If the partition {AB, BD, BC} and {AC} is used instead, the resulting minimal-
insertion-set-preserving decomposition would be {ABCD, AC}. [3

The above method of finding minimal-insertion-set-preserving decompositions
requires exhaustively considering all subsets of candidate keys of the insertion sets;
hence it may take exponential time. Unfortunately, there does not seem to be a
polynomial-time algorithm for finding a minimal-insertion-set-preserving decomposi-
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tion in general even if we assume the set of candidate keys can be found for each
insertion set efficiently. This fact follows from the following theorem.

THEOREM 3. Given a database scheme D= {(Ri, Ki)IR is a relation scheme and
K is the set of candidate keys of R}. Then the problem "Does there exist a subset S of
UKi with size n such that for each K, S contains at least one element from K?" is

NP-complete.
Proof The problem is obviously in NP, since we have only to select non-

deterministically a subset S of size n from UK and verify that S contains at least
one element from each Ki. Clearly, the verification process can be done efficiently.
We now present a polynomial-time reduction of a known NP-complete problem called
the hitting set to our problem. The hitting set problem is formulated as follows. Given
a family {V,..., Vq} subsets of T={t,..., tp}, we must decide if there exists a
subset W of T of size n such that for each V, W contains at least one element from
V. Such a set is called a hitting set of size n. This problem can be found in [GJ] and
was proved to be NP-complete in [K]. We now construct a polynomial-time algorithm
that maps each instance of the hitting set problem to a corresponding instance of our
problem.

Let T be the universe. For each i, R V and K V. In other words, every
attribute in a relation scheme is a candidate key of the relation scheme. This can easily
be constructed by assuming each attribute in T functionally determines all other
attributes. We want to show that D has a subset S of U iK with size n such that for
each K, S contains at least one element from Ki if and only if T contains a hitting
set of size n.

"If." Let W be a hitting set of size n. Let S=W. We want to show that S
contains at least one element from each Ki. Since W is a hitting set, for each V,
W contains at least one element from V. Since V= K, S contains at least one
element from each K.

"Only if." Assuming that there is a subset S of UK of size n such that for each
Ki, S contains at least one element from Ki. Let W-= S. Since K V, W contains at
least one element from each V. So W is a hitting set of size n.

So given a set of insertion sets on R, even if we can find the candidate keys of
each insertion set efficiently, it is highly unlikely that there is an efficient algorithm
for finding a minimal-insertion-set-preserving decomposition of R. This is because
solving this problem efficiently necessarily implies the problem in Theorem 3 can be
solved efficiently. It is worth noting that the key-finding problem has also been proved
to be NP-hard [BB]. In fact, we do not even know if the problem of finding a
minimal-insertion-set-preserving decomposition is in NP.

COROLLARY 1. Let S= {(Si, K)IS is an insertion set and K is the set of candidate
keys ofS} be the set of insertion sets for a relation scheme R. Then given S, the problem
offinding a minimal-insertion-set-preserving decomposition of R is NP-hard.

Proof The proof follows directly from the above argument. V]

Up to now, we only require an anomalies-free decomposition of R to be minimal.
There are some other properties we may want a decomposition to have. For example,
if we assume it is meaningful to have a tuple defined on the original relation scheme
R, we may want the minimal-insertion-set-preserving decomposition to be lossless
[ABU]. In view of existence of nonunique minimal-insertion-set-preserving decomposi-
tions, it is interesting to know if every such decomposition is equally desirable with
respect to the losslessness criterion of the original scheme R. It should be clear that
it is not always possible to construct a lossless decomposition from the insertion sets.
For. example, if the constraints are fd’s and the insertion sets on R are disjoint, then
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any insertion-set-preserving decomposition is lossy. So the question is: under what
condition(s) do we have a lossless decomposition of R. It turns out there is a simple
answer if the decomposition is anomalies-free and insertion-set-preserving.

THEOREM 4. Let S be a set of insertion sets on a relation scheme R, and let D be
any insertion-set-preserving and anomalies-free decomposition of R. Let Z be the set of
constraints on R. D is lossless with respect to Z if and only if S is lossless with respect
to ,.

Proof First observe that since D is anomalies-free and insertion-set-preserving,
every element Di in D is a union of elements in S that share a common candidate key.
So we can chase the tableau Ts to give an intermediate tableau that is equivalent to
TD It follows that x ]]R if and only if Z x ]IS. 13

Theorem 4 says that whether an insertion-set-preserving and anomalies-free
decomposition is lossless depends solely on the given insertion sets. So any insertion-set-
preserving and anomalies-free decomposition is equally desirable with respect to the
losslessness criterion of R.

3.2. The case of non-null values on a candidate key. In 3.1, an inserted tuple is
assumed to have nonnull values on the primary key of the relation scheme. This
basically is the assumption made by Codd on relational systems [Cod2], [Cod4]. Some
authors [LP], [M] have felt that this assumption on an inserted tuple is too restrictive
and they proposed an inserted tuple should be non-null on a candidate key only. This
less restrictive assumption still allows tuples in a relation to be uniquely identified by
a candidate key and yet this is more flexible than Codd’s assumption with respect to
tuple insertions. We study the insertion and deletion anomalies problem under this
assumption in this section. We first give a definition of anomalies-free schemes. We
then characterize when a relation scheme is anomalies-free if every functional relation-
ship is assumed to be an insertion set on a relation scheme. Then, we investigate how
a minimal-insertion-set-preserving decomposition is obtained from a relation scheme.

3.2.1. A definition of anomalies-free schemes. Since we now assume every tuple
inserted into a relation must be non-null on a candidate key, we implicitly assume that
candidate keys in a relation scheme are semantically equivalent and that they all
represent the same object the relation is supposed to model. For example, assume the
attributes SIN and Emp-no are both candidate keys in the EMP relation. Then, either
SIN or Emp-no could be used to represent an employee in the company. Therefore,
as long as an inserted tuple on EMP is nonnull on one of these two attributes, it is
legal to insert it into the relation.

Using an analysis similar to the one given in 3.1.1, the following definition
captures the essence of anomalies-freedom. A relation scheme R is anomalies-free if
every insertion set on R contains a candidate key of R. With this definition, the
following result characterizes when a relation scheme is anomalies-free if every func-
tional relationship on a relation scheme is assumed to be an insertion set.

TEOREM 5. Let R and be a relation scheme and a set of dependencies on R,
respectively. Suppose every nontrivial fd on R represents an insertion set on R. Then R
is anomalies-free if and only if R is in BCNF with respect to .

Proof R is anomalies-free if and only if every nontrivial fd X- A Z+ embeds
a candidate key of R. Every nontrivial fd X- A Z+ embeds a candidate key of R if
and only if every nontrivial fd X- A Z+ implies X contains a candidate key of R,
and hence is a superkey of R. [3

If every fd in a nontrivial cover F is assumed to represent an insertion set, the
following characterizes when R is anomalies-free.
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THEOREM 6. Let R and F be a relation scheme and a set of nontrivial fd’s on R,
respectively. Suppose every X - A Frepresents an insertion set on R. Then R is anomalies-

free if and only if R is BCNF with respect to F.
Proof This follows from the fact that R is BCNF with respect to F exactly when

every fd X - A F embeds a superkey of R.
It is interesting to note that under a different model, Bernstein and Goodman

[BG] have shown that BCNF relation schemes are exactly the class of anomalies-free
schemes when fd’s are given as constraints.

3.2.2. Synthesizing anomalies-free decompositions by merging. Suppose after the
set of insertion sets on a relation scheme R is identified, R exhibits insertion and
deletion anomalies. Then, as was argued in 3.1.2, we would like to find a minimal-
insertion-set-preserving decomposition for R. Notice that the definition of minimal-
insertion-set-preserving decomposition is the same as the one given in 3.1.2, except
that the definition of anomalies-freedom is the one given in 3.2.1. Because the
definition of anomalies-frredom in 3.1.1 implies the definition of anomalies-freedom
in this section (but not vice versa), any insertion-set-preserving and anomalies-free
decomposition under the previous model is an insertion-set-preserving and anomalies-
free decomposition in this model. However, the converse does not hold.

Example 4. Let R(A, B, C, D) and let the insertion sets be AB, ABC, CD with
fd’s {A - BC, C -> AD}. The attributes A and C are the candidate keys of the insertion
sets. Under the previous model, AB and ABC could be grouped together and a
minimal-insertion-set-preserving decomposition is {ABC, CD} with A and C as the
primary keys in the corresponding relation schemes. Under the current model,
{ABC, CD} is an anomalies-free and insertion-set-preserving decomposition. The
minimal-insertion-set-preserving decomposition is R, which clearly is not anomalies-
free under the previous model.

Example 5. Let R(A, B, C, D), F {A ---> B, B -> C, C -> BD} and the insertion sets
be AB, BC, and CD. The only candidate key of R is A and since BC and CD do not
contain A, R has the insertion and deletion anomalies problem. The decomposition
that consists of AB (with candidate key A) and BCD (with candidate keys B and C)
is a minimal-insertion-set-preserving decomposition of R. The sets of insertion sets
{AB} and {BC, CD} are assumed to be defined on AB and BCD, respectively.

It turns out that a minimal-insertion-set-preserving decomposition in this model
can be found easily if the closure of a set of attributes with respect to Z can be computed
efficiently. The following algorithm is a method for obtaining such a decomposition
and it is obtained by merging insertion sets.

ALGORrHM Merge.
Input: R, and the insertion sets I ={I,..., Ik} on R.
Output: A minimal-insertion-set-preserving decomposition of R.
Method:
(1) Compute I- with respect to Z, for all 1 <_-j <_-k.

+(2) Define a binary relation on I as follows. Ii / if I-= I.i, for all// and
in/. Clearly the relation is an equivalence relation. Let [//] be the equivalence
class of Ii with respect to . Then U [//] is a relation scheme in the decomposi-
tion. The insertion set// is assumed to be defined on U [/].

(3) Output D={U []l/./ I}.

By step (2), the decomposition D output preserves insertion sets and is anomalies-
free. D is insertion-set-preserving since the equivalence partitions/. D is anomalies-free
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since each insertion set embeds a candidate key of the relation scheme on which it is
defined. Let S {S1," ", Sin} be a minimal-insertion-set-preserving decomposition’for
R. We want to show D S. Let Sj, and Sj2 be two insertion sets on Sj, for some 1 <_-j -<_ m.
By the definition of anomalies-freedom, S Sf. Since S preserves insertion sets, let
/ I be defined on S, for some <=j-< m. Then, elements in [L] are defined on S,
otherwise S is not minimal. By the definition of[l/] and the fact that S+, Sj+, for all
insertion sets Sj, and S2 defined on S, it follows that [Ii] is exactly the set of insertion
sets defined on S. This shows that D S. Therefore the minimal-insertion-set-preserving
decomposition is unique. Once the insertion sets on a relation scheme are identified,
whether the minimal-insertion-set-preserving decomposition can be obtained efficiently
depends on the time complexity for computing the closure of a set of attributes with
respect to Z.

THEOREM 7. The algorithm Merge correctly obtains a minimal-insertion-set-pre-
serving decomposition for R and the decomposition is unique for R given the input.

Proof The proof follows directly from the above analysis. [3

It is worth noting that relation schemes in a decomposition produced by Bernstein’s
synthesizing algorithm are anomalies-free if each embedded key dependency of a
relation scheme denotes an insertion set on the relation scheme. Hence the synthesizing
algorithm could be used in converting an anomalous relation scheme into an anomalies-
free decomposition.

4. Replacement anomalies. Example 1 illustrated replacement anomalies, as con-
ceived by Codd [Cod2]. In that example, a relation exhibits replacement anomalies if
modification of a tuple on some attribute causes some constraints to be violated.
Whether or not a relation exhibits replacement anomalies depends on its constraints
as well as the set of attributes allowed to be modified in the relation. An attribute in
a relation scheme that is allowed to be modified is said to be updatable.

We first give a definition that captures the essence of the replacement anomaly
problem as illustrated in Example 1. Then we argue that unlike insertion and deletion
anomalies, it is not meaningful to discuss replacement anomalies in the context of a
single relation. Instead, this problem should be addressed in the context of a database
scheme. As we will show later, the replacement anomaly problem is closely related to
the constraint enforcement problem. We then give a more intuitively correct definition
of replacement-anomaly-frredom. By varying the assumptions on the updatable
attributes, several important classes of replacement-anomaly-free database schemes
are characterized.

4.1. A definition of replacement-anomaly-free schemes. From Example 1, a relation
scheme R that exhibits replacement anomalies implies that when some value of a tuple
on R is changed, other tuples in the relation may be modified on the updated attribute.
Consequently, an update on a tuple results in an unpredictable number of tuples being
retrieved and changed. The following definition captures the essence of replacement-
anomaly-freedom when a relation is considered. A relation scheme R is replacement-
anomaly-free with respect to if the resulting relation from a modification of a tuple
in a satisfying relation is also satisfying with respect to Z.

However, just requiring each relation to satisfy its projected or local dependencies
is inadequate.

Example 6. Let R {R (Supplier, City), R2(Supplier, Status) }, and F {Supplier -City, City -> Status}. The Supplier attribute is the primary key of both relations. Suppose
the only updatable attributes for R and R2 are City and Status, respectively. Because
of the updatable attributes and since each relation is in BCNF, each relation scheme
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is replacement-anomaly-free with respect to its projected fd’s. Let us consider the
following state:

Supplier City Supplier Status

S C

C

t
t

The given state is consistent with respect to the given fd’s [GMV], [H]. Suppose
now we change the status of supplier "Sl" located in city "c" from "t" to "t2." To
maintain the consistency of the state, all "t" values in r2 should be changed to "t2."
Since more than one tuple is retrieved and updated, this database scheme is not free
of replacement anomalies. 71

Intuitively, a database scheme R is replacement-anomaly-free with respect to Z
if every update on a consistent state is legal and the database system is not required
to retrieve any tuple from the state as a result of the update. In view of this, we now
give a more appropriate definition that captures the intuition on replacement-anomaly-
freedom.

A database scheme R is replacement-anomaly-free with respect to Z if for every
consistent state r, whenever a tuple ti on some Ri R is modified on some updatable
attribute A, the resulting state is also consistent with respect to Z. So if a scheme is
replacement-anomaly-free, then nothing needs to be done by the system with respect
to consistency whenever an update is performed on a consistent state. In the remainder
of this section, we first study some properties of replacement-anomaly-free schemes,
we then characterize several important classes of replacement-anomaly-free database
schemes.

4.2. Properties and characterizations of replacement-anomaly-free schemes.
4.2.1. Some necessary conditions and properties for replacement-anomaly-free

schemes. In this section, we first identify some necessary conditions for a database
scheme to be replacement-anomaly-free when a set of dependencies is given. In view
of the importance of fd’s and the full jd IIlla [FMUJ, we then describe a condition
under which the augmentation of fd’s with the full jd IIIIR does not change the
characterization of replacement-anomaly-free schemes.

A database scheme R is said to satisfy the nondetermining and key-determined
condition with respect to E if for every R R, and for every left-reduced fd X
,+lRi, B XA is updatable implies A B, X is a candidate key of R and there is no
other R that embeds XA, i#j. The following two examples illustrate why the above
condition is necessary for replacement-anomaly-freedom.

Example 7. Let R {S(Project, Part, Cost)} and F= {Part-. Cost}. The relation
scheme S tells us what parts are used in which projects and at what prices. Suppose
the updatable attribute is Part, we claim that R is not replacement-anomaly-free with
respect to F. Consider the following consistent state r=(s ={t--(pj,p, c),
t2=(pj, p, 2)})" Suppose we change fi[Part] from p to P2, then the update gives
rise to a violation of the fd Part -. Cost. On the other hand, if Cost is the only updatable
attribute in R, then R still has replacement anomalies. Let us consider the following
consistent state r (s tl (pj, p, cl), t (pj, p, c)}). If t[ Cost] is changed from
c to ce, then the update maps r into an inconsistent state. This example illustrates
that if R is replacement-anomaly-free, then for every nontrivial fd X
B XA and B is updatable necessarily implies B A and X is a candidate key of
Ri. [--]
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Example 8. Let R= {S(Project, Part, Cost), T(Part, Cost)} and F= {Part- Cost}.
Let us assume Cost in T is the only updatable attribute. Note that the attribute Cost
is the right-hand side of the fd Part- Cost and Part is a candidate key of T. However,
R is not replacement-anomaly-free since the relationship Part_Cost is also embedded
in S and therefore we can easily construct a consistent state on R such that changing
the Cost-component of some tuple in T will map the state into a state that violates
the fd Part Cost.

The following theorem proves that the nondetermining and key-determined condi-
tion is necessary for replacement-anomaly-freedom.

THEOREM 8. Let Z be a set of dependencies on R. If R does not satisfy the
nondetermining and key-determined condition with respect to , then R is not replacement-
anomaly-free with respect to Z.

Proof If R violates the condition, then there is a Ri R that embeds a left-reduced
fd X- A Z+ and B XA is updatable but A # B, or X is not a candidate key of Ri,
or XA is embedded in some other relation scheme R. There are three possible cases
to be considered.

Case 1. A # B. That is, there is some updatable attribute B X in R. Let I { t, t2}
be such that t and t2 agree exactly on {X-{B}}+ and distinct constants otherwise.
Then chase I with respect to Z to obtain CHASE(I). By considering CHASE(I) as
an instance, CHASEs(I) is a satisfying relation with respect to Z [BV], [MMS]. Since
Z does not imply the fd (X-{B})-+ A, t and t2 in CHASEy(I) disagree on A and B
but agree on (X-{B}). Let r= rR(CHASE(I)). The state r is consistent with respect
to Z since CHASEr.(1) is a weak instance for r. Note that t[R] and t2[Ri] are two
tuples in r r and they agree on (X -{B}) but disagree on A and B. Since by assumption
B is updatable in R, we change the B-component of t[Ri] to the B-component of
t[R]. Hence the tuples t[R] and t2[R] in ri violate the fd X - A Z+[ R. This shows
that R is not replacement-anomaly-free with respect to

Case 2. A B and X is not a candidate key of R. Let I {t, t2} be such that t
and agree exactly on X+ and distinct constants otherwise. As in Case 1, we first
obtain CHASE(I). By considering CHASE(I) as a satisfying instance, let r=

rR(CHASE(I)) and r is a consistent state with respect to Z. By assumption, X is
not a candidate key of R. This implies t[R] and t2[Ri] are two distinct tuples in

r r. By the construction of CHASE(I), t[R] and t[R] agree on X. Since A is
updatable in Ri, change the A-component of t[R] to a constant that appears nowhere
else. The resulting relation violates X- A Z+IR and therefore the updated state is
inconsistent with respect to Z. Hence R is not replacement-anomaly-free with respect
to .

Case 3. A B and XA is embedded in some other relation scheme Rj. Let r be
the consistent state constructed in Case 2. Since XA is embedded in both R and Rj,
t[R] and t[Ri] are tuples in r and rj, respectively, and they agree on XA. Since A
is updatable in Ri, change the A-component of t[R] to a constant that appears
nowhere else. Clearly the state is inconsistent with respect to Z. Hence R is not
replacement-anomaly-free with respect to

The following example illustrates another necessary condition for replacement-
anomaly-freedom.

Example 9. Let R {R(Patient, Hospital), R(Patient, Doctor), R3(Doctor,
Hospital)}, and F={Patient-. Hospital Doctor, Doctor- Hospital}. R records the
registration information, and each patient registers in a unique hospital. R2 stores the
in-charge-of relationship, and each patient is assigned to a unique doctor. R3 tells the
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affiliation information, and each doctor is assumed to be associated with at most one
hospital.

+First observe that R2 with respect to {Doctor- Hospital } contains R, and hence
there are two different derivations of the functional relationship between Patient and
Hospital. Let r= (r {(p, h)}, r2 {(p, d)}, r3 {(d, h)}) be a consistent state on R. If
the attribute Hospital in R is updatable, then the state r can be transformed into an
inconsistent state by changing the Hospital-component of the tuple in r to some other
constant. This shows that R is not replacement-anomaly-free with respect to F.

The following theorem formally states a necessary condition for replacement-
anomaly-freedom illustrated in the example above.

TrEOREM 9. Let F be a set of fd’s. Let Z -> A1, , Zn -> An be a sequence of fd’s
used in computing (partially or totally) the closure of Ri R such that each Z - A F+

and is embedded in some Rij R. Suppose Ri U ZA t_l... ZnAn contains XB, where
X B F+ is a left-reduced fd embedded in some Rp R, p i. Moreover,for all 1 <-j <- n,
ZA. embedded in R!j Re implies Z.i is not a superkey of Re. If some attribute ofXB in
Re is updatable, then R is not replacement-anomaly-free with respect to F.

Proof By assumption that X- B is left-reduced, if X is. not a candidate key of
Re or B is not the only updatable attribute of XB in Re, then by Theorem 8, R is not
replacement-anomaly-free with respect to F. In the remainder of this proof, we assume
X is a candidate key of Re and B is the only updatable attribute of XB in Re.

We first construct a tagged satisfying universal relation T with to,’’’, tn+ as its
rows as follows: to has zero exactly in R+ with tag Ri. For each Z - AJ, <j <- n, there
is exactly one row tJ in T with tag Rj. The tuple ti has the constant zero exactly in
Z+ and distinct constants that otherwise appear nowhere else. The tuple tn+ with tag
Re has zero exactly in X+ and distinct constants that appear nowhere else otherwise.
It can be shown that 7rt(T) is a satisfying relation with respect to F [GY].

Let us construct a consistent state r from T as follows. For each Rk R, rk--
{ t[ Rk][ T and t[ Tag] R }. Since 7rt (T) is a satisfying relation, and hence a weak
instance for r, r is consistent with respect to F. Next we want to show that r can be
mapped into an inconsistent state with a modification on a tuple. First observe that
by assumption on ZAi, tn+[Re] ti[Rp], for anyA embedded in Re. By construction
of r, tn+l[Re] re. Since B is updatable in Re, change the B-component of t,+[Re]
from zero to a constant w that appears nowhere else. Let s be the updated state. By
assumption, Z - A,. , Zn - An is a sequence of fd’s used in computing the closure
of R and the closure contains XB, it is easy to see that during the chase process the
tuple in the state tableau corresponding to t0[R] in s has the constants zero and w

simultaneously assigned to t0[B]. Hence s is not consistent with respect to F. Therefore
R is not replacement-anomaly-free with respect to F.

The following theorem describes a condition under which the augmentation of
fd’s with the full jd does not change the characterization of replacement-anomaly-free
schemes. We need a result from [CM] before we give the theorem.

TEOEM 10. Let R be dependency preserving with respect to Fand ; FU
Let r be a state on R. Then r is consistent with respect to F if and only if r is consistent
with respect to Z.

Proof See [CM] for the proof.
TEOaEM 11. Let R be dependency preserving with respect to Fand Z= FU

LetZ be the set ofupdatable attributes in R,for allR R. Then R is replacement-anomaly-
free with respect to F if and only if R is replacement-anomaly-free with respect to

Proof "If." Let r be a consistent state with respect to F. By Theorem 10, r is
consistent with respect to Z. Suppose s is the state after a tuple in r has been updated
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on some updatable attribute A Zi, for some Ri R. Since R is replacement-anomaly-
free with respect to Z, the updated state s is consistent with respect to Z. By Theorem
10, s is consistent with respect to F. Hence R is replacement-anomaly-free with respect
to F.

"Only if." Using an argument similar to the "if" part, it is easy to show that this
implication also holds.

4.2.2. Independent and y-acyclic cover embedding BCNF schemes. In this section,
we characterize two important classes of replacement-anomaly-flee schemes. We show
this result by proving that the nondetermining and key-determined condition is also
sufficient for replacement-anomaly-freedom when the class of independent schemes
and the class of y-acyclic cover embedding BCNF schemes are considered.

Constraint enforcement is an important function in any database system. A class
of database schemes known as independent schemes was proposed to allow efficient
enforcement ofconstraints imposed on a database. Independent schemes were proposed
independently by several researchers [GY], [ILK], [S1], [$3] and have been shown to
be desirable with respect to query answering [AC], [ILK], [$3]. Let
where F is a set of fd’s. A database scheme R is independent with respect to if ensuring
every relation ri r satisfies Z+I Ri guarantees that the state r is globally consistent
with respect to Z. It has been shown that Z+I Ri is a set of fd’s embedded in Ri, for
every Ri R [GY]. The following theorem shows that the nondetermining and key-
determined condition characterizes replacement-anomaly-frredom when independence
is assumed.

THEOREM 12. Let R be independent with respect to = FU{lllll }. R is replace-
ment-anomaly-free with respect to Z if and only if R satisfies the nondetermining and
key-determined condition with respect to

Proof "Only if." The "only if" part follows directly from Theorem 8.
"If." Let r be a consistent state with respect to :. Let Z+l Ri Fi be the set of

fd’s embedded in Ri. Without loss of generality, we assume Fi is left-reduced. Suppose
some tuple in ri r is updated on A and the updated relation violates some left-reduced
fd Y- B Fi. Clearly A YB. Since R is nondetermining and key-determined with
respect to Z, Y is a candidate key of Ri and A B. Since the Y-column of ri is not
changed by the update, no two tuples in the updated relation agree on Y. We can
conclude that the updated relation cannot violate the fd Y--> B. Hence after each update
on some ri, the resulting relation satisfies Fi. Since R is independent with respect to
Z, updates preserve the consistency of data in a database. Therefore R is replacement-
anomaly-free with respect to Z. 71

Recently, the class of y-acyclic cover embedding BCNF database schemes has
been shown to be highly desirable with respect to query processing and constraint
enforcement [CH]. With this class of schemes, Algorithm Enforce, shown in Fig. 1, is
an incremental algorithm used to enforce satisfaction of fd’s efficiently.

Let R be a y-acyclic cover embedding BCNF database scheme with respect to F
and let r be a consistent state of R. Let rp be a relation that is being changed by an
insertion of a tuple t, where rp r. Let {Kpl, , Kp,,,} be the set of nontrivial candidate
keys of Rp. A candidate key K of R is nontrivial if there is a nontrivial fd K-* A
embedded in R. It was proved in [CH] that Algorithm Enforce correctly determines
if an updated state is consistent with respect to F.

Given this class of database schemes, the nondetermining and key-determined
condition again characterizes the class of replacement-anomaly-free schemes with
respect to Z F U {11 IIR}.
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Input:

Output:
Notation:

(1)
(2)
(3)
(4)
()
(6)
(7) end
(8) end
(9) print yes

A consistent state r of a y-acyclic cover embedding BCNF database scheme R with
respect to F.
A tuple to be inserted in r, r, R, R.
No, if r U {t} is not consistent with respect to F; yes otherwise.

{K,,,..., K.... is the set of nontrivial candidate keys of RF.

for each Kt, do begin
for each A R,- Kp, do begin

for all Rq R such that Rq
_
K,,A do begin

if 7rK,,/(rq)U 7rK,,,A({t}) does not satisfy K,;
print no; halt end

end

-> A then do begin

FIG. 1. Algorithm Enforce.

THEOREM 13. Let R be cover embedding BCNF with respect to F and is y-acyclic.
R is replacement-anomaly-free with respect to Fifand only if R satisfies the nondetermining
and key-determined condition with respect to F.

Proof "Only if." Follows from Theorem 8.
"If." Suppose we update a tuple of rp in a consistent state on an attribute A. We

can consider the update as a deletion followed by an insertion. Since under our
assumption deletion does not map a consistent state to an inconsistent one, let us
consider the insertion. If after the insertion some nontrivial key dependency
F+[Rp is violated, then by the nondetermining and key-determined condition, A B.
Hence the update did not change any value of Kpi in rp. By statement (4) in Algorithm
Enforce (see Fig. 1), the updated relation rp cannot violate Kp,- B. Hence after the
insertion, the updated relation rp satisfies the set of nontrivial key dependencies. Again
by the nondetermining and key-determined condition, Kp,-, A is embedded in no other
relation scheme. This implies the updated state is consistent with respect to F. Hence
R is replacement-anomaly-free with respect to F.

COROLLARY 2. Let R be cover embedding BCNF with respect to F and be y-acyclic.
Let E= FU{IIxlIR}. R is replacement-anomaly-free with respect to if and only if R
satisfies the nondetermining and key-determined condition with respect to F.

Proof The proof follows directly from Theorems 11 and 13.

4.2.3. A natural case. In 4.2.1 and 4.2.2, no assumption is made on the updatable
attributes. In many cases, a candidate key of a relation scheme is designated as the
primary key of the relation scheme. The primary key of a relation scheme is used to
represent an object or entity in the real world. Hence the primary key values cannot
be modified by an application program [Cod4], [TL]. In this case, we assume every
attribute in Ri-Pi is updatable, where Pi is the primary key of Ri, for all R R. In
this section, we want to characterize when a cover embedding database scheme R is
replacement-anomaly-free with respect to F. By Theorem 11, the characterization is
also applicable when FU {llxllR} is considered. We need the following results before
we prove the characterization.

THEOREM 14. Let E be a set of dependencies. Assume further that R- P is the set

of updatable attributes in Rg, where P is a candidate key of Ri, for all Ri R. If R is

replacement-anomaly-free with respect to E, then R is single-key with respect to E.
Proof Suppose there is Ri R such that Rg embeds two candidate keys. Let the

candidate keys be X and Y. Without loss of generality, let X be Pi. Since X and Y
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are two distinct candidate keys, there is an A X-Y. Since Y is a candidate key,
Y- A is a nontrivial fd embedded in Ri. This implies there is a subset Z of Y such
that Z- A is left-reduced. Since X cannot embed a nontrivial fd and A X, there is
an attribute B Z-X. By assumption, B is updatable. Since Z-* A is left-reduced, B
is updatable and A # B, R violates the nondetermining and key-determined condition.
By Theorem 8, R is not replacement-anomaly-free with respect to E.

THEOREM 15. Let be a set of dependencies. Assume further that Ri-P is the set

of updatable attributes in Ri, where P is a candidate key of R, for all Rg R. If R is

replacement-anomaly-free with respect to E, then R is BCNF with respect to E.
Proof Suppose there is Ri R, which is not in BCNF with respect to E+l Ri. That

is, there is some nontrivial fd X- A E+ embedded in R but X is not a superkey,
and hence is not a candidate key of Ri. Without loss of generality, we assume X A
is left-reduced. By assumption on the updatable attributes and the fact that the candidate
key P cannot contain a nontrivial fd, some attribute B XA is updatable. This implies
R does not satisfy the nondetermining and key-determined condition. By Theorem 8,
R is not replacement-anomaly-free with respect to E.

For the class of cover embedding BCNF database schemes with respect to F,
Sagiv has shown that independence is characterized by a condition known as the
uniqueness condition [S1], [$2]. A database scheme R is said to satisfythe uniqueness
condition if there is no R and Rj in R, i#j, such that (Rg) +-FJ embeds a nontrivial
fd KJ - A F;, where F is the set of projected fd’s on R.. The following shows that
under certain assumptions, independence is necessary for replacement-anomaly-
freedom.

THEOREM 16. Let R be cover embedding with respect to F. Assume further that
R-P is the set of updatable attributes in Ri, where P is a candidate key of R, for all

R R. If R is single-key BCNF and replacement-anomaly-free with respect to F, then
R is independent with respect to F.

Proof Suppose R is not independent with respect to F. Since R is cover embedding
BCNF and nonindependent with respect to F, R violates the uniqueness condition.
That is, there are R and Ri, #j, such that (R) -_.,. embeds a nontrivial fd K; - AF+[R, where K; is a superkey of R. Since R is single-key with respect to E, A is
updatable in R;. Let X - A1, ", X, -* A be a sequence of fd’s in F used in computing
(Ri) +-Fj. By the cover embedding property, we can assume each Xq Aq embedded
in some Sq, where Sq Ri, for all 1-< q<-_p. By Theorem 9, R is not replacement-
anomaly-free with respect to F.

THEOREM 17. Let R be cover embedding with respect to F. Assume further that

R-P is the set of updatable attributes in Ri, where P is a candidate key of R, for all
R R. R is replacement-anomaly-free with respect to F if and only if R is single-key,
BCNF and independent with respect to F.

Proof "If." Let t be a tuple of R in some consistent state that is being modified
on some updatable attribute A. Since A is updatable, A R- Pi. Since R is single-key
BCNF and independent with respect to F, the modified state is consistent with respect
to F. Hence R is replacement-anomaly-free with respect to F.

"Only if." By Theorems 14 and 15, R is single-key and BCNF with respect to F.
By Theorem 16, R is independent with respect to F.

THEOREM 18. Let R be cover embedding with respect to F and = F U {llxllR}.
Assume further that Ri- P is the set of updatable attributes in R, for all R R. R is

replacement-anomaly-free with respect to , if and only if R is single-key, BCNF and
independent with respect to F.

Proof First observe that the sets of fd’s implied by F and Z are identical [GY].
Then the theorem follows directly from Theorems 11 and 17.
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5. Conclusion. We have argued that normalization does not necessarily solve the
problem of update anomalies. In view of this, we have studied this problem and
proposed a theory for designing database schemes that are free of update anomalies.

Unlike Codd, LeDoux, and Parker [Cod2], [Cod3], [LP], we have viewed insertion
and deletion anomalies as a problem that is different from replacement anomalies.
Unlike Bernstein and Goodman [BG], we have regarded insertion and deletion
anomalies as a problem of recording data in a relation, and replacement anomalies as
a problem of independent modification of attribute values of a tuple in a consistent
state. Because of the nature of these problems, we have studied insertion and deletion
anomalies in the context of a single relation scheme. We have proposed two simple
models for analyzing and designing desirable database schemes that are free of insertion
and deletion anomalies. With the assumption that every embedded nontrivial fd
represents a basic relationship in a database, we have shown that BCNF is a necessary
condition for a relation scheme to be free of insertion and deletion anomalies. For
replacement anomalies, it is closely related to the constraint enforcement problem and
therefore it was analyzed in the context of a database scheme. Assuming any attribute
is updatable, we have given some necessary conditions for a database scheme to be
free of replacement anomalies. We also have characterized when an independent
scheme or a 7-acyclic BCNF scheme is replacement-anomaly-free. In many cases, a
candidate key of a relation scheme is assumed to be nonupdatable. Under this assump-
tion, we proved that single-key, BCNF and independence characterize replacement-
anomaly-freedom when the constraints considered are a set of embedded fd’s. This
characterization is also applicable when an embedded cover is augmented with the
full jd IIRo
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ON TALLY RELATIVIZATIONS OF BP-COMPLEXITY CLASSES*

SHOUWEN TANG AND OSAMU WATANABE$

Abstract. It is known that AM BP. NP. Babai [Proc. 17th Annual ACM Symposium Theory of
Computing, 1985, pp. 421-429] and Goldwasser and Sipser [Proc. 18th Annual ACM Symposium on Theory
of Computing, 1986, pp. 59-68] asked whether BP. NP is equal to {A for almost every set 13, A NP(B)}.
This question is still open. In this paper it is shown that (1) for every k_-> 0 and every set A, A BP. Z f if

and only if for almost every tally set T, A e Z.(T), and (2) for every k_-> 0 and almost every tally set T,
BP. Z.(T)= E f(T). From them are obtained some properties of the "BP-polynomial-time hierarchy"
studied by Sch6ning [Proc. 2nd Annual Conference on Structure in Complexity Theory, 1987, pp. 2-8].
That is, the BP-polynomial-time hierarchy has the properties that are precisely parallel to those of the
polynomial-time hierarchy. The proofs of these results provide examples ofthe use of properties of complexity
classes specified by relativizations to obtain properties of unrelativized complexity classes.

Key words, probabilistic complexity classes, tally relativizations, random oracle sets

AMS(MOS) subject classifications. 68Q15, 68Q30, 03D 15

1. Introduction. Baker, Gill, and Solovay [BGS75] have proved that there exists
an oracle set A separating P and NP: P(A) NP(A). It is natural to ask about the
number of oracle sets with this separating property. One way to measure the size of
this class of sets has been used by Bennett and Gill [BG81]. The characteristic function
of a language is an infinite string. Every language can be identified with a real number
in the unit interval [0, 1], and a class of languages is identified with a subset of the
unit interval. The Lebesgue measure , of that subset provides a natural way to measure
the size of the corresponding class of languages. This measure corresponds to the
Bernoulli independent testing sequence: a random language (infinite string) is the
sequence that results from tossing an unbiased coin infinitely often. Bennett and Gill
have shown that ,({BIP(B) NP(B)})= and ,({cIP(C)-- BPP(C)})-- 1; this can
be described as that for a random oracle set B (or for "almost every" oracle set B),
P(B) NP(B), and for a random oracle set C (or for "almost every" oracle set C),
P(C) BPP(C). Following Yao’s proof [Ya85] of the existence of an oracle set D
such that PH(D) PSPACE (D), Cai [Ca86] and Babai [Ba87] have shown that for
a random oracle set D, PH(D) PSPACE (D).

When studying probabilistic complexity classes and lowness properties, Sch6ning
[Sc87] introduced the notion of the "BP-operator" and developed some properties of
the "BP-polynomial-time hierarchy," that is, the variation of the polynomial-time
hierarchy obtained by applying the "BP" operator to classes in that hierarchy. Babai
[Ba85] introduced the class AM and, in addition, claimed that BPP {Alfor almost
every set B, A P(B)}. Ambos-Spies [Am86] showed that (i) A P if and only if
A <- P B for almost every B" (ii) A BPP if and only if A < B for almost every B"
and (iii) for almost every pair (B, B2), BPP= P(B1)fqP(B2). (Kurtz [Ku87] also
proved (ii) and (iii).) Babai [Ba85] and Goldwasser and Sipser [GS86] proposed the
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following open problem: While AM BP. NP, is it the case that AM {A Ifor almost
every set B, A NP(B)}?

Consider the following two questions.
QUESTION 1. Can BP. Z ’ be characterized by means of oracles? That is, is it true

that A BP. Z’ if and only if for almost every oracle B, A Z’(B)?
QUESTION 2. What is the relation between relativizations of BP. Z and

Specifically, is it true that for almost every oracle B, BP. Z(B) Z(B) ?
For Question 1, case k 0 was solved by Ambos-Spies [Am86] and case k => is

still open. For Question 2, case k 0 was solved by Bennett and Gill [BG81] and
case k_>-1 was solved by Tang [Ta87].

In this paper, we introduce the concept of random tally sets and both Question
1 and Question 2 are solved for the tally oracle case (see Theorems 5.2 and 5.4). That
is, we establish the following results.

(1) A BP. E if and only if for almost every tally oracle T, A 5;’(T);
(2) For almost every tally oracle T, BP. 5;’(T) 5;’(T).

Note that in many cases the results for random tally oracle sets are independent from
those for random oracle sets. For example, the above statement (2) with k =0 is not
a direct consequence of the result by Bennett and Gill [BG81] that BPP(B)= P(B)
for almost every oracle B. Also the statement (1) with k is not a complete answer
to the original question of Babai and of Goldwasser and Sipser.

Compared with general relativizations, relativization with respect to a tally oracle
set is "much closer" to the corresponding unrelativized case. For example, P NP if
and only if there is a tally set T such that P(T)# NP(T) [LS86]: thus, the existence
of even one tally oracle that separates NP from P is not known, whereas NP(B) # P(B)
for almost every oracle B [BG81]. Similarly PH collapses if and only if there is a tally
set T such that PH(T) collapses; and PH PSPACE if and only if there is a tally set
T such that PH(T) PSPACE (T) [BBS86], [LS86]. This suggests that the. tally oracle
is of special significance for the unrelativized case and the role of random tally sets
as oracle sets should be investigated. Indeed, using the above two statements, we show
that the BP-polynomial-time hierarchy has properties faithfully reflecting those of the
polynomial-time hierarchy (see Theorems 5.6-5.9). That is, the properties established
by relativization yield results for unrelativized cases.

The characterization of BP. Z by statement (1) explicitly tells the difference
between E /poly and BP. 5; . Take k 0 as an example. A set L has polynomial-size
circuits (belongs to P/poly: see, e.g., [BH77]) if and only if there is one tally set T
such that L is in P(T). On the other hand, a set L is in BPP if and only if for almost
every tally set T, L is in P(T). (Kimper [Ki87] also has observed this in his framework.)

This paper is organized as follows: In 2 preliminaries are given. In 3 the concept
of random tally sets is introduced so that we can use the phrase "for almost every
tally set." In 4 we solve Questions 1 and 2 in a general setting. As a consequence of

4, we get the desired results on BP-polynomial-time hierarchy in 5.

2. Preliminaries. Let 5; {0, 1} so that E* denotes the set of all finite strings over
{0, 1}, with the empty word being denoted by e. Let 5;0, denote the set of all infinite
sequences over {0, 1}. All languages will be assumed to be taken over 5;. The length
of a string w is denoted by [w[. The cardinality of a set S is denoted by IISII. A taZ y
set is a set of strings over {0}*. We denote the class of all tally sets by TALLY. In this
paper, let T with or without subscript always denote a tally set, and let - denote a

Recently Nisan and Wigderson [NW88] solved this problem.
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class of tally sets. If A is a language over Z, then A denotes Z*-A, but if T is a tally
set, then T denotes {0}*- T. For a class M of languages over 2; and a class - of tally
languages, we denote {,ff. lA s} by co-sO and {]T -} by co- -. In addition,
denotes {AIA is not in sO} and -c denotes { T TALLY T is not in -}.

Some fixed pairing function computable in polynomial time is assumed and is
denoted by (,). Furthermore, it is assumed that (,) restricted to {0}* x {0}* takes values
in {0}*.

For an oracle machine M and a set A, Ma is the language accepted relative to
A by M. For any set A, the class of functions that can be computed relative to A by
polynomial time-bounded deterministic oracle transducers is denoted by PF(A), and
PF denotes the class PF(). Frequently, we will say "f PF(-)" to mean that f
denotes a polynomial time-bounded oracle transducer. Iff PF(-), then for any set

A, fa PF(A) denotes the function computed relative to A by the polynomial time-
bounded transducer f We will say "f PF" to mean that f denotes a polynomial
time-bounded transducer or the function computed by such a transducer.

Classes in the polynomial-time hierarchy are denoted in the usual way" Zo A

II’=P, ;’+,=NP(Z), A+=P(Z’), II’=co-’, and PH=U,>__oZ [St77],
[Wr77].

If is a class of languages on Z and --<R is a reducibility, we say that is closed
under <-_ R if A =<R B and B c imply A % There are two specific reducibilities that
are of interest here.

(a) For sets A and B, define A =<epos B (also written A Ppos(B)) if A P(B) is
witnessed by a polynomial time-bounded oracle machine M with the property that
X_ Yimplies Mx _Mv

(b) For sets A and B, define A < P
ma3 B if there exists a function f PF such that

if f(x) y #e Y2 " Y, then x A if and only if the majority of y’s are in B.
It is easy to see that for any set A, all of Z (A), H(A,) A (A), PH(A), and

PSPACE (A) are closed under < e
po. Note that A maj B implies A < B. If a classpos

is closed under < e
=pos then is also closed under <:mj. Thus, we see that for any

set A, all of ’(A) II’(A), A(A), PH(A) and PSPACE (A) are closed under maj.

Also, if c is closed under < P
=mj, then is closed under _-< P

In this paper, we first develop our results in general framework; then using this
machinery, the classes in the polynomial-time hierarchy are observed. In order to
discuss relativized complexity classes in general setting, we introduce the following
notion and notation.

For language A, if x A, then A(x)= 1, else A(x)= 0. For language A and total
function f, A of is a language B such that for all x, B(x)= A of(x), i.e., B= A of
means B =<mA via f, or equivalently, B=f-(A). So, for sets D and A, and oracle
transducer f, D ofA is the language {xlD of(x) 1}.
DFTO 2.1. For language class c and class o of total functions, is

the language class {A fl A ,f 0%}.
It is clear from the definitions that the following hold"
(a), is closed under =< if and only if PF=
(b) (co- )o o= co-(o o).
(C) (qo o,)o -2 ( (o1o O2).
For any set A and language class c, we regard c PF(A) as the relativized class

of with respect to A. Let us take NP PF(A) as an example. The decision problem
in NP PF(A) can be done as follows" For a word x, first run a polynomial-time
transducer f on x relative to A to get the output y =fA(x); then run an NP-machine
M on y (without oracle); x L if and only ifM accepts y. Hence, NP PF(A)

_
NP(A).
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However, the question of whether NP PF(A)= 1VP(A) is still open. In general we
have that E’o PF(A)c_E(A), but the equality problem is open. Nevertheless,
2, PF(T)=E(T) for every tally set T (see Lemma 5.1); hence, when considering
tally oracles, the above notion is a reasonable abstraction for relativized complexity
classes.

For any class cg of languages, define Cg/poly to be the class of languages A such
that for some C , some polynomial length-bounded function h :{0}*-> E*, and all
x, x A if and only if (x, h(01xl)) C.

The following relation is a generalization of a characterization of P/poly, and the
proof is essentially the same as the one for P/poly (see, e.g., [BH77]).

LEMMA 2.2. If is closed under <-P,,, then /poly PF( TALLY).
Proof Suppose that A C/poly. Then there exist C cg and a polynomial length-

bounded function h such that A(x)= C((x, h(01xl))) for all x.
Let Th {(0", 0, 0b)lb 0 or 1, the ith bit of h(0") is b}, and letfr’,(x)=(x, h (01xl)).

Then A C f 7-,, cgo PF( TALLY).
Suppose that A cgo PF(TALLY). Then there exists C cg, tally set T, and

f PF(-) such that A C of. Let p(n) be a polynomial that bounds the running time
off Let h(0")= T(e)T(O)T(O2) T(OP(")). For any zE*, let Tz denote the tally
language with characteristic sequence z0’. Let g((x, y))=fL.(x). Then g PF, h is
polynomial length-bounded, and fT"(x)=g((x,h(OlXl))). Thus, A(x)=Cof(x)
C g((x, h(01l))). Let D C g. Then D cgo PF cg. Hence, a(x)= D((x, h(01’l)))
for all x, i.e., A Cg/poly.

For predicate P and natural number m, Pr,,[y: P(y)] is the conditional probability
Pr [P/Z] =2-" II{y]P(y) and

In this paper we focus on the operator "BP" defined by Sch6ning [Sc87] as
follows: For language class cg, BP. cg is the class of languages A such that for some
C cg, and polynomial p(n), and all x *,

Prpll) [y" A(x)= C((x, y))] >

It is clear that BP. P BPP and BP. NP AM (see [Sc87], [Ba85] for discussion
about AM). However, we had better clarify the relativized case. Recall that for any
sets A and L, L BPP(A) if and only if there exists a nondeterministic oracle machine
M that runs in polynomial time, has fan-out two, and has the following properties:

(i) x L:=>more than -] of M’s computations on x relative to A are accepting.
(ii) x L=:>less than J of M’s computations on x relative to A are accepting.
On the other hand, for a set A, BP. P(A) is the class of sets L such that there

exist De P(A) and polynomial p(n) such that for all x

Prp(ixl)[y" L(x) D((x, y))] > -].

It is easy to prove that for every set A, BPP(A)= BP. P(A).
The following facts are immediate from the definitions:
(a) BP. co- --co-(BP. ).
(b) @ implies BP. cg

_
BP. @.

(c) If is closed under padding (i.e., A
Thus, we see that if cg is closed under =m,

< ’ i.e., PF , then

_
BP. . From

the above remarks, we see that if pos, then
Now we have the Amplification Lemma. While Sch6ning proved this under the

hypothesis that is closed under =pos, we state the result in terms of being closed
under < ’--maj. The proof is essentially the same as that of Sch6ning and so is omitted.
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LEMMA 2.3 (Amplification) If is closed under < P
maj, then for all A BP. and

all polynomials q(n), there is a set B and a polynomial p(n) such that for all n >= 0

Prp(.)[y" Vxlxl<_n(A(x B((x, y)))] > 1-2-q(n).

PROPOSITION 2.4. If is closed under < P
maj, then BP. c

_
/poly; thus BP.

PF( TALLY).
Proof The proof is immediate from Lemmas 2.2 and 2.3.
The following facts will be used or re-proved in later sections.
PROPOSITION 2.5 [Sc87].
(a) Vk > 1 BP. E H P

k+l"

(b) k > II BP. E implies PH E k+l"

(c) Vk>0, E(BP. E’)=zPk+2"
(d) Vk > E(BP. EV BP. II)= E P

k+l"

(e) PH keo BP"
Relationships between some ofthe above-mentioned classes are described in Fig. 1.

FIG. 1. Polynomial hierarchy.
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PROPOSITION 2.6 [Ko82].
(a) BPP(BPP)= BPP.
(b) NP BPP implies PH BPP.
PROPOSITION 2.7 [Za86], [ZF87].
(a) Ef(BPP)c__ BP. Ef BPP(E).
(b) BP. Ee (BPP) (=AM(BPP))= BP. .
3. Random tally sets. One of the important tools in this paper is the notion of

"random" tally sets. For every tally language T {0}*, let ZT boblb2b3 E denote
the characteristic sequence of T’bi- 1 if and only if 0 T. Dually, for every a E,
let T denote the tally language with characteristic sequence a. For z E*, Tz denotes
T, where a z0. For z E* and a E, z(R) a denotes zfl, where a xfl and [x[ [z].

In the following, we will identify a tally language and its characteristic sequence:
the power set of {0}* is identified with E, and then any subset of E is identified with
a class of tally languages. Thus, z(R) T is well defined for word z and tally language
T. For word z, let z {za Ice E}; thus, z is a "rectangular" infinite product in
E" z {z}E { T[ zr za for some a E}. Such an infinite product will be referred
to as a basic rectangle.

In E, we define/x ({0}) =/x ({ }) . By taking the completion of the infinite product
of this discrete measure (probabilistic) space, we have the measure of probability Ix
in E. By identifying elements in E" and real numbers in the unit interval,/x can be
interpreted as the Lebesgue measure in the unit interval. This means that for any fixed
n, 0 belongs to a random tally set T with probability 1/2: /x({T[0n T})=1/2. That is,
we produce a random tally set T by an independent series of tosses of an unbiased
coin" if the result of the nth tossing is "heads," then put 0n-1 into T; otherwise, do
not put 0n-1 into T.

Since we identify a tally set and its characteristic sequence, we have x(3-)=
/x({a E[ T 3-}) for a class 3- of tally sets. We will freely use either or both of
these formulations in any given context.

For any string z of length n,/X(z) in. For every n and m, n # m,

({ T[0 T, 0 T})=/x({ T[O T, 0 T})

=/x({ TIO T, 0 T})

p,({ T]O T, 0 : T}) ,
and for fixed To,

1/2
({ T[ To

___
T}) =/z({ T[ To f3 T= })

0

when Toll
when Toll

Recalling the notation for conditional probability, we have the following fact.
PROPOSITION 3.1. For every integer m > 0 and predicate P, Prm [y: P(y)]

tx({ya ][y[ m, a E, and P(y)}).
Recall that a class of languages is closed under finite variation if for any C

and any finite set F, both C U F and C- F are in % Bennett and Gill [BG81] have
claimed the following useful fact. (The following two facts are well known and can
be found in any standard textbook on measure theory, e.g., [Ha50].)

PROPOSITION 3.2 (0-1 Law). If 3- is a measurable class of tally sets that is closed
under finite variation, then i (3-) 0 or tz (3-) 1.

Proof Because 3- is closed under finite variation, we see that if lY[ [z[, then
Va[ya 3-e za 3-]. Hence, x(3- N y) x(3-N z) ifly[ Iz[; and so,/x(3-N z)=
x(3-)X(z) for all z. Thus, if ow is a countable union of basic rectangles, then
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/x (3- ffl 9O) --/x (3-)/x (,9). Since 3- is measurable, there exists a sequence 9O, 9O2," of
countable unions of basic rectangles such that 9O_ 9O2 -’"- 3- and /x(9o,)-/x (3-)
as n - oe. Now, x(3-) x(3- 9O,) x(3-)x (9O,) - x(3-)x (3-) as n - ee. Thus,/x(3-)
/x 3-)2. Therefore,/x (3-) 0 or/x (3-) 1.

We will also use the following fact.
PROPOSITION 3.3. If 3- is a class of tally sets such that x(3-) > O, then there is a

basic rectangle z such that/x(3-(’l z) > (-])/x(z).
Proof (Suppose that for all z,/x (3- (’1 z) --< (-])/x (z). If 9O is a countable union

of basic rectangles, then we have/x(3- (’19O) -< ()x(9o). As in the proof of Proposition
3.2,/x(3-) =/x(3- f-i 9,) =< ()/x (9O,) --> ()/x (3-) as n --> co. Hence,/x(3-) _-< ()/x (3-). There-
fore/x (3-) 0, contradicting the hypothesis.

Let 3- be a class of tally sets, or equivalently, a property for tally sets. If/x (3-) 1,
we say that property 3- holds for almost every tally set T.

4. BP. . In this section we investigate properties of classes of the form BP. cg.
Our first main result, Theorem 4.2, characterizes the assertion "A BP. cg.,, Next, in
Theorem 4.9, we show that BP. (cg PF(T)) cgo PF(T) for almost every tally set T.

In the next section we apply these results to the situation where the class c is
one of the well-studied complexity classes" P, NP, , A, II, PH, and PSPACE.
Since we prove the results in this section with very few restrictions on the class cg, the
results in the next section follow as simple corollaries with little or no additional proof
needed.

As noted in 2, we identify a tally set and its characteristic sequence so that we
have/z(3-) =/z({aE T 3-}).

LEMMA 4.1. Let Y3 and be countably infinite classes. For any set A, both of the
classes { T A c PF( T)} and { T[

_
PF( T)} are measurable and are closed under

finite variation.

Proof It is easy to see that both of the classes are closed under finite variation.
There are countably many sets in and countably many oracle transducers so that it
is sufficient to prove that for every D @ and everyf PF(-), 3- { TIA D ofr} is
measurable.

Let 3-, {3-]VXIxI<_,[A(x --D oft(x)]}. Then 3-, is a finite union of basic rect-
angles since for all x with Ix <= n, D oft(x) depends on only a finite prefix of T. Thus,
3-, is measurable for all n. Note that 3- f’l ,_->0 3-,. Hence, 3- is measurable as desired.

That { 3-1N PF(T)} is measurable follows from the fact that it is a countable
intersection of classes {T[A PF(T)} for all A N, and, as shown in the last
paragraph, each such class is measurable. F]

THEOREM 4.2. If cg is a countably infinite class that is closed under =<Pmaj, then
A BP. if and only if tz({ T]A 6 ego PF( T)}) 1, that is, A 6 BP. if and only iffor
almost every tally set T, A c PF( T).

Proof Only if. Since A BP. c and cg is closed under < P
=ma, the amplification

lemma (Lemma 2.3) shows that there exist a polynomial p(n) and a set cg such
that Prp(,){ylVxll=,[A(x)= D((x, y))]}> 1-2-("+2). Without loss of generality, we
may assume that p(n)<=p(n+l) and that if lyl=p(lx[), then for all z, D((x,y))=
D((x, yz)). Let 3-,={3-y,lly]=p(n), a,’, VXlxl=,[A(x)=D((x,y))]}. By
Proposition 2.3,

tz( 3-,) Prp(,)[y [VXlxl=,[A(x) D((x, y))]] > 1-2-("+2).

Letting 3- f’l,eo 3-,, we have
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{ Tlc X and Vx[A(x)

D((x, y))], where y is the prefix of c of length p( xl)}

{T[Vx[a(x)= D((x, T(e)T(O)T(02) T(0m)))], where rn =p(Ixl)- 1}.

Then we have x(-c) x(U,o -,) < 2,=>0x(-) < 2,__>o2-("+2)--=-2. (Recall that
-c denotes { T e TALLY T is not in -}.) Thus, x (-) ->_ .

Let f be a polynomial time-bounded oracle transducer that has value fT(x)=
(x, T(e)T(O)T(02) T(Om)), where m=p(Ixl)-l,i.e., y T(e)T(O)T(O2) T(Om)
is the prefix of length m+ 1 =p(lx I) of ’T. If Te -, then Vx[A(x)= DofT(x)]; i.e.,
a D of T. Hence,/x({ TIA e o PF(T)}) ->_/x({ TIA D oft}) =>/x(-) _-> 1/2. By the 0-1
Law, this means that tx({r]A PF( T)})= 1.

If. Suppose that/x({T[A PF(T)})= 1. Then there exist a De and a poly-
nomial time-bounded oracle transducer f such that/x({TIA D oft})>0.

Let S-= {TIA Doff}. By Proposition 3.3, there is a basic rectangle z such
that/x(-CI z)> ()/x (z). Without loss of generality, we may assume that x(S-)>
(for, consider transducer f’ defined by f’r(x)=f(R)r(x)). Suppose that the running
time off is bounded above by the polynomial p(n).

Let C((x, y)) D fT."(X). Then C because if g is defined by g((xy)) =fT."(X),
thengPFand C D g PF % Thus, for all x Z*,

Prp(ixl)[y[A(x) C((x, y))]

({ T, lyl p(lxl), o z’, A(x)= D fT."(X)= D fT." (X)})

IA(x)= Dofr(x)}) >- u({T la= D ofr})
 ({rlA D oft}) .(-) > }.

Hence, A BP. %
Recall that A e f/poly if and only if A PF(T) for some tally set T (Lemma

2.2) and that BP. c__ f/poly (Lemma 2.4). Comparing this fact with the above
theorem, we see the difference between BP. and /poly.

COROLkARY 4.3. If is a countably infinite class and closed under < maj,
P then each

of the following hold:
(a) A BP. if and only if tx({TIAe o PF(T)})= if and only if tx({TIA

o PF(T)})>O. That is, A eBP. if and only if for almost every tally set T,
A PF(T), and A !. BP. if and only iffor almost every tally set T, A ! PF(T).

(b) A e PB. c if and only if there exists C andfe PF(-) such that/x({TIA
C oft})>0.

(c) For any class , c__ BP" if and only if/x({Tl@_ PF( T)})= if and
only if x({ T @ c_ PF( T)}) > 0; that is, @ BP. if and only iffor almost every
tally set T, @ PF( T).

CoaoaY 4.4. If is a countably infinite class that is closed under < e
maj and

is a countably infinite class, then BP. c @ implies tx ({ T IBP" @ PF( T)}) 1.

Proof Let X denote the class @- BP % Since BP. c_ @, we have

{TIBP" c=@m cg PF(T)}= fl {TIAZ Cgo PF(T) and BP C_ Co PF(T)}
AeX

1 {TIA: o PF(T)}CI{TIBP"
_
o PF(T)}.

AX

It follows from Corollary 4.3(a) and (c) that pc({TIA oPF(T)})=I for every
ABP. and that Ix({TIBP.oPF(T)})=I. That is, the above class is a
countable intersection of classes of measure one; hence, it has measure one.
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COROLLARY 4.5. If is countably infinite and closed under --maj,
< P then (ix x ix) x

({(T, T2) BP" PF( T) fq PF( T_)}) 1.

Proof. From Corollary 4.3(c), ix({TIIBP.oPF(T)})=I; and from
Corollary 4.4, for any T such that BP.

_
PF(T), ix({T2IBP" = PF(T1)fq

C PF(T2)})= 1. Then by Fubini’s theorem [Ha50], (ix x ix) x
({r,, T) BP. g ego PF T) 3 Co PF T)} 1.

Now we move to the next main theorem. In the proof of this theorem, we make
use of the following technical lemma.

LEMMA 4.6. For any T, let L( T)_ ,* denote a set determined by T. Let C and f
be a set and a function in PF(-), respectively. Iffor every T, L(T) < maj

P C f T via some

fixed g PF, then L(T) D kr for some k PF(-) and D < P
maj C.

Proof Note that L(T) < P
=maj C of via g means that if g(x) y Y2 Y,,

then x L(T) if and only if the majority offr(y),fr(y2),.’. ,fr(y,) are in C.
Suppose that q(n) and r(n) are polynomials that bound the running times of f

and g, respectively. Let p(n)= q(r(n)), so for each and each T, Ifr(y)l _-< q(r(Ix[)
p(Ixl). Let h be defined by h((x, z))=fL(y) fL(yz) ... +fL(y,), where g(x)=
Y Y Yr. Then, h PF.

Let k be a polynomial time-bounded oracle transducer that on input x relative to
oracle set T computes (x, T(e)T(O)T(02) T(Om)), where m-p(Ixl). Let D=
{(x,z)lthe majority of the words in h((x,z)) are in C}={(x,z)lthe majority of
frz(y), ,fr(Y,) are in C}. Then D <P=maj C via h.

It is not difficult to show that for all T, L(T) D kr" if g(x) y y. y,,
then xDo kTcr>kr(x)DCz>(x,z)=(x, T(e)T(O)T(02) T(om))ED (where m=
p(lxl))<=>majority of fL(y,)=fr(y),’’’,fL(y,)=fr(y,) are in C <=> majority of
y,’’’,y, are in Cof

It is worth mentioning here that this lemma also proves that the closure property
under < P

=maj of is inherited by
COROLLARY 4.7 If is dosed under < P

=maj, then so is PF(T) for every tally
set T.

Proof Suppose that A < P
=maj C fr PF( T) via g PF. For every tally set T1,

let L(T1)={xlthe majority of words in g(x) are in C oft,}. Hence, A=L(T). By
Lemma 4.6 there exist D and k PF(-) such that D < P

maj C; hence D , and for
every T1, L(T)=Dokr,. Thus, A=L(T)=DokToPF(T), i.e., oPF(T) is
closed under < P

COROLLARY 4.8. If is a countably infinite class that is dosed under < P
maj, then

so is BP. %
Proof Suppose that A < P

maj B for some B BP. % Then it follows from Theorem
4.2 that B PF(T) for almost every tally set T. Since A < P

=maj B and PF(T) is
closed under < P

mj, A PF(T) for almost every tally set T; again from Theorem
4.2, ABP. %

Now we have Theorem 4.9, our next main result of this section concerning the
power of the BP-operator in tally relativizations. It is shown that the BP-operator does
not increase the complexity of PF(T) for almost every tally set T. In other words,
for almost every tally set T, PF(T) is a "fixed point" of the BP-operator.

THEOREM 4.9. If is countably infinite and closed under <-P
--maj, then

ix({T IBP. (o PF(T))- o PF(T)})- I; that is, for almost every tally set T,
BP. o PF( T))= o PF( T).

Proof. By Corollary 4.7, we have that PF(T) is closed under < p
maj, for every

tally set T; so, it is closed under padding. Thus, it follows from the fact concerning
the BP-operator (see 2) that PF(T) BP. ( PF(T)).
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In order to prove the reverse containment, let us first give some notation. For any
set A and any polynomial p(n), define Lmaj(A, p(n)) and e(x, A, p(n)) by

Lmaj(a, p(n))= {xlPrp(ixl)[y: (x, y)e A] _-> 1/2},
e(x, A, p(n)) min {Prv(i,,i)[y: (x, y) e a], Prp(ixl)[y" (x, y) e A]}.

We call e(x, A, p(n)) the error probability. Note that for any tally set T,
BP. (CSo PF(T)) kJ {Lmaj(Cfr, p(n))lCe CS, fePF(-),

p:poly

and Vx[e(x, C of r, p(n)) < ]}.
What we must prove is that for any C e q, anyfe PF(-), and any polynomial p(n),

tx({TlVx[e(x, Cfr, p(n))<1/4][Lmaj(C fr, p(n))e PF(T)]})= 1.

In the following, we shall see that this class is measurable.
For any choice of C e, fePF(-), and polynomial p(n), we have the

following fact.
CLAIM 1. For any integer e > 0, there exist De q and g e PF(-) such that for

all x,

tx({Tl[e(x Co fr, p(n))<]==,[xe Lma(Co fr, p(n))Cxe Do gr]}) > _2-(+21xl).

ProofofClaim 1. Let L(T)= {(x, y Y2, Y,) 5(e+Z[xl),
and the majority of the (x, Ys) are in C oft}.

Obviously, L(T) < P
--maj C f via a fixed function in PF. By Lemma 4.6, there exist

D e c8 and k e PF(-) such that L(T) D kr for all T. It is easy to prove that for all
x and T,

(x,D kr, 5(c+2n)p(n))<2-(+11)e(x, C f r, p(n)) <- ==> e

Let q(n)--5(c+2n)p(n). Suppose that r(n) is a polynomial large enough such that
we have the following:

(i) For all x and y, if Ixl-n and lyl=q(n), then k’((x, y)) never queries the
oracle about words of length greater than r(n),

(ii) For all x and y, if Ixl--n and lyl=p(n), then f((x,y)) never queries the
oracle about words of length greater than r(n).

Let h e PF(-) behave as follows:

h 7"(x) (x, T(0("+) T(O r(n)+2) T(or(n)+q(n))) where n Ix].
Let g r k’r h r. So g e PF ).

We shall prove that D and g meet the requirement of Claim 1.
Note that Do gT(x)= Do k((x, z)) where z= T(Or("+) T(Or(")+z)

T(0r("+q("), n Ix I.
Because r(n) is large enough, we see that e(x, Cof,p(n)) and e(x, Do k

q(n)) depend only on T<=r(lxl. Thus, for any x, ifwe let 3-= {Tile(x, C of, p(n)) < 1/4]
[xeLma(Cof,p(n))C:>xeDog]}, then we see that 3-is a finite union of basic
rectangles. Since for any x and any T, e(x, Cof,p(n))<-e(x, Do k,q(n))<
2 -(+2lxl, it follows that if T<-r(lxl does not satisfy e(x, C oft, (n))<3, then Te 3-.
Furthermore, if T<=r(lxl does satisfy e(x, C ofr, p(n))<-a, then the next q(Ix) bits in
’r will determine whether Lmaj(C fr, p(n)) and D g agree on x. Only those
situations that have the error probability e(x, D k r, q(n)) cause disagreement. Because
e(x, Do k r, q(n))<2 -(.+lxl), the ratio of the number of T’s that agree (i.e., belong to
-) to the total number is greater than 1-2 -(’+lxl).

Hence,/z(3-) > 1-2-(’+lxl. This concludes the proof of Claim 1.
CLAI 2. For any integer c > 0, there exist D e C and g e PF(-) such that

ix({TlVx[e(x, Co fr, p(n))<][Lm(Co fr, p(n)) Do gr]}) > _2-..
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Proof of Claim 2. The set {TlVx[e(x, cfT, p(n))<1/4][Lmaj(CfT, p(n))
D gT]} contains the intersection over all x of all of the classes studied in Claim 1.

Thus, we have Claim 2.
To complete the proof of the theorem, note that for any integer c > 0,

({TlVx[e(x, C fT, p(n))<1/4] [Lmaj(C fT, p(n)) co PF(T)]})> 1-2-C.

Since c is chosen arbitrarily, we have

i({TIVx[e(x c f T, p(n))<] [Lmaj(c f T, p(n))6
COROLLARY 4.10. If is countably infinite and closed under < maj,

P then for almost
every tally set T, (BP. )o PF( T) BP. PF( T)).

Proof First, (BP. ) PF(T)
_
( PF(T1)) PF(T) for every tally set T and

almost every tally set T1, since BP. PF(T1) for almost every tally set T1.
Second, ( PF(T1)) PF(T) ( PF(T)) PF(T) for every tally set T and

T, since PF(T) PF(T2) PF( T1 (R) T_) for every tally set T and T2.
By Corollary 4.3(c), we have (BP. )o PF(T)_ BP. (c PF(T)) for every tally

set T. Thus, PF(T)
_
(BP. ) PF(T) BP. (c PF(T)) for every tally set T. By

Theorem 4.9, for almost every tally set T,
Although we have the equality (BP. )o PF(T)= BP. ( PF(T)) for almost

every tally set T, it is left open whether this equality holds for all tally sets.

5. Polynomial complexity classes. In this section we have the main results on
classes such as Z’, II’, A’, PH, and PSPACE. To a large extent the results follow
from Theorem 5.2 below, and the proof of that result is immediate from the corollaries
of Theorems 4.2 and 4.9 and Lemma 5.1. The proof of Lemma 5.1 is immediate .from
the definition of the o and the fact that every tally set is "self-P-printable," i.e.,
for every tally set T, there is a polynomial time-bounded oracle transducer that on
input 0n, n >- 0, will compute relative to T the list of all strings in T of length at most n.

LEMMA 5.1. Let T be a tally set and let be any of the classes ,, H, A, PH,
or PSPACE, k >-_ O. For any set L, L ( T) if and only if there exists f PF( T) and
D such that (’x)[x LC:>f(x) D]. That is, for every tally set T, (T) PF(T).

Because each of the classes Z ’, H ’, A ’, PH, and PSPACE is countable and closed
Punder <--pos,P and hence is closed under <maj,= all of the results in 4 can be applied to

these classes. Thus, we can focus our attention on the interpretation of the results
developed in 4 in the context of these classes. The main result is the next two theorems.

THEOREM 5.2. For every integer k >= O, each of the following hold:
(a) For every set A, A BP. Z ifand only iffor almost every tally set T, A Z( T).
(b) For any countable class @, @

_
BP. Z if and only iffor almost every tally set

T, @c_Z(T).
(c) For almost every pair TI, T2) of tally sets, BP. (T1) fq E,(T2).
(d) For any countable class such that BP.,c__, BP.,= I"IE,(T) for

almost every tally set.

Proof In each case the proof follows from Lemma 5.1 and the corresponding part
of Corollary 4.3.

The above statements characterize the class BP. from several points of view.
Parts (a).and (b) of this theorem are basic characterizations and are used in the
following discussion. Part (c) concerns the problem of finding a minimal pair [Ro67]
in the context of complexity theory. Ambos-Spies [Am86] and Kurtz [Ku87] have
shown the existence of a minimal pair for the class BPP (with respect to Turing
reductions). Part (c) states the existence of a tally minimal pair for each BP. with
respect to Z’-reductions.
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For example, by letting k=0 or in this theorem, we have the following
characterizations of BPP (=BP. P) and AM (=BP. NP).

COROLLARY 5.3. (a) For every set A, A BPP if and only iffor almost every tally
set T, A P( T).

(b) For almost every pair T, T2) of tally sets, BPP P(T) f P(T2), so T, T2)
is a <- --minimal pair for BPP.

(c) For any countable class such that BPP
_

@, BPP @ VI P(T) for almost every
tally set.

(d) For every set A, A AM if and only iffor almost every tally set T, A NP( T).
(e) For almost everypair T T2) oftally sets, AM NP( T) NP( T2), so T1, Tz)

is a <- NP-minimal pair for AM.
(f) For any countable class such that AM

_
9, AM NP( T) for almost

every tally set.
THEOREM 5.4. Let k be any nonnegative integer. For almost every tally set T,

PBP. ,(T) , (T).
Proof The proof is immediate from Lemma 5.1 and Theorem 4.9.
COROLLARY 5.5. (a) For almost every tally set T, BPP( T)= P( T).
(b) For almost every tally set T, AM(T)-- NP( T).
In Theorems 5.2 and 5.4, we can uniformly replace E’ by II’ or by A’, and all

of the resulting statements will be true.
What follows is applications of the above two theorems. Here we improve or

generalize the known facts (see Propositions 2.5-2.7 for the summary of previous
works).

It is known that BPP(BPP)= BPP [Ko82] and that BP. NP(BPP)= BP. NP,
i.e., AM(BPP) AM[ZF87]. Theorems 5.2 and 5.4 yield the following generalization.

THEOREM 5.6. For all k,j >- O, the following hold"
(a) BP. ,(BP. ,])= BP. k+j.

k+j"

(c) BP. A+,(BP. AP+,) BP. A P
k+j+l.

Proof. First we prove (a). By Theorem 5.2(b), BP. , ,.(T) for almost every
T. Hence BP. ,(BP. ,.) BP. ,(,(T))= BP. ,/.(T) for almost every T. By
Theorem 5.4, BP. x+.(T)= ,+j(T) for almost every T. Therefore, we have

UP. ,(BP. ,) Z+j( T) for almost every T.

So BP. ,(BP. ,) BP. ,+j by Theorem 5.2(b). On the other hand,
BP. ,+j= BP. , P P

k (,.) BP" ,(BP" ,).
This completes the proof of (a).

The proofs of (b) and (c) are similar. [-]

Sch6ning has proved that Z;(BP. Y-,’) =Z’+2. Here we have something a little
stronger. Theorem 5.6 yields BP. NP(BP. E) BP.+ so that NP(BP. E
BP. ,+,.

THEOREM 5.7. For every k >- 0, the following hold"
(a) BP. ,+ BP. , implies PH BP. ,.
(b) BP. ,+1 BP. A’+I implies PH BP. A’+I.
Proof. (a) BP. ,+ BP. ,PI (BP" ’+1) --- BP. ,(BP. ,) BP. ,+,

_
BP.

’. By induction on i, we can prove BP. ,/
_
BP. , .P,.

(b) the proof of (b) is similar to that of (a).
In Theorem 5.7, E ’ can be uniformly replaced by II ’, and the resulting statements

will still hold. Note that Theorem 5.7(a) is a generalization of Proposition 2.6(b)"
NP_ BPP implies BP. NP_ BPP, and taking k =0 in Theorem 5.7(a), we have
BP. NP

_
BPP implies PH BPP.
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Sch6ning has proved that E(BP. 2, CI BP. H)= EL,. We improve this in the
following way.

THEOREM 5.8. For k >- 1, BP. NP(BP. E CI BP. H) BP. .
Proo From Theorem 5.2(b), we see that for almost every tally set T, BP.

PBP. H (T) H(T). Since for every tally set T, NP(E(T) H (T)) E(T),
we have NP(BP. EBP. Hf) NP(E for almost every
tally set Z Thus, NP(BP. E BP. H) BP. E. So BP. NP(BP. E BP. n
BP. E. On the other hand, BP. NP(BP E BP. H) BP. NP(E H)
BP. .

Using this theorem, we can strengthen Theorem 5.7 in the case where k 1.
THEOREM 5.9. For every k 1,
(a) BP. H BP. implies PH BP. ;

nP. sP. gmp ge Pn SP.

Proo Because BP. H
_
BP. BP H BP. BP.

_
BP. H n,

e it is
enough to prove (a).

By Theorem 5.6(a), we have BP. E+= BP. NP(BP. E). By assumption and
Theorem 5.8, BP NP(BP. E) BP. NP(BP. E BP. H) BP. E. Hence,
BP. E+ BP. E. By Theorem 5.7(a), we have PH BP. E.

Note that BP.H BP.EHBP. E. Theorem 5.9 is stronger than the
corresponding result of Sch6ning, i.e., Proposition 2.5(c), since it forces PH to collapse
to BP. E instead of E P

k+l.

Note BP. H BP. E if and only if for almost every T, H E(T). Yap [Yap83]
has proved that if there is a tally set T such that H E(T), then PH= E+:. The
above theorem says that if there are "lots of" such T’s, then PH BP. E, i.e., PH
collapses to a lower level.

All of the results above relativize to arbitrary oracle sets, that is, the results hold
for classes such as E(A), H(A), (A), and PH(A) for arbitrary A. All that is
needed is that Lemma 5.1 remain valid for these classes.

.Reviewing the consequences of Theorems 5.2 and 5.4, i.e., Theorems 5.6-5.9,
we may note the similarity between the polynomial-time hierarchy and its prob-
abilistic version, i.e., {BP. E}o. For example, since BP. PH=BP. (oE)=
o(BP. E)= PH, the following well-known facts [St77] are faithfully reflected in
the corresponding statements of those theorems.

PROeOSITON 5.10. For every k,jO and 1 1, the following hold"
(a) k+j.

(b) E E implies Pn
(c)
(d) H E implies en
Our technique for proving the above theorems is also interesting. Note that

Theorems 5.6-5.9 state the relationships in unrelativized settings. Nevertheless, the
properties established for relativized complexity classes, i.e., Theorems 5.2 and 5.4,
yield simple proofs for those theorems.

As a final remark of this section, we show the application of Theorem 4.2 to higher
complexity classes.

THEOREM 5.11. For every set A, the following hold"
(a) A PH if and only iffor almost every tally set T, A PH( T) if and only iffor

all tally sets T, A PH( T).
(b) For almost every pair T, T:) of tally sets, PH PH( T) PH( T:).
(c) For any countable class such that PH , PH PH(T) for almost every

tally set.
Remark. The same results hold by replacing PH by PSPACE.
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DYNAMIC PROGRAMMING BY EXCHANGEABILITY*

SHUO-YEN ROBERT LI?

Abstract. This article introduces the concept of exchangeable stopping time and a technique of dynamic
programming based upon this concept for fast computation of the expected value of a payoff function upon
stopping. One instance of an exchangeable stopping time is when a stopping time is defined by a threshold
on the sequential sum of the process. Another instance is when a stopping time is defined by the occurrence
of given patterns in observed values of the process. This ncw computation technique has applications in
bin packing, casino blackjack, and random drawing for patterns.

Key words, bin packing, casino blackjack, dynamic programming, exchangeability, fast computation,
permutation groups

AMS(MOS) subject classifications. 68Q20, 60G09, 90C39, 60G40

1. Introduction. Let X, X2, X3, be a discrete stochastic process with a stopping
time N. Let p be a function defined over all finite integer sequences, called the payoff
function. We want to compute E[p(X1,X2,’’. ,XN)], i.e., the average payoff upon
stopping. Assuming N, X, X, X3," are uniformly bounded, the computation can
always be done by exhaustive search. This would require the computation of the
probability of every sample path of the stopping process and the evaluation of the
payoff function at the end of each path.

Computation of this type often can be simplified by techniques derived from
fundamental structures in probability theory such as Markov chains, martingales,
independently and identically distributed random variables, etc. When the stochastic
process, the stopping time, and the payoff function do not meet requirements for
invoking such fundamental techniques, we still hope to do the computation more
efficiently than exhaustive search. This motivates the exploration of new concepts that
give rise to efficient computation techniques but not necessarily close-form solutions.
This article introduces one such concept called the exchangeable stopping time and the
technique of dynamic exchangeable programming. Over a process of exchangeable
random variables, the expected value of a symmetric payoff function upon an exchange-
able stopping time can be computed by this new technique, which is exponentially
faste:-than exhaustive search. Examples of applications of this fast computation
technique are found in bin packing, casino blackjack, and random drawing for patterns.

2. Exchangeability and computation.
2.1. Taking advantage of symmetry in computation. Throughout the article, a

process means a finite or infinite stochastic process and a stopping time is always
nonrandomized (in the sense of Wald [8]). Let denote a fixed finite set of nonnegative
integers. Unless otherwise specified, a stochastic process always means a sequence of
-valued random variables. A finite sequence of elements from the set will be called
a tuple. In particular, the null tuple means the null sequence. Following DeFinetti [3],
we define a process to be exchangeable, if rearrangements of random variables do not
change the process. In other words, a stochastic process is exchangeable if the
probability of any tuple is independent of the ordering among entries in the tuple.

Received by the editors February 17, 1988; accepted for publication August 19, 1988.
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Consider a process X, X2, X3,
is said to be N-attainable if

with a stopping time N. A tuple (xl, x2, , xn)

(2.1) P{X Xl, X x2, X Xn, and n --< N} > 0.

Given a payoff function defined over tuples, we want to compute the expected payoff
upon stopping but avoid repetitive computation on symmetric tuples. This, of course,
would require the property that the ordering of the random variables in the process is
immaterial What does this property precisely mean and how does a computation
algorithm take advantage of it? It should mean the "exchangeability" of the random
variables in three regards. First, the random variables are exchangeable with regard
to chain probabilities, i.e., they form an exchangeable process. Second, they are
exchangeable with regard to the payoff function, i.e., the payoff function is symmetric.
Finally, they are exchangeable with regard to the stopping time.

The meaning of this third exchangeability needs clarification. One possible inter-
pretation could be that all symmetric tuples are either N-attainable together or non-N-
attainable together. This interpretation is too strict to be useful because it essentially
implies that the stopping time N is independent of the stochastic process. Another
possible interpretation could be that, when two symmetric tuples are both known to
be N-attainable, the stochastic process stops at both of them or at neither of them.
Note that, for a given tuple, the prefix of a permutation of the tuple is not necessarily
a permutation of a prefix. Therefore the latter interpretation of an exchangeable
stopping time would be weak in linking the N-attainability among symmetric tuples.
However, we shall use this interpretation of an exchangeable stopping time as the
principal condition in the definition and compensate its weakness by side conditions.

2.2. Exchangeable stopping time. Let S, denote the group of permutations on the
numbers 1, 2,..., n. For 0-<_ m < n, we regard Sm as a subgroup of S. The product
of two permutations a and b is denoted as ab. As a composite function over
the numbers 1, 2,..., n, this product is interpreted as the function a followed
by the function b. (It could be interpreted as b followed by a instead, as long as the
interpretation is consistent throughout all definitions pertaining to products of permuta-
tions in this article.)

Consider a process X, X2, X3,... with a stopping time N. For every tuple
(xl, x2,. ., x), write

(2.2) A(xl,x2,...,x)={oS,l(x,x2),..., x,n)) is N-attainable}.

We say that N is an exchangeable stopping time if the following two properties hold"
(A) When two symmetric tuples are both N-attainable, the stochastic process

stops at both of them or at neither of them.
(B) For any nondecreasing tuple (Xl, x,. , xn), if A(x, x2," , x,) is non-

empty, then so is A(x, x2,’’’, x_).
The property (B) has been stated with respect to the natural ordering among integers
in the set Z. But, since elements of Z can be relabeled, the property can actually be
stated with respect to any other ordering as well. It has turned out that this technical
condition is usually easy to meet.

The goal of introducing the concept of exchangeable stopping times is to derive
a computation algorithm that avoids repetitive computation on symmetric tuples.
Naturally, the algorithm will require some mechanism to quantify the symmetry among
N-attainable tuples. Since our definition of the exchangeability of a stopping time is
very weak in linking the N-attainability among symmetric tuples, the application of
the algorithm would require more than just the exchangeability. The required extra
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property of the stopping time can be a reasonably computable IA(x,..., xn)l for
certain tuples (x,..., xn). It turns out that the reasonable computability of the
following quantity would also suffice" Write

Ia(x
(2.3) a(x,... ,x,)=

]a(x,, ,x,_,) I’
whenever the denominator is nonzero, where is the usual notation for cardinality.
Instances of exchangeable stopping times with easily computable a(x,..., x,) are
presented in 3.

2.3. The computation algorithm. A fast computation algorithm based upon
exchangeability will be given in 2.3.2. First, 2.3.1 describes the computation by
exhaustive search so that the new algorithm can be described in parallel terms for easy
contrast.

2.3.1. Dynamic programming. Let X, X2, X3,. be a process with a stopping
time N and p a function defined over tuples. Define another function over tuples as
follows"

(2.4) D(x,..., x,) E[p(X,..., XN)]X =x,..., Xn =x,].

In particular, the expected value of p upon stopping is D(), i.e., the function D
evaluated at the null tuple, which can be calculated from "backward induction" as
follows. If n--N for the tuple (x,..., x,), then

(2.5) D(x,, ,x,)=p(x, ,x,).

If N> n-1 for the tuple (x,..., x,_l), then

(2.6) D(x,, xn_,) ] P{X, x, IX x, X,_ x,_,}D(x, xn).

The computation based upon this recursion is equivalent to the exhaustive search
through a tree where each node is a tuple and an ancestor of a node means a prefix.
This computation algorithm will be referred to as dynamic programming.

2.3.2. Dynamic exchangeable programming. Assume that X, X2, X3,’’" is an
exchangeable process with an exchangeable stopping time N and that p is a symmetric
function defined over tuples. Define the stabilizer group of a nondecreasing tuple
(x, x2," x) as follows"

(2.7) G(x,, x,) {cr S, I(x,, x,(,) (x, x,)}.

This group measures repetition of values in the tuple. Define the function

IG(x,, ,x.)[
(2.8) g(x,,... ,x,)=

IG(Xl,"""
over nondecreasing tuples of any nonzero length. Then g satisfies the following easy
recursion:

(2.9) g(x," , x) if n or x > x,_,

(2.10) g(xl,’’’,x)=g(xl,’’’,xn-)+l ifn=>2and

Let a tuple be called a stus-tuple if it is symmetric to an upon-stopping tuple. Our goal
is to compute the expected value of the function p upon stopping. Without loss of
generality, hereafter throughout this section, we shall assume the following"

(C) p can have nonzero values only at stus-tuples.
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We want to construct an algorithm that is similar to the exhaustive tree search in the
above-described dynamic programming but avoids repetitive computation on sym-
metric tuples. Thus, consider all nondecreasing tuples that are symmetric to N-attainable
tuples. We organize these tuples into a tree structure by linking each of them to its
prefix with one less element, i.e., linking (x,..., xn) to (Xl,""", xn_). The require-
ment (B) of the exchangeability of N guarantees the connectivity of this tree structure.

All external nodes (also called leaves) of this tree and possibly some internal nodes
are stus-tuples; we shall call them stus-nodes. To compute the expected value of p
upon stopping, we need only to evaluate p at stus-nodes and enumerate the number
of upon-stopping tuples symmetric to it. From the requirement (A) of the exchangeabil-
ity of N, the number of upon-stopping tuples symmetric to a stus-node is the same
as the number of N-attainable tuples symmetric to it. Note that
Ia(x,..., x,)l/IG(x,,..., x,) is the number of distinct N-attainable tuples that are
symmetric to (x,..., x,). Therefore, by the assumption (C), we have

[p(X,..., x,)]

(2.11) 2
Ia(x"’" x")l

P{(X,’’’ X,)=(Xl,’’’ x,)}p(x,,’’’ x,).
,,...<= IG(x,,’", x,)l

This formula can be computed by tree search according to the following recursion. If
(Xl,""", x.) is an external node of the tree, let

(2.12) F(x,, x,) =p(x, ", x,)lA(x

If (x,’’’, x,_) is an internal node of the tree, then let

Z(x,, x,_,)
(2.13)

F(x"’"X")p(x, IX, x,, X,_, x,-1}.d- Xn
Xn.... g(Xl, Xn)

We can then recursively compute F(), which equals the expected value of p upon
stopping. This algorithm involves the computation of IA(x,..., x,) on every stus-
node (x,,..., x,).

Recall the definition (2.3) of a(x,,... ,x,). If IA(x,,... ,x)l is computable,
then, of course, a(x, , xn) can be computed with little extra effort. But the converse
is not always true. Also, even when In(x,,..., x)l is computable, a(x,,..., x,) is
often a much simpler number to compute. For these reasons, we prefer to compute
the expected value of p upon stopping by the following recursion instead of (2.12)
and (2.13): If (x,..., x,) is an external node of the tree, let

(2.14) M(x,, ,x,)=p(x, ,x,).

If (x,""", xn_) is an internal node of the tree, let

(2.15)
m(xl, ,Xn_l)=p(Xl, ,Xn-1)

+ E a(x,,...,X,)p(X,=x,[X,=x,,... X,-I=X,_,}M(x,,"" x,).
x,,>- .... ,g(Xl," ",Xn)

Then the expected value of p upon stopping equals M(). This computation algorithm
will be referred to as dynamic exchangeable programming.
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2.3.3. Comparison of computational efficiency. Dynamic exchangeable program-
ming applies only under the exchangeability assumptions, but, when applicable, its
computation can be significantly faster than dynamic programming. Dynamic program-
ming invokes its recursive formula (2.6) for every tuple before stopping, and evaluates
the payoff at every tuple upon stopping. Dynamic exchangeable programming invokes
its recursive formula (2.15) only for nondecreasing rearrangements of tuples before
stopping, and evaluates the payoff only at nondecreasing rearrangements of tuples
upon stopping. Except for the extra effort in the computation of a(x,..., xn), the
speedup factor of dynamic exchangeable programming over dynamic programming is
roughly the ratio between the number of upon-stopping tuples and the number of
nondecreasing upon-stopping tuples. Thus the speedup factor may be estimated as
follows. For a fixed length n, there are IEI tuples, while there are only (n + IE])!/n !IEI!
nondecreasing tuples; in terms of the order in the parameter n, the ratio between these
two numbers is IE] n. In view of the convexity of the exponential function, we then
estimate the speedup factor to be of the order of ]E] N1.

The computational complexity of a(x,. ., Xn) is very much up to the individual
instance of the exchangeable stopping time N. For example, if the exchangeability of
N is due to Theorem 3.1 below, then the computational complexity depends solely
upon the structure of the monotonic function f in the theorem. In particular, if N is
as in Corollary 3.2, this computation would be a very minor effort incurred by the
algorithm.

An alternative implementation of dynamic programming is to tabulate values of
the payoff function at nondecreasing tuples and then look up the table whenever the
function needs to be evaluated. This would save one aspect of the repetitive
computation, i.e., the evaluation of the function at symmetric tuples. However, the
implementation requires an algorithm for the translation of a tuple into the proper
table address. A desirable algorithm should take only a reasonable amount of time
and space. Conceivably, the number of tuples can be quite large in applications and
there may not exist any natural way of storing nondecreasing tuples in a com-
pact linear fashion. Hence, the desired translation algorithm is often unavailable in
applications.

3. Quantification of symmetry. Dynamic exchangeable programming requires the
computation of a(xl,’’’, xn) for nondecreasing tuples (x,..., x,). In this section,
we investigate structures of exchangeable stopping times that lead to natural ways of
computing a(x,... ,Xn). Then we present examples of applications of dynamic
exchangeable programming.

3.1. Computation of a(x,..., x,). For any two sets A and B of permutations,
let A x B denote the set of permutations of the type a x b, where a, b are elements of
A, B, respectively. For n-> 1, let Fn be an n-element subset of Sn such that

(3.1) Sn=Sn_lXFn

In other words, F is a complete set of representatives of right cosets of Sn over the
subgroup S_.

Our property ofthe stopping time that enhances the computability of a (x, , Xn
is a natural expression of the set A(x,..., Xn) in the form of a "direct product" of
the set A(x,..., Xn-) with another subset of Sn. A special form of this property is
that, for every nondecreasing tuple (x,..., x.), there exists a subset H(x,..., Xn)
of Fn satisfying the equation

(3.2) a(x, ,..., x,,) a(x, ,’’’, Xn_l) X H(x ,..., x),
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because, then, a(xl,"’,xn) is simply the cardinality of H(x,...,xn). When a

stopping time is exchangeable and possesses this property, we shall say that the stopping
time is exchangeable with respect to the sequence F1, F2, F3, The simplest example
of the set F, consists of transpositions:

(3.3) F,={(1 n),(2 n),...,(n n)}.

When a stopping time is exchangeable with respect to the particular sequence F,
defined by (3.3), we say that it is exchangeable with respect to transpositions.

Let a function f over tuples be called monotonic if

(3.4) f(x, ", x,,) <-- f(y,, y,,) <-f(y, y,,, y,+)

whenever x -<_ y, x2-<- Y2, Xn <= Y,, and n >_- 0.
THEOREM 3.1. Letfbe a symmetric monotonicfunction on tuples and K a constant.

Define the stopping time N on the process X, X2, X3," ", as the smallest number n
such that

f(Xl, X2, Xn) >- K.

Then N is exchangeable with respect to transpositions.
Proof Given a nondecreasing tuple (x, x2," , x,), we need to verify the condi-

tion (3.2) with a properly chosen subset H(x, x2,’’" ,xn) of the set F, in (3.3). If
f(x, x2,’’’, xn-) >- K, then A(xl, x,..., xn) is null due to the monotonicity and
the symmetry of f We may therefore assume that f(x, x2,’", x,_)< K. Then the
symmetry off implies that A(xl, x2," , x,_) S,_. Define m as the smallest index
such that

(3.6) f(x,x2," ",m," ,x,,)<K.

Here is the usual notation for deleting an item from an array. An element o- of S,
belongs to A(x, x,..., x,,) if and only if

(3.7) f(Xr(), Xcr(2), ", Xcr(n-1)) < K,

which is equivalent to that tr(n)->_ m. This means that

(3.8) a(x,,x2,’’’,xn)=Sn_,x{(m n),(m+l n),...,(n n)}.

The condition (3.2) is verified by choosing H(x,x2,...,xn) to be the set
{(m n), (m + n),. , (n n)}, and the theorem is proved.

For the stopping time in the theorem, we have a(x,..., x,)= n-m+ 1, where
m is defined by (3.6). In other words, the computation of a(x,..., x,) is equivalent
to the computation of m, which directly relates to the structure of the symmetric
monotonic function f One simple and useful case of a symmetric monotonic function
is as follows.

COROLLARY 3.2. Given a constant K and a nonnegative nondecreasing function f
on the set Z, define the stopping time N as the smallest index n such that

(3.9) f(X,) +.. +f(X,) >- K.

Then N is exchangeable with respect to transpositions.
Proof Expand the domain of the function f from to tuples by

(3.10) f(x, ,..., Xm) =f(x) +" +f(x,).

Then f is a symmetric monotonic function on tuples.

3.2. Application to bin packing. A collection of items of various sizes are to be
packed into bins. The number of items of each size is predetermined. All items are
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mixed in a random order and revealed one at a time. A bin collects items one by one
according to the order of arrival until the accumulative load reaches a predetermined
threshold. Then a second bin starts to be loaded by subsequent items in the same
manner, and so on. In other words, a new bin is started after overflow occurs. This
differs from the usual bin packing, where a new bin is started before overflow occurs
(see Coffman, Garey, and Johnson [2] for a comprehensive survey and Rhee [6] for
a recent reference on bin packing).

To demonstrate the application of dynamic exchangeable programming, we shall
compute the variance and the covariance of bin loads. When there are enough items
to guarantee the filling of a fixed number, say k, of bins, then the loads of these k bins
are identically distributed (and, in fact, form an exchangeable process). We want to
compute the average load of the first bin, the average square of the load of the first
bin, and the average product of the first two loads.

Thus, let Xi represent the size of the ith item. This defines an exchangeable process.
Define the stopping time N as the smallest n such that X +. + Xn reaches the given
threshold of bin load. Note that this is the special case of Corollary 3.2 with the
function f being the identity function. Therefore the quantity a(x, , xn) is easily
computable. To compute the average load of the first bin and the average square, the
payoff functions are, respectively,

(3.11) p,(xl ", x,) Xl + + x,

and

(3.12) p2(x, ,’’’, Xn) (Xl q-"""-t- Xn) 2.

To compute the average product of the first two loads, we use the same stopping time
N and the payoff function"

(3.13) p3(x,’" ",x,)=E[productoftwoloadslXl=X,’"., X, =x,].

At an upon-stopping tuple (x,..., x,) the evaluation of p3(x,’", x,) can be done
by exhaustive search through all possible values of X,+l, X,+2," given that X
Xl, , Xn x.. Alternatively, this evaluation can be done through a recursive applica-
tion of dynamic exchangeable programming, since the conditional process of X,+,
X,+2,’’" given that X1 x,..., X, =xn can be regarded as the initial process in the
bin-packing problem where those items corresponding to x, , xn are deducted from
the initial collection.

3.3. Compmation of casino blackjack. Since the pioneering work of Thorp [7],
there have been numerous publications analyzing and simulating strategies for casino
blackjack. A partial list of these studies is the bibliography of Humble and Cooper
[4]. These studies, except for relatively simple ones, have all been based upon statistical
simulations and estimations instead of full-confidence computation. One reason for
avoiding computation is the immense computational complexity. In principle, for any
version of the game rules, any shuffle practices of the house, and any strategy of the
gambler, the exact expected return at any situation can be exhaustively computed.
However, the complexity of blackjack computation often overwhelms the processing
power of modern-day computers.

Consider the computation of the expected payoff of the exhaustively optimal
strategy for playing one game head-on against the house. The net payoff depends on
minor variations of game rules from house to house and can sometimes be extremely
close to zero. There are many situations that one option for the gambler (such as hit,
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stand, split, and double-down) may be better than another option by a margin so tiny
that only the exact computation can make the right decision. This makes the simulation
of the exhaustively optimal strategy difficult.

Dynamic exchangeable programming offers an alternative to exhaustive computa-
tion or simulations. The random variables in the exchangeable process are cards
received by the gambler. Given the value of dealer’s up-card, let K and KS be the
minimum hard and soft points, respectively, that are not known to be sure hits. For
example, when a game starts with a fresh deck, KS is 19 against an up-card 9 or 10
and is 18 against all others. The exchangeable process stops when either the hard total
is at least K or the soft total is at least KS. (For the consideration of special stopping
due to double-down, split, or natural, the readers are referred to Li [5].) The payoff
function, at a standing hand, is defined as the average receipt to be credited to the
hand, which is averaged over all possibilities of dealer’s remaining cards. The payoff
function, at any tuple upon stopping (not necessarily a standing hand yet), is the
average receipt to be credited to the hand, assuming that the gambler plays optimally
from that point on.

This would have set up the problem as a typical application of Corollary 3.2
except for the ambiguity of an ace being counted as either or 11, and hence also the
ambiguity in the meaning of a nondecreasing tuple. We classify tuples upon stopping
into the following types:

(A) All cards are non-aces.
(B) There is exactly one ace and one non-ace.
(C) There is exactly one ace. The total points of non-aces are greater than or

equal to K.
(D) There is exactly one ace and at least two non-aces. The total points of non-aces

are less than K.
(E) There are at least two aces and at least one non-ace.

Assign point values to aces as follows. The ace in a type (B), (C), or (D) hand is
counted as 11 points, and each ace in a type (E) hand is counted as one point. Figure

is afinite-state diagram that depicts the growth from the null tuple to the nondecreasing
permutation of a tuple upon stopping. Note that 2<=y<-_y2<-_...<-10 and
1 _-< zl =< z2_-<. _-< 10 in Fig. 1. Application of dynamic exchangeable programming to
this stopping process can be done in the same fashion as Corollary 3.2, because the
stopping times for exiting both loops in Fig. 1 are defined by thresholds on the sequential
sum.

3.4. Random drawing for patterns. Let the process X, Xz, X3, represent Polya’s
urn scheme (see, for example, Chung [1]), where the "urn" contains a collection of
numbers with repetitions allowed. A specific instance of this process would be drawing
cards from a deck (full or partial) without replacement. Consider the type of stopping
times that are defined by the occurrence of certain "patterns of combinations." For
example, define the stopping time N as when any number appears for a third time or
when there are two repeated numbers. A stopping time of this type is clearly exchange-
able. It is usually not difficult to compute the function a(x, , x,) for such a stopping
time and thereby apply dynamic exchangeable programming to the averaging of
any symmetric payoff function upon stopping. Below, we compute the function
a(x,. , xn) for the particular stopping time N.

Recall the function g over nondecreasing tuples in (2.9) and (2.10). Write

(3.14) b(x ,’’’, Xn) I g(Xl, Xi)"
i=1
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Since the function g can be computed by an easy recursion, so can the function b.
The function a relates to the function b as follows"

a(xl, , xn) n ifb(xl,. , x,) <-_2,

4 ifb(xl,. ., x,_,) 2 and b(x,. ., x,) =4

(3.15) 3 if b(x , Xn_l) 2 and b(x , x,,) 6,

n 1 if4<= b(Xl," Xn-1) b(Xl," Xn) <=6,

0 ifb(x,.’., x,) => 8.

The proof of (3.15) is relatively elementary, and hence is omitted.
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Abstract. Consider a probability measure /x on [0, 1] and independent random variables X,.. , X,,
distributed according to/x. Let Q,, Q,, (X1,. , x,,) be the minimum number of unit-size bins needed to
pack items of size Xl,... ,X,,. Let c(/x) =lim E(Q,,)/n. In this paper it is proved that the random
variable (Q,,- nc(/z))/x/- converges in distribution. The limit is identified as a distribution of the supremum
of a certain Gaussian process canonically attached to /x.

Key words, optimal stochastic bin packing, weak convergence
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1. Introduction. The bin-packing problem requires finding the minimum number
of unit-size bins needed to pack a given collection of items with sizes X1,’’ ", Xn in
[0, 1]. This problem has many applications and has been shown to be NP-complete
[Karl. Consider a probability measure/ on [0, 1]. (No regularity assumption is made
on /.) Consider n items with sizes X1,"’, Xn which are independent identically
distributed random variables distributed according to /. (For simplicity, we denote
by Xk both item names and item sizes.) We let On=On(X1, ...,Xn) denote the
minimum number of unit-size bins needed to pack X1," ", X. It is well known that
0n is a subadditive process (see [Kin]). So we have limn On/n c(t) almost surely
for some constant c(/) depending on/, and E(On)/n >--c(t) for each n. In [Rhe3],
the authors have shown that Qn is very concentrated around its expectation. More
precisely, for all > 0,

P(IQn E(Qn)I--> t) -<2 exp (-t2/2n).

This however gives no information on the value of E(Qn). In [Rhe2], the authors have
shown that for some universal constant K, we have

(1.1) O<-E(Q,)-nc(l)<=K(n(l+logn)) ’/2.

(Throughout the paper, a universal constant means a number independent of all the
data of the problem. We will always denote by K a universal constant, not necessarily
the same at each line.)

The present paper will go one step further in the description of Q,. We will
describe a random variable Tn, whose distribution is independent of n, and for which
E(I(Qn nc(tx))/x- Tn[)= o(1). This implies in particular that (Qn nc(tx))/v/- con-
verges in distribution. Some deterministic estimates were essential in the proof of (1.1);
a sharpening of these results (Theorem A below) will be essential here. We now proceed
to a precise description of our results. The ideas and concepts developed in our earlier
paper [Rhe2] will be essential.

Fork=>l, let

Rk--{ (xl’’’’’xk)ERk" OXl’’’Xk’ 2ik Xi<:l}"
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For x [0, 1], we denote by 6x the probability measure concentrated at x, that is for
a Borel set G we have 6x(G)= if x belongs to G and 6x(G)=0 otherwise. For a
compact metric space S, we denote by MI(S) the set of probability measures on S.

The following improves on [Rhe2], Theorem B.
THEOaEM A. Consider a nonnegative sequence (ak)k>_O with ,k>-o ck 1, and a

sequence ’k M1 Rk ). Consider the measure

oo+ 2 (/) | 2 (x,," ., x).
k>=l .]R

For >-_ 1, let fll 2k>=! Olk/k. Consider a sequence Sl, , sn of items. Let

D=D(sl,’’’,s,)= Sup {card{iNn;s,>=t}-nix([t, 1])},
0<_--tN1

so D >= O. Then for all <= q <-_ n, we have

Q,(sl,’",s,)<-D+n . (ak/k)+n/q+3q+4
k>=l

(1.2)

+K(log n)l/2( 2 Max ((n,/t) 1/3, (n//)1/4))
where K is a universal constant (i.e., independent of IX, n, and Sl, ", s,). In particular,

(1.3) Q(sl,"’,s,) <--o+n 2 (ak/k)+KnS/l(l+logn) 1/2.
k>=l

Comments. It is sufficient (but essential) for our present purposes to have an error
term in (1.3) that is of order <n 1/2. We do not know however what would be the best
possible order of this error term. Since we see no reason why the present bound should
be optimal, we have not conducted our computations in order to attempt to get a small
value for K and we have always used crude but simple estimates.

PROPOSITION B. (a) Let Sl ", S be in [0, ]. Let u (1/n) i<=, 6.,. Then we have

(1.4) nc( ,) <-_ Qn(Sl ", s,) <- nc( u) + KnS/ll(1 + log n)1/2.

(b) For each distribution Ix,

nc(ix <= E Qn X1, X, )) <- nc(Ix + Kn 1/2.

For a probability measure y on [0, 1], we set F-(t)= y([0, t)), F(t)= y([0, t]).
We denote by Wt Bt- tB1 the Brownian bridge, where Bt is the standard Brownian
motion (see [Bre]). For the simplicity of notation, we set

Consider the set c of nondecreasing functions f from [0, to [0, that satisfy f(0) 0
and f(a)+f(b)<=f(a+b) whenever a, be[0, 1]. a+b<-l.

To each f in % we associate f- given by f-(0)=0, and for x > 0 by f-(x)=
lim_x.<xf(y), so f-_-<f, and it is easily seen that f- % There is a unique positive
measure Y.t on [0, 1] such that yy({1}) =0 and that F-..(t)=f-(t) for each 0_-< t_-< 1,
and %,. has mass f-(1)<_-l. We now fix Ix in M1([0, 1]). We denote by (z)j an
enumeration of the points z [0, 1] such that Ix({z}) > 0, where J is either empty, finite
or countable infinite.
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THEOREM C. The set

is nonempty. Consider the random variable

(.5) r=Sup %,, dYz(t)+ 2 (f(z)-f-(z))(%,- W;,)
f c iJ

Then, for each n, one can find a random variable T, distributed as T, and such that

lim E(I(Q,(X,, X,)- nc())/- T,[)=0.

Remarks. (1) The proof actually shows that for some c > 0, we have

lim E(exp (a](Q,,(X,,..., X,,)-nc(t))/x/-- T,,])) 1.

(2) T is the supremum of a Gaussian process indexed by ,.
(3) The reason for the unintuitive formula (1.5) is explained in the heuristic proof

of Theorem C given at the beginning of 3.
COROLLARY D. We have

lim E((Q.(X,, X.)- nc(l))/v/-)=O

if and only iffor any two functions f and f2 of cg, then f -f2 0 on the support of l,

except maybe on a countable set oftz-measure zero (that may depend on f and f2). (We
recall that the support of a probability measure is the smallest closed set A for which
/(a) 1.)

Comments. While it is somehow surprising that results as accurate as Theorem C
can be proved, it must be pointed out that the structure of the set cg is very complicated
and seems to contain a lot of the difficulty that is inherent to bin packing. In particular,
we do not know how to describe the probability measures that satisfy the conditions
of Corollary D.

The paper is organized as follows. Some simple facts are collected in 2. Theorem
C is deduced from Theorem A in 3. In 4, we prove the sharpened matching lemma
that is basic for the proof of Theorem A, and Theorem A is proved in the final 5.

2. Some basis facts. The pointwise convergence topology on the set of all functions
on [0, 1] is the coarsest topology such that all the maps ff(t) are continuous for all
0<= <-1. Helly’s compact H is the set of all nondecreasing functions from [0, 1] to
[0, 1] provided with the pointwise convergence topology [Eng], and cg is a closed
subset of Helly’s compact. It should be noted that Yg is not metrizable. For each
probability measure y on [0, 1], the map f- fdy is pointwise continuous on Yg, and
hence on % (see [Eng], 3.2.E). (This is an elementary exercise.) The following will be
essential.

LEMMA 1. For each probability measure y on [0, 1], we have

(2.1) c(y) Sup I fdy.
f d

Proof Let O<c(y). Then, according to Theorem E, b, of [Rhe2], there exists a
nonnegative continuous function g on [0, 1] such that g, dy > 0, g(0)=0, and that

i<=k g(xi)_<- 1 wheneverk xi -< 1, 0=< x-< 1. This shows that if we define

f(x)=Sup{, g(x);k=>l, , xi<=x,O<=x<--l}
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then f-<_ 1. It is routine to check thatf c; and since f->_ g, we have fdy >-_ g dy. So,
we have shown that

c(y) _-< Sup f fdy.

To prove the reverse inequality, we note that if f c, then if 0<-xi_-< and
Zi__<k xi --< 1, we have Y<=kf(xi)<--_f(=k X)_--< 1, SO the inequality fdy<=c(y) follows
from [Rhe2], Theorem E, c.

Since f- Ifdlx is pointwise continuous, this Lemma implies that c. is not empty,
and that c(y) maxf fd%

LEMMA 2. For each n, we can find independent identically distributed random
variables X1,’", Xn distributed according to tx and processes Wn,.,,, W-,.,, jointly
distributed as W.,,, W,, such that

(2.2) E(S.) <- K(log n)/x/, E(S-) <= K(log n)/v/-
where

(2.3) Sup I(card{i<= n; X,<- t}- nF(t))/v/- W....,
0=< t___

(2.4) $2= Sup I(card {iN n; X, < t}- nF;(t))/v/-
ONtN1

Proof It is proved in [Kom] that one can find independent identically distributed
random variables Y1,’", Y uniformly distributed on [0, 1] and a process W..,
distributed as W, such that if

S’ Sup I(card {i =< n; Y <- t}- nt)/v/- Wn,,I,
0NtN1

then E(S’) <_ Kn -1/2 log n (and actually E(exp (anl/2(log n)-IS’n)) < K for some c >
0). Consider the function H given by H(u)=inf{t>=O;/x([0, t])>= u}. Then (as well
known), if X H(Y), the sequence (X)i__<. is independent identically distributed and
distributed according to /x; and it is easy to see that the result follows by setting
W..,,= W,F.(,), W-,.,,= W-,F;(,) (note that H(u)<=aC:>u<-F(a) and H(u)<a:>
u < F-(a)).

LEMMA 3. (Integration by parts; well known.) Let f and , be a probability
measure on [0, 1], and let (u)j be an enumeration of the points for which ,({t}) > 0.
Then

fd,=f-(1)- I Fdyf+ 2 (f(u,)-f-(u,)),({u,}).
iGJ

Proof We have Ifd,=If du+,,j (f(ui)-f-(u,)),({u,}), since f=f- except
on a set which is at most countable. It remains to show that I F.. d, + I F dyf =f-(1).
But the first integral is the measure of the set {(t, u); 0_-< < u =< 1} for the product
measure yf x , while the second integral is the measure of {(t, u); 0 <_- u _-< _-< }.

LEMMA 4. For a continuous function g on [0, 1], and f in , consider

b(f g)=-I go F.(t) dyf(t)+ ,J2 (f(z,)-f-(z,))(g(F.(z,))-g(F-(z))).

Then for each g such that g(0)= g(1) =0, the map f- oh(f, g) is pointwise continuous
on ;.

Comment. The purpose of the functional 4 is to give a rigorous meaning to the
expression fd(g F.).
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Proof We consider first the case where g is piecewise affine. In that case, we can
write g=gl-g2, where gl and g2 are nondecreasing, gl(0) =g(0) =0, gl(1)=g2(1).
There is no loss of generality to assume that g(1)= g(1)= 1. In that case, for l= 1, 2,
gl F, is right continuous, so it is of the type F, for some probability measure ’t on
[0, 1]. Only the points (zi)ij can be atoms of vt, and v({zi})= g(F,(zi))-gt(F-,(z)).
Lemma 3 then shows that

dp(f g,) -f-(1) + f fdut,

so that

d(fg)=ffdu-ffdu
is pointwise continuous as mentioned above.

We note that for each f in , we have

(2.5) f(t)-f-(t)<-_l,

where the summation is taken over all the for which f( t) -f-( t) > 0. (This fact will
be used repeatedly in the sequel.)

It follows easily that for each f in 2(, we have

(2.6) ]th (f, g)l <= 3 Sup

To conclude the proof, we note that any continuous function which is zero at 0
and 1 can be approximated arbitrarily well in the supremum norm by a piecewise
affine function which is zero at 0 and 1.

Remark. If W denotes the function t- W,, we see from (1.5) that

T= Sup b(f, W).
f.

3. Proof of Theorem C. The idea is very simple. Let , (1/n) <=,, x,. According
to (1.4), and since n-1/2(n5/l(log n)l/2) o(1), it is enough to show that E(In/2(c(t,)-
e(/x))- T.])= o(1). The heuristic proof goes as follows. We have, by (2.1)

(3.1) c(u)-c(tx)=Sup(ffdv-c(tx)).
J’

By (2.3), we have

(3.2)
so we can hope that

and hence

F( t) F. t) + n -’/ W.,.(, + o(n-’/),

d, dtx + n-/ d (Wn.F,) + O( n -’/2)

ffdv=ffdlx+n-1/2ffd(W,,v,)+o(n -1/2)

f fdtx + n-1/2t(f, Wn,.)+ o(n-’/2),

(where W,,. is the function t- W,,,). So we have

c(u)-c(tx)=Sup(ffdtx-c(tx)+n-1/2dp(f, W,,..))+o(n -’/2)
.f

(3.3) n-/2A + o(r/-1/2),
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where A is the right derivative at zero of the function a -Supy (fdl-c(l)+ ach(f, W,,.)), that turns out to be Supj.% 4)(f, W,,.) T,. This
completes the heuristic proof.

We start the rigorous proof, and we first collect a few easy facts.
LEMMA 5. With probability one, we have for all f in ,

f fdv-f-(1)+ I F"dYf- (f(z)-f-(zi))v({zi}) <-

Proof The points X,. ., X are not distinct in general. However, with probabil-
ity 1, if two points X, X are equal, they are equal to one zi. Let u, , um (m _-< n)
be the points u for which v({u})> 0; that is u,. ., um is the set of different values
taken by X1," ", X,. According to Lemma 3, we have

(3.4) fdu=f-(1)- f Fdyf + 2 (f(ui)-f-(ui))u({ui}).

Now (with probability 1) if uj is not one of the points zi, then v({uj})-< 1/n. The result
then follows from (2.5).

For f in cg, we denote by T,,y (respectively, T.) the random variable given by

Tn,f=dP(f Wn,.)=-f Wn,,t dyf(t)+ Z (f(zi)-f-(zi))(Wn,tz,zi- W-,,z,)
d iJ

(respectively, T.=4,(f W.)=-f W.,, dyf(t)+(f(zi)-f-(zi))(W.,z,-ij W’zi))
so that T Supf% Tf. We set T. Supfe% Tn,f, so that T is distributed as T.

LEMMA 6. With probability 1, for all f in , we have

(3.5) fdv- f fdl n -1/2 Tn,f _-< 1/n + (2S. + S-)n -’/2.

Proof From Lemmas 3 and 5, with probability 1 we have for all f in Y(,

From (2.3), we have, for all 0_-< _-< 1,

]F(t) F (t) -//-1/2 Wn,,,tl <= Snn-1/2
For all J, we have

P({Zi})-- Ia.,({2i}) nv(zi)- n(zi)-(F-(zi)- nT.(zi))

so from (2.3) and (2.4), we have

I’({zi})-- tz({zi}) n-1/2( W,,,,zi W-,,,z,)l <= (Sn + S-)n -’/2.

Hence

dr- I fdtx n -1/2 Tn,f <- 1/n + S,n -’/2 + E (f(zi) f-(zi))(Sn + S-)n -1/2

iJ

This concludes the proof.
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The basic lemma is as follows.
LEMMA 7. Consider the function

(3.6) 4,(a)=Sup (f fd + aTy-c(z)).
J’

Then 0(0)= 0, is convex, and its right derivative at zero is equal to T.
Proof It is obvious that 0(0) =0 (since c(/x) Supy fd) and that is convex.

Denote by A its right derivative at zero, i.e., A limao.>o (a)/a. Since is convex,
we have (a)aA for a>0. Obviously, we have (a)aT, so A Z Since (k-)
k-A for each k, we can find fk such that

d + c()k-i k-l

Since T=(fk, W.) satisfies T3Sup, for all k by (2.6), we see that
lira infk fk d c(). Hence all cluster points ofthe sequence (fk) (for the pointwise
topology) belong to . Let f be such a cluster point. We have

fkd# + k-’Tf-c()k-lV,,k-lA_k-2

so A- k- for each k. Since, by Lemma 4, the map h T is pointwise continuous
on , we see that A T, and Tf T sincef . So T, and this concludes the proof.

We now prove Theorem C. From Lemma 1, we have c(v)=Supf fdv, so
c(v)-c()=Supf fdv-c(). From (3.5), we have

so if . denotes the function defined as but using T, instead of , we have

nl/(c( p)- c( )) n/O(n-1/) 2S + S2 + n-/.

So we have

(ln’/(c() c()) n/0 n-/)1) Kn-/ log n

for some universal constant K. Now the random variable n/O(n-/)-T is dis-
tributed as n/O(n-/)- By Lemma 7, we have rNn/O(n-/)N(1), and
lim. n/O(n-/)= Since (0(1)1)<, by dominated convergence we see that
lim E(Inl/O(n-l/ =0, so lim (In/O(n-/) TI)=0. This concludes
the proof.

Proof of Corollary D. From Theorem C, we see that

lim ((Q(X, X)-nc())/)=O

if and only if E(T)= 0. Now T is the supremum of a collection of centered Gaussian
random variables, so it can have zero expectation only if whenever fl, f2 ,, we have

TI, TI2 almost surely, i.e. Ty,- Ty2 0 almost surely. It is a well-known fact that for a
continuous linear functional Z on C([0, 1]), the random variable Z(W,) is almost
surely zero if and only if Z(g)=0 for all g in C([0, 1]) for which g(0) g(1)=0. We
have (with the notation of Lemma 4) Ty,- Ty= 4(fl, Wt)- 4(f2, W). So, the necessary
and sufficient condition is that c(ft,g)=ch(f2, g) for all g in C([0, 1]) such that
g(0) g(1) 0.
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FACT. We havefl f2 on the support A oftz, except on a countable set oflz measure
zero if and only if f d, f2 dp for each probability measure v such that F h F
for a continuous nondecreasing function h.

Proof It is routine to check that , has the property that F h F for a continuous
nondecreasing function h if and only if ,(A)= 1 and ,({t}) =0 whenever/z({t}) =0.
This makes the necessity obvious. Conversely, if fl d, f2 dv for each such probabil-
ity ,, then fl =f2 at each point for which/z({t}) >0, as well as at each point of A
at which fl and f2 are continuous. Since fl and f2 each have at most a countable number
of discontinuities, this concludes the proof.

We go back to the proof of Corollary D.
Proofof Necessity. We define the function by (t)= t. Whenever h is continuous

nondecreasing, h(0) 0 and h(1) 1, we must have 4(fl, h ) 4(f2, h ). Using
Lemma 3, we see that for i= 1,2, we have dp(f, )=fd-fF(1)=c()-fF(1). Let
v be the probability measure such that F h F. Then Lemma 3 shows that 4 (f/, h)
f du -f/-(1) for 1, 2, so ch (f, h -) f du c(tz), so we must have (f -f2) du 0
whenever F h F, for a continuous function h such that h(0)---0, h(1)= 1. The
conclusion then follows from the Fact.

Proof of Sufficiency. The fact shows that f d, f2 d, whenever F, h F for
some continuous nondecreasing function h with h(0)=0, h(1)= 1, and hence that
4 (f, h ) h (f2, h ) by the same computation as above. It follows that for each
continuous nondecreasing function h which is zero at the origin, We have 4(f, h-
h(1)) 4(f2, h h(1)). Any g in C([0, 1]) with g(0) g(1) =0 can be approximated
in the uniform norm by a difference h- h2, where hi and h are nondecreasing and
hl(0)=h2(0)=0, h(1)=h2(1). Since h,-hz=h-h(1)-(hz-h2(1)), we see that
b (fl, g) 4) (fz, g) and this completes the proof.

4. Tighter hounds for packing. The proof closely follows that of Theorem B of
[Rhe2]. The crucial point of that proof was a matching Lemma (Lemma 4 of [Rhe2]).
Our gain in accuracy will be obtained by an improvement of that lemma. While the
proof of Lemma 4 of [Rhe2] was purely deterministic, the method we will use here is
partly probabilistic. It will make use of the following lemma. Lemma 8 could be
sharpened and generalized, but we will give only the simplest version that is suitable
for our needs.

LEMMA 8. Let m >-- 16. Consider independent random variable (Zi)i<_m, numbers a,
b, and numbers (ai)i_,, (bi)i=m such that a<-ai<-Zi<-bi<-_b for each i. Assume that
for some r >= x/log m and for any t, we have

card < m; ai <- <- bi, ai bi} r.

Then we have

P( Sup card{i<-m;Zi>-t} _, P(Zi>-t)
irn

3
<_-l+3x/rlogm >--.

4

Proof Let F(t) P(Zi >= t), so F is left continuous and nonincreasing. Let
to b and by induction over l_-> 1, define

h=Sup {t; a=< t_-< b, F(t)> F(tt_,)+ 1},

so that F(tl) >- F(tt_l)+ 1, and hence F(h)>= I. The construction continues until we
construct tq, for which F(a)=m<=F(tq)+l. Set tq+=a. Since F( t,) <= m, we have
q <= m. For 0-<_ <_- q + 1, <_- m, define

Xi,! P(Zi >- tl)- {Zit,}, Yi,! P(Zi > tt)- lz,>,,l,
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and set

x,= Z x,, Y,= Z Y,.
<=iNrn li<=m

We note that E (X,,) E (Y,) 0.
Fix in [a, b[ and let be the smallest integer -<q + 1 such that t-<_ t, so < t-l.

Assume that t<t. By definition of tl, we have F(u)<=F(t_l)+l for u>t. Also
F( Ii_I) F( I). We have

Y P(Z>t,)= lim F(u)-<F(t_l)+l=<F(t)+l,
i<=m tl, U

and hence

-F(t)+card {i=<m; Z,>-t} <-- P(Zi> t)+card {i=<m; Z,> t,}+ l= l- Y.

We also have

F( -card { =< m; Zi >- t} <- F( tt_) -card { <- m; Z, >-- tt_,} + 1 1 + Xt_
This shows that

Sup [F(t)-card{i<=m;Z>-tIl<-l+ Sup
t[a,b] Olq+l

For any given l, by hypothesis at most r of the variables Xt,, are not constant. Also
-1 _-< X,,_-< and Var (Xt,) =< 1. It then follows from Bernstein’s inequality, as in [Hoe],
that for u > 0,

P( ,<=,, X,,, > u)_<-2 exp (-u2/(2r+ 2u/3)).

Taking u 3x/r log m, we have u-<3r, so

P( X,,, > 3x/r log m] =< 2 exp (-(-]) log m 2m-9/4

\ /

and a similar inequality holds for Y,i. So for m => 16,

P(for each l, IXI _-<3x/r log m, YI =< 3x/r log m)
>_ 1-2(m + 2)m-9/4>= 1-4/m >_.

The following lemma is purely technical. Its proof is entirely similar to that of
Lemma 3 of [Rhe2].

LEMMA 9. Let 3’ be a positive measure on a compact metric space S. Consider p >= 1.
Consider a sequence (bi)i<=p such that 21_<_,<__p b 117[[, and a continuous function f on
S. Then there is Up <-_ up_l <-" <- Uo and for 1 <-_ <- p there is a positive measure yi on S
such that the following hold

(4.1) Y= 2 2’,
ip

(4.2) 2’, is supported by f-([u,,
(4.3) Y,

LEMMA 10. Let 16<_--m <- n. Let 3’ be a positive measure on [0, 1] 2. Assume that
(m/n) <-_ 2’ < (m + 1)/n. Consider the three positive measures given by, for each Borel
set U,

r’(u) r( u x [0, ])
y"(U) 3/([0, 1] x U)

r/(U) y({(x, y); x + y U}).
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(In other words, y’ and y" are the marginals of y, and r/ is the distribution of x +y,
so r/ is supported by [0, 2].)

Consider two sequences (li)i<=m (Yi)i<-m of numbers, 0 <- li, Yi -< 1. Assume that

(4.4) foreach t[0, 1], card {i<=m; li>= t} <= ny’([ t, 1]),

(4.5) foreach t[0, 1], card{i_-<m; yi >- t} <- ny"([ t, 1]).

Let 1 <- k <= tn 1/4. There exist two subsets A and B of {1, m} such that B A, and
that

(4.6) cardA>-m-Kx/logm(m/k) /3,
(4.7) card B -> m Kx/l0g m (mk2) /3,
and there exists a one-to-one map b from B to {1,..., m} such that if we set zi--li
for A\B and zi l + y+) for B, then

(4.8) for each [0, 2], card {i A; z t} =< nr/([ t, 2]).

Remark. In the case k [m/aJ, this means that there is a subset B of {1,. ., m}
with card B>= m-Km/av/iog m and a one-to-one.map b from B to {1,..., m} such
that

(4.9) for each [0, 2], card {i B; l + yi) >= t} <-_ nrl([t 2]).

Proof of Lemma 10. Let q= [m/3k-a/3j, p= [v/m/qJ. We note that q<= m!/3, so
p>_- [m/3J _->q and p=>2. We note that (p+l)2q>=m, so (p+3)pq>=m+l. Also pZq<_
m<=nllyll. Hence, if p’- [n[l,ll/pq] we have q<-p<-p’<=p+3.

Step 1. Using Lemma 9, we can find numbers up,<= <-_ Uo and for <=i<-_p a
positive measure y on [0, 112 that is supported by the set

{(x, y) [0, 1]., u<x+y<u_,},=
such that 3’ __<_<_p, Y;, and that

I1,11 =pq/n for <-i<p’,

Yp’]l (n y[I (p’- 1)pq)/ n <= pq/ n.

Step 2. For each 1 <-i<=p’- 1, let q’(i)= q. Define q’(p’) as the smallest integer
>--[lyp,]ln/p, so q’(p’)<-q. Using Lemma 9 for each l<-_i<=p ’, we can find numbers
u,q,i) <=" <= U,o, and for _-< <- q’(i) a positive measure 7i, on [0, 1 ]2, that is supported
by the set

{(x, y) [0, ]2; u, <= x + y <= u,_, u,,j <= y <= ui,j_l}
such that yg =_<___<q(g) yi, and that

II,,.xll--p/n fori<p’ or j<q’(p)

and

Step 3. For each -< <= p’, and each =<j _-< q’(i), we denote by r(i, j) the smallest
integer >-n[ly,ll so r(i,j)=p unless i=p’, j=q’(p’), in which case r(p’, q’(p’))<-_p.
Using Lemma 9 for each 1 -< _-< p’, 1 <_-j _-< q’(i), we can find numbers u,,r(,.i <=" <= ui,j,o
and for _-< l-< r(i, j) a positive measure y,,l on [0, 1] 2, that is supported by the set

Ai,j, (x, y) [0, ]2; u <- x + y <= u_ u,j <- y <- ui,j_

li,j, X bli,j, l_
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and such that %..J=,<=,<=r(,,.j)Y’,.J,’ and II%,j,,ll 1/n except for i=p’, j=q’(p’), l=
r(p’, q’(p’))in which case I1%,,,11 -< 1In.

For the sake of simplicity, we set

S= {(i,Z 1); lNiNp’; lNjNq’(i);

1 IN r(i,j); (i,Z l) (p’, q’(p’), r(p’, q’(p’)))}

so that card S m and %,j,,[I 1/n for (i, Z l) in S.
Step 4. We prove the following assertions: for all t,

card {s S; there exists (x, y) A, x + y t,
(4.10)

there exists (x’, y’) A, x’ + y’ t} 2pq,

card {s S; there exists (x, y) A, y t,
(4.11)

there exists (x’, y’) A,, y’ t} 2p’p,

card {s e S; there exists (x, y) A,, x t,
(4.12)

there exists (x’, y’) As, x’ t} 2p’ q.

To prove (4.10), we fix and we denote by i’ the smallest index for which ug, < t, and
by i" the largest index for which < u,,_l. (The case where one of these indices cannot
be defined is simpler and is left to the reader.) If, for some s (i,j, l) S, there exists
(x, y) A with x + y t, then necessarily i"N N i’. If we have i" < < i’, then, by
definition of i’ and i", we have u t, u_ N t. Since u-i u, we have u u_,
and there exists no (x’, y’) in A with x’+y’ t. So, we have shown that if there is
(x, y) in A, with x + y t, and there is (x’, y’) in A. with x’+ y’# t, then i’ or i= i".
So there are only two possibilities for and at most p possibilities for j, q possibilities
for l, which proves (4.10).

To prove (4.11) (respectively, (4.12)), we fix and we prove in a similar way, that
for any 1N N p’ (respectively 1N N p’, 1Nj N q’(i)) there are at most two possibilities
for j (respectively, l).

Step 5. For each s in S, we consider a random variable (U,, V) distributed
according to ny.. We set

V’(t)= P(Ut), F"(t)= 2 P(V,t), F(t)= 2 P( U, + V, t)-
sS sS sS

Since E,s T. 1/, we have

Sup Iz’(t) nr’([ , ])1 , Sup IF"() nr"([ t, ])1 ,
0tl 0tN1

Sup [z() nr([ , e])l .
0t2

It is easily seen that, since m 16, we have pq (log m, so that p’p p2 pq (log m.
We can then use Step 4 and Lemma 8 to see that

P Sup ]card{sS; U, et}-nT’([t, 1])l2+32p’qlog m ,
0tN1

P Pllcard{sS; V,t}-ny"([t, 1])lN2+3(2p’plogm -4’

(P Sup Icard {s S; U+ E t}-n([t, 2])[N2+3(2pq log m -.
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So, we can find points (U, V,)scS such that for 0=< t-< 1,

card {s S; u. => t} ->- ny’([ t, ]) 2 3x/2p’q log m,

card {s S; v. >= t} >= ny"([ t, ]) 2 3/2p’p log m,

and for 0 =< -< 2,

card {s S; Us + v. -> t} =< nr/([ t, 2]) + 2 + 3v/2pq log m.

Step 6. It follows from [Rhe2], Lemma 2 (in which we take p 1) that there is
S’ S with card (S\ S’) -<_ 3 + 3x/2pq log m, and such that for 0 <- -< 2,

(4.13) card {s S’; Us + Vs >= t} -< nr/([ t, 2]).

So we have, for 0 =< =< 1,

card {s S’; Us>= t}>= ny’([t, 1])-5-6x/2p’q log m,

card {seS’; Vs > t}>=ny"([t, 1])- 5-6x/2p’p log m.

In the last inequality, we have used the fact that q <-p =< p’. It then follows from (4.4)
and (4.5) that for 0_-< _-< 1,

card {i <= m; li >- t} =< card {s S’; us > t} + 5 +6x/2p’q log m,

card {i =< m; yi -> t} =<card {s S’; vs ->- t}+ 5 + 6/2p’p log m.

It follows from [Rhe2] Lemma 1, that there is a subset A of {1,. ., m} such that

(4.14) card A -_> m 5 -6x/2p’q log m,

and a one-to,one map bl from A to S’ such that li-<- u,(i) for in A. The same lemma
implies that there is a subset C of {1,. ., m} such that

card C ->_ m 5- 6x/2p’p log m,

and a one-to-one map t]) from C to S such that yi =< v62(i if i C. We consider the
subset B of A where b 4-lo bl is defined; so

(4.15) card B => m 10- 12x/2p’p log m.

For in A, we have li =< u,(i)=< u,(i + v,(i). For in B, we have

li=< bl4,,(i), y4,(i) =< l)4,z4,(i) l)4,,(i) SO

This and (4.13) easily imply (4.8) while (4.14) and (4.15) imply (4.6) and (4.7).

5. Proof of Theorem A. For l>= 1, consider the positive measure At on [0, 1]
given by

a,= (ak/k) f 6x_,+, d’k(X,, ,X,),
>=1

so that [[A,I[ _>, ak/k =/3,. After normalization, , is the distribution of the size of
the /th largest item in bins that contain at least items.

We now fix q and we prove Theorem A. Consider the positive measure

(5.1) /z’: Z (ak/k) txi dl]k(Xl, Xk)
k>:q+l ] RI, l<----i<:k-q

so, since Xi<--Xk_q=< 1/(q+ 1), #’ is supported by [0, 1/(q+ 1)]. After normalization,
/’ is the distribution of the sizes of the items which are not among the q largest in
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the bin that contains them. We note that x--21<= q tlq- t. For 1 = l<=q, let f(t)
ht([ t, ]) for 0 =< =< 1. Let

fq+,(t)=/x’([t, 1]), so E f(t)=/x([t, 1]).
l<=q+l

Consider the sequence s,. ., s, of items. For each t,

card{i<=n;si>-t}<=n Y f(t)+D.
lq+l

We now use Lemma 2 of [Rhe2] to find disjoint subsets (Ct)<__q+ of {1, 2,..., n} with

i_-<q+l card Ci->_ n- q-D-1 such that for each _<-q+ 1, we have

card {i C; si >- t} <- njS(t)

for all 0-< t-< 1.
Let C’= {1, , n}\U t<=q+l C, so card C’_-< q + D+ 1, and hence C’ can be packed

in q+D+l bins.
We now pack the families (C)_<_q. This is done exactly as in [Rhe2], except that

now at step l, we can use the improved matching Lemma 10 (with m [n/3J, k
Min [n/3J 1/4, 1)) instead of the Lemma 4 of [Rhe2]. This replaces terms (n/l) /2 by
K(log m) /2 Max ((n/l) /3, (n/3t)/4). Denote by SCq the positive measure given by

(5.2) q= , (ak/k) I 3uk(x) dVk(Xl,’’’,Xk),
k>=q+l dRy,

where Uk(X)= k-q+i=k X. After normalization, G is the distribution of the sum of
the sizes of the q largest item in bins that contain at least q+l items. We have
[]GI{ t,+. Let n,+ [nflq+,J. The proofof[Rhe2] shows that the families C,, , Cq
can be packed in two sets of bins the first of which ("dead bins") have at most

n a,/l+2q+K(log //)1/2 Max ((rlfll/1) /3, (rtfll) 1/4)
lq lq

elements. The second set of bins ("live bins") contains nq+ bins B,..., B,,,+,. If we
denote by L the sum of the sizes of the items packed in bin Bg, we have the following
relation:

for all in [0, ], card { < lq+," Li > t} <nG( t, ]).
We have

(5.3)

i<= nq+
Li card {i < L > t} dtF/q+

<= n q([ t, 1]) dt n x d(q(X)

n 2 (Olk/k) I 2 Xi dl]k(Xl," ",
kq+l R k-q+l<=i<=k

where the last equality follows from (5.2). Since nq+l niq+ 1, we see that the
available empty space S in the bins B, <= nq+, satisfies

S=nq+l Li
inq+l

>=-l+n

>-_-+n
k>=q+l

R k-q+l<=ik

(ak/k) I E xidl/k(Xl,’’" ,Xk)
Rk l<--i<k-q
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since l<__ik X <= for (x,, , Xk) Rk. The sum of the elements of Cq+, is equal to

Io’ ;o Iocard{i<-Cq+;si>-t}dt <- nl.t’([t, 1])dt=n xdtx’(x

=n 2 (,/k) f 2 x,d,(x,...,x).
k>--q+l dRl l<=i<k-q

This shows that <= S + 1. We now pack as many as possible of the elements of Cq+
in the available space in the bins (Bi)i<=,,,,+,. Since each element of Cq+, has size
<-l/(q + 1), if we cannot pack all of Cq+,, there is at most 1/(q + 1) wasted space in
each bin Bi, so a total amount of wasted space at most l’lq+l/(q 4-1)<= nflq+,/(q 4- 1)<--
n (q + 1)2. Since <-S + 1, the sum of the sizes of the items of Co+l which we have
not packed, is at most n/(q+ 1)2+ 1, and then, according to [Rhe2], Lemma 5, they
can be packed in at most +(1 +n/(q+ 1)2)/(1-1/(q+ 1))<=3+ n/q2 bins. Thus, we
have succeeded in packing the families (Cl)iq+ in at most

3+ n/q2+2q+ n all14- K(log/1) 1/2 Max ((rlfll/l) 1/3, (hi31) 1/4)
il lNq

for some universal constant K. This proves (1.2). To prove (1.3), we note that by
H61der’s inequality,

E (/’//31)1/4 <= /,/1/4q3/4 2 jl l’l 1/4q3/4
l<-q lq

and

E (nl/1)’/3 <= n’/3 , E 1/l’/
lq !<=

Taking q In 3!llj gives (1.3). This completes the proof.

<= Knl/aq ’/3.
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OPTIMAL BIN COVERING WITH ITEMS OF RANDOM SIZE*

WANSOO T. RHEE? AND MICHEL TALAGRAND:

Abstract. Consider a probability measure/ on [0, 1] and independent random variables X,..., X,,
distributed according to /.. Let Q,, Q,,(X,..., X,,) be the largest number of unit-size bins that can be
covered by items of size Xt, , X,,. The properties of Q,, are investigated in the spirit of our work on

optimal bin packing with items of random sizes. While the covering problem has many similarities with the
packing problem, it turns out to be significantly harder.

Key words, stochastic bin packing, size distribution, compactness, weak convergence

AMS(MOS) subject classifications. 90B99, 60K30

1. Introduction and results. The bin-packing problem requires finding the
minimum number of unit-size bins needed to pack a given collection of items with
sizes Xl, , xn, subject to the constraint that the sum of the sizes of the items placed
in any given bin must not exceed one. This problem has many applications and has
been shown to be NP-complete. The bin-coveringproblem requires finding the maximum
number On(x1,’", x) of unit-size bins that can be covered by a given collection of
items with sizes x,..., x, subject to the constraint that the sum of the sizes of the
items attributed to any given bin must be greater than or equal to one. This paper is
mostly concerned with the bin-covering problem. This problem is closely related to
the bin-packing problem.

The bin-covering problem is NP-complete. The purpose of this paper is to make
a stochastic analysis of the problem. In our model, we consider a probability measure
/ on [0, 1]. (No regularity assumption is made on /.) Consider n items with sizes
X1," , X, which are independent identically distributed (i.i.d.) according to/. (For
simplicity, we denote by Xk both item names and item sizes.) It is transparent that
Q,, =Q,,(XI,..., X,) is a superadditive process, and hence limn_. Q,,/n d(tx)
almost surely (a.s.) for a constant d(/x), depending only on/x. Also E(Q,,)/n <-_ d(lx).
Among the main results of this paper are the description of d(/x) in function of the
structure of/z and (under mild conditions on /x) the convergence in distribution of
the process n-/2(Q,, nd(lz)). It should also be noted that one of our most difficult
results is purely deterministic (Theorem 2). Our study is in the spirit of our previous
work on stochastic bin packing ([3], [4], [5]). Actually, at first glance, our present
results look like rather automatic modifications of our bin-packing results (by just
"inversing inequalities"). It is true indeed that the bin-packing and bin-covering
problems have many similarities, and we do not dwell in great detail on the arguments
that are mere transpositions of arguments used for the bin-packing problem (and that
are contained in 2). The whole point of the present paper is that a crucial deterministic
estimate (3) is not as sharp as for the bin-packing problem (the reason for this is
explained in the comment near the end of the paper). This makes the proof of the
convergence in distribution of n-1/2(Q,-nd(tz)) considerably harder than in the
bin-packing case ( 3). We now explain our basic notations and describe our results.
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For k_>- 1, we set

Sk={ (xl’’’’’xk)GRk’ O<Xk<’’’ 1<=
ik Xi<3}--

so Sk is compact metric. For a compact space S, we denote by M(S) the set of
probability measures on S. For x S, we denote by 6x the probability measure concen-
trated at x, that is, for a Borel set G, we have 6x(G) if x belongs to G, and 6x(G) 0
otherwise. To each veM(Sk), we associate k(v)M([0, 1]), such that for each
Borel set G of [0, 1], we have

k(v)(G)= E 6x,(G) du(x,,’’’,x).
ik

In short, we will write this formula as

s 8x, dp(Xl,’’’, X)

and we will use a similar convention for similar expressions.
TnoM 1. For Ml([O, 1]), tkere exists a nonnegative sequence ()o witk

o 1 and for eack k 1, a u e M(S) such tkat

(1) pc Co8o + E Ckk(Vk),

and that d(pc) =k_> ak/ k.
In the converse direction, we have the following theorem.
THEOREM 2. Consider a nonnegative sequence (Ok)k>=O such that k>-O Ok 1, and

a sequence Vk in M(Rk). Consider the measure pc given by (1). For k >- 1, letk l>--k at/1.
Consider a sequence sl, , sn of items. Let

D=D(Sl,’’’,s,)= sup npc([t, 1])-card{i-<n;s,->t}.
o=<t=<l

Then, for each q >= 1, we have

(2) Q,(s,...,s,)>=n . ak/k-(D+3q+nq+Kn/3

k>--I
(fli)’/3(log n)’/2),

where K is a universal constant (independent of pc, n, Sl, , s,). In particular, we have

(3) Q,(s,,’",s,)>-n ak/k-Kn3/5(logn)3/-D.

It is to be noted that the error term n3/5(log n)3/1 that we obtain here is of a larger
order than the error term n/3(log n) 1/2 that we obtained for the corresponding result
in the bin-packing probem ([4]). While we do not know what the best possible error
term in (3) is, either for the bin-packing or the bin-covering problems, there are reasons
to believe that the bin-covering problem does require a bigger error term. These reasons
will be explained in the course of the proof of Theorem 2.

COROLLARY 3. Under the assumptions of Theorem 2, assume moreover that k-
o(k-3/2(log k)-3/4). Then we have

(4) Qn(s,,...,Sn)n Ok/k-D-nl/aen,

where e is a quantity depending only on pc and n and that satisfies lim,_ en 0.
COROLLARY 4. Let Sl, s, [0, 1]. Let v= 1/n i<-_, 8s,. Then

(5) nd (v) >= Q,(s ,..., s,) >= nd (v)- Kn3/5(log n)3/1.
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COROLLARY 5. For each distribution Ix, we have

nd(ix) >= EQn(X1, Xn) >- nd(ix)- Kna/5(log n)3/.

COROLLARY 6. If IX is as in (1), then d(ix)>--_k>= ak/k.
Another corollary deserves special notice. It is clear that we always have d(ix)_-<

x dix for IX in M([0, 1]). It is said that a distribution Ix allows perfect packing when
the asymptotic level of bin occupancy in optimal bin-packing of a random sequence
of items is 1. (See [6] for a more formal definition.) Let us say that/x allows perfect
covering if this occurs for optimal bin-covering packing, or equivalently when d(ix)=
x dix. Then we have the following theorem.

THEOREM 7. A distribution IX on [0, 1] allows perfect covering ifand only if it allows
perfect packing.

This statement surely supports the fact that the bin-packing problem and the
bin-covering problem are closely related. (It should however be noted that, for e > 0,
when packing items of constant size e (respectively, 1/2+ e), there is a proportion of
wasted bin space of e (respectively, 1/2-e) in bin packing, and of 1-2e (respectively,
2e) in bin covering.

We denote by c the class of nondecreasing functions f from [0, 1] to [0, 1] that
satisfy f(1) 1 and f(x + y) <-f(x) +f(y) whenever x, y, x + y [0, ].

THEOREM 8. For any distribution Ix on [0, 1], we have

(ix) inf f fdix.d
f

For a positive measure 3’ on [0, 1], we set F(t) 3,([0, t)), Fv(t)= 3’([0, t]). We
denote by B, the standard Brownian motion, and by W, B,- tB the Brownian bridge
(see [1]). For the simplicity of notations, we set W,, W,o,,, W,t Wo,,. To
each f in c, we associate f- given by f-(x) limy_x,y<xf(y), so that f-<-_f Since f-
is left continuous, there is a unique positive measure 3’y on [0, 1] such that F1.(t) =f-(t)
for each 0_-< t_-< and 3’f has mass f-(1)_-< 1. Fixing IX in M([0, 1]), we denote by
(zi)ij an enumeration of the points z in [0, 1] such that Ix({z}) > 0, where J is either
empty, finite, or countably infinite.

THEOREM 9. Assume that we can write tx--Oo(ot--’k__>l Ok:)k(lk), where Ogk O
>-_o ak 1, g>__ ak/k= d(ix), ’k M(Sg), and fig o(k-a/2(log k)-3/4), where fig
l>_ k al/ l. Then the set

cg {f cg f fdix d ix }
is nonempty. Consider the random variable

T=fin. W.,,d3"f(t)+j2 (f(zi)-f-(z))(W.,,- W-,)

Then for each n, one can find a random variable T distributed like T and such that
lim I(Q(X, X)- nd(ix))//- TI =0.

The paper is organized as follows. All the proofs are contained in 2, with the
exception of the proof of Theorems 2 and 9. Theorem 9 is deduced from Theorem’2
in 3, and Theorem 2 itself is proved in the final 4.

2. Easiest proofs. We recall that for a compact metric space S, the weak topology
on M(S) is the topology such that a sequence (ixn) converges weakly to Ix whenever
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jfdtx, converges to Ifdtx for all f in C(S), the space of continuous functions of S.
For that topology, MI(S) is compact metric.

Proof of Theorem 1. The proof is very similar to the proof of Theorem A of [4].
Let Do {6o}, and for k _-> 1, consider the set Dk of probability measures on [0, that
are of the type k(b’) for v MI(Sk). Since the map u-> bk(U is weakly continuous,
Dk is convex and weakly compact. We now observe that, if/z Dk, k_-> 1, we have
xdtx(x)<-3/k. Indeed, if/x k(U), vMI(Sk), we have

f If ’ xidv(xl’’’’’xk)<=3/kx dlx(x) =- s,. i<=k

since Yi<_-k X --<3 for (xl,’’’, Xk) Sk. It follows that if we have a sequence (/x,) in

Di(,), where i(n) >- n, that converge weakly to/x, we must have/x 60, since x d/z
lim,_ xd/z, =0. It follows that the sequence (Di)__>o satisfies the hypothesis of
Proposition 2.2 of [4].

It is a well-known consequence of the law of large numbers that (1/n) , <=, 6x, -->

almost surely in the weak topology. Also, (1/n)Q,(X1,. "’, X,)- d (tx) almost surely,
so we can find a sequence (xi) such that , (l/n)_<_, 6x, converges weakly to
and that k,/n converges to d(/z), where k,=Q,(Xl,’" ,x,). (We denote item sizes
by lowercase letters to emphasize the fact that they are not random.) For each n, we
can cover k, bins with items of size Xl,’’ ", x,. The jth bin, j_-< k,, is covered by pj
items of size Yj,1, ",Y,p,, Y, >-" >-- Y,p,. Obviously, we have -< l_-<_-<p Y, --< 3 (other-
wise one more bin could be covered) and if we set fi (yj,1," , Y,p), we have 97j Sp.
Let v MI(Sp). If we set r/ p(vj), we have rt=(1/p)(l_<__i<=p 6y,,,). We have
t. =<=k,, (p/n)j, where j<=k,,pj/n 1, j<=k,, (p/n)/p= k,/n, and "O6
Theorem then follows from Proposition 2.2 of [4].

Proof of Corollary 3. If we denote by [tJ the integer part of R, equation (4)
is a consequence of (2), by taking q [nl/3(log n) -1/] and by elementary computations.

Proof of Corollary 4. According to Theorem 1, v has a representation as in (1)
with d(v) =k__> ak/k. If we apply (3) with /x v, we get the right-hand side of (5),
since D 0. To prove the left-hand side inequality, let us draw a random number N
of items independent and distributed according to v, and for =< n, let us denote by
N the number of items of size si. Let aN--inf/__<, N. Among our items, we can find

aN collections that contain exactly one item of each size. Each of these collections
allows us to cover Q, (sl," ", s,) bins, so we can cover at least aNQ,(sl, ", s,) bins.
The law of large numbers shows that limN_ E(aN)/N 1/n. Since

d(v)= lim E(Qu(X1," ",X,))/N>= lim E(auQ,(sl,’..,s,))/N
N-’.oo

Q,(Sl,’’’ ,s,)/n,

this implies the result.
Proof of Corollary 5. This is an immediate consequence of (3), and of the fact

that ED O(nl/), as follows from the well-known properties of the Kolmogorov-
Smirnov statistics.

Proof of Corollary 6. Obvious from Corollary 5.

Proof of Theorem 7. Suppose first that /x allows perfect covering. Then, from
Theorem 1, we can find a sequence Ok0 with k___0Cek--1, k__-->l cek/k=d(tz)
xdtx(x), and Vk in MI(Sk), such that/x Ceo6o+k__>.l akY’k(Vk). We have

I f xidvk(xl’’’’’xk)>=l/k(6) x dk(Vk)(X) =- s, ,<-k
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since 2i<=k X 1 for (xl,’’’, Xk) in Sk. So we have

I xdtx(x)= ak l
--> :>E /= a()= f xa(x).

This shows that we have I x d(p)(x) 1/k whenever 0. But (6) shows that this
implies x 1 p almost surely. If we set

Rk={ (xl’’ ’’x)R’ Xl " x&>O’
ik

xi 1},
we then have ,(R) whenever Ck 0. Since when ce 0, the value of , is irrelevent,
we can assume that uk(Rk)- for k => 1, so that u MI(Rk). It then follows from [3]
that/x allows perfect packing.

Conversely, assume that tt allows perfect packing. Then, by the results of [3], we
can write /x ao6o+_> a(uk), where ---o cek and , MI(R). Since ,
MI(Rk), we have, for k >= 1,

f f Z xid,k(x,’",x)=l/kxd(.)(x)=- ,<=

so we have Jxd/x=Yk>= a/k. By Corollary 6, we have d(z)_->Z=> a/k=xd/x.
Since the reverse inequality is obvious, we have shown that d (/x)= x d/x, so/z allows
perfect covering. [3

Proof of Theorem 8. Let us fix f in % We first note that (as easily seen) for k => 1,
XI," Xk in [0, 1] with Ei<=k X 1, we have Zf(xi) > 1. For u in MI(Sk) we then have

f 1 fs ’ f(xi) dp(Xl"’"xk)>=l/kfdk()= kik

since _-<k xi => for (x,..., x) Sk. So, when we have a representation of/z as in
(1), we have fdlz >= k>= /k. Since, by Theorem 1, we can find such a representation
with d(/x) =__> a/k, we have shown that d(/x)-<infy fdtz.

To prove the converse inequality, let 0 > d (/x). Consider the set Co of probability
measures r/ on [0, 1] that can be written as r/=_->o akr/, where ak ->0, k_->o ce 1,
k>- a/k >-0, and /z Dk (where D is defined in the proof of Theorem 1). Then,
by Corollary 8, we have /x Co. It then follows from the Proposition 2.5 of [4] that
there is a continuous function g on [0, 1], such that g d/x < 0 and g dr/-> 1/k whenever
r/ D, k=> 1. So we have g(0)=>0, and since for k=> 1, we have 1/k Ei<= k xi Dk

whenever 0_-< xi <= 1, <- 2i<=k X 3, we also have Eik g(xi) -> 1. For 0 < x =< 1, if m is
the smallest integer for which rex-> 1, we have rex<-2, so we have rag(x)=> 1, and
g(x) >= O. It follows that g-> 0. Define

h(t) inf { iNk g(Xi)’, k>-l, Vi, l<-i<-k,O<-xi<-l, t<-- i<=k Xi<--3}.
Since g_-> 0, it is easily seen that

h(t) --inf{,_<_ g(xi);k>-l, Vi, l<=i<-k,O<-xi<=l,t <-
ik Xi<--l+t}"

This implies that when t, u _-< 1, and + u -< 1, we have h (t + u) -< h (t) + h (u). Also, we
have h-< g, so we have h d/x < 0. Clearly, we have h(1)=> 1. Let now f= min (h, 1),
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so we have fdtx < O, and it is clear thatf % So we have shown that infs Ifdtx < O.
Since 0 is arbitrary, the proof is complete.

3. Proof of Theorem 9. The proof will use many of the ideas of the proof of
Theorem C of [5]. It is, however, made harder by the fact that in (5) the error term
is of order > n/2; hence, it is not possible proving Theorem 9to replace Qn(X, , xn)
by d(u), where u= 1In i=, 8x, (as is done in [5] for bin packing). As in [5], we see
that , is not empty (the point being that the mapfIfdtz is continuous for a certain
compact topology on ). We first recall some lemmas.

LEMMA ([5]). For some universal constant K, for each n, we canfind independently
and identically distributed random variables X, ., X. distributed according to Ix, and
processes W....,, W2..., jointly distributed like W..,, W.,, such that

ES. <- K(log n)2n-/z; ES- <-_ K(log n)2n-/(7)

where

()

(9)

S. sup I(card {i _-< n; X/_<- t}- nF(t))/x/--
0tN1

S= sup [(card {i _-< n; X/< t}- nF;(t))/x/--
0_--__tN1

For f in , we consider the random variables defined by

T.,f f W"mt dyf( t) +
iJ

Tf= I W,,dyf(t)+ iJ2 (f(z)-f(z)-)(W.- W-,z,)

so that

We set

T= inf Ts.
f

T. inf T.,s.
f

LFMMA 2 ([5]). Forfin , and a probability measure r on [0, 1] such that
is an enumeration of the points for which r ({ t}) > 0, we have

ffdrl=f-(1)-f FEdyf+(f(ui)-f-(ui))rl({ui})’i
LMMA 3 ([5]). With probability one, we have for all fin that

Ifdv-lfd-n-1/T., I/n+2S.+S

where u 1/n . 6x,.
The following is proved exactly as Lemma 6 of [5].
LEMMA 4. Consider the function

en 0(0)= O, is concave, and its right derivative at zero is equal to T.
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The next lemma is similar to Lemma 2 of [4].
LEMMA 5. Let p, q, n>O. Consider a family (ai)i<_q, 0=<ai-<l, and for l <=j<=p,

consider left continuous nonincreasing functions (f)<=p on [0, 1]. Set

h=o___,_<_lsup {n __<pf(t) -card {l <-_ <- q; ai >= t}}.
Then there are disjoint subsets (I-I)<__p of {1,..., q} with card _<-nf(0) and integers
(hj)j<=p such that j<=p h <-_ h +p and that for each j <- p, each in [0, 1], we have

(10) card {i /-/; ai >-_ t} >- nf( t)- hj.

Proof For 1-<j-<p, let n [nf(0)J. For < n, define

bt, sup {t; 0 -< t=< 1, nf(t)>= l}.

Since f is left continuous, we have nf(b;j) > 1. Note also that (b;,) is nonincreasing
<bl for l<l,l+l<n.in l, i.e., bt+l,p=

FACT. For 0--< t--< 1, we have

(11) nf(t) < card {l _-< nJ; bl, --> t} =< nfj(t).

Proof of Fact. Let r be the largest integer with r-< nf(t), so r > nf(t)- 1. By
definition of bl,, we have bl,.j => if and only if <= l_<- r. VI

We return to the proof of Lemma 2. Consider the index set

U={(l,j); l<=j<=p,l<=l<-nj}.

For u (1, j) e U, let bu bl,.j. By summation of the inequalities (11), we get for each t,

n Z f(t)-->card{uU;bu>--t}

so, by the definition of h,

sup {card {u 6 U; bu => t}- card {i q; ai > t}} h.
Otl

Using [4], Lemma 1, we get a subset H of U, with card H _-> card U- h, and a one-to-one
map h from H to {1,..., q} such that bu-< a+(, for u in H. Consider the set of
those elements of {1,...,q} of the form ch((l,j)), l<-nj, (l,j)eH, and let mj=
nj-card/4, for each t, we have

nf (t) < 1 + card { <- n; bl, >= }

< +card {1-< n; (1,j)6H; bld>-t}+mj
<_- + m +card {i 6/-/; a _-> t}

so (10) holds with h= 1+ rn. We have <__p hj=p+card U-card H_-<p+h. This
concludes the proof.

We now start to prove Theorem 9. By Corollary 4 and Theorem 8, we have, for
all f c,

Qn(X," ,Xn)<--nd(v)<-_n f fdv.

By Lemma 3, we have

Q,(x,,. x)<= n f fdl + nl/2T,f + n-l/2+ n’/Z(2Sn + S-).
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So, iff ., we have

Q.(X1, ", xn)- n d(l) <= nl/2Tn,s + n-l/2+ nl/2(2S. + S-)

and hence

(12) n-1/Z(Q.(X, X.)- n d(tz))- T. <-2S. + S- + n-.
It will be much harder to get an inequality in the reverse direction. We set m
e n 1/2/m. Consider, for 0_<- _-< 1,

(13) G.(t) max (0, minu=, (/z([u, 1]) + eW;,...)).
This is a nonnegative nonincreasing function, and it is easily checked to be left-
continuous. Also G.(0)= 1. So there exists a probability measure 0 on [0, 1] such that
for all t, we have O([t, 1])= G.(t). We have 0({t})>0 only if/z({t})>0. It follows
from (9) that

v([t, 1])= 1 F;(t) >- 1- F(t)+ l’t-1/Zw-,p,t-n-1/2S-
=/z([t, 1])+ n-/2W-.,.,-
=(1-(m/n))tx([t, 1])+(m/n)(tz([t, 1])+eW,.,.,)-n-/eS-;,.

This means that, for 0_-< t_-< 1,

card {i-_< n; X _-> t}_-> (n m)/x (It, 1])+ mO([t, 1])-
We apply Lemma 5 with q n, p 2, and we find two disjoint sets H, He c {1, , n}
and with card Hl<=n-m, card H2<-m, and h,he with h+h2<-_n/eS-,l+2 such that
for each in [0, 1],

(14) card {i H; X _>- t}_> (n m)/z ([ t, 1])- h,

(15) card {i H2; Xe>- t}>- mO([t, 1])-h2.

Let q card H, qe card He, so ql<-n-m, qe<-_m, and making t=0in (14) and (15),
we have ql >-- n m hi, q2 >-- m h2. We have, for 0 <_- <_- 1,

(16) card {i H1; X>_ t}>- ql/x([t, 1])-

(17) card { He; X >- t} >= qeO([ t, 1])-he.

We now use (4) with n- q to see that the number Q of bins that can be covered by
the items X, H is such that

Ql> q h n /2 eq, =>(n-m) d(p,)- 2h n /2e "n,
where e". is a nonrandom quantity with lim._ ’.’ =0. We now use (3) with n qe and
/z 0 to see that the number Q2 of bins that can be covered by the items X, i H2
satisfies

Q2 >= q2 d(O)- he- Km3/5(log m)3/1

>= m d (O) 2he- Km3/5(log m)3/2.

We have shown that

Q.(X,. ,X.)>-(n-m) d(lz)+md(O)-Zn’/eS.-n/ee’.
where e’. is a nonrandom quantity with lim._o e’. 0. So we have

(18) Q.(X,. ,X.)>-_nd(tz)+m(d(O)-d(p.))-Zn’/eS.-n’/2e’..
We will now estimate d(0) using Theorem 8. For this we need to estimate Fo. This is
the purpose of the next lemma.
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LEMMA 6. Let S’ supo<__,_<_, [Fo(t) F I) 8 Wn,,,[.
o(n-’/6).

Proof Let G’.(t)=/([t, 1])+ eWe..,,. We note that

Fo(t)= l- lim O([u, 1])
U t,U-

Then E(S’) o(e)=

F.(t)-eW.,,t= 1- lim (/z([u, 1])+eW,,u)
u t,u-

so that

S’.= sup IG’.(t)-G.(t)l.
0t_-<l

Let M. supo, w.,I. We first note the obvious fact that S’. <= 2eM.. Since E(M.)
is finite and the distribution of M. is independent of n, it suffices to show that given
y > 0, for n large enough, we have S’. < ye with probability > 1- 3’. There exists a real
6 > 0 and M > 0 independent of n such that with probability _-> 1 y, we have M. _-< M
and [W.,,- W.,u _-< y whenever It- ul--< 6. Let n be large enough that e _-< 6/2M. If for
u<t, we have/x([u, 1])->/x([t, 1])+6, since we have

/x([u, 1])+ eW-,,. > /x([t, 1])+ eW-,..,.
If/x([u, 1]) -< /x ([ t, 1])+6, then IF(u)-F-(t)l<-, so we have [WS,...-w2...,[--< r,
and hence

/z([u, 1])+eW-,.,u>-([t, 1])+eW-,,,-ey.
This shows that, with probability ->l-y, for all t, we have Gn(t)>= G’(t)-ey. The
same argument with t=l shows that G’.(t)>=-ey for all t, so that G.(t) <
max (0, G’(t)) -< G’(t) + ey. This concludes the proof.

For f in , we have, by Lemma 2, that

f fdO=f-(1)- f Fodyf +

Since 0({zi}) Fo(zi)- F-(z), and sincej If(z) -f(zi)-I <= 1 forf in , we see from
the definition of S’. that

f fdO (f-(1) f F,. d,e- e f W...,, dve

+ (f(z)-f(zi)-)(tx({zi})+eW,.,z,-eW-,,z,)) <-3S’..
iJ

Using Lemma 2 again, we see that

IfdO-ffdz-eT., <3S’

So, since d(0) =inff fdO, we have

d(O)-d(Ix)-inf(ffdl+eT.,f-d(tz)) <-_3S’
f c

i.e., }d(O)-d(p)-q.(e)l<=3S’., where q. is defined as but using Tn,f instead of T.
From (18), we then have

Q.(X1, ", X.) >- n d (tx + rnd/.( e 2n 1/2S. nl/2e’ 3mS’
so, since e nl/2/m,
(19) (Q.(X1, ,X.)-nd(lx))n -1/2- T>=(q.(e)/e T)-2S.-e’-3n’/6S’..
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The random variable Un=O,(e)/e-Tn is distributed like O(e)/e-T. By Lemma 5
and dominated convergence, we have that limn_ElU,]-*. By Lemma 6,
limn_ nl/6E(Srn) --0. It then follows that the expectation of the absolute value of the
right-hand side of (19) goes to zero. Together with (12), this concludes the proof.

4. Proof of Theorem 2. The proof will be similar, but somewhat simpler than the
proof of theorem of [5]. The proof is simpler because the strategy is less sophisticated
(and, of course, the error term obtained is of a larger order). We have not been able
to get an error term as small as in [4], and with our approach, bin covering seems
genuinely harder than bin packing. Our proof will make essential use of the following
lemma, which proof is entirely similar to that of Lemma 10 of [4].

LEMMA 7. Let 2’ be a positive measure on [0, 3]2. Let m <= n. Assume that m/n <=
2’ =< (m + 1)/n. Consider the three positive measures given by, for a Borel set U,

,’(u) ,(u [o, 3]), ,"(u) ,([o, 3] u)

,(u) v({(x, y); x + y e u}).

In other words, y’ and y" are the marginals of 3’, and rl is the distribution of x + y.
Consider two sequences li)i<__m (Yi)i<=m ofnumbers, 0 <= li, yi <= 1 and a, b > O. Assume

that for each in [0, 3],

(20) card{i<_-m; l>=t}>=ny’([t, 3])-a,

(21) card { <- m; y >= t} >= ny"([ t, 3 ]) b.

Then there exists a one to one and onto map qb from {1,..., m} to {1,. ., m} such that
for each >= O,

(22) card {i-_< m; li+ y+>-_ t}>= nrl([t ))-a-b-Km/3(log n) /2,
where K is a universal constant.

Remark. It is likely that it is possible with some extra effort to remove the factor
(log n) /2 in (22), which would remove the term (log n)3/ in (3). There is, however,
little motivation to do that, since we see no reason why the exponent in (22) should
be sharp.

We will need some distributions associated with/x. For l_-> 1, consider the positive
measure Ai on [0, 1] such that

At-- (Cek/k) | tx, dPk(Xl,’’’,Xk)
k z>! S

so I1,11 , /k=, and ao6o+, AI. For x in Rk, k 1, let Uk,l(X li! Xi"
Consider the following three positive measures on [0, 3],

o a/ l) [ ,.,(x) d,(x .,
dS

n,= Z (,/k) ,, a(x,,. ,x)
k S

,= (/k) ( ,d(x, ,x)
kl+l S

tit- 01.
We note that TI /1, IIT]! ’, and 11[ =/31+. After normalization, 01, r/l, c can be
interpreted as follows. 01 is the distributions of the level of bins that are covered by
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elements, r/! (respectively, ct) is the distribution of the sum of the largest items in
bins that are covered by at least (respectively, at least + 1) elements. We also need
the distribution y on [0, 3]2 given by

(ak/k) f 6(x) dPk(X1, ", Xk),
Sk

where v(x)=(u,,(x),x+l). Note that I1 ,11 Using the fact that u.,(x)+x,+l=
u.t+(x), we see that the first marginal of y is t, the second is a+, and the distribution
of x + y is r/t+.

For each i, letfi(t)= )ti([t, 3]), so Yi__>l f(t) =/z([t, 1]). Weset ni [nf(0)] [nfli].
We now prove Theorem 2. We have for each 0-_< t-<_ 3,

(23) . nf(t)-card{i<-n; si>-t}<-D.
i<q

By Lemma 5, (used with q n, and q instead of p), we can find disjoint subsets ()j__<q
of {1,. ., n} with card <- [n(0)] nJ and integers (hj)j<=q such that Yj<__q hj _-< D+ q
and that for j-< q, for each in [0, 3],

(24) card { /-/; s t} nfj( t) hj.

By adding some zero size elements, we can actually assume that card nj. The
core of the proof is to show, by induction over r-< q, that the items si for Uj_<_r
can be packed in a collection of bins whose occupancy levels (Lu),v satisfy for each
in [0, 3],

(25) card{u U; L>-t}>-n( Y 0j+scr)([t, 3])
.jr

hj- Kn)/3(logn)’/2-2(r-1).
<=j<= <=j<

(We index the bins by an arbitrary set U since their number is irrelevant at that stage.)
We note that A 0 +, so for r= 1, there is nothing to prove, since (25) follows
from (24) when j 1.

We now perform the induction step from r to r+ 1. For simplicity, we let a

-’l<=j<=r hj-21<=j<r Kn)/3(log n)’/2-2(r-1) and O--21<=jr Oj, SO (25) becomes for all
in [0, 3],

n(O+()([t, 3])-card{u U; L,>-t}<-a.
It follows from Lemma 2 (used on [0, 3) instead of[0, 1)), that we can find two disjoint
subsets U1, U2 of U with card U<-nllr]l, card U2<-_nllOII, and a, a with a+a2 -<
a + 2 such that for 0_-< _-< 3, we have

(26) card {u U,; Lu >- t} >= nr([ t, 3]) a,

(27) card {u U2; L >- t} >- nO([ t, 3])

By adding some new empty bins, we can assume that card U= /nll rlll. We are now
in position to use Lemma 7, with m [n sc[lJ nr+,, 3/= 3/r, 3/’= r, 3/" /r+l T] Tr+l
to find a one-to-one and onto map b from Hr/l to U such that for any t_-> 0, we have

(28) 1/3 (log n)1/2card {i gr+l, L4)(i)q-si>= t}>- nrlr+,([t, 3])-al-hr+l-Knr+l

We now attribute the element st to bin b(i). Combining (28) with (27) finishes the
induction hypothesis, since rtr+ 0r+ +
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Comment. When considering the same problem for bin packing ([3], [4]) in pairing
the bin occupancy level Li with the elements si controlled by Ir+1, we took advantage
of the fact that these elements s are _-< / (r + 1), and hence that it is possible to disregard
a rather large number of them in the pairing procedure since these elements can be
efficiently packed in any case. We do not see how to take advantage of a similar feature
in the case of bin covering.

If we use (25) for r q, 1, we see that

card{uU;Lu>=l}>-n( aj/j)-D-3q- Kn)/3(logn) ’/2

lj<q lj<q

and this proves (2).
To prove (3), we note that ’./3 =__> a <_-1, so by Holder’s inequality, we

have y..j_qfl)/<=q2/. Also }q<=l/q. Then (3) follows from (2) by taking q=
nZ/(lon )-/,oj.
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CASCADING DIVIDE-AND-CONQUER: A TECHNIQUE FOR
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MIKHAIL J. ATALLAHt, RICHARD COLE$, AND MICHAEL T. GOODRICH

Abstract. Techniques for parallel divide-and-conquer are presented, resulting in improved parallel
algorithms for a number of problems. The problems for which improved algorithms are given include
segment intersection detection, trapezoidal decomposition, and planar point location. Efficient parallel
algorithms are algo given for fractional cascading, three-dimensional maxima, two-set dominance counting,
and visibility from a point. All of the algorithms presented run in O(log n) time with either a linear or a

sublinear number of processors in the CREW PRAM model.

Key words, parallel algorithms, parallel data structures, divide-and-conquer, computational geometry,
fractional cascading, visibility, planar point location, trapezoidal decomposition, dominance, intersection
detection
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1. Introduction. This paper presents a number of general techniques for parallel
divide-and-conquer. These techniques are based on nontrivial generalizations of Cole’s
recent parallel merge sort result [13] and enable us to achieve improved complexity
bounds for a large number of problems. In particular, our techniques can be applied
to any problem solvable by a divide-and-conquer method such that the subproblem
merging step can be implemented using a restricted, but powerful, set of operations,
which include (i) merging sorted lists, (ii) computing the values of labeling functions
on elements stored in sorted lists, and (iii) changing the identity of elements in a sorted
list monotonically. The elements stored in such sorted lists need not belong to a total
order, so long as the computation can be specified so that we will never try to compare
two incomparable elements. We demonstrate the power of these techniques by using
them.to design efficient parallel algorithms for solving a number of fundamental
problems from computational geometry.

The general framework is one in which we want to design efficient parallel
algorithms for the CREW PRAM or EREW PRAM models. Recall that the CREW
PRAM model is the synchronous shared memory model in which processors may
simultaneously read from any memory location but simultaneous writes are not allowed.
The EREW PRAM model does not allow for any simultaneous access to a memory
cell. Our goal is to find algorithms that run as fast as possible and are efficient in the
following sense: if p(n) is the processor complexity, t(n) the parallel time complexity,
and seq(n) the time complexity of the best-known sequential algorithm for the problem
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under consideration, then t( n p( n O(seq( n )). If the product t( n p(n) achieves
the sequential lower bound for the problem, then we say the algorithm is optimal
When specifying the processor complexity, we omit the "big oh," e.g., we say "n
processors" rather than "O(n) processors"; this is justified because we can always
save a constant factor in the number of processors at a cost of the same constant factor
in the running time. In all of the problems listed below, we achieve t(n)= O(log n)
and, simultaneously (except for planar point location), an optimal t(n) p(n).

Previous work on parallel divide-and-conquer has produced relatively few
algorithms that are optimal in the above sense. Exceptions to this include some of the
previous algorithms for the convex hull problem 1 ], [4], [6], 18], [27] and the problem
of circumscribing a convex polygon with a minimum-area triangle 1 ]. Unfortunately,
each of these approaches was very problem-specific. Thus, there is a need for techniques
of wider scope.

This is in fact the motivation for our work, for we give a number of general
techniques for efficiently solving problems in parallel by divide-and-conquer. We model
the divide-and-conquer paradigm as a binary tree whose nodes contain sorted lists of
some kind. The computation involves computing on this tree in a recursively defined
bottom-up fashion using lists of items and labeling functions defined for each node
in the tree. In Cole’s scheme [13], the list at a node was defined to be the sorted merge
of the two lists stored at its children. In our scheme, however, the lists at a node of
the tree can depend on the lists of its children in more complex ways. For example,
in our solution to the segment intersection detection problem, the lists at a node depend
on computing, in addition to merges, set difference operations that are not directly
solvable by the "cascading" method used by Cole [13]. Such operations arise here
because the lists at a node contain segments ordered by their intersections with a
vertical line (the so-called "above" relationship), which is obviously not a total order.
One may be tempted to try to solve this problem by delaying the performance of these
set difference operations until the end of the computation. Unfortunately, this is not
feasible for many reasons, not the least of which is that this approach could lead to
a situation in which a processor tries to compare two incomparable items. Nor does
it seem possible to explicitly perform the set difference operations on-line without
sacrificing the time-efficiency of the cascading method. Our solution avoids both of
these problems by using an on-line "identity-changing" technique.

Another significant contribution of this paper is an optimal parallel construction
of the "fractional cascading" data structure of Chazelle and Guibas [12]. This too is
based on a generalization of Cole’s method [13] in the sense that instead of having
the computation proceeding up and down a tree, it now moves around a directed
graph (possibly with cycles). Our solution to fractional cascading is quite different
from the sequential method of Chazelle and Guibas (their method relies on an
amortization scheme to achieve a linear running time).

The following is a list of the problems for which our techniques result in improved
complexity bounds. Unless otherwise specified, each performance bound is expressed
as a pair (t(n), p(n)), where t(n) and p(n) are the time and processor complexities,
respectively, in the CREW PRAM model.

Fractional cascading. Given a directed graph G (V,/), such that every node v
contains a sorted list C (v), construct a data structure that, given a walk (v, v2, , Vm)
in G and an arbitrary element x, enables a single processor to locate x quickly in each
C(vi), where n=lVl+lll+,vlC(v)l. In [12] Chazelle and Guibas gave an elegant
O(n) time, O(n) space, sequential construction, where n=vlC(v)I. We give a
(log n, n/log n) construction.
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Trapezoidal decomposition. Given a set S of n line segments in the plane, determine
for each segment endpoint p the first segment "stabbed" by the vertical ray emanating
upward (and downward) from p. A (log n, n) solution to this problem was given by
Aggarwal et al. in [1], later improved to (log n log log n, n) by Atallah and Goodrich
in [5]. We improve this to (log n, n).

Planar point location. Given a subdivision of the plane into (possibly unbounded)
polygons, construct, in parallel, a data structure that, once built, enables one processor
to determine for any query point p the polygonal face containing p. Let Q(n) denote
the time for performing such a query, where n is the number of edge segments in the
subdivision. A (log n, n), Q(n)= O(log n) solution was given by Aggarwal et al. in
[1], later improved to (log n log log n, n), Q(n) O(log n) by Atallah and Goodrich
in [5]. In [14] Dadoun and Kirkpatrick further improved this to (log n log* n, n),
Q(n) O(log n). We give a (log n, n), Q(n) O(log n) solution.

Segment intersection detection. Given a set S of n line segments in the plane,
determine if any two segments in S intersect. A (log n, n) solution was given in [1],
later improved to (log n log log n, n) in [5]. We improve this to (log n, n).

Three-dimensional maxima. Given a set S of n points in three-dimensional space,
determine which points are maxima. A maximum in S is any point p such that no
other point of S has x, y, and z coordinates that simultaneously exceed the correspond-
ing coordinates of p. A (log n log log n, n) solution was given in [5]. We improve this
to (log n, n).

Two-set dominance counting. Given a set A {ql, q2,’", qt} and a set B
{rl, r2, , r,} of points in the plane, determine for each point ri in B the number of
points in A whose x and y coordinates are both less than the corresponding coordinates
of ri. The problem size is n + m. A (log n log log n, n) solution was given in [5]. We
improve this to (log n, n).

Visibility from a point. Given n line segments such that no two intersect (except
possibly at endpoints) and a point p, determine that part of the plane visible from p
if allthe segments are opaque. A (log n log log n, n) solution was given in [5]. We
improve this to (log n, n).

We recently learned that Reif and Sen [24] solved planar point location, trapezoidal
decomposition, segment intersection and visibility in randomized O(log n) time using
O(n) processors in the CREW PRAM model. All of our algorithms are deterministic.

This paper is organized as follows. In 2 we present a generalized version of the
cascading merge procedure and in 3 we give our method for doing fractional cascading
in parallel. In 4 we show how to apply the fractional cascading technique to a data
structure we call the plane sweep tree, showing how to solve the trapezoidal decomposi-
tion and point location problems. In 5 we show how to extend the cascading merge
technique to allow for cascading in the "above’ partial order of line segments, giving
solutions to the problems of building the plane sweep tree and solving the intersection
detection problem. In 6 we use the cascading divide-and-conquer technique to
compute labeling functions and show how to use this approach to solve three-
dimensional maxima, two-set dominance counting, and visibility from a point. Finally,
in 7, we briefly describe how most of our algorithms can be implemented in the
EREW PRAM model with the same time and processor bounds as our CREW PRAM
algorithms, and we conclude in 8.

2. A generalized cascading merge procedure. In this section we present a technique
for a generalized version of the merge sorting problem. Suppose we are given a binary
tree T (not necessarily complete) with items, taken from some total order, placed at
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the leaves of T, so that each leaf contains at most one item. For simplicity, we assume
that the items are distinct. We wish to compute for each internal node v T the sorted
list U(v) that consists of all the items stored in descendant nodes of v. (See Fig. 1.)
In this section we show howto constrict U(v) for every node in the tree in O(height (T))
time using TI processors, where IT denotes the number of nodes in T. This is a
generalization of the problem studied by Cole [13], because in his version the tree T
is complete. Without loss of generality, we assume that every internal node v of T
has two children. For if v has only one child then we can add a child to v (a leaf
node) that does not store any items from the total order. Such an augmentation will
at most double the size of T and does not change its height.

Need to construct

5

4

13 23

4 50
FG. 1. An example of the generalized merge problem.

Let a, b, and c be three items, with a -< b. We say c is between a and b if a < c _-< b.
Let two sorted (nondecreasing) lists A (a, a2,’’’, an) and B (b, b2," , b,,) be
given. Given an element a, we define the predecessor of a in B to be the greatest
element in B that is less than or equal to a. If a < b, then we say that the predecessor
of a is -. We define the rank of a in B to be the rank of the predecessor of a in B
(-c has rank zero). We say that A is ranked in B if for every element in A we know
its rank in B. We say that A and B are cross-ranked if A is ranked in B and B is
ranked in A. We define two operations on sorted lists. We define A B to be the sorted
merged list of all elements in A or B. If B is a subset of A, then we define A-B to
be the sorted list of the elemented in A that are not in B.

Let T be a binary tree. For any node v in T we let parent(v), sibling(v), lchild (v),
rchild (v), and depth(v) denote the parent of v, the sibling of v, the left child of v, the
right child of v, and the depth of v (the root is at depth zero), respectively. We also
let root(T) and height(T) denote the root node of T and the height of T, respectively.
The altitude, denoted alt(v), is defined alt(v)= height(T)-depth(v). Dese(v) denotes
the set of descendant nodes of v (including v itself).

Let a sorted list L and a sorted list J be given. Using the terminology of Cole
[13], we say that L is a e-cover of J if between each two adjacent items in (-c, L, c)
there are at most c items from J (where (-, L, ) denotes the list consisting of-,
followed by the elements of L, followed by ). We let SAMP,.(L) denote the sorted
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list consisting of every cth element of L, and call this list the c-sample of L. That is,
SAMP.(L) consists of the cth element of L followed by the (2c)th element of L, and
SO on.

The algorithm for constructing U(v) for each v T proceeds in stages. Intuitively,
in each stage we will be performing a portion of the merge of U(lchild (v)) and
U(rchild (v)) to give the list U(v). After performing a portion of this merge we will
gain some insight into how to perform the merge at v’s parent. Consequently, we will
pass some of the elements formed in the merge at v to v’s parent, so we can begin
performing the merge at v’s parent.

Specifically, we denote the list stored at a node v in T at stage s by Us (v). Initially,
U0(v) is empty for every node except the leaf nodes of T, in which case U0(v) contains
the item stored at the leaf node v (if there is such an item). We say that an internal
node v is active at stage s if Is/3] <- alt( v) <- s, and we say v is full at stage s if
alt(v) [s/3J. As will become apparent below, if a node v is full, then Us(v)= U(v).
For each active node v T we define the list U’s+l(v) as follows"

SAMP4( Us (v))
U+l(V)- SAMP2(U(v))

SAMPI U v

if alt(v) >= s/3,
if alt(v)=(s-1)/3,
if alt(v)= (s-2)/3.

At stage s + we perform the following computation at each internal node v that is

currently active.

Per-stage computation (v,s+l). Form the two lists U+l(lchild(v)) and
U’s+(rchild (v)), and compute the new list

Us+,(v) U’s+l(lchild (v))U U’s+,(rchild (v)).

This formalizes the notion that we pass information from the merges performed
at the children of v in stage s to the merge being performed at v in stage s + 1. Note
that until v becomes full, U+(v) will be the list consisting of every fourth element
of Us(v). This continues to be true about U]+(v) up to the point that v becomes full.
If s is the stage at which v becomes full (and Us(v)= U(v)), then at stage s+ 1,
U+(v) is the two-sample of Us(v), and, at stage s+2, Ul+l(v)= Us(v) (-- U(v)).
Thus, at stage s + 3, parent(v) is full. Therefore, after 3 * height(T) stages every node
has become full and the algorithm terminates. We have yet to show how to perform
each stage in O(1) time using n processors.

We begin by showing that the number of items in Us+(v) can be only a little
more than twice the number of items in Us(v), a property that is essential to the
construction.

LEMMA 2.1.. For any stage s>=O and any node v T, [Us+,(v)[<-Z[Us(v)[+4.
Proof The proof is by induction on s.
Basis (s 0). The claim is clearly true for s 0.
Induction step (s >0). Assume the claim is true for stage s-1. If v is full (i.e.,

alt(v)= [s/31), then the claim is obviously true, since Us+j.(v) Us(v)= U(v). Con-
sider the case where either the children of v were not full at stage s or had just become
full at stage s. We know that Us+(v)= UL+(x)t2 UL+(y), where x= lchitd(v) and
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y rchild (v). In addition, we have the following:

’U*+I(V)I=[IU(x)IJ+[IG(Y)’144
(from definitions)

<_ +
4 4

(by induction hypothesis)

=21G(v)l+4.

The case when the children of v are full at stage s- 1 is similar (except that one divides
by 2 or 1 instead of 4). Actually, it is simpler, since in this case the children of v were
full in stage s- 1; hence, the step using the induction hypothesis can be replaced by
a simple algebraic substitution step. [3

In the next lemma we show that the way in which the Us(v)’s grow is "well
behaved."

LEMMA 2.2. Let [a, b] be an interval with a, b (-, U’s(v), ). If[a, b] intersects
k+ 1 items in (-, U(v), ), then it intersects at most 8k+ 8 items in Us(v) for all
k>=l and s>=l.

Proof The proof is by induction on s. The claim is initially true (for s 1).
Actually, for any stage s, if U(v) is empty, then Us_l(v) contains at most three items,
hence, Us(v) contains at most ten elements, by the previous lemma. Also, if U’s(v)
contains one item, then Us_(v) contains at most seven items, hence, Us(v) contains
at most 18 items, by the previous lemma. At most 15 of these items can be between
any two adjacent items in (-, U(v), ), since the item in U’s(v) was the fourth item
in Us_(v) by definition.

Inductive step (assume true for stage s). Let [a, b] be an interval with a, b
both in the list (-, U’s+(v),), and suppose [a,b] intersects k+l items in
(-, U+(v), o). The lemma is immediately true if v was full stage s, since the
smallest sample we take is a four-sample. So, next, suppose that either the children
of v are not full or have just become full in stage s. Let g be the number of items
in (-, Us(v), ) intersected by [a, b]. Recall that Us(v)
U(tchild (v))U U’s(rehild (v)). Let Is1, bl] (respectively, [a2, b2]) be the smallest
interval containing [a,b] such that a,b(-, U(lchild (v)),) (respectively,
a2, b2 (-c, U(rchild (v)), o)). Suppose the interval [al, b] intersects h+ 1 items in
the list (-, U’s(lehild (v)), ) and [a2, b2] intersects j+ 1 items in
(-, U(rchild (v)), o). Note that h+j=g. By the induction hypothesis, [a, b]
intersects at most 8h + 8 items in U(lchild (v)), and hence at most (Sh + 8)/4= 2h + 2
items in U+(lehild(v)). Likewise, [a2, b2] intersects at most 2j+2 items in
U+(rchild (v)). The definition of U’+(v) implies that g<=4k+ 1. Therefore, since
Us+(v)=U’+(tchitd(v))UU+(rchild(v)), [a,b] intersects at most (2h+2)+
(2j+2) items in Us+(v), where (2h+2)+(2j+2)<=(2h+2)+(2(4k-h+l)+2) <
8k+8.

The proof for the case when the children of v were full in stage s-1 is similar.
Actually, it is simpler, since the induction steps can be replaced by algebraic substitution
steps in this case. [3

COROLLARY 2.3. The list (-, U(v),) is a four-cover for U’+(v), for
all s >- O. D
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This corollary is used in showing that we can perform each stage of the merge
procedure in O(1) time. In addition to this corollary, we also need to maintain the
following rank information at the start of each stage s"

(1) For each item in U(v)" its rank in U(sibling(v)).
(2) For each item in U’s(v)" its rank in Us(v) (and hence, implicitly, its rank

in U+I(V)).
The lemma that follows shows that the above information is sufficient to allow us

to merge U+(lchild (v)) and U+l(rchild (v)) into the list Us+l(V) in O(1) time using
V+,(v)l processors.

LEMMA 2.4 (THE MERGE LEMMA) 13]. Sttppoxe we are given sorted lists As, A+,
B, BI+, C, and Crs+, where the following (input) conditions are true"

(1) As B U
(2) A is a subset ofs+l

(3) B’s is a c-cover for B]+;
(4) C is a c2-eover for C’s+l,
(5) B is ranked in B+;
(6) C is ranked in C s+l;

(7) B and C are cross-ranked.
Then in 0(1) time using s+l processors in the CREW PRAM model, we

can compute the following (output computations)"
(1) the sorted list A+ B’s+ t.J C’s+l,
(2) the ranking ofA+l in As+l;
(3) the cross-ranking of B’s+ and C’
We apply this lemma by setting A U,.(v) A’+ Us+(’ v), As+ Us+, l(V), B

U’(x), ’ (x) c’s+l Us+l s--Us(y), and Cs+ Us+(y), where x=lchild (v) and
y rchild (v). Note that assigning the lists of Lemma 2.4 in this way satisfies input
conditions (1)-(4) from the definitions. The ranking information we maintain from
stage to stage satisfies input conditions (5)-(7). Thus, in each stage s, we can construct
the list Vs+(v) in O(1) time using U+(v)l processors. Also, the new ranking informa-
tion (of output computations (2) and (3)) gives us the input conditions (5)-(7) for the
next stage. By Corollary 2.3 we have that the constants c and c2 (of input conditions
(3) and (4)) are both equal to four. Note that in stage s it is only necessary to store
the lists for s- 1; we can discard any lists for stages previous to that.

The method for performing all these merges with a total of IT[ processors is

basically to start out with O(1) virtual processors assigned to each leaf node, and each
time we pass k elements from a node v to the parent of v (to perform the merge at
the parent), we also pass O(k) virtual processors to perform the merge. When v’s
parent becomes full, then we no longer "store" any processors at v. (See [17] for
details.) There can be at most O(n) elements present in active nodes of T for any
stage s (where n is the number of leaves of T), since there are n elements present on
the full level, at most n/2 on the level above that, n/8 on the level above that, and so
on. Thus, we can perform the entire generalized cascading procedure using O(n) virtual
processors, or n actual processors (by a simple simulation argument). This also implies
that we need only O(n) storage for this computation, in addition to that used for the
output, since once a node v becomes full we can consider the space used for U(v) to
be part of the output. Equivalently, if we are using the generalized merging procedure
in an algorithm that does not need a U(v) list once v’s parent becomes full, then we
can implement that algorithm in O(n) space by deallocating the space for a U(v) list
once it is no longer needed (this is in fact what we will be doing in 6).



506 M. J. ATALLAH, R. COLE, AND M. T. GOODRICH

It will often be more convenient to relax the condition that there be at most one
item stored at each leaf. So, suppose there is an unsorted set A(v) (which may be
empty) stored at each leaf. In this case we can construct a tree T’ from T by replacing
each leaf v of T with a complete binary tree with IA(v)l leaves, and associating each
item in A(v) with one of these leaves. T’ would now satisfy the conditions of the
method outlined above. We incorporate this observation in the following theorem,
which summarizes the discussion of this section.

THEOREM 2.5. Suppose we are given a binary tree T such that there is an unsorted
set A(v) (which may be empty) stored at each leaf Then we can compute, for each node
v T, the list U(v), which is the union of all items stored at descendents of v, sorted in
an array. This computation can be implemented in O( height( T) + log (max IA(v)l)) time

using a total of n + Nprocessors in the CREW PRAM computational model, where n is
the number of leaves of T and N is the total number of items stored in T.

Proof The complexity bounds follow from the fact that the tree T’ described
above would have height at most O(height(T)+log(maxlA(v)l)) and IT’I is
0(1 T[ + N).

The above method comprises one of the main building blocks of the algorithms
presented in this paper. We present another important building block in the following
section.

3. Fractional cascading in parallel. Given a directed graph G- (V, E), such that
every node v contains a sorted list C(v), the fractional cascading problem is to construct
an O(n) space data structure that, given a walk (Vl, v2," ", v,,) in G and an arbitrary
element x, enables a single processor to locate x quickly in each C(vi), where n

]Vl + ]El +Yv IC(v)] Fractional cascading problems arise naturally from a number
of computational geometry problems. As a simple example of a fractional cascading
problem, suppose we have five different English dictionaries and would like to build
a data structure that would allow us to look up a word w in all the dictionaries.
Chazelle and Guibas 12] give an elegant O(n) time sequential method for constructing
a fractional cascading data structure from any graph G, as described above, achieving
a search time of O(log n + m log d(G)), where d(G) is the maximum degree of any
node in G. However, their approach does not appear to be "parallelizable."

In this section we show how to construct a data structure achieving the same
performance as that of Chazelle and Guibas in O(log n) time using In/log n] pro-
cessors. Our method begins with a preprocessing step similar to one used by Chazelle
and Guibas where we "expand" each node of G into two binary trees--one for its
in-edges and one for its out-edges--so that each node in our graph has in-degree and
out-degree at most 2. We then perform a cascading merge procedure in stages on this
graph. Each catalogue C(v) is "fed into" the node v in samples that double in size
with each stage and these lists are in turn sampled and merged along the edges of G.
Lists continue to be sampled and "pushed" across the edges of G (even in cycles) for
a logarithmic number of stages, at which time we stop the computation and add some
links between elements in adjacent lists. We conclude this section by showing that this
gives us a fractional cascading data structure, and that the computation can be
implemented in O(log n) time and O(n) space using In/log n] processors.

We show below how to perform the computations in O(log n) time and O(n)
space using n processors. We will show later how to get the number of processors
down to In/log n] by a careful application of Brent’s theorem [11].

Define In(v, G) (respectively, Out(v, G)) to be the set of all nodes w in V such
that (w, v) E (respectively, (v, w) E). The degree of a vertex v, denoted d(v), is
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defined as d(v)-max {lIn(v, G)I, lOut(v, G)I}. The degree of G, denoted d(G), is
defined as d(G)=maxv {d(v)}. A sequence (Vl, v2," ", v,,) of vertices is a walk if
(vi, vi+l) E for all {1, 2, , m 1 }.

As mentioned above, we begin the construction by preprocessi.ng the directed
graph G to convert it into a directed graph (I7,/) such that d(G)<-2 and such
that an edge (v, w) in G corresponds to a path in ( of length at most O(log d(G)).
Specifically, for each node v V we construct two complete binary trees T and Tvut.
Each leaf in T (respectively, Tut) corresponds to an edge coming into v (respectively,
going out of v). So there are IIn(v, G)] leaves in r and lOut(v, G)] leaves in Tut.
(See Fig. 2.) We call T the fan-in tree for v and Tut the fan-out tree for v. An edge
e- (v, w) in G corresponds to a node e in G such that e is a leaf of the fan-out tree
for v and e is also a leaf of the fan-in tree for w. The edges in T are all directed up
towards the root of T, and the edges in Tut are all directed down towards the leaves

TOUtof For each v V we create a new node v’ and add a directed edge from v’ to
v, a directed edge from the root of T to v’, and an edge from v’ to the root of Tut.
We call v’ the gateway for v. (See Fig. 2). Note that d(() =2. We assume that for
each node v we have access to the nodes in In(v, ) as well as those in Out(v, ).
We structure fan-out trees so that a processor needing to go from v to w in , with
(v, w) E, can correctly determine the path down Tvut to the leaf corresponding to
(v, w). More specifically, the leaves of each fan-out tree are ordered so that they are
listed from left to right by increasing destination name, i.e., if the leaf in Tut for
e (v, u) is to the left of the leaf for f= (v, w), then u < w. (The leaves of T need
not be sorted, since all edges are directed towards the root of that tree.) If we are not
given the Out(v, G) sets in sorted order, then we must perform a sort as a part of the
Tut construction, which can be done in O(log d(G)) time using n processors using
Cole’s merge sorting algorithm [13]. We also store in each internal node z of Tt the
leaf node u that has the smallest name of all the descendants of z.

e8 el

e7 e2

e6 e3

e e4

(d)
Fla. 2. Converting G into a bounded degree graph . A node v in G (a) corresponds into a node v adjacent

to its gateway v’, which is connected to the fan-in tree and the fan-out tree for v (b). An edge e in G (c) is

converted into a node in which corresponds to a leaf node of two trees (d).
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The above preprocessing step is similar to a preprocessing step used in the
sequential fractional cascading algorithm of Chazelle and Guibas [12]. This is where
the resemblance to the sequential algorithm ends, however.

The goal for the rest of the computation is to construct a special sorted list B(v),
which we call the bridge list, for every node v V. We shall define these bridge lists
so that B(v)-- C(v) if v is in V; if v is in but not in V, then for every (v, w)/, if
a single processor knows the position of a search item x in B(v), it can find the position
of x in B(w) in O(1) time.

The construction of the B(v)’s proceeds in stages. Let B.(v) denote the bridge
list stored at node v Q at the end of stage s. Initially, Bo(v)-- for all v in V.
Intuitively, the per-stage computation is designed so that if v came from the original
graph G (i.e., v V), then v will be "feeding" B(v) with samples of the catalogue
C(v) that double in size with each stage. These samples are then cascaded back into
the gateway v’ for v and from there back through the fan-in tree for v. We will also
be merging any samples "passed back" from the fan-out tree for v with BL(V’), and
cascading these values back through the fan-in tree for v as well.. We iterate the
per-stage computation for [log N] stages, where N is the size of the largest catalogue
in G. We will show that after we have completed the last stage, and updated some
ranking pointers, ( will be a fractional cascading data structure for G. The details
follow.

Recall that B0(v) for all v . For stage s->0, we define B+l(v) and B+(v)
as follows:

if v ’’- V,
B+,(v)=

SAMPc. (C(v)) if v V,

[B+(w)t2 B+(w2) if Out(v, )= {w, w2},

B+’(v)=l+’(w) ififOut(v’)={W}’out(v,)=,
where c(s)--2 rig N 1-., and N is the size of the largest catalogue. The per-stage
computation, then, is as follows.

Per-stage computation (v, s + 1). Using the above definitions, construct B/(v)
for all v V in parallel (using IB,,+,(v)l processors for each v).

The function c(s) is defined so that if v V, then as the computation proceeds
the list B’.,.+(v) will be empty for a while. Then at some stage s + 1 it will consist of
a single element of C(v) (the (2gNl-)th element), in stage s+2 at most three
elements (evenly sampled), in stage s + 3 at most five elements, in stage s + 4 at most
nine elements, and so on. This continues until the final stage (stage [log N]), when
B/l(v)= C(v). Intuitively, the c(s) function is a mechanism for synchronizing the
processes of "feeding" the C(v) lists into the nodes of G so that all the processes
complete at the same time. We show below that each stage can be performed in O(1)
time, resulting in a running time of the cascading computations that is O(log N) (plus
the time it takes time to compute the value of N, namely, O(log n)). The following
important lemma is similar to Lemma 2.1 in that it guarantees that the bridge lists do
not grow "too much" from one stage to another.

LEMMA 3.1. For any stage s>=O and any node v T, IB+,(v)l<-2[B.(v)l+4.
Proof The proof is by induction on s.
Basis (s--0). The claim is clearly true for s--0.
Induction step (s > 0). Assume the claim is true for stage s- 1. If v V, then the

claim follows immediately from the definition of c(s), since in this case B/(v) and
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Bs(v) are both samples of C(v) with B,+l(v) being twice as fine as B.(v), i.e.,
Bs+l(V)] _-< 2]B(v)] + 1.

Consider the case when v I9"- V, and Out(v, ()= {wl, w2}. We know in this case
B+l(V) B’+l(Wl)U B’+l(w2). Thus, we have the following:

IBs+ (v)]=|JB(Wl)]|+|lB(w2)l|l/ / /
(from definitions)

L d L d4 4

_--< +
4 4

(by induction hypothesis)

+4

2lB(v)l + 4.

For the case when v I9- V and Out(v, ) contains only one node, w, the argument
is similar and, in fact, simpler. We simply repeat the above argument, replacing
with w and eliminating those terms that contain w2.

In the next lemma we show that the way in which the B,(v)’s grow is "well
behaved," much as we did in Lemma 2.2.

LEMMA 3.2. Let [a, b] be an interval with a, b (-oo, B(v), co). If [a, b] intersects
k+ 1 items in (-oo, B’(v), oo), then it intersects at most 8k+ 8 items in B(v) for all
k>=l and s>=l.

Proof The proof is structurally the same as that of Lemma 2.2, since that lemma
was based on a merge definition similar to that for B.+l(v).

COROLLARY 3.3. The list (-oo, B’s(v), oo) is a four-cover for B’+l(v),for s>=O.
COROLLARY 3.4. The list (-oo, B(v), oo) is a 16-cover for B(w), for s>-O and

(v,w).
The first of these two corollaries implies that we can satisfy all the c-cover input

conditions for the Merge Lemma (Lemma 2.4) for performing the merge operations
for the computation at stage s in O(1) time using n processors, where
We use the second corollary to show that when the computation is completed we will
have a fractional cascading data structure (after adding the appropriate rank pointers).
We maintain the following rank information at the start of each stage s.

(1) For each item in B’s(v)" its rank in B;(w)if In(v, d)fflln(w, d)is nonempty,
i.e., if there is a vertex u such that (u, v) E and (u, w) E.

(2) For each item in B’(v)" its rank in B(v) (and thus, implicitly, its rank in
B’+,(v)).

By having this rank information available at the start of each stage s, we satisfy
all the ranking input conditions of the Merge Lemma. Thus, we can perform each
stage in O(1) time using n, processors. Moreover, the output computations of the
Merge Lemma allow us to maintain all the necessary rank information into the next
stage. Note that in stage s it is only necessary to store the lists for s- 1; we can discard
any lists for stages previous to that, as in the generalized cascading merge.

Recall that we perform the computation for [log N] stages, where N is the size
of the largest catalogue. When the computation completes, we take B(v)= B,(v) for
all v V, and for each (v, w)/ we rank B(v) in B(w). We can perform this ranking
stepAby the following method. Assign a processor to each element b in B(v) for all
v V in parallel. The processor for b can find the rank of b in each B2(w) such that
we Out(v, G) in O(1) time because B,(v) contains B(w) as a proper subset (B(w)
was one of the lists merged to make B.(v)). This processor can then determine the
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rank of b in B(w)= B.(w) for each we Out(v, G) in O(1) time by using the ranking
information we maintained (from B’s(w) to B.(w)) for stage s (rank condition (2)
above).

Given a walk W (vl," ", vm), and an arbitrary element x, the query that asks
for locating x in every C (vi) is called the multilocation of x in (vl, , Vm). TO perform
a multilocation of x in a walk (vl,..., Vm), we extend the walk W in G to its

correspo,nding walk (, A,vm) in ( and perform the corresponding multiloca-
tion in G, similar to the method given by Chazelle and Guibas [12] for performing
multilocations in their data structure. The multilocation begins with the location of x
in B(I) B(v), the gateway bridge list for v, by binary search. For each other vertex
in this walk we can locate the position of x in B(i) given its position in B(_) in
O(1) time. The method is to follow the pointer from x’s predecessor in B(_) to the
predecessor of that element in B() and then locate x in B() by a linear search from
that position (which will require at most 15 comparisons by Corollary 3.4). In addition,
if i corresponds to a gateway v’, then we can locate x in C(v) in O(1) time given its
position in B(v’) by a similar argument. (See Fig. 3.) Since each edge in the walk W
corresponds to a path in of length at most O(log d(G)), this implies that we can

perform the multilocation of x in (vl,..., v,) in O(loglB(v)[+m log d(G)) time.
In other words, ( is a fractional cascading data structure. We show that ( uses O(n)
space in the following lemma.

in G:

FIG. 3. Multilocating an element x in (v,/)2, /)3)"

LEMMA 3.5. Let nv denote the amount of space that is added to because of the
presence of a particular catalogue C(v), v V. Then nv_-<21C(v)l.

Proof Recall that while constructing the bridge lists in G we copy one-fourth of
the elements in each bridge list to at most two of its neighbors. Thus, we have the
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following"

n<-_lf(v)[+2[lc(v)l/4J +2[Ic(v)l/42j +23[Ic(v)l/43j +...

--< 21C(v)l.

(This is obviously an overestimate, but it is good enough for the purposes of the
analysis.)

COROLLARY 3.6. The total amount of space used by the fractional cascading data
structure is 0(n), where n V + EI + 2 v C (v)[.

Proof The total amount of space used by the fractional cascading data
structure is O(If/l/ll/Y,lB(v)l). Since all the bridge lists start out empty,
ZglB(v)l)=Zn. The previous lemma implies that Zn<-Z21c(v)l.
Therefore, since f’l/ll is O(IVI/IEI) by the definition of (, the total amount of
space used by the fractional cascading data structure is O(n).

Note that the upper bound on the space of the fractional cascading data structure
holds even if ( contains cycles. This corollary, then, implies that we can construct a
fractional cascading data structure from any catalogue graph G in O(log n) time
and O(n) space using n processors, even if G contains cycles. We have not shown,
however, how to assign these n processors to their respective jobs.

The method for performing the processor allocation is as follows. Initially, we

assign 21C(v) virtual processors to each node v V and no processors to each node
v V- V. This requires at most 2n virtual processors; hence, can be easily simulated
with n actual processors. Each time we pass k elements from a node v to a node w
(in performing the merge at node w) we also pass along (exactly) k virtual processors
to go with them. When we say that we are passing a virtual processor from some node
v to some node w, all we are actually changing is the node to which that processor is

assigned. Since, by Lemma 3.5, n<=21C(v)l, we know that there are enough virtual

processors assigned to v V to do this. To see that this also suffices for v V- V note
that at the beginning of stage s node v has IB.-(v)l elements (and processors). We
"give away" at most 2[IBs_(v)]/4J elements (and processors) from B_(v) in stage
s and receive ]B(v)l elements (and processors). Consequently, there are enough
processors to perform the merge to construct B.(v) and repeat the give-away procedure
for the next stage. In addition, since we pass a processor for each item we pass to

another node, each processor p can maintain not only which node it is assigned but
p can also maintain too, the number of other processors that are assigned to that node,
as well as maintaining a unique integer identification for itself in the range [1, m].
Thus, we have the following lemma.

LEMMA 3.7. Given any catalogue graph G, we can construct a fractional cascading
data structure for G in O(log n) time and O(n) space using n processors in the CREW
PRAM model.

Thus, we can solve the fractional cascading problem in O(log n) time using n

processors. For the applications we study in this paper, however, we can do even
better. The following lemma enumerates two important situations where the method
just described can be improved.

LEMMA 3.8. Given any catalogue graph G, if d(G) is O(1) or if we are given
Out(v, G) in sorted order for each v V, then the total number of operations performed
by the fractional cascading algorithm is O( n).

Proof If d(G) is O(1) or we are given Out(v, G) in sorted order, then the
construction of the graph G (without any bridge lists) requires only O(n) operations,
since we do not have to perform any sorting. Let us account for the total work performed
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by computing the total number of other operations that are performed because of the
fact that the catalogue for each node v contains IC(v)l elements (we will only charge
vertices in V). Let sv be the first stage that B,(v’) becomes nonempty. In this stage
B(v’) receives one element of C(v) from v, and hence we charge one operation in
stage sv for the node v. In stage s + 1 we will then perform at most 3 operations, at
most 7 in stage s + 2, at most 15 in stage s + 3, and so on. As soon as Bs(v’) contains
at least four elements from v (as early as stage s + 2), then we will perform one more
operation, passing one element to the fan-in tree for v. In the next stage, s +3, we
will perform at most two additional operations, then at most four additional operations
in stage s + 4, and so on. This pattern will "ripple" back through the fan-in tree for
v and on through the graph ( for as long as the computation proceeds. Specifically,
the number of operations charged to a node v V is, at most, the sum of the following

[log4 IC(/))l] rows

1 3 7 15
2,1 2,3

31 63 127
2,7 2,15 2,31

2 * 1 22 * 3 22
* 7

2[[C(v)[/4]
2[[C(v)1/42]

2’, 1

where the number in row and column j corresponds to the maximum number of
operations performed in stage s +j-1 at nodes at distance from v because of the
fact that the catalogue at node v contains IC(v)] elements (This is actually an
overestimate, since not all nodes in ( have out-degree 2). Summing the number of
operations for each row, and then summing the rows, we get that the number of
operations charged to v V is at most 2(IC(v)l+2[lC(v)l/4 +22[IC(v)l/42j +...+
2kv), which is at most 41C(v)l. Thus, the total number of operations performed by the
fractional cascading algorithm is O(n). [3

This lemma immediately suggests that we may be able to apply Brent’s theorem
to the fractional cascading algorithm so that it runs in O(log n) time using In/log n
processors.

THEOREM 3.9 ([ ]). Any synchronous parallel algorithm taking time T that consists

of a total of N operations can be simulated by P processors in O( INPJ + T) time.

Proof of Brent’s theorem. Let Ni be the number of operations performed at step
in the parallel algorithm. The P processors can simulate step of the algorithm in

O([Ni/P]) time. Thus, the total running time is O([N/P] + T)"
T T

E FN,/P] <- E ([N,/PJ+I)<-[N/P] +T. [3
i=l i=1

There are two qualifications we must make to Brent’s theorem before we can apply
it in the PRAM model, however. The first is that we must be able to compute N at
the beginning of step in O([N/P]) time using P processors. And, second, we must
know how to assign each processor to its job. Thus, in order to apply Brent’s theorem
to our problem of doing fractional cascading, we must deal with these processor
allocation problems.

Let F= {p,pz,’’’,pm} be the set of virtual processors used in the fractional
cascading algorithm (with rn-<2n), and let F’={p’,p,...,p}n/og,]} be the set of
processors we will be using to simulate the fractional cascading algorithm. Assuming
that d (G) is constant or we are given the list of vertices in Out(v, G) in sorted order,
we can compute the graph and the initial assignment of processors from F, so that
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we assign 21C(v) virtual processors to each node v V, in O(log n) time using the
processors in F’ by a parallel prefix computation. (Recall that the problem of computing
all prefix sums ek ki--1 ai of a sequence of integers (al, a2,’’’, an) can be done in
O(log n) time using In/log n] processors [21], [22].) Let v(pi) denote the vertex in
( to which pi F is assigned. Recall that we will be "passing" the processor p around
( during the computation, so the value of v(pi) can change from one stage to the
next. Once a processor Pi becomes active, it stays active for the remainder of the
computation. So, the only thing left to show is how to compute the number of processors
active in stage s, and to assign the processors in F’ to their respective tasks of simulating
the processors in F. We do this by sorting the set of processors in F by the stage in
which they become active. It is easy to compute the stage in which a processor p
becomes active in O(1) time, because this depends only on the initial value of v(p)
and the size of C(v(pi)) relative to N (the size of the largest catalogue). We can sort
the processors in F by the stage in which they become active in O(log n) time using
the In/log n processors in F’, by using an algorithm from Reif [23] (since the stage
numbers fall in the range 1, [log N]]). Thus, by performing a parallel prefix computa-
tion on this ordered list of processors, we can determine the number of processors
active in each stage s, and also know how to assign the processors in F’ so that they
optimally simulate the activities of the processors in F during stage s. We thus have
established the following theorem.

THEOREM 3.10. Given a catalogue graph G=(V, E), such that d(G) is O(1) or
given each Out(v, G) set in sorted order, we can build afractional cascading data structure

for G in O(log n) time and O(n) space using In/log n processors in the CREW PRAM
model, where n Vl + lEl + v lC( This bound is optimal.

4. The plane-sweep tree data structure. In this section we define a data structure,
which we call the plane-sweep tree, and show how to use it and the fractional cascading
procedure of the previous section to solve the trapezoidal decomposition problem and
the planar-point location problem in O(log n) time using n processors. Since the
construction of this data structure is quite involved, we merely define the data structure
now, and show how to construct it in these same bounds in 5.

Let S {s, s2, , sn} be a set of nonintersecting line segments in the plane, and
let X(S)=(a, a2,"’, a2n) be the (nondecreasing) sorted list of the x-coordinates
of the endpoints of the segments in S. To simplify the exposition, we assume that no
two endpoints in S have the same x-coordinate, i.e., a < ai+l. Let X’= (x, x2, , Xm)
be some subsequence of X(S) and let T be the complete binary tree whose m +
leaves, in left to right order, correspond to the intervals (-oo, x], [x, x2], [x2, x3],
’’, [Xm-, Xm], [Xm, +OO), respectively. Associated with each internal node v T is

the interval I which is the union of the intervals associated with the descendants of
v. Let H denote the vertical strip Iv (-oo, +oo). We say a segment s covers a node
v T if it spans H but not IIparen,v). No segment covers more than two nodes of any
level of T; hence, every segment covers at most O(log m) nodes of T. For each node
v T we let Cover(v) denote the set of all segments in S that cover v.

The idea of using a tree data structure such as this to parallelize plane-sweeping
is due to Aggarwal et al. [1] and is itself based on the "segment tree" of Bentley and
Wood [8]. The data structure of Aggarwal et al. consists of the tree T described above
with X’= X(S) (i.e., it has 2n+ 1 leaves). Aggarwal et al. store the list Cover(v) at
each node v sorted by the "above" relation for line segments. They construct these
lists by first collecting the segments in each Cover(v) and then sorting all the Cover(v)’s
in parallel, an operation that requires O(log2 n) time using n processors [13], since
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there are a total (R)(n log n) items to sort. Once these lists are constructed the data
structure can then be used to solve various problems by performing certain searches
on the nodes of T. These searches are of the following nature: given a set of O(n)
input points, for each point p locate the segment in Cover(v) that is directly above
(or below) p, for all v T such that p Hr. Notice that for the leaf-to-root walk starting
with the leaf v such that p IIv, this search can be solved by the multilocation of p in
that walk. Aggarwal et al. 1 perform all O(n) multilocations in O(log n) time using
n processors by assigning a processor to each point p and doing a binary search for
p in all the Cover(v) lists such that pIIv (there are O(log n) such lists for each p).

Although based on the structure of Aggarwal et al., the plane-sweep tree differs
from it in some important ways. One such difference is that the plane-sweep tree allows
us to perform O(n) multilocations in O(log n) time using n processors, after a
preprocessing step that takes O(log n) time using n processors. Also, instead of taking
X’ to be the entire X(S) list, we define X’ to be the list consisting of every [log n ]th
element of X(S), i.e., X’= SAMPlog ,,1 (X(S)). Thus, each vertical strip 1-Iv associated
with a leaf of T in our construction contains O(log n) segment endpoints. Like Aggarwal
et al., we also store each Cover(v) list sorted by the "above" relation. In addition, for
every node v of T we define the set lnd(v) as follows:

tnd(v)= {silsi S, has an endpoint in 1-Iv, and does not span 1-Iv}.

Although tnd(v) is defined for each node of T we only construct a copy of lnd(v)
if v is a leaf node. We do not store the elements of any tnd (v) in any particular order.
This is due to the fact that lnd(v) contains O(log n) segments for any leaf node;
hence a single processor can search the entire list in O(log n) time.

Note that all the segments in the Cover(v)’s of any root-to-leaf path in T are
comparable by the "above" relation. Thus, if we direct all the edges in T so that each
edge goes from a child to its parent, then the elements stored in any directed walk in
T are all comparable by the "above" relationship. Therefore, we can apply the fractional
cascading technique of the previous section to T (with each Cov.er(v) playing the role
of the catalogue C(v)). Since T has bounded degree and has O(n log n),,space, we
can, by Theorem 3.10, construct a fractional cascading data structure T for T in
O(log n) time and O(n log n) space using n processors. This data structure allows us
to perform the multilocation of any point p (in a leaf-to-root walk) in O(log n) time
(O(log n) for the binary search at the leaf, and an additional O(1) for each internal
node on the path to the root). We also store the set tnd(v) in each leaf v of T. The
plane-sweep tree data structure, then, consists of the tree " constructed from T by
fractional cascading, where T is defined with X’ SAMP flog, (X(S)), has Cover(v)
stored in sorted order for every node v T, and the set lnd(v) stored (unsorted) for
each leaf node v T (see Fig. 4).

In 5 we show how to construct this data structure efficiently in parallel. Since
the construction is rather involved, before giving the details of the construction, we
give two applications of this data structure. We begin with the trapezoidal decomposi-
tion problem.

4.1. The trapezoidal decomposition problem. Let S--{Sl,S2,.’. ,sn} be a set of
nonintersecting line segments in the plane. For any endpoint p of a segment in S a
trapezoidal segment for p is a segment of S that is directly above or below p such that
the vertical line segment from p to this edge is not intersected by any other segment
in S. The trapezoidal decomposition problem is to find the trapezoidal segment(s) for
each endpoint of the segments in S. Even in the parallel setting, this problem is often
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FIG. 4. A portion of a plane-sweep tree. The segments are numbered in this example by embedding the
"above" relation of 2 in the total order 1, 2, , 11. For simplicity we denote the list Cover(v) by parentheses
and the set End(v) by set braces.

used as a building block to solve other problems, such as polygon triangulation [1],
[19], [28] or shortest paths in a polygon [16].

THEOREM 4.1. A trapezoidal decomposition of a set S of n nonintersecting segments
in the plane can be constructed in O(log n) time using n processors in the CREW PRAM
model, and this is optimal

Proof Construct the plane-sweep tree data structure T for S. Theorem 5.2 (to be
given later, in 5) shows that this structure can be constructed in O(log n) time using
n processors. And we already know that T can be made into a fractional cascading
data structure T in these same bounds. We assign a single processor to every segment
endpoint (there are 2n such points). Let us concentrate on computing the trapezoidal
segment below a single segment endpoint p. Let (v,..., root(T)) be the leaf-to-root
path in " that starts with the leaf v such that p H. We first search through End(v)
to see if there are any segments in this set that are below p, and take the one that is
closest to p (recall that End(v) contains O(log n) segments). We then perform the
multilocation of p in the leaf-to-root walk starting at v, giving us for each w such that
p H the segment in Cover(w) directly below p. We choose among these [log n]
segments the segment that is closest to p. Comparing this segment to the one (possibly)
found in End(v), we get the segment in S, if there is one, that is directly below p.
Since the length of the walk from v to root(T) is at most [log n], by the method
outlined at the end of 3 [12], this computation can be done in O(log n) time using
n processors. Since the two-dimensional maxima problem can be reduced to trapezoidal
decomposition in O(1) time using n processors 17], and the two-dimensional maxima
problem has a sequential lower bound of (n log n) in the algebraic computation tree
model [7], [20], we cannot do better than O(log n) time. using n processors. F]
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Solving the trapezoidal decomposition problem efficiently in parallel has proven
to be an important step in triangulating a polygon efficiently in parallel [1], [2], [5],
[17], [28]. In fact, Theorem 4.1 is used in the algorithms of Goodrich [19] and Yap
[28] to achieve an O(log n) time solution to polygon triangulation using only n
processors. We next point out that the plane-sweep tree can also be used to solve the
planar point location problem.

4.2. The planar point location problem. The planar point location problem is the
following: Given a planar subdivision S consisting of n edges, construct a data structure
that, once constructed, enables one processor to determine for a query point p the
face in S containing p. This problem has applications in several other parallel computa-
tional geometry problems, such as Voronoi diagram construction.

THEOREM 4.2. Given a planar subdivision S consisting of n edges, we can construct

a data structure that can be used to determinefor any query point p theface in S containing
p in O(log n) serial time. This construction tales O(log n) time using n processors in the
CREW PRAM model.

Proof The solution to this problem is to build the plane-sweep tree data structure
for S (with fractional cascading) and associate with each edge si the name of the face
above si. As already mentioned, Theorem 5.2 (to be given later, in 5) shows that the
tree T can be constructed in O(log n) time using n processors. Also recall that T can
be made a fractional cascading data structure T in these bounds. Let a query point p
be given. A planar point location query for p can be solved in O(log n) serial time by
performing a multilocation like that used in the proof of Theorem 4.1 to find the
segment in S directly below p. After we have determined the segment si in S that is
directly below p, we then can read off the face of S containing p by looking up which
face is directly above Si.

Incidentally, Theorem 4.2 immediately implies that the running time ofthe Voronoi
diagram algorithm of Aggarwal et al. 1 can be improved from O(log n) to O(log2 n),
still using only n processors. (We have recently learned that in the final version of
their paper [2], they reduce the time bound of their algorithm to O(log2 n) using a
substantially different technique.)

The results of 4.1 and 4.2 are conditional: they hold if we can construct the
plane-sweep tree data structure efficiently in parallel. We next show how to construct
the plane-sweep tree in O(log n) time using only n processors.

5. Cascading with line segment partial orders. In this section we show how to
modify the cascading divide-and-conquer technique of 2 to solve some geometric
problems in which the elements being merged belong to the partial order defined by
a set of nonintersecting line segments. Recall that in this partial order a segment sl is
"above" a segment s2 if there is a vertical line that intersects both segments, and its
intersection with s is above its intersection with s2. We apply this technique to the
problems of constructing the plane-sweep tree data structure and of detecting if any
two of n segments in the plane intersect.

We now give a brief overview of the problems encountered and our solutions to
them. The essential computation is as follows: we have a binary tree with lists stored
in its leaves, and we wish to combine them in pairs (up the tree) to construct lists at
internal nodes. The main difficulty is that the list stored at some node v is not defined
as a simple merge of the lists stored at the children of v. Instead, its definition involves
deleting elements from lists stored at children nodes before performing a merge. These
deletions are quite troublesome, because if we try to perform these deletions while
cascading, then the rank information will become corrupted, and the cascade will fail.
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On the other hand, if we try to postpone the deletions to some postprocessing step,
then there will be nondeleted elements that are not comparable to others at the same
node; hence, there will be instances when processors try to compare two elements that
are not comparable, and the cascade will fail. The main idea of our method for getting
around these problems is to embed partial orders in total orders "on the fly" while
we are cascading up the tree. That is, we change the identity of segments as they are
being passed up the tree, so that the segments in any list are always linearly ordered.
To be able to do this, however, we must do some preprocessing that involves simul-
taneously performing a number of cascading merges in parallel. We complete the
computation by performing a purging postprocessing step to remove the segments that
"changed identity" (as an alternative to being deleted).

For the intersection detection problem, we need to dovetail the detection of
intersections with the cascading. That is, we cascade the results of intersection checks
along with the segments being passed up the tree. The complication here is that if we
should ever detect an intersection on the way up the tree we cannot stop and answer
"yes" as this would require O(log n) time (to "fan-in" all the possible answers). Thus
we are forced to proceed with the merging until we reach the root, even though in the
case of an intersection the segments being merged no longer even belong to a partial
order. We show that in this case we can replace the segment with a special place holder
symbol so that the cascades can proceed. After the cascading merge completes we
perform some postprocessing to then check if any intersections are present.

The next two subsections give the details.

5.1. Plane-sweep tree construction. In this subsection we describe how to construct
the Cover(v) lists for each node v in the plane-sweep tree T. We begin by making a
few definitions and observations. We let left (II) (respectively, right (II)) denote the
left (right) vertical boundary line for II. We define the dominator node of a segment
si, denoted dom(si), to be the deepest node v (i.e., farthest from the root) in T such
that si is completely contained in II. That is, the dominator of si is the node v such
that s does not intersect left (H) or right (II), but s does intersect the vertical
boundary separating H.hia(v) and H rchild(v). In addition, we define the following sets
for each node v T:

L(v) {sils End(v) and si ffl left (H) },

g(v) {sls End(v) and s, f’l right (H) },

l(v, d)= {silsi L(v) and d depth(dom(si))},

r(v, d)= {si]si g(v) and d depth(dom(si))}.

Note that l(v, d) and r(v, d) are only defined for 0<_-d < depth(v). Any time we
construct one of these sets it will be ordered by the "above" relation, so for the
remainder of this section we represent these sets as sorted lists. In the following lemma
we make some observations concerning the relationships between the various lists
defined above.

LEMMA 5.1. Let v be a node in T with left child x and right child y. Then we have
the following (see Fig. 5):

(1) l(v, d)= l(x, d)t_J l(y, d) for d <depth(v),
(2) r(v, d) r(x, d) (_J r(y, d) for d < depth(v),
(3) L(v)= l(v, O)LJ l(v, 1)LJ. .LJ l(v, depth(v)-l),
(4) R(v)= r(v, O)LJ r(v, 1)LJ. .LJ r(v, depth(v)-l),
(5) L(v)= L(x)LJ (L(y)-l(y, depth(v))),
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in l(x, d) All in some..z y l(v, d) for
in l( ’y,d......_ d < d,h(__e,_t._,v,

in l(y, depth(v))
and not in Cover(x)

(a)
FIG. 5. Theplane-sweeptreeequations.(a) l(v, d)= l(x, d)kJ l(y, d); (b) L(v)= l(v, O)(_J l(v, depth(v)- 1);

(c) L(v)= L(x)U(L(y)-l(y, depth(v))); (d) Cover(x)= L(y)-l(y, depth(v)).

(6) R(v) (R(x)- r(x, depth(v))) t_J R(y),
(7) Cover(x L(y l(y, depth (v) ),
(8) Cover(y)= R(x)- r(x, depth(v)).

Proof The proof follows from the definitions.
Lemma 5.1 essentially states that the lists l, r, L, R, and Cover for the nodes on

a particular level of T can be defined in terms of lists for nodes on the next lower
level of T. We could use this lemma and the parallel merge technique of Valiant [26],
as implemented by Borodin and Hopcroft [10], to construct a sorted copy of each
Cover(v) list in O(log n log log n) time using n processors, improving on the previous
bound of O(log2 n) time using the same number of processors, due to Aggarwal et al.
[1]. We can do even better, however, by exploiting the structure of the L and R lists.
We describe how to do this below, in order to achieve a running time of O(log n) still
using n processors. Before going into the details of the plane-sweep tree construction,
we give a brief overview of the algorithm.

HIGH-LEVEL DESCRIPTION OF PLANE-SWEEP TREE CONSTRUCTION.
The construction consists of the following four steps:
Step 1. Construct l(v, d) and r(v, d) for every v T. To implement this step, we

perform [log n generalized cascading merges in parallel (one for each d) based on
(1) and (2) of Lemma 5.1 (starting with the leaf nodes of T). We implement this step
in O(log n) time using n processors in total for all the merges.

Step 2. Let d= depth(parent(v)). Compute for each segment in l(v, d) (respec-
tively, r(v, d)) its predecessor segment in L(v)- l(v, d) (respectively, R(v)- r(v, d))
based on (3) and (4). We do this, for each v T, by making d copies of l(v, d) and
r(v, d), and merging l(v, d) (respectively, r(v, d)) with all the l(v, d) (respectively,
r(v, d)) such that d < do. Note: we perform this step without actually constructing
L(v) or R(v).

Step 3. Construct L(v) and R(v) for every v T. To implement this step we
perform a generalized cascading merge procedure based on (5) and (6) and the
information computed in Step 2 (starting with the leaf nodes of T). We never actually
perform the set difference operations of (5) and (6), however. Instead, at the point in
the merge that a segment in, say, l(v, do), should be deleted we "change the identity"
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of that segment to its predecessor in L(v) l(v, dr) (which we know from Step 2). That
is, from this point on in the cascading merge this segment is indistinguishable from
its predecessor in L(v)- l(v, dv). We show below that (i) the cascading merge will not
be corrupted by doing this, (ii) the lists never contain too many duplicate entries (that
would require us to use more than n processors), and (iii) after the merge completes,
we can construct L(v) and R(v) for each node by removing duplicate segments in
O(log n) time using n processors.

Step 4. Construct Cover(v) for every v T using (7) and (8) and the lists construc-
ted in Step 3. The implementation of this step amounts to compressing each L(v)
(respectively, R(v)) so as to delete all the segments in l(v, d) (respectively, r(v, d)),
and then copying the list of segments so computed to the sibling node in T.

END OF HIGH-LEVEL DESCRIPTION.

We now describe how to perform each of these high-level steps.

5.2. Step 1: Constructing I(v, d) and r(v, d). We construct the l(v, d) and r(v, d)
lists as follows. We make [log n] copies of T, and let T(d) denote tree number d.
Note that by our definition of T the space needed to store the "skeleton" of each
T(d) is O(n/log n). This of course results in a total of O(n) space for all the T(d)’s.
For each node v of T(d) such that depth(v)> d we wish to construct the lists l(v, d)
and r(v, d), as given by (1) and (2) of Lemma 5.1. This implies that if we store l(v, d)
(respectively, r(v, d)) in every leaf node v of T(d), then for any node v T(d), l(v, d)
is precisely the sorted merge of the lists stored in the descendants of v. We start with
the elements belonging to l(v, d) (respectively, r(v, d)) stored (unsorted) in a list A(v)
for each leaf v in T(d), and construct each l(v, d) and r(v, d) by the generalized
cascading merge technique of Theorem 2.5 (using the A(v)’s as in the theorem). Note:
since l(v, d) and r(v, d) are only defined for d < depth(v), we only proceed up any
tree T(d) as far as nodes at depth d + 1, terminating the cascading merge at that point.
We allocate [n/log n + Na processors to each tree T(d), where Na denotes the number

[logof segments stored initially in the leaves of T(d). Thus, since d= Nd n, we have
shown how to construct all the l(v, d) and r(v, d) lists in O(log n) time and O(n log n)
space using n processors.

5.3. Step 2: Computing predecessors. In Step 2 we wish to compute for each
segment in the list l(v, d) (respectively, r(v, d)) its predecessor segment in L(v)-
l(v, d) (respectively, R(v)-r(v, d)), where dv=depth(parent(v)). Without loss of
generality, we restrict our attention to the segments in l(v, d) (the treatment for the
segments in r(v,d) is similar). Recall that (3) and (4) state that L(v)=
l(v,O) kJl(v, 1)kJ’"kJl(v,d) and that R(v)=r(v, 0)LJr(v, 1)U...LJr(v,d). We
make dv copies of l(v, d) and, using the merging procedure of Shiloach and Vishkin
[25] or that of Bilardi and Nicolau [9], we merge a copy of l(v, d) with each of
l(v,O),.-.,l(v,d-l). This takes O(log n) time using []L(v)]/logn]+
[dlt(v, d)]/log n] processors for each v T. Since (i) there are O(n/log n) nodes in
each T(d); (ii) each segment appears exactly once in some l(v, d); and (iii)
is O(n log n), we can implement all these merges in parallel using n processors. Once
we have completed all the merges, we assign a single processor to each segment si and
compare the predecessors of si in l(v, 0),. , l(v, d- 1) so as to find the predecessor
of si in L(v)-l(v,d) (=/(v, 0)LJ...LJl(v,d-l)). This amounts to O(log n) addi-
tional work for each si; thus Step 2 can be implemented in O(log n) time using n
processors.

5.4. Step 3: Constructing L(v) and R(v). In this step we perform another cascading
merge on T; this time to construct L(v) and R(v) for each v T based on (5) and (6)
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of Lemma 5.1. Initially, we have L(v) and R(v) constructed only for the leaves. We
then merge these lists up the tree based on (5) and (6) as in Theorem 2.5. The
computation for this step differs from the cascading merge of Step 2, however, in that
we need to be performing set-difference operations as well as list merges as we are
cascading up the tree. Unfortunately, it is not clear how to perform these difference
operations on-line any faster than O(log n) time per level, which would result in a
running time that is O(log n). We get around this problem by never actually performing
the difference operations. That is, we do not actually delete segments from any lists.
Instead, we change the identity of a segment si in say, l(y, dy), to its predecessor in
L(y)-l(y, dy) when we are performing the merge as node v, where y rehild (v) (see
Fig. 6). We do this instead of simply marking si as "deleted" in L(v), because segments
in l(y, dy) may not be comparable to segments in L(x) (the list with which we wish
to merge L(y)-l(y, dy)). Simply marking a segment as being "deleted" could thus
result in a processor attempting to compare two incomparable segments.

U(z)-- (-oo,
z (1, 1,1, 1, 1,2, 7, 7)

--(1,3,3,3,5,7,8)

(v),= (1, 3, 4, 6, 7, 8)
7 8 v

2

VV V
FIG. 6. Segment identity changing during the cascading merge. We illustrate the way segment names

change identity to that of their predecessor as we are performing the cascading merge. In this case we are
constructing the L( v)’s. We denote the predecessor of each segment by a dotted arrow.

Clearly, the fact that we change the identity of a segment in l(y, dy) to its
predecessor in L(y) l(y, dy) means that there will be multiple copies of some segments.
This will not corrupt the cascading merge, however, because one of the properties of
the "above" relation for segments is that all duplicate copies of a segment will be
contiguous. Moreover, they will remain contiguous as the cascading merge proceeds
up the tree. In addition, even though we will have multiple copies of segments in lists
as they are merging up the tree, we can still implement this step with a total of n
processors, because there will never be more items present in any L(v) than the total
number of items stored in the (leaf) descendants of v. At the end of this step we assign
[I L( v )l/ log n] processors to each v and compress out the duplicate entries in L(v) in
O(log n) time. Thus, we can construct L(v) and R(v) (compressed and sorted) for
each v T in O(log n) time using n processors.

5.5. Step 4: Constructing Cover(v). In this step we construct Cover(v) for every
v in T, based on (7) and (8) of Lemma 5.1. We implement this step by first compressing
each L(v) (respectively, R(v)) so as to delete all the segments in l(v, d) (respectively,
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r(v, d)), and then by copying the list of segments so computed to the sibling of v in
T. This can all be done in O(log n) time using n processors.

Thus, summarizing the entire previous section, we have the following theorem.
THEOREM 5.2. Given a set S of nonintersecting line segments in the plane, we can

construct the plane-sweep tree Tfor S in O(log n) time using n processors in the CREW
PRAM model, and this is optimal.

Proof We have already established the correctness and complexity bounds. To
see that our construction is optimal, note that the plane-sweep tree requires )(n log n)
space. [3

In the previous sections we assumed that segments did not intersect. Indeed, T
is defined only if they do not intersect. We show in the next section that we can detect
an intersection, if there is one, by constructing T while simultaneously checking for
intersections.

5.6. The segment intersection detection problem. The problem we solve in this
section is the following: given a set S of n line segments in the plane, determine if
any two segments in S intersect. We begin by stating the conditions that we use to test
for an intersection.

LEMMA 5.3 [1]. The segments in S are nonintersecting if and only if we have the
following for the plane-sweep tree T of S:

(1) For every v T all the segments in Cover(v) intersect left (H) in the same order
as they intersect right (H).

(2) For every v T no segment in End (v) intersects any segment in Cover(v).
Aggarwal et al. used this lemma and their data structure to solve the intersection

detection problem in O(log2 n) time using n processors. Their method consisted of
constructing the Cover(v) lists independently of one another, basing comparisons on
segment intersections with left (II), and then testing for condition (1) by checking if
each list Cover(v) would be in the same order if they based comparisons on segment
intersections with right (II). If no intersection was detected by this step, then they
tested for condition (2) by performing O(n) multilocations of segment endpoints. This
entire process took O(log n) time using n processors.

We use this lemma by testing for condition (1) while we are constructing the
plane-sweep tree for S (instead of waiting until after it has been built) and in so doing
we achieve an O(log n) time bound for this test (since our construction takes only
O(log n) time). We test condition (2) in the same fashion as Aggarwal et al., that is,
by doing O(n) multilocations after the plane-sweep tree has been built. Since with our
data structure the multiplications can all be performed in O(log n) time, the entire
intersection-detection process takes O(log n) time using n processors.

Since we do not construct the Cover(v) lists independently of one another, but
instead construct them by performing several cascading merges, we must be very careful
in how we base segment comparisons, and in how we test for condition (1). For if two
segments intersect, then determining which segment is above the other depends on the
vertical line upon which we base the comparison.

We consider each step of the construction in turn, beginning with Step 1. Recall
that in Step we construct all the l(v, d) and r(v, d) lists for each v T. In the following
lemma we show that if we base segment comparisons on appropriate vertical lines,
Step can be performed just as before.

LEMMA 5.4. Let v T and O<-d<depth(v) be given, and let s and s2 be two
segments such that s l(w, d) and s2 l(z, d) (or s r(w, d) and s26 r(z, d)), where
w, z Desc(v). Then dom(s) dom(s2).
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Proof Let v T and 0<_-d _<-[log n] be given. Recall that l(v, d) (respectively,
r(v, d)) is defined to be the list of all segments in L(v) (R(v)) that have a dominator
node at depth d in T. Note that the dominator node for any segment si in l(w, d),
r(w, d), l(z, d), or r(z, d), where w,z Desc(v), must be an ancestor of v, since
d < depth (v) and, by definition, si End (v) and si End (dom (s)). There is only one
node that is an ancestor of v and is at depth d in T. [3

Thus, we can perform the merges based on (1) and (2) of Lemma 5.1 (e.g.,
l(v, d) l(x, d) U l(y, d)) by basing all segment comparisons on the intersection of the
segments with the vertical boundary separating the two children of their dominator
node. That is, if s and s2 are two segments to be compared in Step 1, then we say
that sl is "above" s2 if and only if the intersection of s with L is above the intersection
of sz with L, where L is the vertical boundary line separating the two children of
dom(s,) (= dom(s2)).

In Step 2 we computed for each segment in l(v, dr) (respectively, r(v, dr)) its
predecessor segment in L( v) l( v, d) (respectively, R(v)-r(v,d)), where d=
depth(parent(v)). Recall that we did this by merging l(v,d) with each of
l(v, 0),..., l(v, dv-1). A similar computation was done for r(v, d); without loss of
generality, we concentrate on the computation involving l(v, d). Also recall that all
the segments in l(v, 0),. , l(v, d) belong to L(v); hence they intersect left (II). After
Step finishes, each list l(v, d) will be sorted based on segment intersections with the
vertical boundary line separating the two children of the ancestor of v at depth d (the
dominator of all the segments in l(v, d)). In O(log n) time we can check if this order
is preserved in each of l(v, 0),. , l(v, d) if we base segment intersections on left (II),
instead. If the order changed in any l(v, d), then we have detected an intersection,
and we are done. Otherwise, we proceed with Step 2 just as before, basing comparisons
on segment intersections with left (H).

In Step 3 we performed a cascading merge up the tree T, constructing L(v) and
R(v) for every node ve T. Recall that this cascading merge was based on (5) and (6)
of Lemma 5.1 (e.g., L(v)= L(x)CJ(L(y)-l(y, depth(v)))). Let us concentrate on the
testing procedure for the L(v)’s, since the method for the R(v)’s is similar. Initially,
let us start with each L(v) constructed at the leaves of T sorted by segment intersections
with left (IIv). Thus, before we perform the merge based on the equation L(v) L(x) CJ
(L(y)-l(y, depth(v))), we must first check to see if the segments in the sample of
L(y)-l(y, depth(v)) (to be merged with the sample of L(x)) have the same order
independent of whether comparisons are based on segment intersections with left (IIy)
or left (H). Unfortunately, to do this completely would require O(log n) time at every
level of the tree, resulting in an O(log n) time algorithm. So, instead of broadcasting
at each level whether an intersection has occurred or not, we cascade that information
up along with the merges. More precisely, before doing the merge at a node v, we test
if every consecutive pair of items in the sample of L(y)- l(y, depth(v)) would remain
in the same order independent of whether comparisons were based on segment
intersections with left (IIy) or with left (II). If we detect that an intersection has
occurred, then we will have two elements that are out of order. If this should occur,
we replace both items by the distinguished symbol $. Then, as the merges continue up
the tree, any time we compare an item with $, we replace that item with $ and proceed
just as before. This keeps the merging process consistent, and after the cascading merge
completes we can then in O(log n) time test if any of the items in any L(v) or R(v)
contain a $ symbol, by assigning [I L( v )l/ log n processors to each v T.

In Step 4 we constructed Cover(v) for each v e T. Recall that we did this by simply
performing compressing and copying operations on lists constructed in Step 3. Thus,



CASCADING DIVIDE-AND-CONQUER 523

assuming that no intersection was detected in Step 3, we can perform Step 4 just as
before. After Step 4 completes we can assign [ICover (v)l/log n] processors to each
v T and test condition (1) directly in O(log n) time, checking if the items in Cover(v)
would be in the same order independent of whether comparisons were based on
left (IIv) or on right (Hv).

If we have not discovered an intersection after Step 4, then the’only computation
left is to perform fractional cascading on the plane-sweep tree T, constructing a
fractional cascading data structure T. In directing all the edges in T to the root, and
performing the fractional cascadin preprocessing on T to construct i?, we associate
a vertical strip with each node in T. Since T is a tree then is also a tree (recall the
preprocessing step of the fractional cascading algorithm). For each node v in T if v
is also in T, then we take IIv for v in T to be the same as 1-Iv for v in T. Then, for
any v that is in but not in T (i.e., v is a gateway or a node in a fan-in or fan-out
tree), we take llv to be the union of all the vertical strips that are descendents of v.
Every time we perform the per-stage merge computation we compare adjacent entries
in each bridge list B(v) to see if they would be in the same order independent of
whether we base comparisons on segment intersections with left (II) or right (II). If
we detect that two adjacent segments intersect, then we replace both with the special
symbol $. Then, as before, any time we compare a segment with $ we replace that
segment by $. Finally, when we complete the computation for Step 5, we assign
[IB(v)]/log n processors to each node v and check if there are any $ symbols present
in any B(v) list.

If there are no intersections detected during the fractional cascading, then we
perform O(n) multilocations of all the segment endpoints as in [1] to test condition
(2). Let p be an endpoint of some segment si. We perform the multilocation of p in
the plane-sweep tree for S, and check if si intersects the segment directly above p or
the segment directly below p in each Cover(v) list such that p H. This test is sufficient,
since if si intersects any segment in Cover(v), it must intersect the segment directly
above p in Cover(v) or the segment directly below p in Cover(v). Thus, by performing
a multilocation for p, we can test for condition (2) in O(log n) time using n processors.
We summarize this discussion in the following theorem.

THEOREM 5.5. Given a set of n line segments in the plane, we can detect if any two
intersect in O(log n) time using n processors in the CREW PRAM model.

So far in this paper we have restricted ourselves to applications involving line
segments. In the next section we show how to apply the cascading divide-and-conquer
technique to other geometric problems as well.

6. Cascading with labeling functions. In this section we show how to solve
several different geometric problems by combining the merging procedure of 2 with
divide-and-conquer strategies based on merging lists with labels defined on their
elements. For most of these problems our divide-and-conquer approach gives an
efficient sequential alternative to the known sequential algorithms (which use the
plane-sweeping paradigm) and gives rise to efficient parallel algorithms as well. We
begin with the three-dimensional maxima problem.

6.1. The three-dimensional maxima problem. Let V {p, P2,"" ", Pn} be a set of
points in R3. For simplicity, we assume that no two input points have the same x
(respectively, y, z) coordinate. We denote the x, y, and z coordinates of a point p by
x(p), y(p), and z(p), respectively. We say that a point Pi one-dominates another point
P.i if x(pi) > (P.i), tw-dminatespi ifx(pi) > x(pi) and y(Pi) > Y(P), and three-dominates
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pj if x(pi)> x(p), y(pi)> y(p.), and z(pi)> z(p). A point pi V is said to be a
maximum if it is not three-dominated by any other point in V. The three-dimensional
maxima problem, then, is to compute the set, M, of maxima in V. We show how to
solve the three-dimensional maxima problem efficiently in parallel in the following
algorithm.

Our method is based on cascading a divide-and-conquer strategy in which the
subproblem merging step involves the computation of two labeling functions for each
point. The labels we use are motivated by the optimal sequential plane-sweeping
algorithm of Kung, Luccio, and Preparata [20]. Specifically, for each point p we
compute the maximum z-coordinate from among all points that one-dominate p and
use that label to also compute the maximum z-coordinate from among all points that
two-dominate p. We can then test if p is a maximum point by comparing z(p) to
this latter label. The details follow.

Without loss ofgenerality, we assume the input points are given sorted by increasing
y-coordinates, i.e., y(Pi) < Y(P+), since if they are not given in this order we can sort
them in O(log n) time using n processors [13]. Let T be a complete binary tree with
leaf nodes v, v2,’’ ", v, (in this order). In each leaf node v we store the list B(vi)=
(-oe, p), where -oe is a special symbol such that x(-oe)<x(p) and y(-oe)<y(p)
for all points p in V. Initializing T in this way can be done in O(log n) time using n
processors. We then perform a generalized cascading merge from the leaves of T as
in Theorem 2.5, basing comparisons on increasing x-coordinates of the points (not
their y-coordinates). Using the notation of 2, we let U(v) denote the sorted array of
the points stored in the descendants of v T sorted by increasing x-coordinates. For
each point pi in U(v) we store two labels: zod(pi, v) and ztd(p, v), where zod(p, v)
is the largest z-coordinate of the points in U(v) that one-dominate p, and ztd(p, v)
is the largest z-coordinate of the points in U(v) that two-dominate pi. Initially, zod
and ztd labels are only defined for the leaf nodes of T. That is, zod (p, v) ztd (pi, v)
-oe and zod(-oe, v)= ztd(-oe, v)= z(p) for all leaf nodes vi in T (where U(v)
(-oe, p)). In order to be more explicit in how we refer to various ranks, we let
pred (p, v) denote the predecessor of p in U(v) (which would be -ee if the x-
coordinates of the points in U(v) are all larger than x(p)) (see Fig. 7). As we are
performing the cascading merge, we update the labels zod and ztd based on the
equations in the following lemma.

LEMMA 6.1. Let p be an element of U(v) and let u lchild (v) and w rchild (v).
Then we have the following:

l’max {zod(pi, u), zod(pred (pi, w), w)} ifpi U(u),
(9) zod p, V)

max {zod(pred (Pi, u), u), zod(pi, w)} ifpi U(w),

max {ztd(pi, u), zod(pred (p, w), w)} ifp U(u),
O) ztd p, v)

ztd pg, w) ifpg U(w).

Proof Consider (9). If pie U(u), then every point that one-dominates pi’S pred-
ecessor in U(w) also one-dominates Pi, since p’s predecessor in U(w) is the point
with largest x-coordinate less than x(pi) (or -- if every point in U(w) has larger
x-coordinate than pi). Thus zod(p, v) is the maximum of zod(p,u) and
zod(pred (Pi, w), w) in this case. The case when p U(w) is similar. Next, consider
(10). We know that every point in U(w) has y-coordinate greater than every point in
U(u), by our construction of T. Therefore, ifp U(u), then every point in U(w) that
one-dominates pi’s predecessor in U(w) must two-dominate p. Thus, ztd(p, v) is the
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o pred(pi, u)
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o

FIG. 7. The combining stepfor three-dimensional maxima. Points to the right ofthe dotted line one-dominate

Pi (respectively, Pi), and points enclosed in the dashed lines two-dominate Pi(pi).

maximum of ztd(pi, u) and zod(pred (pi, w), w). On the other hand, if p U(w) then
no point in U(u) can two-dominate pi; thus, ztd (p, v) ztd (p, w). 13

We use these equations during the cascading merge to maintain the labels for
each point. By Lemma 6.1, when v becomes full (and we have U(u), U(w), and
U(u)U U(w) available), we can determine the labels for all the points in U(v) in
O(1) additional time using U(v)l processors. Thus, the running time of the cascading
merge algorithm, even with these additional label computations, is still O(log n) using
n processors. Moreover, after v’s parent becomes full we no longer need U(v), and
can deallocate the space it occupies, resulting in an O(n) space algorithm, as outlined
in 2. After we complete the merge, and have computed U(root(T)), along with all
the labels for the points in U(root(T)), note that a point p U(root(T)) is a maximum
if and only if ztd(pi, root(T))<-_ z(pi) (there is no point that two-dominates Pi and has
z-coordinate greater than z(pi)). Thus, after completing the cascading merge we can
construct the set of maxima by compressing all the maximum points into one contiguous
list using a simple parallel prefix computation. We summarize in the following theorem.

THEOREM 6.2. Given a set Vofn points in ,3, we can construct the set M ofmaxima
points in V in O(log n) time and O(n) space using n processors in the CREW PRAM
model, and this is optimal.

Proof We have established the correctness and complexity bounds for parallel
three-dimensional maxima finding in the discussion above. Kung, Luccio, and Preparata
[20] have shown that this problem has an f(n log n) sequential lower bound (in the
comparison model). Thus, we can do no better than O(log n) time using n proc-
essors. 13

It is worth noting that we can use roughly the same method as that above as the
basis step of a recursive procedure for solving the general k-dimensional maxima
problem. The resulting time and space complexities are given in the following theorem.
We state the theorem for k -> 3 (since the two-dimensional maxima problem can easily
be solved in O(log n) time and O(n) space by a sorting step followed by a parallel
prefix step).
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THEOREM 6.3. For k>-_3 the k-dimensional maxima problem can be solved in
O((log n) k-2) time using n processors in the CREW PRAM model.

Proof The method is a straightforward parallelization of the algorithm by Kung,
Luccio, and Preparata [20], using a procedure very similar to that described above as
the basis for the recursion. We leave the details to the reader. 7

Next, we address the two-set dominance counting problem. We also show how
the multiple range-counting problem and the rectilinear segment intersection counting
problem can be reduced to two-set dominance problems efficiently in parallel.

6.2. The two-set dominance counting problem. In the two-set dominance counting
problem we are given a set A {q, q2, , qm} and a set B {r, r2, , rl} of points
in the plane, and wish to know for each point r in B the number of points in A that
are two-dominated by ri. For simplicity, we assume that the points have distinct x
(respectively, y) coordinates. Our approach to this problem is similar to that of the
previous subsection, in that we will be performing a cascading merge procedure while
maintaining two labeling functions for each point. In this case the labels maintain for
each point pi(from A or B) how many points of A are one-dominated by Pi and also
how many points of A are two-dominated by Pi. As in the previous solution, the first
label is used to maintain the second. The details follow.

Let Y={p,p,... ,P/m} be the union of A and B with the points listed by
increasing y-coordinate, i.e., y(pi)<y(pi+l). We can construct Y in O(log n) time
using n processors 13], where n + m. Our method for solving the two-set dominance
counting problem is similar to the method used in the previous subsection. As before,
we let T be a complete binary tree with leaf nodes v, v,. ., vn, in this order, and
in each leaf node vi we store the list U(vi) (-, p) (- still being a special symbol
such that x(-oe)<x(pi) and y(-oe)< Y(Pi) for all points Pi in Y). We then perform
a generalized cascading merge from the leaves of T as in Theorem 2.5, basing com-
parisons on increasing x-coordinates of the points (not their y-coordinates). We let
U(v) denote the sorted array of the points stored in the descendants of v T sorted
by increasing x-coordinate. For each point Pi in U(v) we store two labels: nod(pi, v)
and ntd(pi, v). The label nod (p, v) is the number of points in U(v) that are in A and
are one-dominated by p, and the label ntd(p, v) is the number of points in U(v) that
are in A and are two-dominated by pi. Initially, the nod and ntd labels are only defined
for the leaf nodes of T. That is, nod(pi, Vi) nod (-o, Vi ntd (pi, Vi) ntd (-e, Vi
0. For each Pi Y we define the function XA(Pi) as follows: XA(Pi)= if pie A, and
XA(Pi) =0 otherwise. (We also use pred (Pi, v) to denote the predecessor of p in U(v).
As we are performing the cascading merge, we update the labels nod and ntd based
on the equations in the following lemma (see Fig. 8).

LEMMA 6.4. Letpi be an element of U(v) and let u= lchild (v) and w= rchild (v).
Then we have the following:

nod Pi, U + nod (pred Pi, W) W) -+- XA(pred Pi, W))
(11) nod(pi, v)=

nod(pred (Pi, u), u)+ nod(pi, w)+Xa(pred (Pi, u))
ifpi
if pi U(w),

ntd(pi, u) ifpi U(u),
(12) ntd(pi, v)=

nod(pred (Pi, tZ), U)-k- ntd(pi, w)+XA(pred (Pi, U)) ifp U(w).

Proof Consider (11). For any point Pi U(u) the number of points one-dominated
by Pi is equal to the number of points in U(u) that are in A and one-dominated by
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i pred(pi,u)
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FIG. 8. The combining step for dominance counting. Points to the left of the dotted line are one-dominated
by Pi (respectively, Pi), and points enclosed in dashed lines are two-dominated by Pi (Pj).

Pi, plus the number of points in U(w) that are in A and one-dominated by pred(pi, w),
plus one if pred (Pi, w) is in A (since the predecessor of Pi is one-dominated by Pi).
Thus, we have the equation for the case when pie U(u). The case when Pi U(w) is
similar. Next, consider (12). By our construction, every point in U(u) has y-coordinate
less than the y-coordinate of every point in U(w). So if pi U(u), then the number
of points in U(v) that are in A and are two-dominated by Pi is precisely ntd(pi, u),
since p cannot two-dominate any points in U(w). If pie U(w), on the other hand,
then the number of points in U(v) that are in A and two-dominated by p is the number
of points in U(u) that are in A and one-dominated by pred (pi, u), plus the number
of points in U(w) that are in A and two-dominated by Pi, plus one if pred (p, u) is
in A. This is exactly (12) in this case.

By Lemma 6.4, when v becomes full (and we have U(u), U(w), and U(v) U(u)
U(w) available), we can determine the labels for all the points in U(v) in O(1)
additional time using U(v)[ processors. Thus, the running time of the cascading merge
algorithm, even with these additional label computations, is still O(log n) using n
processors. After we complete the merge, and have computed U(root (T)), along with
all the labels for the points in U(root (T)), then we are done. We summarize in the
following theorem.

THEOREM 6.5. Given a set A of points in the plane and a set B of m points in the
plane, we can compute for each point p in B the number ofpoints in A two-dominated by
p in O(log n) time and O(n) space using n processors in the CREW PRAM model, where
n + m, and this is optimal.

Proof The correctness and complexity bounds should be apparent from the
discussion above. To prove the lower bound note that the two-dimensional maxima
problem can be reduced to dominance counting in O(1) time using n processors (see
[17]). Since the maxima problem has an (n log n) lower bound [20] in the comparison
model, we conclude that we can do no better than O(log n) time using n processors
in the CREW PRAM model.

There are a number of other problems that can be reduced to two-set dominance
counting. We mention two here, the first being the multiple range-counting problem:



528 M. J. ATALLAH, R. COLE, AND M. T. GOODRICH

given a set V of points in the plane and a set R of m isothetic rectangles (ranges)
the multiple range-counting problem is to compute the number of points interior to
each rectangle.

COROLLARY 6.6. Given a set V of points in the plane and a set R of m isothetic
rectangles, we can solve the multiple range-counting problem for V and R in O(log n)
time and O( n space using n processors, where n + m.

Proof Let d(p) be the number of points in V two-dominated by a point p.
Edelsbrunner and Overmars [15] have shown that counting the number of points
interior to a rectangle can be reduced to dominance counting. That is, given a rectangle
r= (p, P2, P3, P4) (where vertices are listed in counterclockwise order starting with
the upper right-hand corner), the number of points in V interior to r is d(p)- d(p2) +
d(p3)-d(p4). Therefore, it suffices to solve the two-set dominance counting
problem. [3

Another problem that reduces to two-set dominance counting is rectilinear segment
intersection counting: given a set S of n rectilinear line segments in the plane, determine
for each segment the number of other segments in S that intersect it.

COROLLARY 6.7. Given a set S of n rectilinear line segments in the plane, we can
determinefor each segment the number ofother segments in S that intersect it in O(log n)
time and O( n) space using n processors in the CREW PRAM model

Proof Let U1 (U2) be the set of left (right) endpoints of horizontal segments, and
let d(p) (d(p)) denote the number of points in U1 (Uz) two-dominated by p. For
any vertical segment s, with upper endpoint p and lower endpoint q, the number of
horizontal segments that intersect s is dl (p) -dl (q) + d2(q) d(p). This is because
d(p)-dl(q) (respectively, d2(p)-d2(q)) counts the number of horizontal segments
with a left (right) endpoint to the left of s and y-coordinate in the interval [y(q), y(p)].
Thus, d(p) d(q) (d(p) dz(q)) counts the number of horizontal segments with
left endpoint to the left of s, right endpoint to the right of s, and y-coordinate in the
interval [y(q), y(p)] (i.e., the set of horizontal segments that intersect s). [3

The final problem we address at is visibility from a point.

6.3. The visibility from a point problem. Given a set of line segments S=
{s, s2,’’ ", sn} in the plane that do not intersect, except possibly at endpoints, and a
point p, the visibility from a point problem is to determine the part of the plane that
is visible from p assuming every si is opaque. Intuitively, we can think of the point p
as a specular light source, the segments as walls, and the problem to determine all the
parts of the plane that are illuminated. We can use the cascading divide-and-conquer
technique to solve this problem in O(log n) time and O(n) space using n processors.
Without loss of generality, we assume that the point p is at negative infinity below all
the segments. The algorithm is essentially the same if p is a finite point, except that
the notion of segment endpoints being ordered by x-coordinate is replaced by the
notion that they are ordered radially around p. In other words, it suffices to compute
the lower envelope of the n segments to give a method for computing the visibility
from a point. For simplicity of expression, we also assume that the x-coordinates of
the endpoints are distinct.

In the previous two subsections the set of objects consisted of points, but in the
visibility problem we are dealing with line segments. The method is slightly different
in this case. In this case, we store the segments in the leaves of a binary tree and
perform a cascading merge of the x-coordinates of intervals of the x-axis determined
by segment endpoints. We maintain a single label for each interval which represents
the segment which is visible from - on that interval. The details follow.
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Let T be a complete binary tree with leaf nodes v,, v2," "’, v, ordered from left
to right. We associate the segment si with the leaf vi and at vi store the list U(vi)=
(--o0, Pl, P2), where Pl and/92 are the two endpoints of s, with x(pl)< x(p2), and
is defined such that x(-oe) < x(p) and y(-oe) < y(p) for all points p. We then perform
a generalized cascading merge from the leaves of T as in Theorm 2.5, basing com-
parisons on increasing x-coordinates of the points. For each internal node v we let
U(v) denote an array of the points stored in the descendants of v T sorted by
increasing x-coordinates. For each point p in U(v) we store a label vis(p, v) which
stores the segment with endpoints in U(v) that is visible in the interval
(x(p), x(suce(p, v))), where suec(p, v) denotes the successor of pi in U(v) (based
on x-coordinates). Initially, the vis labels are only defined for the leaf nodes of T.
That is, if U(v)= (-oe, p,, P2), where si =P, P2, then vis(-oe)= +oe, vis(p)= si, and
vis(p2) +oe. We use pred (p, v) to denote the predecessor of p in U(v). As we are
performing the cascading merge, we update the vis labels based on the equation in
the following lemma (see Fig. 9).

LEMMA 6.8. Let p be an element of U(v) and let u lchild (v) and w rchild (v).
Then we have the following (if two segments s and sj are comparable by the "above"

Before merge: u(.) u

Pl P2 P3 P4 P5 P6 P7 P8 P9 PlO Pll P12 (PI4)

I1 13 !61718 !111121
pr a(p,, 01 a 15 a II0Ii01

After merge: U(v)

191 192 P3 194 I95 P6 P7 P8 P9 Pl0 Pll P12 P13 (P14)
FIG. 9. An example of visibility merging. The dashed segments correspond to the visible region for X(u)

and the solid segments correspond to the visible regionforX(w). For simplicity, we store the pointers pred Pi, u)
and pred pi, w) in arrays and denote each point pi by its index Note that points are never removed, even if
the same segment defines the visible region for many consecutive intervals (e.g., P3 through PT).
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relation, then we let min {si, s.} denote the lower of the two):

min {vis(pi, u), vis(pred (Pi, w), w)}
vis(pi, v)=

min {vis(pred (Pi, u), u), vis(pi, w)}
ifp U(u),
ifp U(w).

Proof If we restrict our attention to the segments with an endpoint in U(n),
then for any point pie U(u) the segment visible (from -oo) on the interval
(x(pi), x(succ(p, v))) is the minimum of the segment visible on the interval (x(pi),
x(suce(pi, u))) and the segment that is visible on the interval (x(pred (p, w)),
x(succ(pred (p, w), w))). This is because the interval (x(p), x(succ(p, v))) is exactly
the intersection of the interval (x(p), x(succ(p, u))) and the interval (x(pred (pi, w)),
x(succ(pred (p, w), w))), and there is no segment in U(v) with an endpoint interior
to the interval (x(p), x(succ(p, v))). Thus, vis(p, v) is equal to minimum of vis(p, u)
and vis(pred (pi, w), w). The case when p U(v) is similar.

By Lemma 6.8, after merging the lists U(u) and U(w), we can determine the
labels for all the points in U(v) in O(1) additional time using IU(v)l processors. Thus,
the running time of this generalized cascading merge algorithm is still O(log n) using
n processors. After we complete the merge and have computed U(root(T)), along
with all the vis labels for the points in U(root(T)), then we can compress out duplicate
entries in the list (vis(pl, root(T)), vis(p2, root(T)), vis(p2n, root(T))) using a
parallel prefix computation to construct a compact representation of the visible portion
of the plane. We summarize in the following theorem.

THEOREM 6.9. Given a set S of n nonintersecting segments in the plane, we can find
the lower envelope ofS in O(log n) time and O(n) space using n processors in the CREW
PRAM model, and this is optimal.

Proof The correctness and complexity bounds follow from the discussion above.
Since we require that the points in the description of the lower envelope be given by
increasing x-coordinates, we can reduce sorting to this problem, and thus can do no
better than O(log n) time using n processors.

7. EREW PRAM implementations. In this section we briefly note that the same
techniques as employed by Cole in [13] to implement his merging procedure in the
EREW PRAM model (no simultaneous reads) can be applied to our algorithms for
generalized merging, fractional cascading, constructing the plane-sweep tree, three-
dimensional maxima, two-set dominance counting, and visibility from a point, resulting
in EREW PRAM algorithms for these problems. Apparently, we cannot apply his
techniques to our algorithms for trapezoidal decomposition and segment intersection
detection, however, since our algorithms for these problems explicitly use concurrent
reads (in the multilocation steps).

Applying his techniques to our algorithms results in EREW PRAM algorithms
with the same asymptotic bounds as the ones presented in this paper, except that the
space bounds for the problems addressed in 6 all become O(n log n). The reason
that his techniques increase the space complexity of these problems is because of our
use of labeling functions. Specifically, it is not clear how to perform the merges on-line
and still update the labels in O(1) time after a node becomes full. This is because a
label whose value changes on level may have to be broadcasted to many elements
in level l-1 to update their labels, which would require f(log n) time in this model
if there were O(n) such elements.

We can get around the problem arising from the labeling functions, however. For
the three-dimensional maxima problem and the two-set dominance counting problem,
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we separate the computation ofthe U(v) lists and computation of the labeling functions
into two separate steps, rather than "dovetailing" the two computations as before.
Each of the labeling functions we used for these two problems can be redefined so as
to be EREW-computable. Specifically, the label for an element p in U(v), on level l,
can be expressed in terms of a label pref(p, v) and a label up(p, v), where pref(p, v)
can be computed by performing a parallel prefix computation [21], [22] in U(v) and
up(p, v) can be defined in terms of pref(pred (p, lchild (v)), Ichild (v)),
pref(pred (p, rchild (v)),rchild (v)), and the up label p had on level /+1 (say, in
U(rchild (v)) if pc U(rchild (v))). In particular, for the three-dimensional maxima
problem pref(p, v)= zod(p, v) and up(p, v)= ztd(p, v), and for the two-set dominance
counting problem pref(p, v)= nod(p, v) and up(p, v)= ntd (p, v). We can compute
all the pref(p, v) labels in O(log n) time using n processors by assigning [I U(v)l/log n
processors to each node v [21]. We can then broadcast each pref(p, v) label to the
successor of v in sibling(v), which takes O(log n) time using n processors by assigning
[IU(v)l/log n] processors to each node v. Finally, we can compute all the up(p, v)
labels in O(log n) additional time by assigning a single processor to each point p and
tracing the path in the tree from the leaf node that contains p up to the root. This is
an EREW operation because computing all the up(p, v) labels only depends upon
accessing memory locations associated with the point p.

The EREW solution to the visibility from a point problem requires O(n log n)
space for a different reason, namely, because we can solve it by constructing the
plane-sweep tree for the segments (we need not have the Cover(v)’s in sorted order,
however), computing the lowest segment in each Cover(v), and then performing a
top-down parallel min-finding computation to find the segment visible on each interval
(Pi, Pi+l). Since these are all straightforward computations, given the discussion presen-
ted earlier in this paper, we leave the details to the reader.

8. Conclusion. In this paper we gave several general techniques for solving prob-
lems efficiently using parallel divide-and-conquer. Our techniques are based on non-
trivial generalizations of the merge-sorting approach of Cole [13]. It is interesting to
note that Cole’s algorithm improved the previous results by a constant factor, whereas
our algorithms improve the previous results asymptotically.

Two of our techniques involved methods for performing fractional cascading and
a generalized version of the merge-sorting problem optimally in parallel. Our method
for doing fractional cascading runs in O(log n) time using In/log n processors, and,
if implemented as a sequential algorithm, results in a sequential alternative to the
method of Chazelle and Guibas [12] for fractional cascading.

We also showed how to apply the generalized merging procedure and fractional
cascading to efficiently solve several problems by "cascading" the divide-and-conquer
paradigm. For three of the problems--trapezoidal decomposition, planar point loca-
tion, and segment intersection detection--the method involved merging in the line
segment partial order, and required considerable care to avoid situations in which the
algorithm would halt because it attempted to compare two incomparable segments.
All three of these algorithms ran in O(log n) time using n processors, which is optimal
for all but the point location problem. In addition, since our algorithm for doing planar
point location results in a query time of O(log n), our result immediately implies an
O(log n) time, n processor solution to the problem of constructing the Voronoi diagram
of n planar points, using the algorithm of Aggarwal et al. [1].

We showed how to apply the cascading divide-and-conquer technique to problems
that can be solved by merging with labeling functions. We used this approach to solve



532 M. J. ATALLAH, R. COLE, AND M. T. GOODRICH

the three-dimensional maxima problem, the two-set dominance counting problem, the
rectilinear segment intersection counting problem, and the visibility from a point
problem. Our algorithms for these problems all ran in O(log n) time using n processors,
which is optimal.
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Abstract. A new two-person pebble game that models parallel computations is defined. This game
extends the two-person pebble game defined by Dymond and Tompa [J. Comput. System Sci., 30 (1985),
pp. 149-161] and is used to characterize two natural parallel complexity classes, namely LOGCFL and AC.
The characterizations show a fundamental way in which the computations in these two classes differ. This
game model also unifies the proofs of some well-known results of complexity theory.
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1. Introduction. Games have provided a useful framework for studying computa-
tional models. The game abstraction helps us to focus on the fundamental aspects of
computation in the models of interest by stripping away some of the inessential details.
The view of computations by an alternating Turing machine as a two-person game is
one of the most noted examples of such use. The one-person pebble game (see the
survey by Pippenger [PiS0]) that models deterministic and nondeterministic evaluation
of straight-line programs is another game that has found wide applications in computer
science.

This paper defines and studies a new two-person pebble game that models certain
synchronous parallel computations. This game extends the two-person pebble game
defined by Dymond and Tompa [DT85] in two ways: (a) the game is played on a
Boolean circuit taking into consideration the types of the gates, rather than on an
uninterpreted graph, and (b) the two players’ roles are made completely symmetric.

Although the original game defined by Dymond and Tompa [DT85] modeled
some essential features of alternating Turing machine computations, the extension
proposed here more accurately models general alternating computations. As an indica-
tion of this improved accuracy, the new game is used to characterize two natural
parallel complexity classes. Previous versions of pebble games apparently could not
be used to characterize standard complexity classes, since they were played on uninter-
preted graphs. The classes characterized in this paper are LOGCFL and AC1. LOGCFL
is the class of languages log space reducible to context-free languages. AC is the class
of languages accepted by (1) a concurrent-read, concurrent-write parallel random
access machine (CRCW PRAM) in polynomial hardware and O(log n) time or,
equivalently, (2) an alternating Turing machine in space O(log n) and alternation
depth O(log n) or, equivalently, (3) a uniform family of unbounded fan-in circuits of
polynomial size and O(log n) depth [SV84].

As another application, this game is shown to unify in a single framework the
proofs of the following three well-known results of complexity theory: (1) Savitch’s
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theorem that nondeterministic space S is contained in deterministic space S [Sa70];
(2) Ruzzo’s NC algorithm for context-free language recognition [Ru80]; and (3)
Borodin and Ruzzo’s simulation of simultaneous space and alternation bounded
alternating Turing machines by simultaneous space and time bounded alternating
Turing machines [CKSS1], [Ru81]. More generally, the new game provides a simple
understanding of the combinatorial structure of parallel computations. This makes it
a useful device for discovering new parallel algorithms.

In order to motivate the new pebble game, it is helpful to question why it has
certain characteristics:

(1) Why does the game use two players, rather than one as in the standard pebble
game? The two competing players model, respectively, the existential and universal
moves of an alternating Turing machine, just as the single player in the "black" or
"black and white" pebble games [Pi80] models the moves of a sequential machine.
The close relationship between alternating Turing machines and other models of parallel
computation such as Boolean circuits and PRAMs [Ru81], [SV84] makes the two-
person game a good model of parallel computation.

(2) Why should the gate type (AND, OR) enter into the rules of the game? It is
often the case that a circuit has a more efficient pebbling when the interpretation of
gates is exploited than it does in the uninterpreted game defined by Dymond and
Tompa [DT85]. This translates into more efficient parallel algorithms. The Cocke-
Kasami-Younger algorithm for context-free language recognition [HU69] is an
example of a circuit for a natural problem for which such a speedup can be demonstrated
[Ve86].

(3) Why are the roles of the two players made symmetric ? Without this symmetry,
the game captures those alternating computations of the form "existentially guess and
universally verify" [Sa70], [Ru80]. By giving the universal player a more active role
than merely verifying the guesses of the existential player, the game captures the
symmetry between existential and universal moves found in more general alternating
computations. In fact, it will be seen that the new computations thus captured are
exactly those in AC- LOGCFL.

As noted earlier, the game defined in this paper provides a setting for examining
the relationship between the two parallel complexity classes LOGCFL and AC1. It is
known that LOGCFL

_
AC [Ru80]. Showing that the inclusion is proper is likely to

be difficult, as it would imply that is not equal to DSPACE(log n), settling this
celebrated open problem in complexity theory. This is because of the following
relationship among these complexity classes [Co85]:

DSPACE(log n)
_
LOGCFL AC NC

___
NC .

For many problems in LOGCFL the algorithms that show their membership in
that class also show their membership in AC. However, these algorithms do not use
the full power of AC computations. The two-person game defined in this paper
provides a model of computation in which this perceived difference can be quantified.
This is done by characterizing the two classes using the same measures of resources
in the game model. The results so obtained not only illustrate the striking similarity
between these two classes, but also isolate the fundamental way in which they differ:
the recognition of languages in LOGCFL does not utilize the symmetry between the
two players, whereas the recognition of languages in AC does. Thus, the results
indicate why these two classes may not be equal.

Both LOGCFL and AC have been characterized using different models of compu-
tation [Co85]. These characterizations fall into three categories: models on which
characterizations of both LOGCFL and AC are known, models on which only
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characterizations of LOGCFL are known, and models on which only characterizations
of AC are known. Among the characterizations of the first category, the only result
that characterized both of them using the same type of resources on a model of
computation is that of Immerman [Im82]. This result used the size and number of
variables needed to express properties in first-order logic as resources in the model,
and showed that LOGCFL is the class of properties expressible in O(1) variables and
O(log n) size when the universal quantifiers are restricted to being Boolean, and that
AC is the class of properties expressible using O(1) variables and O(log n) size when
the universal quantifiers are unrestricted. Considering the arity of universal quan-
tification as a resource, this showed how the languages in the two classes differed in
a fundamental way. The characterizations in this paper are in the same spirit and show
another fundamental way in which these classes differ.

As a final note, the new game suggests a new complexity measure, called "role
switches," for Boolean circuits and alternating machines. This measure captures a

higher-level notion of alternation than the standard measure of alternations between
existential and universal moves. The characterizations of LOGCFL and AC demon-
strate that these two classes differ in how much of the role-switch resource is used:
languages in LOGCFL use no role switches and those in AC use O(log n) role switches.
This resource thus can be used to define a natural hierarchy of parallel complexity
classes between LOGCFL and AC.

Section 2 contains some basic definitions. In 3, the original two-person pebble
game defined by Dymond and Tompa [DT85] is presented. In 4, the new game is
defined. In 5, the classes LOGCFL and AC are characterized using this game. In

6, the game is used to unify the three results mentioned in a previous paragraph.
Section 7 contains some concluding remarks and open problems.

2. Preliminaries. A Boolean circuit Gn with n inputs is a finite acyclic directed
graph with vertices having indegree zero or two and labeled as follows. Vertices of
indegree zero are labeled from the set {0, 1, Xl, x2," , xn, 2, 2," ",2n}. All vertices
with indegree two (also called gates) are labeled either AND or OR. Vertices with
outdegree zero are called outputs. The evaluation of Gn on inputs of length n is defined
in the standard way. Typically, only circuits with one output vertex will be considered.
This makes it convenient to consider circuits as language acceptors.

A family of circuits is a sequence {G] n--= 0, 1, 2,...}, where the nth circuit G
has n inputs.

The size C(Gn) of a circuit G, is the number of gates in Gn. The depth of a vertex
v in a circuit is the length of a longest path from any input to v. The depth of a circuit
is the depth of its output vertex.

Not including negation gates in the definition of a Boolean circuit is done with
no loss of generality as there is a well-known technique to simulate, with a doubling
of size and no increase in depth, a Boolean circuit with negations by a Boolean circuit
in which the negations appear only at the inputs. (See, for example, [Go77].)

A family G} of circuits is said to be uniform if, on input 1", a reasonable encoding
of Gn can be generated by a deterministic Turing machine using space O(log C(Gn)).
This uniformity condition is sometimes referred to as log-space uniformity in the
literature. This uniformity condition suffices for the purposes of this paper. See the
paper by Ruzzo [Ru81] for a more detailed treatment of uniformity conditions for
circuits.

For the rest of the paper, {G,} will denote a uniform family of polynomial-size
Boolean circuits, where G, has n inputs and one output. L will denote the language
accepted by this family.
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In a directed acyclic graph or Boolean circuit, u is an immediate predecessor of v
if and only if (u, v) is a directed edge, and u is a predecessor of v if and only if there
is a directed path from u to v. The predecessor relation is an irreflexive and transitive
relation.

The notion of an accepting subtree can be defined for Boolean circuits by analogy
to the notion of accepting subtrees for alternating Turing machines [Ru80]. Consider
the tree-equivalent T(Gn) of the circuit Gn. (The tree-equivalent of a graph is obtained
by replicating vertices whose outdegree is greater than one until the resulting graph is
a tree.) Let x L be of length n. An accepting subtree H of a circuit Gn on input x is
a subtree of T(G.):

That includes the output vertex;
That includes both the immediate predecessors of any AND vertex included

in H;
That includes exactly one immediate predecessor of any OR vertex included

in H; and
In which any included vertex of indegree zero has value as determined by

the input x.
The following fact is easy to verify.
FACT. G. evaluates to 1 on input x if and only if there exists an accepting subtree

of G. on input x.

3. The uninterpreted game. The two-person pebble game defined by Dymond and
Tompa [DT85] is played on the vertices of a directed acyclic graph by two players
called the Challenger and the Pebbler.

Rules. The Challenger begins the game by challenging any vertex v. The game
now proceeds in rounds with each round consisting of a pebbling move followed by
a challenging move. In a pebbling move, the Pebbler picks up zero or more pebbles
from vertices already pebbled and places pebbles on any nonempty set of vertices. In
a challenging move, the Challenger either rechallenges the currently challenged vertex
v, or challenges one of the vertices that acquired a pebble in the current round.

The Challenger loses the game at a vertex v if, immediately following the Chal-
lenger’s move, v is the current challenged vertex and all immediate predecessors of v
have pebbles on them.

This two-person game will be referred to as the uninterpreted game in the rest of
the paper.

If G is thought of as a circuit computing some function, then a play of this
two-person game corresponds to an alternating implementation of that circuit, in the
following sense. A pebble placed on a vertex v by the Pebbler corresponds to existen-
tially guessing the value computed at v. A move of the Challenger corresponds to
universally verifying each of those guesses, plus the fact that those guesses lead to the
correct value computed at the current challenged vertex.

Resources. There are three resources of interest in a play of this game: space, time,
and rounds. The space used is the maximum number of pebbles on the graph at any
point in the game, the time is the number of pebble placements, and the rounds is the
number of rounds in the play.

The game on a graph with n inputs is said to take space p(n) (time t(n), rounds
r(n)), if and only if there is a winning strategy for the Pebbler such that, for all plays
by the Challenger, the Pebbler uses at most space p(n) (time t(n), rounds r(n),
respectively).

Illustrations of the game on a simple path with N vertices and a tree with N
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vertices are presented below. These two results will be useful later.
LEMMA 1. The uninterpreted game on a path of N vertices can be played with two

pebbles and O(log N) time.

Proof A simple divide-and-conquer strategy is used to prove this lemma.
The game on a binary tree uses the following tree-cutting lemma. This tree-cutting

lemma is a classical result that was first used by Lewis, Stearns, and Hartmanis [LSH65]
to show that context-free languages are in DSPACE(log n).

LEMMA 2. Let T be a tree with N vertices, each of which has at most two children.
Then there is a vertex s of T such that the subtree rooted at s has p vertices, where
N/3<-p<2N/3+l.

(See the paper by Lewis, Stearns, and Hartmanis [LSH65] or the book by Hopcroft
and Ullman [HU69] for a proof.)

Ruzzo [Ru80] discovered an efficient parallel algorithm for context-free language
recognition, based on Lemma 2. The essence of his algorithm is captured in the
following lemma.

LEMMA 3. Let T be a tree with N vertices, each of which has at most two children.
Then the uninterpreted game on T can be played using 0(1) pebbles and O(log N) time.

Proof Let r be the root of T with the initial challenge. Let s be an internal vertex
of T as in Lemma 2. Let T2 be the subtree rooted at s and T1 be the subtree rooted
at r with all vertices except s of T2 deleted from it. Suppose the Pebbler pebbles s. If
the Challenge is moved to s, the game is confined to T2. If the Challenge is retained
at r, the game is confined to T. In either case, the size is decreased by a constant
factor. Therefore, in O(log N) steps the game will be over.

The problem with this strategy is that the number of pebbled vertices is ft(log N),
as no pebbles are picked up. To keep the number of pebbled vertices constant, a
two-phase strategy is adopted. Let r, the current challenged vertex, be the root of a
subtree T1 with three pebbled leaves. Given three distinguished leaves of a binary tree,
there is an internal vertex v that is an ancestor of exactly two of them. The Pebbler
pebbles v. This divides the tree T into two subtrees T, the subtree with v as the
root, and T, the subtree rooted at r with all vertices except v of T12 deleted from
T. Whether the Challenge is moved or retained, the subtrees involved have only two
pebbled leaves, so two pebbles can be picked up. It is possible that v may not induce
a balanced split of T. This is taken care of in the next round, when the Pebbler
chooses a vertex that causes a balanced split as guaranteed by Lemma 2. Therefore,
the size of the subtree to which the game is confined decreases by a constant factor
every two rounds.

This strategy uses four pebbles and O(log N) time. It is possible to reduce the
number of pebbles used to two with O(log N) time by a slightly more involved pebbling
strategy. The details are left to the interested reader. El

3.1. Motivation for extensions. This section examines the two-person pebble game
played on the graph underlying a Boolean circuit. A play of this game on a circuit
can be viewed as a parallel evaluation of the circuit on some input. The Pebbler in
the game is like a prover asserting values for the gates on which it places pebbles and
the Challenger is like a verifier who verifies these assertions in parallel. Given an input
x in the language accepted by a circuit Gn, the time to play the game on Gn corresponds
to the time to discover a "proof" that the circuit evaluates to on input x. This suggests
a correspondence between the resources of the game and the resources of circuits that
accept the language. In fact, the following result by Dymond and Tompa [DT85]
formalizes such a relationship.
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THEOREM. Let G be a Boolean circuit that accepts a finite language L. If the
uninterpreted game can be played on G in time t, then L is accepted by a Boolean circuit
n of depth O(t).

This motivates the discovery of efficient pebbling strategies on Boolean circuits.
One way of achieving efficiency is to exploit some of the properties of Boolean circuits.
Two such properties are discussed below.

Consider the n input Boolean circuit Gn that is a complete binary tree. The
uninterpreted game on the graph underlying this circuit can be played in log n time
and two pebbles, by always pebbling the immediate predecessors of the challenged
vertex. It can be shown that fl(log n) time is required to play the uninterpreted game
on Gn using any number of pebbles. Suppose now that all gates of Gn are OR gates.
Then a "proof" that the circuit evaluates to on some input x is a path of log n
vertices from some input with value to the output. By Lemma l, the game can be
played on this path in log log n time and two pebbles. There are circuits of other
natural problems, such as Boolean matrix multiplication and context-free language
recognition, for which similar speedups are made possible by exploiting the types of
the gates in the circuit.

Consider the following natural circuit Gn for computing the inner product of two
Boolean vectors of length m each. Gn consists of one output and n 2m inputs. The
output is the root of a balanced binary tree of OR gates whose m leaves are AND
gates with two inputs each. The argument given above for playing the game on a tree
of OR gates applies to this circuit also. That is, without taking into consideration the
gate types, any pebbling of this circuit with only a constant number of pebbles takes
fl(log n) time. If the gate types are taken into account a suitably modified game can
be played with two pebbles and O(log log n)time.

For context-free language recognition, consider the Cocke-Kasami-Younger
algorithm. It can be shown that the game takes (n) time on this circuit if the gate
types are not taken into account, but can be played on this circuit with two pebbles
and O(log n) time if they are Ire86].

This motivates extending the uninterpreted game to take into consideration the
types of the gates of the circuit on which the game is played.

Suppose now that all the gates of the binary tree circuit Gn are AND gates. In
this case, a proof that the circuit evaluates to 0 on some input x is a path of log n
vertices from some input with value 0 to the output. By Lemma 1, the game can be
played on this path in log log n time with two pebbles. A proof that Gn evaluates to

will be simply the failure to demonstrate such a path in log log n time with two
pebbles. In other words, a proof that a circuit Gn evaluates to on x can consist of
showing that it does not evaluate to 0 on x. Intuitively, we would like to take advantage
if the complement of the problem is easier. In general, when the circuit consists of
both OR and AND gates, sometimes it will be more efficient to demonstrate that a
given gate evaluates to 1, and sometimes 0.

This motivates the second extension of the uninterpreted game to incorporate
duality between the two players.

4. The dual game. The new game obtained by extending the uninterpreted game
will be referred to as the dual interpreted two-person pebble game (or dual game, for
short). This game is played by two players called Player 0 and Player 1 on the vertices
of a Boolean circuit Gn together with its input x. The objective of Player 0 (Player 1)
is to establish that the output of the circuit evaluates to 0 (1). Thus, a pebble placement
or challenge on a gate v by Player 0 (Player 1) corresponds to asserting that v evaluates
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to 0 (1). At any point, one of the players takes on the role of the Challenger and the
other that of the Pebbler. The role of a player is automatically determined as part of
the circuit information as follows. The gates in Gn are partitioned into two sets, those
of "challenge type" 0 and those of "challenge type" 1. A challenge placed on a gate
of challenge type 0 (challenge type 1) causes Player 0 (Player 1) to be the Challenger
in the next round. For the remainder of this paper, all circuits will be assumed to
contain this additional bit per vertex. A Boolean circuit augmented with this role
information for each of its gates will be referred to as an augmented circuit. For
augmented uniform circuits, it will be assumed that this role information is available
from the log space uniformity machine.

A challenge by Player 0 (Player 1) will be referred to as a 0-challenge (1-challenge).
Similarly, a pebble placed by Player 0 (Player 1) will be referred to as a 0-pebble
(1-pebble).

Rules. The initial challenge is on the output gate. The game proceeds in rounds
with a round consisting of the following three parts: (a) If the game is not over at the
currently challenged vertex u according to the conditions below, then Player 0 is the
Challenger for this round if u is of challenge type 0 and the Pebbler otherwise. (b) In
the pebbling move, the Pebbler picks up zero or more of its own pebbles from vertices
already pebbled and places pebbles on any nonempty set of vertices. (c) In the
challenging move, the Challenger either rechallenges the currently challenged vertex,
or challenges one of the vertices that acquired a pebble in the current round.

Winning/losing conditions. Player wins the game if, immediately following the
Challenger’s move, the current challenged vertex is an input with value 1, or an OR
gate at least one of whose immediate predecessors is 1-pebbled, or an AND gate both
of whose immediate predecessors are 1-pebbled. Player 0 wins if, immediately following
the Challenger’s move, the current challenged vertex is an input with value 0, or an
OR gate both of whose immediate predecessors are 0-pebbled, or an AND gate at
least one of whose immediate predecessors is 0-pebbled. It is also possible to have a
winner in an infinite play of the game, namely that player (if either) who is the Pebbler
in only finitely many rounds. (The purpose of this last rule is to force the eventual
loser to make progress as the Pebbler.)

Resources. There are four resources of interest in a play of this game: space, time,
rounds, and role switches.

The game on an augmented circuit Gn with input x L of length n is said to use
space p(n) (time t(n), rounds r(n), role switches s(n), respectively) if and only if
there is a strategy for Player 1 such that, for all plays by Player 0, Player wins using
at most p(n) 1-pebbles (t(n) 1-pebble placements, r(n) rounds in which Player is
the Pebbler, s(n) role switches between pebbling and challenging roles, respectively).
Resources when x L are defined by interchanging Player 0 and Player 1. The aug-
mented circuit Gn is said to be pebbleable in space p(n) (time t(n), rounds r(n), role
switches s(n), respectively) if and only if, for all x of length n, the game on Gn with
input x uses at most space p(n) (time t(n), rounds r(n), role switches s(n), respectively).
Note that the loser’s space, time, and rounds are not even counted.

These notions should all be defined more precisely. This is done by considering
the game tree associated with the game. The reader willing to proceed on an intuitive
level may skip the remainder of this section.

The game tree is defined in terms of configurations and moves of the game. Fix
an augmented circuit Gn and its input x.

A configuration of the game is a tuple (t, P, Po, R, Ro, v) where:
{P, C} indicates whether it is the Pebbler’s or the Challenger’s turn to move;
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P is the set of vertices with 1-pebbles on them from previous rounds;
Po is the set of vertices with 0-pebbles on them from previous rounds;
R is the set of vertices 1-pebbled in the current round;
Ro is the set of vertices 0-pebbled in the current round; and
v is the current challenged vertex.
The initial configuration of the game is (P, , , , , s), where s is the output

of the circuit.
A configuration (P, P, Po, , , v) is terminal if v is an input, or an OR (AND)

gate with some (both) of its immediate predecessors in P or both (some) of its
immediate predecessors in Po.

A move in the game is made in accordance with a binary relation on configur-
ations defined as follows (where Po, P, So, and $1 are arbitrary sets of vertices, and
Ro and R1 are arbitrary

(P, P,, Po, , , v)
(P, P,, Po, , , v) that

(P, P1, Po, , , v)
(P, P,, Po, , , v) that

(C,P,,Po, R,,, v
(C, Pl, Po,, Ro, v

nonempty sets of vertices):- (C, P,-S,, Po, R,,,
are not terminal and where

for all configurations
v is of challenge type 0;- (C, P1, P0- So, , Ro, v), for all configurations

are not terminal and where v is of challenge type 1;
I- (P, P1 [,-J R,, Po, , , Ul), for all- (P, El, Po U Ro, , , Uo), for all Uo Ro tA { v}.

The game tree T is a maximal rooted tree whose nodes are labeled by configurations
of the game, and whose root is labeled by the initial configuration, and whose
edge relation is given by . Note that the leaves of the tree are labeled by terminal
configurations.

A finite play of the game is a finite path in the game tree from the root to some
leaf labeled by the configuration (P, P1, Po, , , v). It is a winningfinite playfor Player
1 if v is an input with value 1, or if v is an OR gate at least one of whose immediate
predecessors is in P,, or if v is an AND gate both of whose immediate predecessors
are in P1; otherwise it is a winning finite play for Player O. An infinite path II in the
game tree is a winning infinite play for the player (if either) that is the Pebbler in only
finitely many configurations on II.

A winning strategy for Player 1 (if it exists) is a subtree W of T such that:
(1) W contains the root of T;
(2) W contains exactly one child of every nonterminal node in W that is labeled

by a configuration in which it is Player l’s turn to move;
(3) W contains all children of every nonterminal node in W that is labeled by a

configuration in which it is Player O’s turn to move; and
(4) All paths in W are winning (finite or infinite) plays for Player 1.
A winning strategy for Player 0 is defined dually.
It is not hard to show that, for all augmented circuits G,, and for all inputs x,

exactly one of Player 0 and Player has a winning strategy. In particular, Player 1
has a winning strategy if and only if G, evaluates to 1 on input x.

Let {G.} accept the language L, where each member G, of the family is an
augmented circuit. The game on G, with input x e L can be played in space p(n) if
and only if there is a winning strategy for Player in which every pebbling configuration
(P, P1,Po,,, v) along every path satisfies ]P,]<=p(n). It can be playedin time

t(n) if and only if there is a winning strategy for Player for which every path II
satisfies ll<-t(n), where the sum is over all challenging configurations
(C, Pi P R’1,Ro, v onII. It can be played in r(n) rounds if and only if there is a
winning strategy for Player 1 for which every path has at most r(n) pebbling configur-
ations (P, P1, Po,, , v) with v of challenge type O. It can be played in s(n) role
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switches if and only if there is a winning strategy for Player in which, on any path,
there are at most s(n) edges (C, P1,Po, R1,Ro, v)-(P,P,P’o,,, u) having the
challenge types of v and u unequal.

Resources on inputs x L are defined dually, considering winning strategies for
Player 0 in place of those for Player 1.

Finally, G, is pebbleable in space p(n) (time t(n), rounds r(n), role switches s(n),
respectively) if and only if, for all x of length n, the game on Gn can be played in
space p(n) (time t(n), rounds r(n), role switches s(n), respectively). Note again that
only the resources used by the winning player are counted.

It is important to note the similarity between the definition of a winning strategy
and the definition of an accepting subtree of an alternating Turing machine.
This relationship between the two structures is critical in the correctness proof of
Theorem 11.

4.1. Example. An example is presented here to illustrate how role switches can
help in reducing the time to play the game on some Boolean circuits.

Consider a two-layered binary tree circuit Gn defined as follows. The top layer
F,, is a complete binary tree of OR gates with m leaves yl, Y2," , ym. Each of these
m leaves is the root of a complete binary tree of AND gates with rn leaves. (See Fig.
1.) Thus, G, has n m2 inputs.

// An OR trec
rn inplt,s

AND trees with
m inputs each

FIG. 1. Two-layered binary tree circuit.

Suppose all gates of Gn are designated as of the same challenge type, say, challenge
type 0. Then, given an input x the game on G, will take f(log m) time no matter how
many pebbles are available. Consider now allowing one role switch by designating all
OR gates as gates of challenge type 0 and all AND gates as gates of challenge type 1.

Then Gn is pebbleable in O(log log m) time and two pebbles as follows.
Let x be an input on which G, evaluates to 1. Thus, the goal is a winning strategy

for Player that does not exceed the stated bounds. Let G,,x be an accepting subtree
of G,. The output of G, is of challenge type 0 and therefore Player 1 begins the game
as the Pebbler. The subtree Gn,x starts off as a path of OR gates. Let u be the first
AND gate on this path. Player pebbles u. If Player 0 retains its challenge on the
output, then Player can win the game on the path using two pebbles, log log rn time,
and no role switches, as in Lemma 1. Suppose Player 0 moves its challenge to u. Then
a role switch occurs, so that Player 0 is the pebbler for the next round. If Player 0
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never pebbles a gate in the subtree of Gn,x rooted at u, Player retains its challenge
on u and wins using no additional resources. Suppose Player 0 pebbles a gate in this
subtree. Consider the first such move. Let w be such a gate of minimum depth among
the gates that are pebbled. Player moves its challenge to w. The depth of the challenged
gate decreases without Player using any additional resources. Therefore, in a finite
number of rounds Player wins without expending any additional resources.

Suppose now that x is an input on which Gn evaluates to 0, and a winning strategy
for Player 0 must be described. If Player never pebbles a predecessor of the challenged
gate that evaluates to 0, Player 0 retains its challenge and wins using no resources.
Whenever Player pebbles one or more predecessors of the challenged gate that
evaluate to 0, Player 0 moves its challenge to one such gate of minimum depth. In this
manner, the challenge eventually reaches an AND gate v that evaluates to 0, without
expending any of Player O’s resources. At this point Player 0 becomes the Pebbler,
and can win the game using two pebbles and log log rn time by pebbling the path from
some input with value 0 to v.

This pebbling strategy forms the basis of the proof of Theorem 10.

5. Characterizations of LOGCFL anl ACk. This section contains the main results
of the paper, namely the characterizations of the classes LOGCFL and AC.

Let PEBBLE, TIME, SWITCHES(p(n), t(n),s(n)) be the class of languages L
accepted by a uniform family {Gn} of polynomial-size augmented circuits such that
Player begins the game as the Pebbler, and such that G, is pebbleable in p(n)
pebbles, t(n) time, and s(n) role switches.

In 5.1-5.3, the following characterizations are demonstrated.
THEOREM 4. LOGCFL= PEBBLE, TIME, SWITCHES(O(1), O(log n), 0).
Proof This follows from Theorem 8 and Corollary 12 below.
ACk is defined as the class of languages recognized by alternating Turing machines

using space O(log n) and alternation depth O(logk n) [Co85].
THEOREM 5. For any k >= 1,

AC PEBBLE, TIME, SWITCHES(O(1), O(log n), O(log n)).

Proof This follows from Theorems 10 and 11 below.
In Theorem 5 note that, given the time bound, the number of role switches is as

great as possible. Such a class will be denoted simply as PEBBLE, TIME(p(n), t(n)).
As a consequence of Theorem 5, the class NC can also be characterized in terms

of the pebble game. This is because NC o ACk [Co85].
THEOREM 6. NC PEBBLE, TIME(O(1), (log n))).
It is interesting to note that the class also can be defined in this model by

bounding only the space used, i.e., PEBBLE(O(1)), where PEBBLE(p(n)) denotes
the class of languages L accepted by a uniform family {Gn} of polynomial-size
augmented circuits such that G is pebbleable in space p(n). The characterization so
obtained in 5.4 is similar to the one by Immerman [Im82], where it is shown that
is the class of properties expressible in first-order logic using O(1) variables and
polynomial size.

5.1. Game on a LOGCFL eiret. The notion of tree-size for Boolean circuits
defined below is analogous to the notion of tree-size for alternating Turing machines
[Ru80], and is useful in obtaining a circuit characterization of LOGCFL.

DEFINITION. Let x be a length n input on which G evaluates to 1. G, is said to
use tree-size Z(n) on input x if and only if there is an accepting subtree of G, of size
at most Z(n). If for every x L, G uses tree-size Z(n) on input x, then G is said to
have tree-size Z n ).
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The following lemma is the circuit analogue of the alternating Turing machine
characterization of LOGCFL [Ru80].

LEMMA 7. If L E LOGCFL, then there exists a uniform family of polynomial-size
Boolean circuits {Gn} accepting L such that {Gn} has polynomial tree-size.

Proof Let L E LOGCFL. Then, by the characterization of LOGCFL by Ruzzo
[Ru80], there is an alternating Turing machine M that accepts L within space O(log n)
and n1 tree-size. Such an alternating Turing machine can be simulated by a uniform
family of Boolean circuits with polynomial size and polynomial tree-size by using the
method of Ruzzo [Ru81 ]. (Actually, this simulation requires that the simulated alternat-
ing Turing machine be in a normal form such that only one input symbol is read along
any path of the machine’s computation tree. This is accomplished as follows. If a read
is encountered in the middle of a path, M existentially guesses the value to be read
and universally does two things: verifies that the read value is correct and, in parallel,
continues with the successor of the original read configuration as though the guess is
correct. This does not increase the tree-size by more than a constant factor.) [3

The converse of Lemma 7 can also be proved by adapting Ruzzo’s proofs [Ru80],
[RuS1].

THEOREM 8. LOGCFL PEBBLE, TIME, SWITCHES(O(1), O(log n), 0).
Proof Let L LOGCFL. By Lemma 7, there is a uniform family {Gn} of poly-

nomial-size Boolean circuits that have polynomial tree-size and accept L. All the gates
of G, are designated as gates of challenge type 0.

If the input x is not in L, then Player 0 has a winning strategy identical to that
of Player 0 in the subgraph Fm in 4.1. This strategy uses no resources, since all
vertices are of challenge type 0. If x L, let H be a polynomial-size accepting subtree
of G,. By Lemma 3, H can be pebbled in the uninterpreted game of 3 using O(1)
pebbles and O(log n) time. Player simulates this strategy on G, by pebbling a gate
whenever any of its copies in H is pebbled, and removing the pebble from a gate
whenever all of its copies in H become pebble-free. That Player wins on G, in the
same round as the Pebbler would win on H follows from the definition of accepting
subtree and the rules of the games as follows. If the Challenger loses at an input of
H, then the corresponding input in G, must have value 1, so Player 1 wins. If the
Challenger loses at an OR gate v of H, then the gate in Gn corresponding to the child
of v in H is also 1-pebbled, so Player 1 wins. Finally, if the Challenger loses at an
AND gate v of/4, then both inputs of the corresponding AND gate in Gn are 1-pebbled,
so Player 1 wins. [3

5.2. Game on an ACk circuit. The notion of alternation can be defined naturally
for Boolean circuits analogously to the notion of alternation in alternating Turing
machines. This definition is used in Lemma 9 below to obtain a circuit characterization
of ACk.

DEFINVrION. A language L is said to be accepted by a family {G} of Boolean
circuits within alternation bound A(n) if and only if, for all paths p in G, from some
input of G, to the output gate, the number of edges on p connecting an AND gate to
an OR gate or vice versa is at most A(n).

LEMMA 9. For any k >- 1, ifL ACk, then there exists a uniformfamily ofpolynomial-
size Boolean circuits {G,} accepting L such that Gn has O(log n) alternations.

Proof The proof is similar to that of Lemma 7. However, the method used there
of putting the simulated alternating Turing machine M in normal form will not do
here, as it introduces at least one alternation for every input symbol read. Instead, M
is simulated as in Borodin and Ruzzo’s theorem [Ru81] (see also Corollary 17) by an
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alternating Turing machine in normal form that uses O(S) space and O(A+S)
alternations, where S--O(log n) and A--O(logk n) are the space and alternations,
respectively, used by M.

The converse of Lemma 9 can also be proved using the alternating Turing machine
simulation of circuits by Ruzzo [Ru81].

THEOREM 10. For any k >= 1,

ACkc_ PEBBLE, TIME, SWITCHES(O(1), O(log’ n), O(log’ n)).

Proof Let {Gn} accept L using O(logk n) alternations. All OR gates are designated
as gates of challenge type 0 and all AND gates are designated as gates of challenge
type 1. Let x be an input to

Case 1. Suppose G, evaluates to 1 on input x. Then there exists an accepting
subtree H of G,. The proof that Player 1 can win the game on G, within the stated
bounds follows from the claim below.

CLAIM. If V is the current challenged gate in H, no predecessor of v is 0-pebbled,
and there are A alternations in the subtree of H rooted at v, then Player can win
the game with two pebbles, at most A + steps, and at most A role switches, where
is the number of steps required to play the uninterpreted game on the longest path of
OR gates in H. (By Lemma 1, O(log n).)

Proof of the Claim. The claim is proved by induction on A.
Basis (A =0). Suppose all gates are OR gates. Then Player 1 is the Pebbler. The

subtree of H rooted at v is a simple path of OR gates and the result follows immediately.
Suppose all gates are AND gates. Then Player 1 has a winning strategy using no

resources, since Player 1 is never the Pebbler.
Induction (A > 0). Assume that the claim is true if the number of alternations is

less than A. Let the subgraph rooted at v have A alternations.
Let v be an OR gate. Then Player is the Pebbler. The subtree of H rooted at v

starts off as a simple path of OR gates. Let u be the first AND gate on this path. Player
removes all 1-pebbles from the graph and pebbles u. If Player 0 retains its challenge

on v, then Player can win the game on the path using two pebbles, steps, and no
role switches. Suppose Player 0 moves its challenge to u. Then a role switch occurs,
so that Player 0 is the Pebbler for the next round. The subtree rooted at u has A-1
alternations and no 0-pebbles. Therefore, by the induction hypothesis, Player can
win the game on the subtree rooted at u using two pebbles, at most (A-1)+ steps
and at most A-1 role switches. It took one pebble placement and one role switch to
get the game to u, so the total number of steps is at most A + and the total number
of role switches is at most A.

Let v be an AND gate. Then Player is the Challenger. If Player 0 never pebbles
a predecessor of v that evaluates to 1, Player 1 retains its challenge on v and wins
using no resources. Suppose Player 0 pebbles a predecessor of v that evaluates to 1.
Consider the first such move. Let u be such a predecessor of minimum depth among
the gates that are pebbled. Player moves its challenge to u. Note that no predecessor
of u is 0-pebbled. If u is an input, Player wins immediately. If u is an OR gate, the
number of alternations decreases at least by one at the cost of one role switch, and
the result follows by induction. If u is an AND gate, Player 0 is the Pebbler again.
The depth of the challenged gate is decreased without Player 1 using any resources.
Therefore in a finite number of rounds the game reaches one of the two cases above
without Player expending any resources. This proves the claim.

Case 2. Suppose Gn evaluates to 0 on x. The proof that Player 0 can win the
game on Gn within the claimed bounds is dual to the proof above.
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5.3. An alternating Turing machine simulation of the game.
THEOREM 11. For r >-- log n, ifL is accepted by a uniformfamily { Gn} ofpolynomial-

size augmented circuits that is pebbleable in p pebbles, time, and r rounds in the dual
game, then L is accepted by an alternating Turing machine within space O(p log n ), time
O(t log n), and alternations O(r). If in addition, Player is always the Pebbler, then
L is accepted within space O(p log n) and tree-size

Proof Without loss of generality, assume that the players each have 2p pebbles,
and they remove them p at a time. This does not affect the other resources.

An alternating Turing machine M simulates the game using existential (universal)
configurations for the moves of Player 1 (Player 0). M begins by guessing the values
of p, t, and r.

M keeps track of the time used by each player by initializing two counters To
and T1 to t, and decrementing the appropriate one for each pebble placement. Likewise,
M keeps track of the rounds charged to each player by initializing counters Ro and
R1 to r, and decrementing the appropriate one for each round. M also uses four tapes
to record the names of gates: (1) previously 1-pebbled, (2) previously 0-pebbled, (3)
pebbled in the current round, and (4) challenged. Each round of the game is simulated
as follows.

M first existentially guesses whether Player has won according to the basis rules.
If the guess is yes, M verifies this using the uniformity machine. M accepts if this is
the case, and rejects otherwise. If M guessed that Player has not yet won, M
universally does the following: (a) It checks whether Player 0 has won the game, using
the uniformity machine. M rejects if this is the case, and accepts otherwise. (b) M
existentially determines who should be the current Challenger and universally does
two things: verifies with the uniformity machine that the guess is correct and, in parallel,
continues with the simulation as though the guess is correct. (See Fig. 2.)

Suppose Player 1 (Player 0) is the Pebbler. M existentially (universally) decides
whether or not p pebbles are to be removed in this round. If so, M existentially
(universally) deletes p gate names from the "l-pebbled" ("0-pebbled") tape, using a
temporary tape for copying.

M then existentially (universally) records one or more gate names on the "recently
pebbled" tape, up to a total not exceeding 2p on both tapes. If t’ new names are
recorded, then T1 (To) is decremented by t’ and R (R0) is decremented by 1. If T < 0
(To < 0) or R1 < 0 (Ro < 0), then M rejects (accepts).

Next M universally (existentially) chooses v as the new challenged gate, where
v is chosen from among the gates on the "challenged" and "recently pebbled" tapes.
v is written on the "challenged" tape, and the "recently pebbled" tape is appended
to the "l-pebbled" ("0-pebbled") tape and erased.

M continues these steps until the basis conditions are reached, or one of the
players runs out of time or rounds.

Correctness. Suppose Gn evaluates to 1 on x. The fact that the alternating Turing
machine M accepts x is shown by arguing that there is an accepting subtree of the
alternating Turing machine’s computation tree on x.

Since G, evaluates to 1 on x, there is a winning strategy S for Player in which
Player uses at most 2p pebbles, steps, and r rounds. By construction, there is a
corresponding subtree A of M’s computation tree that contains the initial configuration,
and in which one successor of each existential configuration and all successors of each
universal configuration are retained. The major difference between S and A. is that
some plays (in particular, all infinite plays) in S are cut off in A due to the conditions
To < 0 and R0 < 0. (Neither T < 0 nor R < 0 ever occurs, since Player l’s strategy uses
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FG. 2. Beginning of a round.

time at most and rounds at most r.) All leaves of A that correspond to leaves of S
will be accepting, since Player wins at all leaves of $1. Furthermore, all leaves of A
that do not correspond to leaves of $1 are accepting by construction, since they arise
from the cutoff due to To < 0 or R0 < 0. Thus, M accepts.

The proof that there is a rejecting subtree of M’s computation tree for the case
when Gn evaluates to 0 on input x is analogous.

Analysis. For the purposes of the analysis here, the uniformity machine will be
assumed to be an alternating Turing machine with the simultaneous resource bounds
of space O(log n), time O(1og n), alternations O(log n) and tree-size O(n()). This
is possible since an O(log n) space deterministic Turing machine can be simulated by
an alternating Turing machine with these resource bounds [CKS81]. Note that the
uniformity machine is consulted at most once on any path of the computation tree.
Hence, the resources required by the uniformity machine can be accommodated within
the stated bounds, since >_-r_-> log n.

The counters To, T, Ro, and R take space O(log t). Since is at most the size
of the circuit Gn, this space is O(log n). Since only O(p) gate names.each requiring
O(logn) space are recorded on the tapes, the total space used by M is O(p log n).

There are at most six alternations per round of the game and therefore M makes
O(r) alternations.

The overall time for pebble placements, and hence for updating the tapes at the
ends of the rounds, is O(t log n). Because pebbles are removed p at a time, the
O(p log n) cost of updating the tapes to reflect removals is only incurred every p
placements. Hence, the overall time due to removals is also O(t log n).
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If Player is the Pebbler throughout the game, then the following argument shows
that the tree-size of M is p(r. Consider the actions of the machine corresponding to
a round of the game. For the Pebbler’s move M existentially guesses at most 2p gates
to pebble, and for the Challenger’s moves it universally chooses a gate from the
"challenged" and "recently pebbled" tapes. This universal move results in at most
2p + configurations that correspond to the start of the next round. Thus, each round
of the game increases the tree-size by at most a factor of 2p + 1. Over all the r rounds
simulated by M, its tree-size is bounded by p O(r. More formally, let z(k) be the tree-size
required to demonstrate acceptance from a configuration reachable after k rounds
from the initial configuration. Then,

z(k)<-{ (2p+l)z(k+l)+n(’)n 0(1) k<r,k r.

So, z(0) (2p + 1)
COROLLARY 12. If L is accepted by a uniform family {Gn} of polynomial-size

augmented circuits that is pebbleable in the dual game in O(log n) steps and p 0(1)
pebbles, then L is in AC. If, in addition, Player is always the Pebbler, then L is in
LOGCFL.

Proof The proof is a direct application of the theorem along with Ruzzo’s charac-
terization of LOGCFL [Ru80].

5.4. Characterization of
THEOREM 13. PEBBLE(O(1)).
Proof If L c , then it is known that there is a uniform family Gn } of polynomial-

size Boolean circuits accepting L [La75]. All the gates in Gn are designated as gates
of challenge type 0. Suppose Gn evaluates to 1 on x. A winning strategy for Player 1
is to pebble those immediate predecessors of the challenged gate that evaluate to 1.
This strategy uses two pebbles. Suppose Gn evaluates to 0 on x. Then Player 0 has a
winning strategy that uses no resources, since Player 0 is never the Pebbler.

Conversely, suppose {Gn} is a uniform family of polynomial-size augmented
circuits accepting L such that G is pebbleable with a constant number of pebbles.
Then the result follows from Theorem 11 and the fact that ASPACE(log n)=
[CKS81].

6. Unifying framework. The dual game defined in 4 can be played on computa-
tion graphs of certain models of computation that have properties similar to Boolean
circuits. In this section the dual game is played on the computation graphs of alternating
Turing machines. This is used to show that the following three important results in
complexity theory are described naturally as pebbling results" (a) Savitch’s theorem
showing that NSPACE(S)_ DSPACE(S2) [Sa70]; (b) Ruzzo’s simulation of an alter-
nating Turing machine with simultaneous space and tree-size bound by an alternating
Turing machine with simultaneous space and time bound [Ru80]; and (c) Borodin
and Ruzzo’s simulation of an alternating Turing machine with simultaneous space and
alternation bound by an alternating Turing machine with simultaneous space and time
bound [Ru81]. The latter two results generalized Savitch’s theorem in two different
ways. These three theorems are derived as corollaries of a theorem on the resource
requirements for pebbling alternating Turing machine computation graphs.

Let M be an S(n) log n space bounded alternating Turing machine that accepts
L. Given an input x of length n in L, let G(M, x) be the computation graph of M on
x; that is, the vertices of G(M, x) correspond to the configurations of the machine M
on input x, and there is a directed edge from a vertex u to a vertex v if and only if
there is a transition ofM from the configuration corresponding to v to the configuration
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corresponding to u. It will be assumed that G(M, x) does not have any cycles. This
can be arranged by using an extra tape as a "clock" that is incremented each step.

For defining the dual game on G(M, x), the vertices in this graph are partitioned
into two sets, those of challenge type 0 and those of challenge type 1. A computation
graph is said to be an augmented computation graph if this role information is also
available for each of its vertices. It will be assumed that for all x e L, there is an
alternating Turing machine that can determine this role information for each vertex
in G(M, x) in time O(S(n)).

The dual game on G(M, x) is defined similarly to the definition in 4 of the game
on Boolean circuits. Its description will be omitted here.

Let ASPACE, TIME(S(n), T(n)) denote the class of languages accepted by
alternating Turing machines within space O(S(n)) and time O(T(n)) simulta-
neously. The classes ASPACE, ALTERNATIONS(S(n), A(n)) and ASPACE, TREE-
SIZE(S(n), Z(n)) are defined similarly.

THEOREM 14. Fix any x e L and an augmented computation graph G(M, x) of a

space S(n) bounded alternating Turing machine M on input x. If the dual game on
G(M, x) can be played in space p(n) and time (n), then

Le ASPACE, TIME(p(n)S(n), t(n)S(n)).
Sketch of Proof The proof of this theorem is similar to the proof of

Theorem 11.
COROIIARY 15 (Savitch’s theorem). For S(n)_->log n,

NSPACE(S(n))
_
ASPACE, TIME(S( n ), $2( n )).

Proof Let M in Theorem 14 be a nondeterministic Turing machine. All vertices
of G(M, x) are designated to be of challenge type 0. G(M, x) can be pebbled with
O(1) pebbles and O(S(n)) time, as in Lemma 1.

COROLLARY 16 (Ruzzo’s theorem). For S(n)=>log n,
ASPACE, TREESIZE(S(n), Z(n))_ ASPACE, TIME(S(n), S(n) log Z(n)).
Proof All vertices of G(M, x) are designated to be of challenge type 0. G(M, x)

can be pebbled with O(1) pebbles and O(log Z(n)) time, as in Theorem 8.
COROLIAIY 17 (Borodin and Ruzzo’s theorem). For S(n)=>log n,

ASPACE, ALTERNATIONS(S(n), a(n))
c_ ASPACE, TIME(S(n), S(n)(S(n)+ a(n))).

Proof All existential configurations are designated as of challenge type 0 and all
universal configurations are designated as of challenge type 1. G(M, x) can be pebbled
with O(1) pebbles and O(S(n)+A(n)) time, as in Theorem 10.

7. Conclusion and open problems. A new combinatorial game that abstracts certain
synchronous parallel computations has been defined and this game has been used to
study the relationship between the complexity classes LOGCFL and AC.

Although the dual interpreted two-person pebble game has been defined in 4 in
terms of Boolean circuits, the game is easily extended to computation graphs of other
models of computation. An alternating Turing machine is an example of such a model
and this was exploited in 6 to provide a unifying framework for some well-known
simulation results involving alternating Turing machines.

The basic difference in the way Player 0 contributes to the computations in
LOGCFL and AC has motivated the discovery of new characterizations of LOGCFL
on models such as bounded fan-in Boolean circuits, unbounded fan-in Boolean circuits,
and alternating Turing machines [Ve86]. These characterizations are in terms of the
same resources used to characterize AC on these models.
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There are many possible approaches used to compare two complexity classes. The
approach taken in this paper is to obtain characterizations of the classes using the
same measures of resources on a model of computation, namely the game model. This
approach seems general enough to be applicable in the study of problems of this type:
given two complexity classes A and B with A B, is A properly contained in B?

This study raises several open questions. Some of them are listed below.
The ultimate justification for this game would be to use Theorem 11 to discover

new efficient parallel algorithms for natural problems. In retrospect, we could imagine
Ruzzo’s parallel context-free language recognition algorithm [Ru80] being discovered
this way. It would be particularly appealing if new algorithms exploited the symmetry
available between the two players.

The uninterpreted game is used by Dymond and Tompa [DT85] to provide an
alternative proof of the result of Paterson and Valiant [PV76] that SIZE(T)_
DEPTH(O( T/log T)) for (nonuniform) Boolean circuits. Is it possible to improve this
result using the dual game? What circuits are hard to pebble?

There are natural circuits such as the Cocke-Kasami-Younger circuits on which
the dual game without role switches is exponentially faster than the uninterpreted
game. A simple example where one role switch provided such a speedup has been
seen in 4.1. It would be interesting to show similar speedups for circuits for natural
problems. A related question is to prove that there are AC circuits for natural problems
that require (log n) role switches if the time is O(log n).

Acknowledgments. We are indebted to Larry Ruzzo and Richard Ladner for very
useful discussions.
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SUCCINCT CERTIFICATES FOR ALMOST ALL SUBSET SUM PROBLEMS*

MERRICK L. FURSTt AND RAVI KANNAN?

Abstract. Given n natural numbers al,... a,, and a target integer b, the SubsetSum problem is to
determine whether some subset of the ai sums to b. That is, to recognize members of the following set:

SubsetSum {(al, , a,,’ b)[ a C N, b c Z, and 3x e {0, 1}" such that a. x b}.

For a given vector a (a,. ., a,,) and integer b, if a subset of the ai sums to b, then listing which subset
provides a short proof that (a; b)e SubsetSum. However, in general there are no short (polynomial-length)
proofs of nonmembership unless NP equals coNP.

The main result in this paper provides a proof system that contains polynomial-length nonmembership
proofs for a vast majority of the problem instances that do not belong to SubsetSum.

Key words. SubsetSum, certificates, NP-complete, complexity, algorithm, shortest vector, lattice, circuit

AMS(MOS) subject classifications. 68C25, 10E05

1. Introduction. A SubsetSum problem instance is of a set of n positive integer
coefficients al," , an together with a target (or right-hand side) integer b. The "answer"
to a SubsetSum problem is yes if some subset of the coefficients sum to the target and
no otherwise. For positive integers n, M, let

Gn(M) {(a, a2,’’’, an)[ai an integer in the range {1... M}}.

Let FEA be the set of feasible SubsetSum problems and let INF be the set of infeasible
SubsetSum problems, i.e.,

FEA= {((a,. ., an); b)la subset of the ai sums to b},

INF-- {((a, , an); b)lno subset of the ai sums to b}.

The set FEA is NP-complete, therefore, the set INF is coNP-complete.
Let T be a nondeterministic Turing machine accepting the set INF. The collection

of valid computations of Turing machine T may be thought of, in the sense of Cook
and Reckhow [8], as a formal proof system 0% for demonstrating the infeasibility of
SubsetSum problems. Define a generic SubsetSum problem to be an n-tup|e a
(al, a2,.--, an), with no sum b specified. Then define

INF(a) ={be NIb<-_E ai and (a; b) INF}.

The proof complexity of the generic instance a with respect to 0% is the maximum
length, over all b INF(a), of proofs of infeasibility using 0% of the SubsetSum instance
(a; b). Letf(n, 0%) be the maximum proof complexity (using 0%) taken over all instances
a requiring n or fewer bits as input. Since INF is coNP-complete, if N coNP then
f(n, 0%) grows more rapidly than any polynomial function of n. The main result asserts
that, despite this fact, we can isolate a large, interesting class of generic instances a
that has small proof complexity.

The main result of this paper is the following.
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THEOREM 1. Let M >- 23/2n log n+Sn

such that
There is a proof system and a polynomial p

of the generic subset sum problems a in Gn (M) have proof complexity bounded above
byp(n).

We also show the following theorem.
THEOREM 2. There is a deterministic algorithm A that solves the SubsetSum problem

correctly in all instances and moreover, there exists a polynomial p(. such that, forany
M _->2n2/2+2n n3n/2, some subset S of Gn(M) has the following property:

]SI>-(1-1/2")IG(M)I, and
For each vector a=(al,’", an) S, and any b, A runs in p(l(a; b)l)-time on

(a; b).
This theorem is a strengthening of a result of Lagarias and Odlyzko [22]. They

exhibit a deterministic polynomial-time algorithm B that accomplishes the following.
Pick any constant c, and let M->2on2. For all but (1-1/2n) of the vectors a

(al, , an) in Gn(M), if integer b is the sum of a subset of the ai, then their Algorithm
B finds which ai sum to b. Frieze [11] simplifies and sharpens their argument. Aside
from the constants in the lower bound on M, the algorithm of our Theorem 2 improves
on these results in that it solves instances that have a negative answer as well as those
that have a positive answer.

1.1. Comparison with previous results. There are several results known to lead to
proof systems for nonmembership for portions of other NP-complete languages.
The proof systems so obtained share a similar structure. Typically, a simple polynomial-
time property Q is given. This property is chosen so as to imply nonmembership, i.e.,
if property Q is true of an instance I then I is not in the NP-complete set. Property
Q is then shown to hold for almost all instances within a restricted class. In this way,
since Q is polynomial time and holds for almost all instances, simply testing for Q
becomes a way of giving short proofs of nonmembership. A more detailed background
can be found in 4.

Our proof system differs from these in two respects. The property Q we identify
is not known to be polynomial-time computable. The power of nondeterminism seems
to be needed to prove that Q holds. As well, the set of instances we consider is
comprehensive and not very restrictive. It contains all SubsetSum problems with
coefficients O(n log n)-bits long.

It is an interesting open problem to find a general proof system for other NP-
complete sets such as three-CNF satisfiability, vertex cover, and clique. There are
indications that the techniques we describe could be used for such problems.

2. Main theorem. The algorithms implicit in both our theorems use techniques
from the geometry of numbers. Good general references for this subject are Cassels
[5] and Lekkerkerker [25]. For a recent survey, see [19]. We begin with a definition
and some lattice terminology. A lattice in ,9t (Euclidean n space) is the set of all
integer linear combinations of some linearly independent vectors bl, b2,"’, b, in
n. The set of vectors b, b2," ", bm is a basis and the lattice it generates is denoted
L(bl, b2, bm). A lattice has many bases; the cardinality is always the same and is
called the dimension.

Suppose a -(al, a2," ", an) is a vector in Zn. Consider the set of vectors

L ={xlx6 Z and a. x =0}.
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This collection of vectors, La, is a lattice and moreover, given the vector a, a basis for
La can be found in polynomial time by using the algorithms of Kannan and Bachem
[17].

Our approach to the SubsetSum problem follows. Wishing to determine whether
there is a 0-1 vector x such that a. x b, we start by computing some particular integral
solution x to a. x b. An integer solution exists if and only if the greatest common
divisor of all the components of a divides b. This criterion can be checked in polynomial
time using the Euclidean algorithm.

Any 0-1 vector x such that a. x b must be of the form x- y, where y is a vector
belonging to L. Since x-y is a 0-1 vector its length is at most j. Thus, for a 0-1
solution to exist, there must be a point y in the lattice L that is at a distance at most

from x. Having found x and a basis for L, we determine whether there is a
vector y in L which is this close to x. It turns out that finding whether such a y exists
is not hard if the shortest nonzero element of La is longer than 2n3/2. It also turns out
that most a in G,(M), for large enough M, give rise to lattices L whose shortest
nonzero vectors are longer than 2n3/2.

Let L be a lattice. The length of the shortest nonzero vector in L is denoted

h I(L) min {[x[" x 6 L and x # 0}

where[. [is Euclidean length.
LEMMA 1. Recall that Gn(M)={(al,.. ",a,)[ai6{1,’’ .,M}}. For any k, the

length of the shortest vector in L, A(L), is greater than k for all but Mn-(2k + 1)n of
the nonzero vectors a in Gn(M).

Proof Consider a nonzero vector v (v,..., v,) Z such that [vii-<-k. Without
loss of generality, assume v, # 0. Suppose Suppose a G,(M) and a. v 0. Then

n-1

anVn aivi,
i--1

and, hence,
n--1--E i= aivi

Vn

Thus, the number of nonzero a’s in Gn(M) such that a. v=0 is at most Mn-.
The number of vectors v in Z" with components bounded in magnitude by k is

(2k+ 1)". Therefore, at most M"-l(2k+ 1) of the elements a of G,(M) are such that
;(L) <- k.

Remark 1. In the other direction, it is easy to argue using the pigeon-hole principle
that every a in G,(M) has ,(L)-<v/- [l+(Mn)/("-)]. Fix an a in G,(M). Let
k =[(Mn)/(n-)+ 1]. The dot product of each v in G,(k) with a is an integer between
0 and Mnk. If any v in G,(k) makes a dot product 0 with a, then we will know that
h(La)<=lvl<=kv/- as desired. So assume this does not happen. Since
Mnk (via a simple calculation), there must exist two distinct elements u, v in Gn(k)
such that u. a v. a, whence (v-u). a =0. Furthermore, lu-vl<=/-k, which proves
the claim. A better bound can be obtained by observing that the determinant of L
equals ]a], provided the gcd of al,’", an is 1. Thus, by Minkowski’s convex body
theorem [25, 5], it follows that ,I(L)_-< vr- lal /n.

COROLLARY 1. For M >= (20)"n3n/2 in the above lemma, the fraction of vectors a in
Gn(M) for which ,(L) <- 2n3/ is at most 1/2".
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Proof The number of vectors a in G,(M) is M". From the lemma we know that
the number of a’s with Al(La)<=2n3/2 is at most

M"-X(4n3/2+l)""

Thus, the fraction of such a’s is at most

(4n3/2+ 1)" 1
<-- l-!

_M -;2"

We need some notation now. Suppose ba, b2," , b, is a basis of a lattice La (so
m n- 1). Using the Gram-Schmidt orthonormalization process we may obtain from
these bi mutually orthogonal vectors b*, b2*,’’ ", b*,, as follows"

b*= b
and

b*+, bi+, Y /xi+,;b
j=l

fori=l,...,m-1

where

for l <-l<k<-m.

These b/* are generally useful.
LEMMA 2. Suppose a =(al,"" ", a,)6 Z" and Zl(La)> 2n3/2. There exists a basis

bl, b,_ of Lo such that we have the following:
]b*[ > 2v/-ff, for <- <-_ n 1, and
The vectors b,..., b,_ can be expressed in polynomially many bits.

Proof Lagarias, Lenstra, and Schnorr [23, Thm. 5.1] show that for any m-
dimensional lattice L, there is a basis bl,..., b,, such that [b*[>=A(L)/m, and the
can be expressed in polynomially many bits. From this, Lemma 2 follows readily.

A basis b,..., b,, of a lattice is proper if the /x; defined in the Gram-Schmidt
process all satisfy Izl-< 1/2.

PROPOSITION 1. Suppose L is an m-dimensional lattice given by a basis b,
satisfying

Ib* l> 2k.

Let x be any given point in span (L). There is at most one lattice point v L such that
Ix- v <- k. We can determine whether such a lattice point exists and if so, we can find it
in polynomial time.

Proof First we show uniqueness. If v and v’ are two distinct elements of L such
that Ix- vl and Ix- v’l are less than or equal to k, then Iv- v’l <- 2k and v- v’# 0. Let
v v’== cb, s -<_ m, ci Z, and as # 0. Then v- v’ has a component csb* along
b,* of length [as[ Ib,*l > 2k, giving the needed contradiction.

Now we show how to compute the coordinates of a lattice vector v L which is
within a ball of radius k about x, if one exists. Suppose there is a lattice vector v L
such that Ix- vl -< k. Write

v ceibi
i=1
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with ai Z. Let

i=l

with fl, ,9i. The projection ofx v in the direction of b*m is oflength ]/m am[ [b*m]. Thus,

implies

which means

k k 1
--<

Therefore, there is at most one possible integer value for a", namely [/3,.], the integer
closest to /3,.. Having found a,., the coordinates am-l,"" ", al can be calculated in
like fashion.

2.1. Short proofs of infeasilfility. Let a (al, , a,) be an instance of a generic
SubsetSum problem such that hl(La)=> n 3/2. Suppose B is an integer. If a subset of
the ai sums to B, a list of the coefficients that sum to B gives a short proof of that
fact. Suppose no subset of the ai sums to B. We describe how to write a short proof.

Begin the proof by exhibiting a nice basis b,..., b,. such that we have the
following:

b,..., b,. is a basis of La, and
The inequalities b* > 2v/-ff are satisfied.

(Such a nice basis of L, is guaranteed to exist by Lemma 2.)
Then verify that b,..., b,. is a basis of L, by doing the following:
(1) Checking that each b belongs to L and also
(2) Checking that the determinant of the lattice spanned by the bi equals the

determinant of the lattice spanned by a basis of L found using the Hermite normal
form algorithm of [17].

Next we write down any solution x of x in a. x b; x Zn. It goes without saying
that it is easy to check that a particular x works. Observe that x is not a 0-1 vector
since we are assuming this SubsetSum problem has no 0-1 solution.

Following the deterministic algorithm given in the proof of Proposition 1, we find
a unique v La, which is a candidate for satisfying Iv xl -< -ff. If the original problem
is infeasible, either the candidate v fails to satisfy this inequality or v- x is not a 0-1
vector. This gives a polynomial-length proof in either case.

We now prove Theorem 1. By Corollary 1, if M->23/21gn+5, then at least
(I-1/2N)IG,(M)I such A have h(L,)> n3/2. Then we can find the short proofs
constructed above.

To summarize, with the nice basis on hand there is at most one easily identified
v in L, with Ix- vl bounded above by v/ft. We determine whether such a v exists and
if it does we check whether x-v has each component equal to 0 or 1. There is a
solution to the subset sum problem if and only if this happens. This provides poly-
nomial-length proofs of infeasibility and proves Theorem 1.

It is important to observe that this is not a polynomial-time algorithm for feasibility
or infeasibility. Since the first step involves guessing a nice basis we have only given
a proof that there are short proofs.
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An algorithm. Under what conditions can the above proofs, or nondeterministic
procedures, be made into deterministic polynomial-time algorithms? Examining
Lagarias, Lenstra, and Schnorr’s theorem [23] observe that they obtain a nice basis as
follows. Start with a basis of the polar (dual) lattice and reduce it so that it is a
"Korkine-Zolotarev-reduced" basis. The dual to this new basis is a nice basis of the
original lattice. The best-known algorithm for finding such a "Korkine-Zolotarev-
reduced" basis runs in exponential time, [18]. Furthermore, if a polynomial-time
algorithm could be found for this problem, then the shortest vector problem for lattices
could be solved in polynomial time. The latter question is open. It is perhaps the most
important open question in the area of lattice algorithms.

In this way we obtain one more indication of the significance of the shortest
vector problem (SVP). If SVP can be solved in polynomial time, then all the instances
of the SubsetSum problem for which our theorems give a proof system would be
determinisitic polynomial-time solvable.

In their famous paper, Lenstra, Lenstra, and Lovisz [24] show how to approximate
the length of the shortest vector in a lattice within a factor of 2n/2. That result can be
used to obtain a deterministic algorithm for generic SubsetSum problems when the
parameter M, which determines the number of bits in each coefficient, is large enough.

THEOREM 3. Let M >= (2n2/2+2n)(n3n/2), i.e., IM[ O(n2). There is a deterministic
algorithm A, and a polynomialp such that A solves all instances ofthe SubsetSum problem
correctly and, for (1-1/2")IG,(M)I of the generic SubsetSum problems in G,(M), A
runs in time bounded above by polynomial p( n ).

Proof. Following the proof of Lemma 1, for most generic SubsetSum problems a
in G(M), the associated lattice La satisfies

AI(L,,) _> 2x/-2-1)/2"

If the Lenstra, Lenstra, and Lovisz basis reduction algorithm is run on such a lattice
La, a reduced basis bl,’", bn_l is produced. The vectors bi in this representation
of La satisfy

]b/*l >- 2v/-ff for each i.

Following the argument for our main theorem, the computed reduced basis can be
used to solve SubsetSum problems derived from the generic problem a. Since the
reduced basis may be computed in polynomial time, the whole algorithm is polynomial-
time bounded. [3

This provides a rigorous analysis of Brickell’s algorithm [2].

3. Small circuits. The question of whether the proof system we have described
contains short proofs of infeasibility for a given set of integer weights al,. , a and
target b, depends only on the coefficients ai. It is not difficult to show that for those
(al," , a)’s that admit small proofs, there is also a polynomial-sized Boolean circuit
C(a,..., a,,) that accepts precisely those b’s that equal the sum of some subset of
the ai’s. To see this, encode into the circuit C(a,..., a,) the basis of the lattice L,
used in the proof of Theorem 2. The rest of the procedure inherent in the proofs are
deterministic polynomial-time computable, so they can be simulated by the polynomial-
sized circuit. The details are omitted.

THEOREM 4. Suppose M >-_ 2 3/2n log n+Sn. There is a subset S ofG,(M) ofcardinality
at least (1- 1/2n)[G,(M)I such that, for each a S, there is a polynomial-sized circuit
that accepts precisely those b’s that are the sum of a subset of the ai.

The reason this result is interesting is the following. We know that the SubsetSum
problem is NP-complete. So, if M is any polynomial-time bounded nondeterministic
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Turing machine, there is a many-one reduction f of L(M) to the SubsetSum problem.
For any string x, f(x) has two parts: the SubsetSum coefficients al," "’, an and the
right-hand side integer b. It can be shown that the number n and the coefficients ai
depend only on the machine M and the length of x. The input x only specifies the
target b. Getting a small circuit C is thus equivalent to finding a small circuit for
another language in NP. We do not, at present, know of other natural languages in
NP for which this works.

4. Previous results. A survey of results related to solving almost all instances of
NP-complete problems is found in Johnson’s NP-completeness column [16]. Here we
discuss several of them.

4.1. Hamilton cycles. A considerable study has been made on the subject of
Hamiltonicity in random graphs [30], [21], 1]. The culmination ofwhich is an expected
polynomial-time algorithm for the Hamilton cycle problem in random graphs having
enough edges [3]. The elegant paper of Bollobis, Fenner, and Frieze demonstrates an
expected polynomial-time bound on the run-time of a straightforward Hamiltonicity
algorithm.

Prior to their work it was known that random graphs with many edges almost
surely contain Hamilton cycles. What Bollobis, Fenner, and Frieze show is that a
fairly simple algorithm actually finds Hamilton cycles almost all the time. However,
for each graph that is non-Hamiltonian, the algorithm takes exponential time before
it can positively conclude non-Hamiltonicity. It is useful in practice. However, it never
provides nontrivial proofs of non-Hamiltonicity.

4.2. Satisfialility. There has been some work on algorithms for solving random
instances of the satisfiability problem. Suppose G(n, m, p) denotes the class of CNF-
formulae with n random clauses and rn variables generated as follows. For each
variable vi, 1 =< =< m, a random clause contains the literal vi, or the literal 3i, or neither
with probabilities p, p, 1 2p, respectively. (Obviously, 0 _-< p -< 1/2.) The choices are made
independently for each variable and the clauses are generated independently. Goldberg,
Purdom, and Brown 12] show that a version of the Davis-Putnam procedure [9] runs
in expected polynomial time on such problems. The expected time is polynomially
bounded in n, m but it is exponential in 1/p.

Following the analysis of Franco and Paull [10], it is possible to show that there
are constants c, d > 0 depending only on p such that if n, the number of clauses, is at
most 2 (m was the number of variables), then for almost all CNF-formulae, the
number of truth assignments that make the formula false is at most 2l-a)". Almost
any truth assignment renders the formula true in this case; thus, the Davis-Putnam
procedure does not yield proofs of nonsatisfiability for very many instances. In the
other case, when n > 2c", the value 2" is polynomially bounded in n. Therefore, the
satisfiability of the formula can be checked in polynomial time by enumerating all the
2" truth assignments. It is only in this case, once again by doing enumeration, that
proofs of unsatisfiability are seen.

4.3. Vertex coloring. The problem of three-coloring (in general k-coloring for any
fixed k) a random graph has been considered by Wilf [32]. If each edge of a graph is
put in with probability p > 0, then for a large enough number of vertices, with high
probability, there will be a clique of size four in the graph. Thus, most "random"
graphs contain four-cliques and cannot be colored with three colors. Unlike the other
problems discussed, in this case nonmembership in the NP-complete language can be
proved for most instances. However, nonmembership is for an absolutely local reason.
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4.4 Minimum bisection width. Determining the minimum number of edges that
must be removed from a graph in order to separate the vertices into two equal-sized
sets is NP-complete. Bui et al. [4] suggest an algorithm for minimum bisection width
that is based on min-cut max-flow methods. Their algorithm always runs in polynomial
time. For almost all regular, degree d graphs that have minimum bisection width
bounded above by O(gll-1/[(d+2)/2J), their algorithm calculates the correct bisection
width. However, the class of graphs the algorithm works for is a vanishing fraction of
the class of all graphs on n vertices. Moreover, membership in the class is itself
NP-hard. Thus, their algorithm is providing proofs of nonmembership for a large
fraction of a noncomprehensive set.
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Abstract. Following the recent independent proofs of Immerman [SLAM J. Comput., 17 (1988), pp.
935-938] and Szelepcs6nyi [Bull. European Assoc. Theoret. Comput. Sci., 33 (1987), pp. 96-100] that
nondeterministic space-bounded complexity classes are closed under complementation, two further applica-
tions of the inductive counting technique are developed. First, an errorless probabilistic algorithm for the
undirected graph s-t connectivity problem that runs in O(log n) space and polynomial expected time is

given. Then it is shown that the class LOGCFL is closed under complementation. The latter is a special
case of a general result that shows closure under complementation of classes defined by semi-unbounded
fan-in circuits (or, equivalently, nondeterministic auxiliary pushdown automata or tree-size bounded alternat-
ing Turing machines). As one consequence, it is shown that small numbers of "role switches" in two-person
pebbling can be eliminated.

Key words, complementation, inductive counting, connectivity, symmetric computation, probabilistic
algorithm, random walk, LOGCFL, NC, semi-unboundedness, pebbling, hierarchy
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1. Introduction. Let NL denote the class of languages accepted by nondeterminis-
tic Turing machines running in O(log n) space. Let

STCON {(G, s, t)]G is a directed graph containing
a directed path from vertex s to vertex t}.

Using any reasonable encoding of graphs, it is well known that STCON is in NL and,
moreover, is complete for NL with respect to deterministic log space reductions (Savitch
[29]). In a surprising development, Immerman [17] and Szelepcs6nyi [33] have shown
independently that STCON, the complement of STCON, is also in NL; that is, NL
is closed under complementation.

Their proofs rely on an inductive counting technique similar to counting techniques
used in related results, for instance, Mahaney [24], Lange, Jenner, and Kirsig [22],
Hemachandra [15], Toda [34], Buss, Cook, Dymond, and Hay [4], and Sch6ning and
Wagner [30]. (For additional background and references see Hartmanis 14].) It seems
inevitable that this technique should have further application and in this paper we
develop two such applications.

For our first application, we consider reachability in undirected graphs, a problem
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not known to be complete for NL. Indeed, Aleliunas et al. [2] have shown that

USTCON {(G, s, t)lG is an undirected graph containing
a path from vertex s to vertex t}

is in RLP, the class of languages accepted by probabilistic Turing machines running
in O(log n) space and polynomial time. In this model, the machine never reaches an
accepting state on any input not in USTCON, and has probability at least of reaching
an accepting state on any input in USTCON. USTCON is a complete problem for
SL, the class of languages accepted by symmetric Turing machines (Lewis and
Papadimitriou [23]) running in O(log n) space. It follows that SL

_
RLP

_
NL.

It is tempting to believe that Immerman’s and Szelepcs6nyi’s proofs extend to
show that SL is closed under complementation. However, a direct translation of their
technique fails to establish this result, as explained in 2.2. In that section we prove
the somewhat weaker result that USTCON is in RLP or, equivalently, that USTCON
is in ZPLP, the class of languages accepted by errorless probabilistic Turing machines
running in O(log n) space and polynomial expected time. (The equivalence is due to
the fact that RLP 71 coRLP ZPLP.) This answers a problem raised by Aleliunas et
al. [2]. In 2.3 we extend this result to show that Reif’s symmetric log space com-
plementation hierarchy [26] is also contained in ZPLP.

In our second application we show the closure under complementation of a number
of complexity classes that are (seemingly) more powerful than NL. The classes we
consider may be characterized in terms of several different models. The most intuitively
appealing model is perhaps the semi-unbounded fan-in circuit model (see Ven-
kateswaran [37]). In this model, we allow o1 gates with arbitrary fan-in, whereas all
AND gates have bounded fan-in. Input variables and their negations are supplied, but
negations are prohibited elsewhere.

For simplicity we will restrict the discussion to polynomial-size circuits, although
the results can be generalized. Of particular interest is the class SACk of languages
accepted by polynomial-size, O(logk n) depth, uniform semi-unbounded fan-in circuits.
(See Cook [7] for an appropriate definition of uniformity.) SAC is the most often
studied of these classes. SAC is equal to the class LOGCFL of languages log space
reducible to context-free languages [32], [37]. It is known that NCI NL_ SAC_
AC where, as is customary, we let NCk and ACk denote the classes analogous to
SACk for bounded fan-in and (respectively) unbounded fan-in uniform circuits. More
generally, NCk

_
SACk ACk

_
NCk+.

Both NCk and ACk are easily seen to be closed under complementation by
application of De Morgan’s laws. However, SACk does not yield to the same technique,
since it would produce circuits with unbounded fan-in AND gates. In fact, it is known
that there is a language accepted by polynomial size, constant depth, uniform semi-
unbounded fan-in circuits, but whose complement is not accepted by semi-unbounded
fan-in circuits of depth o(log n) and arbitrary size, even nonuniformly (Venkateswaran
[36], [37]). The main result of 3.1 is to show that polynomial-size semi-unbounded
circuit classes are closed under complementation for all depths that are f(log n).
Closure under complementation of classes defined by auxiliary pushdown automata,
tree-size bounded alternating Turing machines, and simple first-order formulae then
follows by known equivalences (see 3.1).

In 3.2, we examine some consequences of the closure of semi-unbounded circuit
classes under complementation. In the same way that the alternating and oracle
hierarchies based on NL [5], [28] collapse because of Immerman’s and Szelepcs6nyi’s
result, hierarchies based on semi-unbounded circuit classes also collapse. As a con-
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sequence, the "role switch" resource in the pebble game introduced by Venkateswaran
and Tompa [38] is shown to be much weaker than previously seemed plausible. For
instance, we demonstrate that any fixed number of role switches can be eliminated.

2. Errorless algorithms related to undirected reachability.
2.1. Probabilistic complexity classes. An explanation of our taxonomy for prob-

abilistic complexity classes is in order. Table 1 illustrates the sense in which the names
RLP and ZPLP encountered in are consistent with the notation ZPP, BPP, and
PP of Gill 12], RP of Welsh [40], and BPL and PL of Ruzzo, Simon, and Tompa [28].

TABLE
Taxonomy for probabilistic complexity classes.

O(log n) space
Polynomial and polynomial

Type of error expected time O(log n) space expected time

Zero- ided ZPP ZPL ZPLP
One-sided RP RL RLP
Bounded two-sided BPP BPL BPLP
Unbounded two-sided PP PL PLP

Since this section concentrates on the classes RLP and ZPLP, we give them careful
definitions here. We say that a language A is in RLP if and only if there is a probabilistic
Turing machine M such that

(1) For all inputs, M runs in space O(log n) and expected time n1,
(2) If w A, Pr[M reaches an accepting state on input w]-> 1/2, and
(3) If w A, Pr [M reaches an accepting state on input w]--0.

ZPLP is the class obtained by replacing condition 2 by 2"
(2’) If w A, Pr [M reaches an accepting state on input w] 1.
The class RLP remains unchanged if we require polynomial time rather than just

polynomial expected time. Results of Gill [12], Immerman [17], and Szelepcs6nyi [33]
show that, when the polynomial time bound is removed, the corresponding one-sided
(RL) and zero-sided (ZPL) classes are equal to NL. Ruzzo, Simon, and Tompa [28]
and Simon [31] have shown that PL and BPL are closed under complementation. Jung
[20] has shown that PL PLP. These relations and others (including those proved in
this paper) are summarized in Fig. 1. (Those complexity classes whose complements
are not explicitly shown in Fig. 1 are closed under complementation. DL denotes
DSPACE (log n). DET is the set of languages reducible to computing integer matrix

SL
determinants [7]. k C Yk is the symmetric log space hierarchy, discussed in 2.3.)

2.2. An errorless algorithm for undirected reachability. Immerman’s and
Szelepcs6nyi’s proofs that STCON NL rely on computing

Nk #{vl v is within distance k of s}
by induction on k. As mentioned in 1, it is tempting to believe that the same method
can be used to show that SL is closed under complementation. Perhaps the easiest
way to see the difficulty (and importance) of such a result is to observe that Immerman’s
and Szelepcs6nyi’s algorithm also computes the length of a shortest path from s to t.
By a known reduction (Ladner (personal communication)), STCON is log space
reducible to the problem of determining if the length of a shortest path from s to in
an undirected graph is n-1. Hence a direct translation of Immerman’s and
Szelepcs6nyi’s proof to SL would also solve this problem, thus implying SL--RLP
NL.
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FIG. 1. Inclusion relations among O(log n) space bounded complexity classes.

The specific obstacle in applying Immerman’s and Szelepcs6nyi’s proof technique
to SL is that a symmetric computation cannot "nondeterministically count," which
seems to be the key feature in their method. (This was also noted in 16].) In particular,
suppose that, for any value of count, there is a configuration (R, count) from which
the computation can proceed nondeterministically on either of the following paths:

1 (R, count) t---* (R’, count).
(2) (R, count) -* (R’, count + 1 ).

Since all moves in a symmetric machine are reversible, the machine can realize the
computation sequence (R, count) * (R’, count + 1) *- (R, count + 1). Hence the count
can be increased (or decreased) arbitrarily.

The main result of this section is Theorem 1.
THEOREM 1. USTCON ZPLP (or, equivalently, SL

_
ZPLP).

This theorem will follow immediately from Lemma 6.
In proving Theorem 1 we no longer face the handicap of symmetric computations

discussed above, but we do face another difficulty: the random walk approach of
A|eliunas et al. [2] does not seem to provide any useful information on the distance
between vertices. To circumvent our inability to compute undirected distances with an
RLP computation, we use the following idea, which is basic to the algorithms of
Kleene [21], Floyd [9], and Warshall [39]. Let u k* V denote the existence of a path
between u and v that does not pass through any intermediate vertices with > k. Let

Pk={(U, V)[U *k V}.

The ZPLP algorithm for USTCON is outlined in the remainder of this paragraph,
and described fully thereafter. It proceeds similarly to Immerman’s and Szelepcs4nyi’s
algorithm, by iteratively computing : Pk, the cardinality of Pk. Having computed P,,
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we alternately attempt to verify that (G, s, t) USTCON via a random walk, or that
(G, s, t) USTCON by verifying that there are # P, pairs (u, v) (s, t) that are in
We compute : Pk from Pk-1 by determining, for each pair (u, v), whether or not it
is in Pk. We note that (u, v) Pk if and only if either (u, v) Pk-1, or both (u, k) Pk-
and (k, v) Pk-1. Again, :It-Pk_ is used to insure that the algorithm never makes a
mistake when claiming some (g, h) is or is not in Pk-.

The following lemma is obvious.
LEMMA 2. (U, V) Pk if and only if u and v are in the same connected component

of the subgraph G(k, u, v) of G induced by vertices {1, 2, 3,..., k, u, v}.
The basis for our algorithm is the random walk technique as used in Aleliunas et

al. [2]. It is modified slightly for our purposes in the following algorithm.

ALGORITHM WALK k, u, v ).
comment: WALK (k, u, v) simulates a random walk on the subgraph

G(k, u, v) starting at u, returns FOUND if v is encountered, and
NOT FOUND otherwise;

begin
if u v then return FOUND;
nV;
x-u;
repeat 2n log2 (2n2) times

begin
choose y randomly and uniformly from among the neighbors

of x in G(k, u, v);
if y v then return FOUND else x -y

end;
return NOT FOUND

end.

LEMMA 3. (1) If (U, v)G Pk, Pr[WALK(k, u, v)= FOUND]>= I-1/2n2.
(2) If (u, v): Pk, Pr[WALK(k, u, v)= FOUND]=O.
(3) WALK(k, u, v) uses space O(log n).
(4) WALK(k, u, v) uses expected time O(nSlogn) (on a probabilistic Turing

machine).
Proof The main result of Aleliunas et al. [2] is that the expected number of edge

traversals a random walk requires to visit all vertices of a connected undirected graph,
beginning at any vertex, is at most n 3. By Markov’s inequality [3] and Lemma 2, the
probability is at most 1/2 that WALK (k, u, v) does not encounter v within any specified
2n iterations of the repeat loop, given that (u, v) Pk. The correctness assertions follow
from this.

For the time complexity, we assume that G is presented as an n x n adjacency
matrix. Locating the row of this matrix corresponding to x, computing the degree in
G(k, u, v) of x, and selecting a neighbor y can be done in O(n2) time. There is a
technical detail if we assume {0, 1} valued probabilistic choices when the degree need
not be a power of 2. Suppose 2 =<degree (X)<2r+. We then choose r+ 1 random bits
to compute a random integer i[0,2r/-l]. If />degree(x) we discard and try
again. The expected number of random integers that need be generated (to obtain
/=<degree (x)) is at most 2. Thus WALK(k, u, v) uses expected time O(n2n310g n)--
O(n log n). l-1

If :Pk is known exactly, we need an errorless probabilistic algorithm that
determines whether or not (u, v) is in Pk.
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ALGORITHM PATH(k, cpk, u, v).
comment: PATH k, # Pk U, V) returns TRUE iff u, v) Pk
repeat forever

begin
if WALK k, u, v) FOUND then return TRUE
c<-0;
for all (g, h) (u, v) do

if WALK k, g, h FOUND then c - c + 1;
if c cpk then retnrn FALSE

eml.

LEMMA 4. (1) If PATH(k, Pk, U, V) returns TRUE, then (u, v)
(2) If PATH k, 41: Pk U, V) returns FALSE, then u, v) Pk.
(3) PATH(k, Pk, u, v) uses space O(log n).
(4) PATH(k, Pk, u, v) uses expected time O(n log n).
Proof. The correctness and space complexity of PATH are immediate from Lemma

3. For the expected time, note that each iteration of PATH’s repeat loop uses at most
n2 calls to WALK, that is, expected time O(n7 log n). The probability that a given
iteration of PATH fails to return a value is equal to the probability that an incorrect
answer is given by one or more of its invocations to WALK, which is at most n2/2n2 1/2,
by Lemma 3. Hence, the expected number of iterations is at most 2.

We now show how to extend Pk-1 to Pk.
ALGORITHM COUNT(k, cpkm 1).
comment: COUNT(k, Pk-) returns the correct value for Pk;
begin

cpk 0;
for all (u, v) do

if PATH(k-1, cpkml, u, v)
or (PATH(k- 1, cpkml, u, k) and PATH(k- 1, cpkml, k, v))
then cpk cpk + 1;

return cpk
end.

LEMMA 5. (1) COUNT(k, 4 Pk-1) returns 44: Pk.
(2) COUNT(k, : Pk-) uses space O(log n).
(3) COUNT(k, 4Pk-) uses expected time O(n9 log n).
Proof By Lemma 4, the calls to PATH correctly determine whether or not

(u, v), (u, k), (k, v) are in Pk-. Correctness follows since (u, v) Pk if and only if
(u, v) Pk- or ((u,k)6 Pk- and (k, v)Pk-I). For the time complexity, there are
O(n2) invocations of PATH, each of which runs in expected time O(n log n), by
Lemma 4.

It only remains to state the main routine.

ALGORITHM USTCON(G, s, t).
begin

comment: Initialize #Po: P0= {(u, u)} (_J {(u, v)[{u, v} E};
cpk # V+2#E;
for k from to # V do cpk ,- COUNT(k, cpk);
comment: cpk is now set to # P;
return PATH # V, cpk, s, t)

end.
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LEMMA 6. (1) USTCON(G, s, t) returns TRUE if and only if (G, s, t)
USTCON.

(2) USTCON uses space O(log n).
(3) USTCON uses expected time O(n lO log n).
Proof. This follows immediately from Lemmas 4 and 5.
It is interesting to compare the running time of the errorless algorithm (Lemma

6) to that of the version with one-sided error (Lemma 3).

2.3. An errorless algorithm for symmetric space hierarchies. As previously men-
tioned, USTCON is a complete problem for SL, the class of languages accepted by
nondeterministic O(log n) space machines whose next move relation is symmetric.
Reif [26] defined an "alternating" hierarchy based on SL in a manner analogous to
the alternating hierarchy based on NL defined by Chandra, Kozen, and Stockmeyer
[5]. While Immerman and Szelepcs6nyi’s result shows that the NL-based hierarchy
collapses to NL, the SL hierarchy may be infinite. For example, "bounded degree
planarity" is in the hierarchy but is not known to be in SL [26]. The main result of
this section is Theorem 9, which extends Theorem 1 by showing that the entire SL
hierarchy is in ZPLP.

For technical reasons related to the problem of nondeterministic counting dis-
cussed in 2.2, Reif’s hierarchy is defined in terms of Turing machines with com-
plementing moves, rather than existential and universal states as is standard for
alternating machines. In Reif’s complementing machines, a configuration Po is "accept-
ing" if and only if there is a finite computation sequence P0 Pl P2" Pj,j--> 0,
with no complementing moves such that either

(1) pj is in an accepting state, or
(2) there is at least one complementing move fro p and for all complementing

moves (pj, p’), p’ is not "accepting."
In a symmetric complementing machine, all noncomplementing moves must be

symmetric. The kth level of the symmetric complementation hierarchy is

CEL= {B] B is accepted by an O(log n) space-bounded symmetric
complementing machine making at most k-1
complement moves on any computation sequence}.

The following result is an easy modification of Theorem 5 in Ruzzo, Simon,
and Tompa [28]. (See that reference for a discussion of space-bounded oracle
machines.)

LEMMA 7. [,.J
k
C, DLsL.

Proof Consider a CEks computation. Let E(p) be the set of configurations q
reachable from p using only noncomplementing moves. Note that an SL oracle can
decide if q E(p), since all noncomplementing moves are symmetric. Let ACC(p, k)
TRUE if and only if there is a p E (p) such that either

(1) p is an accepting state, or
(2) k->_ 1, and there is a complementing move from pj, and -ACC(p’, k- 1) for

all complementing moves (p, p’).
If Po is the initial configuration, then the CE computation accepts if and only if
ACC(po, k-l)= TRUE. We determine the existence of p by deterministically
enumerating all configurations and calling the appropriate SL oracle. The recursive
calls on ACC are tested by maintaining a stack of k configurations.

Ruzzo, Simon, and Tompa [28] use the notation A<m to denote a restricted form
of relativization in which the query tape is subject to the relativized machine’s space
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bound, but the oracle receives that machine’s input together with each query. This
restriction is required to ensure the space bound in the following simulation.

LEMMA 8. ZPLP<zeLe>= ZPLP.
Proof Consider a relativized ZPLP machine M that uses an oracle A accepted

by a ZPLP machine M2. Let w be the input to M1. MA) is simulated by a ZPLP
machine M3. M3 operates as if it were M until M invokes the oracle with some query
x. M3 then simulates M2 on input w$x. Whenever M2 decides its output, M3 is able
to continue its simulation of M1. If M(M2) runs in expected time p (respectively,
P2) then the expected time of M3 is O(pl(n)p2(n+ O(log n)))= n1. [3

THEOREM 9. U k CE c_ ZPLP.
Proof By Theorem 1 and Lemmas 7 and 8,

U CE
_
DLs c_G_ DLzmv ZPLP<zv’) ZPLP.

k

The third inclusion follows from the fact that the deterministic oracle machine can be
assumed to write short queries, namely its configuration as it is about to write a long
query. (See [28, Lemma 7] for more details.) [3

This improves Reif’s result that U k CEc_ BPLP (defined in 2.1).
Reif also considered the implications of his result for probabilistic parallel models.

Simulation of DL by O(log n) time parallel models such as concurrent-read, exclusive-
write, parallel random access machines (CREW-PRAMs) [10] and hardware
modification machines [8] was well known. It has been observed (see, for example,
Reif [25], [26]) that these simulations extend to the simulation of RLP and BPLP by
one-sided and (respectively) bounded two-sided error probabilistic parallel machines.
Reif noted that, as a corollary, any language in U k CE

s can be recognized by such
a probabilistic parallel machine with bounded two-sided error in O(log n) time.

Theorem 9 improves this result also, since any language in ZPLP can be accepted
by an errorless probabilistic hardware modification machine (and thus by an errorless
probabilistic CREW-PRAM) in expected time O(log n) using polynomially many
processors. The simulation of an expected time p(n) ZPLP algorithm proceeds as
follows. Simulate 2p(n) steps of the ZPLP algorithm in time at most c log n using at
most (p(n)) processors (for some constant c) as in Reif [25], [26]. If the simulated
algorithm has not halted within that time, restart the simulation, using independently
chosen random moves. The expected number of repetitions of this procedure is at
most two.

Finally, an oracle hierarchy based on SL could be defined in the same manner
as the OE hierarchy of Ruzzo, Simon, and Tompa [28]. If we are careful about the
definition of a symmetric oracle machine (see [16] for one possible definition), we
would expect to find that, for all oracles A, SL<a> ZPLP(a> and thus by induction
that t_J

k OEL--- ZPLP. However, we have not pursued this question.

3. Semi-unbounded circuits, LOGCFL, and pebbling.
3.1. Complementation of semi-unbounded fan-in circuits. In this section we show

closure under complementation of the class of languages accepted by semi-unbounded
fan-in circuits.

The class of languages recognizable by size- and depth-bounded semi-unbounded
fan-in circuits has been characterized in terms of several other models. The oldest is
the nondeterministic auxiliary pushdown automaton of Cook [6]. Ruzzo has related
space and time on such machines to space and tree-size of alternating Turing machines,
where tree-size is the number of nodes in the smallest accepting subtree of the
computation tree [27]. Venkateswaran has related them to space and alternations on
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semi-unbounded alternating Turing machines--ones where there are no two consecutive
universal configurations on any path in the computation [37]. The relation to semi-
unbounded fan-in circuits follows from this. Immerman has shown relations to uniform
families of short first-order formulae with a fixed number of variables and Boolean
universal quantifiers--a property analogus to the semi-unbounded fan-in restriction
18]. These equivalences are summarized in the propositions below. They also generalize

to larger space bounds.
PROPOSITION 10 [18], [27], [37]. For T(n)=l(log n), the following (uniform)

complexity classes are identical.
(1) NauxPDA Space, Time (O(log n),2rn))).
(2) ATM Space, Tree-size (O(log n), 2Tn))).
(3) Semi-Unbounded ATM Space, Alternations (O(log n), O(T(n))).
(4) Uniform Semi-Unbounded Fan-in Circuit Size, Depth (2gn, O(T(n))).
(5) Uniform Var&Sz (B’V’)[O(1), O(T(n))].
PROPOSITION 11. The equivalences in Proposition 10 also hold among the nonuniform

versions of the models.
In all these models, closure under complementation seems surprising. In nondeter-

ministic auxiliary pushdown automata we face the usual problems of nondeterminism,
in addition to the difficulties introduced by large stacks, and perhaps by super-
polynomial running times. Although alternating Turing machine space and/or time
classes are easily seen to be closed under complementation, the same proof (basically
De Morgan’s laws) converts a computation of small tree-size into one of large tree-size.
Similar issues thwart the De Morgan approach to complementing circuits with bounded
fan-in AND gates and formulate with Boolean universal variablesmthey become
bounded fan-in OR gates and Boolean existentials instead. Nevertheless, closure under
complementation follows for all these models from the theorem below.

THEOREM 12. There is a constant ? such that, for any n-input semi-unboundedfan-in
circuit ce ofsize (number ofgates plus inputs) Z and depth D, there is a semi-unbounded

fan-in circuit ce--- ofsize at most ?DZ2 log Z and depth at most ?(D + log Z) that computes
the complement of the function computed by an. The same result holds uniformly for
uniform families of circuits { ten }.

Proof The key idea in the proof is again the use of inductive counting to verify
"negative" information. In this case we are interested in counting the number of gates
at a given depth that evaluate to 1.

Suppose we are given a circuit an of size Z and depth D. It is convenient to first
convert it to a circuit/3n of size 2DZ + 2n and depth 2D that is"

(1) Synchronousmi.e., vertices can be assigned to levels so that input variables
and their negations are on level 0, any gate on level receives all its inputs from
vertices on level i-1, and all output gates are on level 2D;

(2) Fixed width--i.e., each level i>= 1 contains exactly Z gates;
(3) Strictly alternating--i.e., for all i-> 0, all gates on level 2i + 1 are OR gates and

all gates on level 2i + 2 are AND gates; and
(4) Equivalent--i.e., it computes the same function as
This normal form is easily achieved. For example, for each level of/3n except the

0th, make a replica of each vertex of an. The replica on level of an input vertex g
is a trivial gate (of the appropriate type) whose only input is the replica of g on level
i- 1. Similarly, the replica of an AND gate g on an OR level is a trivial OR gate whose
only input is the replica of g on level i-1. A replica of an AND gate g on an ANI

level has as inputs the replicas on level i-1 of g’s inputs. OR gates are handled
similarly, but with nontrivial replicas only on OR levels. Level 0 contains only the 2n
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vertices representing the input literals. Level 1 replicas of gates whose inputs are not
all input literals are arbitrarily connected to literals. We can show by induction that
all vertices of depth at most in a, will be correctly computed by their replicas on
levels greater than or equal to 2i in

The "counting" we need in the construction is easily accomplished by threshold
functions. Thus, rather than producing the circuit advertised by the theorem directly,
it is easier to first produce a circuit y, containing THRESHOLD gates. (A C-THRESHOLD

gates has unbounded fan-in, and outputs 1 if and only if at least c of its inputs have
value 1.) This circuit will have the following properties:

(1) It has bounded fan-in AND gates and unbounded fan-in OR gates, i.e., it has
semi-unbounded fan-in.

(2) It contains arbitrary THRESHOLD gates.
(3) No path from output to input contains more than two THRESHOLD gates.
(4) It has size 4D(Z+ 1)2+2DZ+2n 1 O(DZ2).
(5) It has depth at most 2D/3.
(6) It computes the complement of the function computed by

The theorem will then follow by replacing the THRESHOLD gates by monotone SAC
threshold circuits. (Monotonicity is needed to preserve the semi-unbounded fan-in
property. By property (3) above, the depth of the threshold subcircuits will increase
the overall depth only additively.)

For 0 _-< k -<_ D, let

Pk {gig is a vertex of ft, on level 2k having value 1}.
The main quantities we will be interested in counting are 4# Pk, the cardinalities of the
sets Pk.

Our main construction, of y, from /3,, follows. It is sketched in Fig. 2.
Construction Step 1. The entire circuit/3, is a subcircuit of y,. The gates in this

subcircuit will be referred to as "original" gates. (Note that this means original to
not to

Construction Step 2. For 1 -< k -< D, each original gate g on level 2k- 1 or 2k, and
each 0_-< c_-< Z, there is a "contingent complement" gate cc(g] c) whose value will be
the complement of the value of g ifc 4# Pk-; if C # 4# Pk-1, then the value of cc(gl c)
is irrelevant. We compute cc(g] c) as follows:

(1) If g is an AND gate, say AND(t/, b), then cc(g]c) is the OR of cc(a]c) and
c(b c). (Fan-in greater than two is handled similarly.)

(2) If g is an OR gate (on level 2k 1), then cc(g] c) is a C-THRESHOLD gate whose
inputs are all original gates on level 2k-2 that are not inputs to g.

We now argue the correctness of this part of the construction.
LEMMA 13. For k >- 1, and all original gates g on level 2k-1 or 2k,

Proof.
Case 1. g is an OR gate on level 2k- 1, k >- 1. Then g evaluates to 0 if and only

if all g’s inputs evaluate to 0, if and only if all 4#Pk- original gates on level 2(k-1)
that evaluate to are not inputs to g, if and only if the WRESOLD gate cc(g[ 4# Pk-)
evaluates to 1.

Case 2. g is an AND gate on level 2k, k_-> 1. Its inputs a and b are OR gates on
level 2k 1. From Case 1 we know that co(a[ # Pk-) -aa and c(b[ 4# Pk-1) - -rib, so

-g -(a ^ b) --- a vb cc(a[ 4# Pk-1) V cc(b 4# Pk-1) =- cc(gl 4# Pk-1).

The proof for fan-in greater than two is analogous.



TWO APPLICATIONS OF INDUCTIVE COUNTING 569

-I

o

--,
;’,’,



570 BORODIN, COOK, DYMOND, RUZZO, AND TOMPA

Construction Step 3. Continuing the construction, there is a "counting" gate
COUNT(C, k), for all O<=c<=Z and O<=k<=D-1, whose value will be 1 if and only if

Pk C. This is computed as follows:

I<=>(c n)
zCOUNT(g, k) V AND(COUNT(d, k- 1), THI(C, k), TH0(C, k, d))
d=0

if k=0,

if k->_l,

where

THI(C, k)
TH0(C, k, d)

is the C-THRESHOLD of all original gates on level 2k, and
is the (Z-C)-THRESHOLD of the contingent complement
gates cc(gld), where g ranges over all original gates on
level 2k.

LEMMA 14. COUNT(C, k)= 1 if and only if #Pk=C.
Proof. The proof proceeds by induction on k.
Basis (k 0). There are exactly 2n vertices on level 0, namely the n inputs and

their complements. Exactly n of them evaluate to 1.
Induction (k> 0). By induction, COUNT(d, k-1) evaluates to 1 for exactly one

value of d, namely d- #Pk_I. Thus the only term in the disjunction /zd=o."" that
could possibly evaluate to is d # Pk-I. For this term, each contingent complement
gate cc(gl d) counted by TH0(C, k, d) computes -g by Lemma 13. Thus, THI(C, k) ^
TH0(C, k, d) evaluates to 1 if and only if, on level 2k, there are at least c original gates
with value 1 and at least (Z-c) original gates with value 0, and hence exactly c with
value 1. Thus, COUNT(C, k) evaluates to 1 if and only if c : Pk.

Construction Step 4. We complete the construction by defining the outputs of
For all original gates g that are outputs of fin (hence on level 2D), Yn contains a gate
COMP(g) that evaluates to if and only if g evaluates to 0. COMP(g) is computed as
follows:

z
COMP(g)-- V AND(COUNT(C, D- 1), cc(g[ c)).

=0

Correctness is easily shown. By Lemma 14, COUNT(C, D- 1) evaluates to 1 if and only
if PD_I=C, and by Lemma 13, cc(gl:PD_l)=--(-g). Hence COMP(g)---- (-g).

Thus /n correctly computes the complement of the function computed by an.
Analysis. Next we will analyze the size and depth of yn.
Define the THRESHOLD-depth of a gate g of 2’n to be the maximum number of

THRESHOLD gates, including g, along any path from g to an input vertex.
For each original gate g on level k, g is also at depth k in yn, and has THRESHOLD-

depth 0. For all 0_-< c<-Z, gate cc(g c) also has depth k, and THRESHOLD-depth 1,
since the THRESHOLD gates among cc(gl c) depend only on original gates, not on other
contingent complement gates.

The gates THI(c,k) have depth 2k+1 and THRESHOLD-depth 1. The gates
TH0(C, k, d) have depth 2k + 1 and THRESHOLD-depth 2.

The gates COUNT(C, k) have THRESHOLD-depth 2 and depth dk, where

dk {02 + max (dk_, 2k + 1

if k=0,
if k_->l.

Thus dk <-- 2k + 3.
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Finally, the output gates COMP(g) have THRESHOLD-depth 2 and depth 2+
max (dD_I,2D)<=2D+3.

The size of the circuit is easily seen to be polynomial in Z and D. The dominant
contributions are from the contingent complement subcircuits, which contain O(DZ2)
OR and THRESHOLD gates, and from the COUNT subcircuits, which contain O(DZ)
AND and THRESHOLD gates. A careful analysis gives the exact bound of 4D(Z + 1)2+
2DZ + 2n 1 claimed above.

To complete the proof of Theorem 12, we need to replace the THRESHOLD gates
in 3’, by monotone SAC threshold circuits, and analyze the size and depth of the
resulting Boolean circuit a,.

The existence of monotone SAC threshold circuits is easily established. A simple
divide-and-conquer technique gives n input monotone SAC circuits of size O(n)
and depth at most 2 [log n ]: the k-THRESHOLD of n bits can be computed as the OR
over 0_--<j--< k of the AND of the j-THRESHOLD of the first half of the bits and the
(k--j)-THRESHOLD of the last half of the bits:

k-THRESHOLD(X,,’’’, Xn)

k

V AND(j-THRESHOLD(X1," "’, X[n/2]),
j=0

k--j)-THRESHOLD(X[n/2]+I "’, X2n)).

Asymptotically, the smallest known monotone SAC threshold circuits are actually
NC circuits" the O(n log n) size "AKS" sorting networks of Ajtai, Koml6s, and
Szemer6di [1]. Replacing each THRESHOLD gate in y, by one of these subcircuits, and
noting that each THRESHOLD gate has at most Z inputs, would give an overall size for
the Boolean circuit a, of O(DZ log Z).

One observation reduces this substantially. Namely, a single n-input AKS network
computes the c-threshold of its inputs for all 1 <= c <-n. Thus, although an OR gate g
gives rise to Z THRESHOLD gates cc(gl c), 1 =< c =< Z, all of these values can be computed
by one AKS network. Similar combination is possible among the TH0(C,--,--) and
THI(c,--) gates, I<=c<=Z. This reduces the size of a-- to O(DZ21ogZ), as claimed.

The depth of a, is the depth of 3’, plus twice the depth of the AKS network (since
3", has THRESHOLD-depth 2), which is O(D+IogZ), as claimed.

For the uniform case of the theorem, we observe that the transformation from
to a, is quite simple and regular. We leave it to the reader to verify that this
transformation preserves uniformity. (The AKS networks are known to be
uniform.)

COROLLARY 15. For all k>= 1, SACk and nonuniform SACk are closed under
complementation.

Cook [7] defined CFL* as the set of functions each computable by a uniform
family {a,} of circuits, where a, has n inputs, bounded fan-in AND, OR, and NOT

gates, unbounded fan-in oracle gates for some context-free language, and O(log n)
depth. An oracle gate with fan-in f is defined to contribute [log2f] to the depth of
any path containing it.

COROLLARY 16. Any function in CFL* can be computed by a uniform family of
polynomial size, O(log n) depth, semi-unbounded fan-in circuits.

Proof. Let a. be a CFL* circuit with oracle gates for some context-free language
L. With a doubling of size and no increase in depth, a can be simulated by a CFL*
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circuit/3, whose NOa" gates appear only at the inputs, provided/3, is allowed oracle
gates for both L and L. (See, for example, [13].) The result now follows from the fact
that LOGCFL= SAC [37], together with Corollary 15. 0

Similarly, it is true that any 0-1 valued function in NL* (see Cook [7]) is also in
NL. This follows from Immerman’s [17] and Szelepcs6nyi’s theorems [33], and was
noted independently by S. Buss (personal communication).

3.2. The weakness of role switches in pebbling. There are a number of ways in
which we might define a "LOGCFL hierarchy." One consequence of Corollary 15 is
that, for many reasonable ways of doing so, the resulting hierarchy collapses to
LOGCFL. In this section we consider one such hierarchy that collapses. As a con-
sequence, the "role switch" resource [38] in pebbling is shown to be much weaker
than previously seemed plausible.

(In contrast, following a preliminary version of the present paper, Jenner and
Kirsig [19] considered an alternative formulation of a hierarchy based on LOGCFL,
showing that it coincides with the polynomial hierarchy and hence presumably does
not collapse.)

We begin by presenting the hierarchy. Define a (z, d, k, f)-circuit as an unbounded
fan-in circuit of size z and depth d, where negations appear only at the inputs, and
the vertices can be partitioned into k "layers" that alternately have ANO fan-in at most

f and OR fan-in at most f More precisely, the vertices can be partitioned into blocks
Bk, Bk_l, ", B1 (B containing the outputs) such that"

(1) Any wire (u, v) with u B and v Bj satisfies i>=j;
(2) All ANO gates of odd-numbered blocks have fan-in at most f; and
(3) All OR gates of even-numbered blocks have fan-in at most f.

For any fixed k, let

XkcFL= {L{ L can be recognized by a (nonuniform) family of
(n), O(log n), k, O(1))-circuits}.

For instance, EcFL is nonuniform SAC 1. Corollary 18 demonstrates that this hierarchy
collapses.

THEOREM 17. Let {an} be a family of (z, d, k, O(1))-circuits, where z, d, and k may
be functions of n. Then there is a family {fin} of (O(dz2 log z), O(d + k log z),
1, O(1))-circuits such that fin computes both the outputs of an and their negations.

Proof This is proved by induction on k, using Theorem 12 and De Morgan’s laws
in a straightforward way. 1-]

COROLLARY 18. For any fixed k >- 1, EFI= E ClFI.
Proof This follows from Theorem 17 by substituting z=n) and d=

O(log n). [3

To see how much more general Theorem 17 is than Corollary 18, consider the
case z= n1) and d O(log n), for any i_-> 1, which might be called the "SAC
hierarchy." Not only does k=O(1) fail to add power to nonuniform SAC, but
k O(log-1 n) does as well.

The purpose of this section is to apply this result to a pebble game introduced by
Venkateswaran and Tompa [38]. They defined a new resource called "role switches."
It will follow from Theorems 19 and 20 that EFL is the set of languages recognized
by polynomial-size circuits pebbleable with O(1) pebbles, O(log n) rounds, and k- 1
role switches. Hence, by Corollary 18, any such circuit can be simulated by one pebble-
able with O(1) pebbles, O(log n) rounds, and zero role switches. Similarly, any
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polynomial-size circuit pebbleable with O(1) pebbles, O(login) rounds, and
O(logi-1 n) role switches can be simulated by one pebbleable with O(1) pebbles,
O(log n) rounds, and zero role switches.

The pebble game introduced by Venkateswaran and Tompa is referred to as the
dual interpreted two-person pebble game. This game is played by two players, called
Player 0 and Player 1, on a circuit c, together with values for its n inputs and their
negations (referred to collectively as literals). There are two minor differences between
Venkateswaran and Tompa’s game and the one used in this section: for convenience,
we assume that c, is nonuniform and has unbounded fan-in. The latter condition does
not affect the resources considered, provided the depth of an is 12(log n).

At any point, one of the players takes on the role of the Challenger and the other
that ofthe Pebbler. The Challenger is responsible for selecting the "currently challenged
vertex"; the Pebbler has a collection of pebbles that it can place on or remove from
the vertices of an. The role of a player is automatically determined as part of the circuit
information as follows. The vertices in an are partitioned into two sets, those of
"challenge type" 0 and those of "challenge type" 1. If the currently challenged vertex
is of challenge type 0 (challenge type 1), then Player 0 (Player 1) is the Challenger in
the next round. A Boolean circuit augmented with this role information for each of
its vertices will be referred to as an augmented circuit. For convenience, it is assumed
that the output vertex has challenge type 0.

The objective of Player 0 (Player 1) is to establish that the output of the circuit
evaluates to 0 (1). A pebble placement or challenge on a vertex v by Player 0 (Player
1) corresponds to asserting that v evaluates to 0 (1). A pebble placed by Player 0
(Player 1) will be referred to as a 0-pebble (1-pebble).

The initial challenge is on the output vertex. The game proceeds in rounds, with
a round consisting of the following three parts. (a) If the game is not over at the
currently challenged vertex u according to the conditions below, then Player 0 is the
Challenger for this round if u is of challenge type 0 and the Pebbler otherwise. (b) In
the pebbling move, the Pebbler picks up zero or more of its own pebbles from vertices
already pebbled and places pebbles on any nonempty set of vertices. (c) In the
challenging move, the Challenger either rechallenges the currently challenged vertex
or challenges one of the vertices that acquired a pebble in the current round.

Player 1 wins the game if, immediately following the Challenger’s move, the
currently challenged vertex is a literal with value 1, or an OR gate at least one of whose
immediate predecessors is 1,pebbled, or an AND gate all of whose immediate pre-
decessors are 1-pebbled. Player 0 wins if, immediately following the Challenger’s move,
the currently challenged vertex is a literal with value 0, or an OR gate all of whose
immediate predecessors are 0-pebbled, or an AND gate at least one of whose immediate
predecessors is 0-pebbled. It is also possible to have a winner in an infinite play of
the game, namely that player (if either) who is the Pebbler in only finitely many rounds.
(The purpose of this last rule is to force each player to make progress as the Pebbler.)

These notions are defined more precisely below. Fix an augmented circuit an and
its input x.

A configuration of the game is a tuple (t, P1, Po, R1, Ro, v), where
{P, C} indicates whether it is the Pebbler’s or the Challenger’s turn to move,

P is the set of vertices with 1-pebbles on them from previous rounds,
Po is the set of vertices with 0-pebbles on them from previous rounds,
R is the set of vertices 1-pebbled in the current round,
Ro is the set of vertices 0-pebbled in the current round, and
v is the currently challenged vertex.
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The initial configuration of the game is (P, , , ,, s), where s is the output
of the circuit.

A configuration (P, P1, Po, , , v) is terminal if v is a literal, or an OR (AND)
gate with some (all) of its immediate predecessors in P1 or all (some) of its immediate
predecessors in Po.

A move in the game is made in accordance with a binary relation on configur-
ations defined as follows (where Po, P1, So, and S are arbitrary sets of vertices, and
Ro and R are arbitrary nonempty sets of vertices)"

(P, P, Po, , , v) (C, P $1, Po, R1, , v), for all configurations
(P, P, Po, , , v) that are not terminal and where v is of challenge type 0,

(P, P1, Po, , , v) - (C, P, Po- So, , Ro, v), for all configurations
(P, P, Po, , , v) that are not terminal and where v is of challenge type 1,

(C, P1, Po, R1, , V) b- (P, P, U R1, Po, , , v’), for all v’ e R, U {v},

(C, P,, Po, , Ro, v) - (P, P1, PoU Ro, , , v’), for all v’ e RoU {v}.

The game tree T is a maximal rooted tree whose nodes are labeled by configurations
of the game, whose root is labeled by the initial configuration, and whose edge relation
is given by -. Note that the leaves of the tree are labeled by terminal configurations.

A finite play of the game is a finite path in the game tree from the root to some
leaf labeled by the terminal configuration (P, P1, Po, , , v). It is a winningfinite play
for Player if v is a literal with value 1, or if v is an OR gate at least one of whose
immediate predecessors is in P1, or if v is an AND gate all of whose immediate
predecessors are in P1; otherwise it is a winning finite play for Player O. An infinite
path II in the game tree is a winning infinite play for the player (if either) that is the
Pebbler in only finitely many configurations on I-I.

A winning strategy for Player 1 (if it exists) is a subtree W of T such that:
(1) W contains the root of T;
(2) W contains exactly one child of every nonterminal node in W that is labeled

by a configuration in which it is Player l’s turn to move;
(3) W contains all children of every nonterminal node in W that is labeled by a

configuration in which it is Player O’s turn to move; and
(4) All paths in W are winning (finite or infinite) plays for Player 1.
A winning strategy for Player 0 is defined dually.
Let {a} accept the language L, where each member a of the family is an

augmented circuit with n inputs. The game on a with input x L f3 {0, 1}" can be
played simultaneously in p(n) space, r(n) rounds, and s(n) role switches if and only if
there is a winning strategy for Player 1 in which"

(1) Every pebbling configuration (P, P, Po, , , v) along every path satisfies

(2) On any path, there are at most r(n) edges (P, P, Po, , , v) (C, P-
$1, Po, R1, , v) with v or challenge type 0, and

(3) On any path, there are at most s(n) edges
(C, P1, Po, R, Ro, v) (P, P, P, f, , v’) having the challenge types of v and v’
unequal.

Resources on inputs x L are defined dually, considering winning strategies for
Player 0 in place of those for Player 1.



TWO APPLICATIONS OF INDUCTIVE COUNTING 575

Finally, un is pebbleable simultaneously in p(n) space, r(n) rounds, and s(n) role
switches if and only if, for all x of length n, the game on cn can be played simultaneously
in p(n) space, r(n) rounds, and s(n) role switches. Note that only the resources used
by the winning player are counted.

Theorems 19 and 20 demonstrate the intimate relationship between layered circuits
and pebbling.

THEOREM 19. Suppose {c,} is a family of (z, r, s + 1, p)-cireuits, where z, r, s, and
p may be functions of n. Then there is an assignment of challenge types to the vertices of
c, such that c, is pebbleable simultaneously in p space, r rounds, and s role switches.

Proof Any vertex in a layer with AND fan-in (OR fan-in) bounded by p is assigned
challenge type 0 (respectively, 1). Suppose c, outputs on input x. A winning strategy
for Player follows from the claim below. The winning strategy for Player 0 when c,
outputs 0 is dual.

CLAIM. Let v be the currently challenged vertex of c. Suppose v evaluates to
on input x, no predecessor of v is 0-pebbled, and the subcircuit induced by v and its
predecessors is a (z’, r’, s’+ 1, p’)-circuit. Then Player 1 can win the game with p’
pebbles, r’ rounds, and s’ role switches.

The claim is proved by induction on r’. The basis r’= 0 is immediate. The induction
depends on the role of Player 1, as follows.

Case 1. The challenge type of v is 0; i.e., v is in a layer with bounded AND fan-in.
Then Player 1 is the Pebbler, and begins by removing all 1-pebbles from the circuit.

Case 1.1. v is an oR gate. Then Player 1 pebbles any one immediate predecessor
u of v that evaluates to 1. (Note that Player does not lose immediately, as no
predecessors of u are 0-pebbled.) Player 0 must move the challenge to u in order not
to lose immediately. If the challenge type of u is 1, then a role switch occurs and s’
decreases by at least 1. In any case, the claim now follows from the induction hypothesis.

Case 1.2. v is an AND gate with bounded fan-in. Then Player 1 pebbles every
immediate predecessor of v. The claim follows as in Case 1.1.

Case 2. The challenge type of v is 1. Then Player 1 is the Challenger. If Player
0 never pebbles a predecessor of v that evaluates to 1, Player retains its challenge
on v and wins using no resources. Suppose Player 0 pebbles a predecessor of v that
evaluates to 1. Consider the first such move. Let u be such a predecessor of minimum
depth among the vertices that are pebbled. Player moves its challenge to u. Notice
that no predecessor of u is 0-pebbled. The depth of the challenged vertex is decreased
without Player 1 using any resources (with the possible exception of a role switch),
so the result again follows from the induction hypothesis. [3

THEOREM 20. Suppose a family {cn} of augmented circuits of size z is pebbleable
simultaneously in p space, r rounds, and s role switches, where z, p, r, and s may be

functions of n. Then there is a family {/3,} of ((r+l)Z(s+l)z(P),4r+5, s+l,
p + 1)-circuits that recognizes the same language as {c,}.

Proof Construction. has one vertex g(A, r, ro, ) for every 0 <- r, r0 =< r, every
0=<=<s, and every configuration A=(t, P, Po, R, Ro, v) with +(P LJ R)<=p and
+(PoLJ Ro)<-p. r(ro) will be used to count the number of rounds in which Player
(respectively, 0) has been Pebbler, and will be used to count the number of role
switches that have occurred. If A (t, P, P0, R, Ro, v) is terminal with v a literal x,
then g(A, r, ro, ) is the literal x. If A (t, P, Po, R, Ro, v) is terminal with appropri-
ate immediate predecessors of the challenged gate v in Pi, then g(A, r, ro, ) is the
constant i. Otherwise g(A, r, ro, ) is a gate of type oR (AND) if and only if in A it is
the turn of Player (respectively, 0). The output gate is g(/, 0, 0, 0), where 1 is the
initial configuration on c,. Let g(A,r,ro,) be a gate of /3,, where A=
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(t, P1, Po, R1, Ro, v) and let A’=(t’, P, P’o, R’I, R’o, V’) satisfy A - A’. Fori{0,1}, let

ri-- r
if P and v is of challenge type 1- i,

otherwise,

if the challenge types of v and v’ are unequal,
otherwise.

If ri> r or #(Pi Ri)>p, then there is a wire from the constant 1-i to g(A, rl, ro, g)
(indicating that Player 1-i must win from A’, since the winner never exceeds its
resources). If ’> s, there is a wire from an arbitrary constant to g(A, rl, ro, g).
Otherwise, there is a wire from g(A’, r, r’o, ’) to g(A, rl, ro, ).

Correctness. Suppose a, evaluates to on x. The fact that/3, evaluates to on x
is shown by arguing that there is an "accepting subcircuit" S of/3,, that is, a set of
vertices including the output all of which evaluate to 1. (The proof when a, evaluates
to 0 is dual.)

Since a, evaluates to 1 on x, there is a winning strategy W for Player 1 in which
Player uses at most p pebbles, r rounds, and s role switches. By construction, there
is a corresponding subcircuit S of/3, that contains the output, and in which one
immediate predecessor of each OR gate in S and all immediate predecessors of each
AND gate in S are also in S. The major difference between W and S is that some plays
(in particular, all infinite plays) in W are truncated in S due to the conditions r0> r
or #(PoU Ro) >p. (Neither rl> r nor #(PIU R1)>p nor s> s ever occurs in S, since
Player l’s strategy uses at most r rounds, at most p pebbles, and at most s role switches.)
All literals or constants of S that correspond to leaves of W evaluate to 1, since Player
wins at all leaves of W. Furthermore, any literal or constant of S that does not

correspond to a leaf of W is the constant by construction, since it arises from a
truncation due to ro> r or # (P0 R0)> p. Thus,/3, outputs 1.

Analysis. The size bound of/3, follows from the fact that the number of configur-
ations of the pebble game is z(p. The depth bound of 4r+ 5 follows from the fact
that either r0 or rl increases each round, and there are two moves (one for each player)
per round. The fan-in bound follows from the fact that, whenever it is the turn of
Player 0 (1) who is the Challenger in A, the AND fan-in (respectively, oR fan-in) of
g(A, rl, ro, ) is at most p+ 1, since only p+ configurations (corresponding to the
possibilities for the next challenged vertex) follow from A by a move of the Challenger.
Finally, there is one layer for each of the s+ 1 values of g, since the same player
remains Challenger as long as remains unchanged. [3

Let ROUNDS, SWITCHES( r( n ), s(n)) denote the set of languages each of which
is accepted by a nonuniform family of polynomial-size circuits pebbleable simul-
taneously with O(1) pebbles, r(n) rounds, and s(n) role switches.

COROLLARY 21.

ROUNDS, SWITCHES(r(n), s(n))

ROUNDS, SWITCHES(O(r(n)+ s(n) log n), 0).

Proof This follows from Theorems 17, 19, and 20, noting for the size bound that
r(n) and s(n) are n O(1).

The final corollary states an explicit threshold beyond which role switches appear
to add power. Equations (1) and (3) are the nonuniform analogues of Theorems 4 and
5 in [38].
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()
(2)
(3)

COROLLARY 22. For any >- 1,

nonuniform SACi= ROUNDS, SWITCHES( O(log n), 0)
ROUNDS, SWITCHES(O(log n), O(logi-1 n));

nonuniform AC= ROUNDS, SWITCHES(O(log n), O(log n)).

Proof Equation (1) follows from Theorems 19 and 20, since nonuniform SAC
is, by definition, the set of languages each of which is accepted by a family of
(n, O(log n), 1, O(1))-circuits. Equation (3) follows by the same argument, since
nonuniform AC is characterized similarly by (n, O(log n), O(log n), O(1))-
circuits. Equation (2) follows from Corollary 21.

4. Open problems. Figure indicates the relationships among space-bounded
complexity classes between NC and NC2. Since it is still possible that NCl= NC
(or indeed NC NP), there are no proven proper inclusions orincomparability results
among these classes.

In addition to the problems identified by Cook [7], we call attention to certain
questions suggested by this paper:

(1) Is SL closed under complementation? If so, then the U k CZL hierarchy
collapses to SL.

(2) Is RLP closed under complementation? If so, then RLP ZPLP. If not, what
is a new candidate for a language in RLP (or BPLP) that is not in ZPLP?

(3) Assuming that RLP NL RL ZPL, we see that the expected polynomial-
time bound is important in the case of errorless and one-sided error probabilistic
O(log n) space computations, whereas PL PLP in the case of two-sided unbounded
error. The case of two-sided bounded error remains open; that is, is BPL BPLP? Is
there a candidate for a language in BPLP (or BPL) that is not in NL?

It seems surprising that the NC AKS networks [1] provide the best known SAC
networks for Boolean sorting. An interesting question is whether we could exploit the
availability of unbounded fan-in OR gates to get a simpler O(n log n) size monotone
Boolean sorter, and/or one with a more favorable constant hidden in the big- O. Indeed,
size o(n log n) is not out of the question for this model. See Friedman 11 and Valiant
[35] for other recent approaches to threshold computation.
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NOTE ON WEINTRAUB’S MINIMUM-COST CIRCULATION
ALGORITHM*

FRANCISCO BARAHONA? AND lVA TARDOS$

Abstract. In 1974 Weintraub [Management Sci., 21 (1974), pp. 87-97] published an algorithm for the
minimum-cost circulation problems with convex cost function. In this note Weintraub’s algorithm is

considered when applied to a minimum-cost circulation problem with linear objective function. It is shown
that a minor variation of the algorithm runs in polynomial time. The resulting algorithm, although it is not

strongly polynomial, does not rely on scaling. It is a generalization of the maximum flow algorithm due to

Edmonds and Karp [J. Assoc. Comput. Maeh., 19 (1972), pp. 248-264] that augments along the fattest
augmenting path in the residual graph.

The algorithm described here is slower than the fastest minimum-cost circulation algorithms known.
The authors’ interest in the algorithm is partially historical, a scaling free "almost polynomial time" algorithm
was published in 1974, and partially due to the different ideas involved.

Key words, network flow, circulation, scaling, algorithms

C. R. subject classifications. F.2.2, G.2.2

1. Introduction. The circulation problem is one of the fundamental problems in
the theory of algorithms. It is very often used in practice and has contributed consider-
ably to our understanding of the efficiency of algorithms, especially of how the presence
of numbers in a combinatorial problem affect the complexity of the problem.

An instance of the minimum-cost circulation problem is given by a directed graph
G V, E) and capacities u E -> Z+ and costs c E -*Z on the arcs. For notational
convenience we assume that for every pair v, w e V, there is at most one arc e e E with
ends v and w. A feasible circulation is a vector x e R e such that

O<=x(e)<:u(e) for every eeE,

x(w,v)= x(v,w) for every node veV.
V V

The cost of the circulation x is

cx: E c(e)x(e).
eGE

The minimum-cost circulation problem is to find a feasible circulation of minimum cost.
We shall use n to denote the number of nodes, m to denote the number of arcs in G,
and U and C to denote the maximum capacity and cost, respectively.

The problem was studied.already as early as the 1940s. The first algorithm, the
"out-of-kilter" method, was introduced in the early 60s (see Ford and Fulkerson [2]).
The out-of-kilter method is a pseudo-polynomial algorithm and its running time is
proportional to the unary size of the capacities.
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The first polynomial time algorithm for the problem was discovered by Edmonds
and Karp in 1972 [1]. This is the first so-called scaling algorithm. Since then, scaling
algorithms have been widely studied and used for a variety of combinatorial
optimization problems.

A theoretical disadvantage of scaling algorithms is that they are not strongly
polynomial (that is, the number of arithmetic operations used by the algorithm depends
on the size of the numbers involved, and not only on the number of nodes and arcs
in the graph). In fact, scaling algorithms have a non-strongly polynomial "best case
running time," since the algorithm handles each bit in the binary description of the
capacities separately.

The first strongly polynomial algorithm for the minimum cost circulation problem
was published thirteen years later in 1985 [8]. The current most efficient strongly
polynomial algorithm is due to Orlin [7]. Goldberg and Tarjan [3] discovered a very
elegant strongly polynomial algorithm. This algorithm is similar to the one studied in
this paper in the sense that both are based on the same basic idea of canceling cycles
(Klein [5]).

In this note, we consider an algorithm due to Weintraub [10] that was published
two years after the Edmonds-Karp paper. The algorithm is based on the idea due to
Klein [5] of repeatedly canceling negative cost cycles in the residual graph of a feasible
circulation. Although Weintraub considers the circulation problem with convex costs,
here we shall restrict our attention to the minimum-cost circulation problem with linear
cost function. In the following, we shall refer to this special case as Weintraub’s
algorithm. In the paper [10] Weintraub proves that his cycle selection rule results in
a minimum-cost circulation after canceling a polynomial number of cycles, but his
algorithm takes superpolynomial time to find the right cycles to cancel. We show that
the required cycle can be found in polynomial time. To make this note self-contained
we shall describe the special case of Weintraub’s algorithm in detail.

Weintraub’s method relies on a subroutine that solves the assignment problem,
and therefore its running time is worse than the fastest known minimum-cost circulation
algorithms ([4], [7]). We find it still interesting to see how Weintraub’s approach,
which was published in 1974, can yield a fairly simple polynomial time algorithm.

2. A modification of Weintraub’s algorithm. Given a circulation problem and a
feasible circulation x we define the associated residual graph Gx (V, Ex), where
(v,w)6E, if either (v,w)E and x( v, w) < u( v, w) or (w,v)E and x(w,v)>O. In
the first case the arc (v, w) has residual capacity u(v, w)= u(v, w)-x(v, w) and cost
c(v, w). In the second case u,(v, w)= x(w, v) and c(v, w)=-c(w, v).

The algorithm is based on the following well-known fact (see, e.g., [6]).
LEMMA 1. A feasible circulation x is of minimum cost if and only if the residual

graph G contains no negative cost residual cycles.
The main step of the algorithm is canceling negative cost cycles. We define the

characteristic vector of a cycle C in the residual graph of a circulation as

ife=(v,w)C,
xc(e)= -1 ife=(v,w) and (w, v) C,

0 otherwise.

The amount of flow we can push around the cycle is u,(C)=min,,wcUx(V, w).
Canceling C results in a new feasible circulation x’= x + u,( C)Xc.

Note that canceling a cycle C improves the cost of the circulation by

(1) cx-cx’= -u(C)cxc.
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LEMMA 2. For everyfeasible circulation x there exists a cycle C in the residual graph
of x, canceling of which results in a feasible circulation x’ with

m-1
cx’- CXo,, <= cx CXop0,

m

where Xop denotes the minimum-cost circulation.

Proof Consider the circulation Xop X. This circulation can be decomposed into
at most m conforming cycles. That is, there exists cycles Ci and positive scalars Ai for
i=l k, suchthat k<m and i=1 AiXci Xopt-- X and further (v, w) Ci implies
that either (v, w)E and Xopt(V, w)>x(v,w) or (w,v)E and Xopt(W,V)<x(v,w).
Now C is a cycle in G, for every i= 1,. ., k. Further u,(Ci)>-A. Therefore, the cycle
Ci that maximizes ux(C)cXc, proves the lemma.

As a corollary we can note that canceling the residual cycle that gives the biggest
improvement in the cost of the circulation would give a polynomial-time algorithm
(see the proof of Theorem 5). However, finding this cycle is NP-hard; it contains the
Hamiltonian cycle problem as a special case.

Remark. The maximum flow problem can be reduced to the minimum-cost circula-
tion problem by introducing a new arc (t, s) connecting the sink back to the source
with infinite (very high) capacity and cost -1 and assigning cost 0 to all other arcs. A
minimum cost circulation in this graph is equal to a maximum flow in the original
graph with the arc (t, s) carrying the value of the flow. The circulation x 0 is feasible.
All negative cost cycles in the residual graph of any feasible circulation have cost -1
and go through the arc (t, s). Negative cost residual cycles correspond to augmenting
paths for the maximum flow problem. The residual cycle whose canceling gives the
maximum improvement in the cost is the cycle corresponding to the augmenting path
with the minimum residual capacity along the path maximal. Such a path can be found
in polynomial time. The resulting maximum flow algorithm is the polynomial time
fattest path algorithm discovered by Edmonds and Karp [1].

Weintraub’s main idea is that instead of solving the NP-hard problem of finding the
best single cycle to cancel, we can look for a set of node-disjoint cycles and cancel
them simultaneously. The following algorithm finds a set of node-disjoint cycles,
canceling of which results in an improvement of the cost at least as big as the canceling
of any single cycle. The algorithm will use a subroutine that solves the assignment
problem (i.e., the minimum-cost matching problem in a bipartite graph) to find the
right set of cycles.

Given a graph G (V, E) with a cost function c on its arcs, let us define a
corresponding bipartite graph B (V’ V", E’) as follows.

Let V’ and V" denote two disjoint copies of V. Let v’ and v" denote the nodes in
V’ and V", respectively, corresponding to node v V. Let E’= {v’w" if either v w or
(v, w) E}. Define the costs on the edges of B as c(v’w")= c(v, w) if v w and 0
otherwise.

LEMMA 3. For any directed graph G and the corresponding bipartite graph B the
perfect matchings (assignments) of B are in one-to-one correspondence with the sets of
node-disjoint cycles in G, and the two have the same cost.

This lemma is the basis of the algorithm whose main step is described in Fig. 1.
The subroutine takes a feasible circulation x as its input, and outputs a set of
node-disjoint cycles that should be canceled. For feasible circulation x and a real
number A R+ we use the graph G(x,A)=(V, E(x, A)), where E(x, )t) denotes the set
of arcs with residual capacity at least A.
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Step Let A > > Ak > 0 denote the different values of the residual capacities in G.
Step 2 For 1, , k find the minimum cost set of node-disjoint cycles in G(x, Ai). This

can be done using Lemma 3 and a subroutine to solve the resulting assignment
problem. Let ui be equal to -A times the sum of the costs of the arcs in the set
of cycles found.

Step 3 Choose the index for which u is maximal and output the set of cycles found in
G(x, Ai).

FIG. 1. FIND CYCLES subroutine.

THEOREM 4. Given a feasible circulation x, canceling the cycles found by the FIND
CYCLES subroutine in Fig. results in a new feasible circulation x’, such that the
improvement in the cost is at least as big as the improvement caused by canceling any
single cycle in Gx.

Proof Let C denote the best residual cycle in G,. Further, let Ai denote the
minimum residual capacity of the arcs in C. C is a cycle in G(x, Ai) and therefore (1)
implies that the improvement in the cost caused by canceling C is at most ’i. On
the other hand, the cost improvement caused by canceling the cycles found by the
subroutine is at least ,.

THEOREM 5. Starting with anyfeasible integer circulation x and repeatedly canceling
the cycles found by the FIND CYCLES subroutine results in a minimum-cost circulation

after at most O(m log mUC) calls to the subroutine.

Proof Let Xop denote a minimum-cost circulation. Note that every intermediate
feasible circulation x’ found by this algorithm is integral, and therefore ex’-CXop <
implies that x’ is of minimum cost. Further, any initial feasible circulation x0 satisfies
CXo--CXopt -’eE c(e)u(e)<= mCU. Lemma 2 and Theorem 4 imply that the circulation

Xk found after canceling k set of cycles given by the subroutine satisfies

CXk CXop <-- 1 / m )k CXo CXopt) <- (1 / m)kmCU.

For k=mlogmUC we have that cxk-CXopt<l (since (1-1/m)m<e-1) and con-
sequently Xk is optimal. [3

THEOREM 6. The above version of Weintraub’s algorithm can be implemented to

run in O(m2(m + n log m) log mUC) time.

Proof Theorem 5 implies that the FIND CYCLES subroutine will be used at
most O(m log mUC) times. The cycles found by the subroutine can be canceled in
O(n) time. The most time-consuming part of the subroutine is solving the m assignment
problems. Therefore, the running time can be bounded by O(m log mUC) times the
time required for solving a single assignment problem. This can be improved by noticing
that the m assignment problems solved in one application of the subroutine are closely
related: only one new edge is added to the old problem to create the new one. Having
already found a solution to the previous problem, the new problem can be solved .by
a single call to a shortest path algorithm with nonnegative arclengths. Consequently,
the FIND CYCLES subroutine can be implemented in O(m(m + n log n)) time (see,
e.g., [9]), and this gives an O(m2(m + n log n) log mUC) time minimum-cost circulation
algorithm.

Remark. Let us point out in what way the algorithm described by Weintraub
differs from the one given above. Weintraub’s algorithm has the same overall strategy,
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and Weintraub has proved that the cycle selection rule implemented by the FIND
CYCLES subroutine gives (in the case of a linear objective function) a minimum-cost
circulation after canceling a polynomial number of cycles. The only difference lies in
the choice of the set of values Ai in Step 1 of the subroutine (Fig. 1). Weintraub was
concerned with convex cost functions, where the number of different values of A to
be considered is even bigger than U. He did not notice that in the linear case m values
suffice.

A scaling-like choice for the set of values Ai that would also make the algorithm
run in polynomial time has been pointed out to us by Plotkin and Orlin (personal
communication). Namely, we can take the values Ai in each application of the sub-
routine to be the different powers of 2 up to the maximum capacity U. In this case
Theorem 4 has to be relaxed. This version of the subroutine finds a set of cycles, whose
canceling improves the cost by at least half of the improvement possible by canceling
any single cycle.

Open problem. It would be interesting to know if the minimum-cost circulation
algorithm described here (or a minor modification of this algorithm) is actually strongly
polynomial. Even Edmonds and Karp’s fattest path maximum flow algorithm (that is,
the same as our implementation of Weintraub’s algorithm when applied to solve the
maximum flow problem) is not known to run in strongly polynomial time.
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FAST FOURIER TRANSFORMS FOR METABELIAN GROUPS*

MICHAEL CLAUSENt

Abstract. Let G be a finite group. Then L,.(G), the minimal number of arithmetic operations to evaluate
a Fourier transform corresponding to G, is smaller than 2. [G[ 2. The fast Fourier transform algorithms
improve this trivial upper bound by showing that for a cyclic group G, L(G)=< c. IG[. log IGI This last
result is extended to metabelian groups, and it is shown that these groups also have fast inverse Fourier
transforms. In particular there are fast algorithms for the (inverse) Fourier transforms for dihedral and
generalized quaternion groups, as well as for all groups of square-free order.

Key words, fast Fourier transform, group algebras, metabelian groups, dihedral groups, quaternion
groups
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1. Introduction. This paper is concerned with fast Fourier transforms (FFTs). For
applications of such fast algorithms to signal and picture processing, coding theory,
cryptography, and algorithmic circuit design, the interested reader is referred to [2],
[3], [11], 13]. We start with a brief review of the mathematical background.

The set CG := {ala:G- C} of all complex-valued functions on the finite group
G becomes a C-space by pointwise addition and scalar multiplication. Its C-dimension
equals the order IGI of G. A natural C-basis is given by the indicator functions of the
group elements. By identifying each group element with its indicator function, CG
can be viewed as the space of all formal sums ag with complex coefficients. The
multiplication in G can be bilinearly extended to CG:

Thus CG becomes a C-algebra, the so-called group algebra of G over C. For instance,
the group algebra of the cyclic group Cn of order n can be identified with the algebra
C[X]/(X- 1) of polynomials of degree <n with multiplication modulo X"- 1. By
Chinese remaindering we know that C[X]/(X"-I) is isomorphic to the algebra of
n-square diagonal matrices. This isomorphism, known as the (cyclic) discrete Fourier

transform (DFT), can be viewed as a structural transition from the signal domain CC,
into the spectral domain Cn; in particular, the DFT is multiplicative and thus links the
convolution in C[X]/(X- 1) and the multiplication of n-square diagonal matrices.
A fast multiplication of polynomials results from an FFT and the multiplication of
diagonal matrices followed by a fast inverse Fourier transform.

Wedderburn’s theorem, which generalizes the DFT for cyclic groups to arbitrary
finite groups, says that the group algebra CG of a finite group G is isomorphic to a
suitable algebra of block diagonal matrices:

h

CG- CiXdio
i=l

The number h of blocks equals the number of conjugacy classes of G. Every such
isomorphism is called a (generalized) Fourier transform for CG. For the symmetric
group $3 it turns out that CS3=CCC22. The first two blocks correspond to the

Received by the editors August 15, 1987; accepted for publication (in revised form) August 29, 1988.
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representations (S 3"/’--) 1) and (S rsgn (r)), whereas the last block represents
$3 as the symmetry group of a regular triangle. In general, the h blocks occurring in
Wedderburn’s theorem correspond to the h classes of inequivalent irreducible rep-
resentations of CG. A (matrix) representation D of CG of degree or dimension d is a
C-linear and multiplicative transformation D:CG->Ccixd which maps onto 1; it is
irreducible if no proper linear subspace of Cd is invariant under the image of D. A
change of bases in Cd, described by an invertible d-square matrix T, leads to a new
representation D’(g):= To D(g)o T-1, which, by definition, is equivalent to D. If
D1,’’" Dh is a transversal of the equivalence classes of irreducible representations
of CG, then

@ Di :a-> Di(a)

is a Fourier transform for CG and every algebra isomorphism CG-@i Cd’d’ can be
described in this way.

As a classical example we take the cyclic group Cn (x} of order n. Let to be a
primitive nth root of unity. Then {Dk := (, amX -m a,tomk)lo --< k < n} is the set
of all irreducible C-representations of C Cn and the Fourier transform for CCn with
respect to natural C-bases is given by the n-square DFT matrix (to,k). Let us proceed
with the general case. With respect to natural C-bases in CG and @i_-<h Cd’d’, each
Fourier transform can be viewed as a GI-square complex matrix. The linear complexity
L,(A) of a matrix A Cr’ is the minimal number of C-operations (= additions/subtrac-
tions/scalar multiplications) which are sufficient to compute A. x from x, where the
input vector x (xi) is a column vector of indeterminates xl,..., x, over C. Since
a nonabelian group G has more than one Fourier transform, we define the linear
complexity of the group O by L,(G):= min L(W), where the minimum is taken over
all possible Fourier transforms W for CG. Trivially, L(G)<2" IGJ 2. For a cyclic
2-group G the Cooley-Tukey algorithm shows that L,(G)<=3/2IGlloglGI-IG]+ 1.
(In this paper log will always mean log2.) Combining the variants of the FFT
algorithms [1], [4], [5], [8], [12], [14], [15], [17], [18] we get for an arbitrary finite
abelian group G

L.(G) <-_ c [G[ log IG[-[G[+ I,

where c_-< 15 depends on the prime divisors of [G[ and on the exponents of the Sylow
subgroups of G (see the proof of Theorem 2.4).

The question is near at hand, whether an O([G[ log [GI) upper bound does also
hold for the linear complexity of a wider class of groups. We answer this question in
the affirmative by extending such an upper bound to all finite metabelian groups G
(see Theorem 3.1). (Recall that G is metabelian if and only if G has an abelian normal
subgroup A such that G/A is abelian. Dihedral and generalized quaternion groups
are typical members of this class, as well as all p-groups G with IG[-<_ p. By a theorem
of Hall, all groups of square-free order are also metabelian.) Furthermore we show
that metabelian groups also have fast inverse Fourier transforms.

To prove this result we had to change the former strategies. Using a Fourier
transform adapted to a composition series of G, Beth [2], [3] proved an O([G[3/2)
upper bound for the linear complexity of soluble groups. This result can be essentially
extended to arbitrary finite groups (see [6]) by choosing Fourier transforms adapted
to a maximal chain of subgroups of G. In particular, for symmetric groups this technique
yields the stronger estimate Ls(Sn)--o([Sn[" log [Sn[) (see [6], [7]). To establish an
FFT for metabelian groups we first fix a maximal abelian normal subgroup A of G
containing the commutator subgroup G’ of G. Then we evaluate the DFT corresponding
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to A at [G:A] suitable elements of CA. By a result of Shoda [16] (see also Theorem
2.5), we know that every irreducible representation D of G is closely related to a
one-dimensional representation (=linear character) of a normal subgroup B of G
containing A. As a matter of fact, B depends only on the kernel of D. Choosing a
DFT for CG that takes Shoda’s theorem and the action of various character groups
of type X(B/A) into account, we get an FFT for CG along "global" FFTs for A and
"local" FFTs for several groups B/A. Section 3 will make this statement more precise.

The major development of the paper is self-contained apart from some proof
details of classical representation theory, which can be found in [9], [10].

2. Preliminaries. In the next section we will assume familiarity with some basic
techniques of complexity and representation theory. The present section puts together
the definitions and results we will need. The first lemma is concerned with the linear
complexity of matrices. (When treating matrices the symbols @ and (R) will always
denote the direct sum and Kronecker product, respectively.)

LEMMA 2.1. For A Ca’, B Cbb and a-square permutation matrices P and Q
we have

(a) L.,.(A)= L.(PAQ),
(b) L.(A@B)<=L(A)+Ls(B),
(c) L(A" B)<--L.(A)+L.(B) (assuming a=b),
(d) L(A(R)B)<-_b L,(a)+a. L,(B).
Proof Claims (a), (b), and (c) are easy exercises. To prove (d), recall that the

Kronecker product of matrices satisfies A(R) B (A(R) Eb) (Ea(R) B), where E denotes
the a-square unit matrix. Finally observe that E(R)B= B@...B (a times) and
A(R)Eb=P(Eb(R)A)Q, for suitable permutation matrices P and Q. Claim (d) then
follows from (a), (b), and (c). This proves Lemma 2.1.

The Kronecker product formula (d) yields an upper bound for the linear complexity
of a direct product of finite groups.

LEMMA 2.2. Let G G1 x x Gr be the direct product offinite groups. Then

Ls( G) <-- Z G" Gi]Ls( G).
i=I

Proof. Let W be a Fourier transform for CG satisfying L, (Gi) L.(W). Then
W:= W1(R)’’ "(R) Wr is a Fourier transform for CG (see [10, p. 516]). Hence Lemma
2.2 follows by induction from the Kronecker product formula, Lemma 2.1(d).

For c > 0 let FFTc denote the class of all finite groups G that have a Fourier
transform W satisfying max (L,(W), L.,(W-)) -< c. IGI" log IGI.

LEMMA 2.3. FFT,. is closed under direct products.
Proof Let G, , Gr FFT,., and let V be a Fourier transform for CGi satisfying

max (L,(W), L( W:, l)) <- c IG, I" log Jail. Then W:= W(R)...(R) W isa Fourier trans-
form for CG, G := G x.. x Gr. By Lemma 2.2,

L( W) L(w (R)...(R) Wr) <-_ Z G: ailL( W) <- c [a log [G I.

Since W-l= w-l(R) (R) W;-, the same upper bound can be analogously derived for
the linear complexity of W-. This proves Lemma 2.3.

Combining several variants of the classical FFT algorithms we get the following
theorem.

THEOREM 2.4. (a) FFT3/z contains all finite abelian 2-groups.
(b) ffFTz.2 contains all finite abelian 3-groups.
(c) FFTs contains all finite abelian groups.
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Proof (a) and (b). Every finite abelian group is a direct product of cyclic groups.
Hence, by Lemma 2.3, it suffices to prove the statements for cyclic groups. Let Cn
denote the cyclic group of order n, and let w C be a primitive nth root of unity. We
have to estimate the linear complexity of the n-square DFT matrix (O")0____,,,<n and
its inverse

(1) (w")-’
I
(w-).

For every input vector (a)o=<,<n we thus have to compute

(A,)o<=,<, :: (oo)(a)

as well as

(3) (B.)o__<<. ::- (w-")(a)
n

with at most O(n log n) C-operations. If n pq, the indices/x and , can be uniquely
written as/x kq + l(O <- k < p, 0 <- < q) and , ip +j(O <- < q, 0 <-_j < p). Hence

(4)

(ip+j)(kq+l)akq+l-- ’ E aip+jOO
i<q j<p

j<p i<q

The last formula is the basis for the Cooley-Tukey algorithm [8] to compute the A,
first compute for all j<p the expressions bj.t:=i<q aip+j(ooP) ", 0<l<q,= by a
cyclic DFT of order q. Then multiply the bj, by the so-called twiddle factors w jl

and finally compute for all < q the spectral coefficients Akq+(O<--_ k <p) by a cyclic
DFT of order p. Altogether we get the recurrence relation L(Cpq)<=
p. L,(Cq)+q. L,(Cp)+pq-p-q+l. By induction, this yields for cyclic p-groups
L.(Cp,,,)<=(L(Cp)+p-1)mpm--pm+l. Combining this with L(C2)=2 and
L(C3)-< 8 we get

(5) O C,,, =:> L.(G) -<_ [O] log [O -IGI + 1,

and

(6) a C3"’ == L,.(G) -< 2.11[GI log Iol-IGI + 1.

In order to get a fast algorithm that computes the B, (see (3)) we modify the right-hand
side of equation (4) as follows. We replace o by w- and each twiddle factor co-i by
oo-/n. This proves (a) and (b).

(c) We partly follow the approach of Bluestein [4] (see also Biichi [5]) and show
that for every n

(7) Ls(Cn) 15n log n-n+ 1.

Furthermore we will prove that the same upper bound is valid for the inverse transforma-
tion. We are going to compute the spectral coefficients A, (see (2)) with a fast cyclic
convolution of length a power of 2. First observe that 2/x, z + ,2_ (z ,)z. Hence



588 M. CLAUSEN

A, o)
2/2 -’r,<n auoor’2/2Oo-(l-U)2/2 and with u := ajw

j2/2 and v := W -k2/2 we get

o-2/2A UuV(-u)modn,
0<n

Let CN =(x) denote the cyclic group of order N:=2;gzn. Then U:=
o=<, u(x+ xN-"+) as well as V:= o=j<, vjxi are elements of the group algebra
CCu and a straightforward computation shows that the first n coefficients of the
product U V are equal to o-2/A (0 <._, < n). These coefficients can be computed
along the formula U * V DFT (DFTN (U) DFTu (V)). Now observe that V is
independent of the input. Thus we can precompute DFTu (V) and store it as a constant
vector. To compute U we need at most n- operations. According to the special form
of U we can save 2(N-2n) operations in the first level of the computation of
DFTN(U); thus, according to (5), after at most N log N-3N+5n steps we know
DFTN(U). After the pointwise multiplication of the two transformed vectors we
compute only the first n coefficients of the inverse of the resulting vector. Combining
the final multiplications with w2/2 and the factor N- corresponding to DFT, this
transformation needs at most N log N-2N+ 2n + 1 arithmetic operations. Now let
n 41. (If n 40 then the trivial upper bound 2n2-3n + 1 does not exceed 15n log n-
n + 1.) Since N cn for some 2 c 4, we altogether get

L(G)3cn log n+3cn log c-4cn+7n+ 1.

As 3c log c- 4c is monotonically increasing in the relevant interval 2 c 4, we get

16
L(G) 12n log n + 16n- n + 12n logn+ n log 41- n +

log 41

15n log n- n + 1.

Recalling that (w)- 1/n(w-) and multiplying in the final step by the precomputed
values w2/ZN-n- we see that the same upper bound is valid for the inverse transfor-
mation. This proves Theorem 2.4.

Now we begin our review of representation theory. In the introduction we already
mentioned the notions of irreducibility and equivalence of representations of a group
algebra. In the sequel it will sometimes be convenient for us to have a second concept
at our disposal that is equivalent to the above concept. Let G be a finite group. A
C-representation of G of degree or dimension d is a group morphism D" G GL(d, C).
By linear extension of D, we get a representation of the corresponding group algebra.
By abuse of notation, this extension will also be denoted by D. D is irreducible if and
only if its extension is. Two representations D and D’ of G are equivalent, D D’, if
and only if the corresponding extensions are equivalent. By Maschke’s theorem, every
C-representation D of G is equivalent to a direct sum D..-D of irreducible
C-representations D of G. This decomposition into irreducibles is essentially unique;
in particular, the multiplicity (D]D), which is the number of j satisfying Dj D,
depends only on D and the equivalence class D] of D. By definition, D is multiplicity-
free if and only if (D]D) 1 for all i. Without explicitly knowing a decomposition of
D into irreducibles, we can compute these multiplicities with the help of characters:
Every representation D is associated with its character XD" G C, defined by xD(g) :=
trace (D(g)) for all g G. As a matter of fact, equivalent representations have the
same character. The characters corresponding to the classes of irreducible representa-
tions are called irreducible characters. Characters are class functions on G, i.e., they
are constant on the conjugacy classes of G. The set of all class functions on G becomes
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a C-space under pointwise C-operations. It turns out that the irreducible characters
form an orthonormal C-basis of this space under the inner product

According to this fact, the multiplicity DilD) equals (1"", I1,). If D is a d-dimensional
representation of G, then G acts via D on Ca. Let 1,l,’’’,1,a be the irreducible
characters of G. Then

._x,()

is a (primitive) idempotent of the center of Ca and

Cd =D(eI)Cd@. .(D(eh)Cd

is the decomposition ofCd into its isotypic components. IfD is an irreducible representa-
tion of G with character 1,i then the action of G on O(ei)Cd affords a representation
that is equivalent to D@. .@D ((DID times). The simplest irreducible representa-
tions of G are those of degree 1. In this case the representation D is equal to its
character I,D. One-dimensional representations of G are usually called linear characters
of G. They can be viewed as morphisms from G into the multiplicative group C* of
the complex field. Under pointwise multiplication, (X(R) q)(g) := 1,(g) b(g), the linear
characters of G form an abelian group X(G), the character group of G. If N is a
normal subgroup of G, then X(G/N) can be embedded into the character group
X(G) of G via the natural projection G- GN. Thus X(G/N) "is" the set of all
linear characters of G that have N in its kernel. For a subgroup U of G let X(G)$ U
denote the subgroup of X(U) consisting of all restrictions g $ U, where 1" is in X(G).
Using standard techniques it can be shown that

(8) X(G) U- U/(’ U).

In particular, X(G) is isomorphic to the commutator factor group G/G’. Thus
X(G)= G if and only if G is abelian. If G is not abelian, then G has at least one
equivalence class of higher-dimensional irreducible representations. In case of a meta-
belian group G, every higher-dimensional irreducible representation D is closely related
to a linear character of a subgroup U of G. To make this statement more precise, we
need the concepts of induced and monomial representations. If U is a subgroup of
the finite group G and F an f-dimensional C-representation of U, then the induced
representation F’ G is a C-representation of G of degree f. [G:U]. More precisely,
let l,l, ", //n be a transversal of the left cosets of U in G. Then, for all g G,

(F’ G)(g)(9)

where

F(x) ifxU,b’(x) :=
0 if x G\ U.

(The linear extension of F ’ G to CG will sometimes be denoted by F ’ CG.) Induction
of representations is transitive up to permutational equivalence: If F is a representation
of U and V is a subgroup of G containing U, then for some permutation matrix T
and all gG we have T(F’G)(g)T-I=((F V)G)(g). Dual to induction is the
concept of subduction (= restriction) of representations. Both concepts are linked by
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the Frobenius Reciprocity Theorem (see, e.g., [10, p. 555]): If F and D are irreducible
C-representations of U and G, respectively, then the multiplicity of D in F’ G equals
the multiplicity of F in the subduced representation D $ U:

If F is one-dimensional and g G then, by (9), (F G)(g) is a monomial matrix, i.e.,
(F G)(g) has exactly one nonzero entry in each row and in each column. This fact
justifies calling F’ G a monomial representation. A group G is called an M-group if
and only if every irreducible representation of G is equivalent to a monomial one.
The following result is essentially due to Shoda [16]. It shows that metabelian groups
are M-groups and specifies the subgroups that are relevant for induction to get all
equivalence classes of irreducible C-representations of a metabelian group G
represented by monomial representations.

THEOREM 2.5. Let G be a finite metabelian group and let D be an irreducible
C-representation of G with kernel N. Let A be a subgroup of G containing G’. N such
that AN is a maximal abelian normal subgroup of G N. Then D is equivalent to a
monomial C-representation a G of G, where a is a linear character of A.

Proof Let D be an irreducible d-dimensional C-representation of G with kernel
N. If d 1 then N >- G’; thus A G and a D. Since all irreducible C-representations
of an abelian group G are one-dimensional, we are left with the case G’ # E and d > 1.
The rest of the proof is by induction on [G[.

Step 1. Reduction to the case N E. If N > E, let , be the projection G- G/ N.
Then D D’o v, for some faithful (i.e., injective) irreducible C-representation D’ of
the metabelian group G/N. By induction, the theorem applies to D’. Thus there exists
a subgroup A of G such that A/N is a maximal abelian normal subgroup of G/N
containing (G/N)’= G’N/N. Furthermore, there is a linear character a’ ofAN such
that D’-- a’ G/N. Finally an easy computation shows that the linear character a :=
a’ u $ A) of A satisfies D a ]’ G.

Step 2. Suppose N E. Let A be a maximal abelian normal subgroup of G
containing G’. Then, by Clifford’s theorem (see, e.g., [10, p. 565]) G acts transitively
on the isotypic constituents of D $ A. Let T_-> A be the stabilizer (-inertia group) of
such an isotypic constituent a@... a of D A. Again by Clifford’s theorem, there
exists an irreducible C-representation r of T such that r A a. a and D z ]’ G.

Case 1. T= A.
Then z a, D---a ]’ G, and deg (a)= 1, since A is abelian. (We have to exclude

the remaining cases.)
Case 2. T G.
Since A is abelian and D $ A is isotypic, we have D(a)= a(a). Ea for all a A.

Hence D(A) is contained in the center of D(G). As D is faithful, this implies that A
is contained in the center C(G) of G. Since A_-> G’ is a maximimal abelian normal
subgroup of G we get G’<-A C(G)< G. Let g G\A. Then the subgroup of G
generated by A and g is an abelian normal subgroup of G, contradicting the maximality
of A.

Case 3. A < T < G.
By induction, the theorem applies to the irreducible C-representation z of the

metabelian group T. Thus for some subgroup B strictly containing A and for some
one-dimensional representation /3 of B, we know that z---/3 ]’ T. Since induction is
transitive up to permutational equivalence, we get D---/3 ’ G. But then N-ker D--
71g g ker (/3)g--> B’> E, contradicting the fact that D is a faithful representation
of G. This proves Theorem 2.5.
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3. FFT for metabelian groups. This section is devoted to the design and analysis
of FFTs for metabelian groups. Our goal is to prove the following result.

THEOREM 3.1. (a) FFT3/2 contains all finite metabelian 2-groups.
(b) FFT2.2 contains all finite metabelian 3-groups.
(c) FFT15 contains all finite metabelian groups.
Proof. Let G be a finite metabelian group. By Theorem 2.4 we may assume that

G is not abelian. Thus G > G’> G" E. Let A be a maximal abelian normal subgroup
of G containing G’. We are going to specify a transversal D1,"" ", Dh of irreducible
C-representations of G which will be the basis for a fast (inverse) Fourier transform.
According to Theorem 2.5 we may assume that the Di satisfy the following condition.
(i) For every there exists a normal subgroup Bi of G containing A and a linear

character fl of B such that D =/3 ]’ G.
To establish a second condition we let the character group X(G/A) act on the set
{lOll,’"" ,[Dh]} of equivalence classes of irreducible C-representations of G by
t’ * [D;] := [X(R) D], where (X(R) Di)(g):= g(gA) Di(g) for all X X(G/A) and all
g G. Induction, subduction, and the tensor product of representations are related as
follows:

(10) X(R)(/3 ’1’ G)= ((X $ B) (R)/3) ’ G,xX(G/A), A<=B-G, fleX(B). According to (8) and (10) we can postulate the
following condition in addition to (i).
(ii) If [Di] and [D./] are in the same X(G/A)-orbit, then Bi Bj and

for some X(Bi/A).
If B is a normal subgroup of G then G acts via conjugation on X(B) by (g/3)(b) :=
(g-lbg)(gG,X(B),bB). Since g/3=/3 for all gB, the G-orbits G/3,
X(B), have length at most [G:B]. The orbits of this length are of special interest
for us: By (9)/3 ’ G $ B gBc/ (g/3); applying the orthonormality of the irreducible
characters and the Frobenius Reciprocity Theorem, we get for/3 X(B)

(11)
G/3[ G" B] :>/3 ’ G is irreducible

v/3 ’ G , B is multiplicity-free.

Let A =< b G. We are going to combine the above group actions. To this end we define
a semidirect product P of the normal subgroup N := X(B/A)= P and the subgroup
G < P by (q,, g)(p’, g’):= (O(R)(gO’), gg’). P acts on X(B) by (0, g)fi := O(R)(g[3).
According to (10) and (11), the set {[36X(B)I/3’G irreducible} is P-stable.

Now choose/31,’’’,/3 according to (i) and (ii). Furthermore let P/ denote the
semidirect product of Ni := X(Bi/A) and G, as defined above. Then, by (10), (11),
and condition (ii), the set of irreducible constituents of/31 ]’ G $ B1," ,/3h ’ G $ B is
the disjoint union of certain P-orbits; i.e., there is some index set I

__
{1,..., h} such

that

Every P/i further splits into N-orbits which are all of length INl. More precisely, G
acts on the set {Nv y P/3i} by g(Ny):= Ni(gy). Let V be the stabilizer of the point
N/3 under this G-action. Then V->_ B and

Pi[3i .J uiNi[3 d Ni(ui[3i).
uiViE G/ Vi uiViE G/ Vi
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Our next goal is to evaluate (with a small number of C-operations) the Fourier
transform W:=i (/3i’CG) of CG at an arbitrary element y CG. To this end we
first decompose G into the disjoint union of left cosets with respect to A" G=
(-Jl<=,.<=.al g,A. Then Y=k g,a,, for suitable a CA. Now let B:= B and := . If
G Ua hjB then, after renaming the g and a, we can achieve that h g, ...,
g, hB ,gtA wth corresponding a, , aj, CA. Thus y ._ t_ ga.
On the othernd there are b CB such that y _, hb. Combining e last three
equations we have for all j d

(12) b hf’g,al.
/=1

Altogether we get for the constituent D fl CG of W evaluated at y CG the formula

d d

(13) P(y)= P(h)P(b)= P(h) (gfl)(bj).
j=l j=l gBG/B

Instead of evaluating D at y CG separately, it is of advantage to aim at a common
evaluation of all representations in {X@DX X(G/A)} { G j h}. With
regard to (10), (12), and (13) we have to compute for any fixed j and for all X@fl
X(B/A)@ the following expressions:

(X@fl)(bj)=
/=1

l=l

Having computed for fixed j all products b := (h2g) (a), we are left with the
evaluation of

The matrix (x(hgA)) is the character table of B/A; hence (14) is a DFT of the
abelian group B/A of order t. Let W denote the Fourier transform of the abelian
group A. After having computed all W(a), the computation of all (X@)(b),
xX(B/A), additionally costs t-1 multiplications (to get the b) and L,(B/A)
C-operations for the computation of all (@)(b). The proportion of C-operations
to compute a single (X@)(b) is thus (L,(B/A)+ t-1)t-. (Note that according to
our special choice of Ol," ", Dh and with regard to Pfl 0 Ng(ufl) all (@)(b)
are really needed.) Thus, knowing all the W(a), we can compute D(b),..., D(be)
in d(L(B/A)+ t-1)t- arithmetic steps, where t=[B’A]=[G’A] d-. Finally,
knowing the D(b), the computation of D(y) via (13) additionally requires at most
(d- 1) d multiplications. (To prove this last fact note that without loss of generality
h 1, then use the monomiality of D, and finally observe that the concluding summa-
tion is free of costs since all the summands have their nonzero entries at pairwise
disjoint positions" as D is irreducible we have dim D(CG)= d’, on the other hand
every D(h) D(b) has its N d nonzero entries at the support of the monomial matrix

D(h).) Altogether the number of C-operations sucient to compute D(y) (knowing
all the W(a)) is at most

Let ne denote the number of inequivalent irreducible representations of G of degree
d. Furthermore, for every d let te :=[G’A]. d -. Let m(t):=max L,(H), where the
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maximum is over all abelian groups H of order t. Then, using (5), (6), (7), and the
facts that nl [G" G’] and d ndd2= IGI we get

L(W)<-[G’A]L(A)+E dZnd{(m(td)+ td--1)t- + 1-d -1}
d

-<_ c G[ log Ol,

with c-<_-, c-<_2.2, and c_< 15 in cases (a), (b), and (c), respectively, of Theorem 3.1.
This proves that metabelian groups have an FFT.

Our next goal is to show that the same upper bound does not hold for the linear
complexity of W-. Given W(y) =@i Di(y), we thus have to recover y CG. (The idea
is to invert all local and global FFTs in the first half of the proof.) Again let D := Di.
As the summation over j in (13) is free of costs, the projection of D(y) to the support
of D(hj) equals D(hj)gBO/B (g)(bj). By multiplying with the monomial matrix
D(h-f) we get gBO/ (gfl)(bj). Combining this information in an appropriate way,
we know the left-hand side of (14). Inverting (14) with an inverse FFT we recover all
the bj. Multiplying with (g.hj)- we get all the (aj). Thus we know for all
cr X(A) the values a(ak), <-k<=[G’A]. Finally with [G’A] inverse FFTs we may
recover all the ak. Since y k gkak and the above proof of the upper bound applies
to the inverse of W as well, Theorem 3.1 is proved.
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Abstract. This paper assumes a parallel RAM (random access machine) model which allows both
concurrent reads and concurrent writes of a global memory.

The main result is an optimal randomized parallel algorithm for INTEGER_SORT (i.e., for sorting n

integers in the range [1, n]). This algorithm costs only logarithmic time and is the first known that is optimal:
the product of its time and processor bounds is upper bounded by a linear function of the input size. Also
given is a deterministic sublogarithmic time algorithm for prefix sum. In addition this paper presents a

sublogarithmic time algorithm for obtaining a random permutation of n elements in parallel. And finally,
sublogarithmic time algorithms for GENERAL_SORT and INTEGER_SORT are presented. Our sub-
logarithmic GENERAL_SORT algorithm is also optimal.

Key words randomized algorithms, parallel sorting, parallel random access machines, random permuta-
tions, radix sort, prefix sum, optimal algorithms

AMS(MOS) subject classification. 68Q25

1. Introduction.
1.1. Sequential sorting algorithms. Sorting is one of the most important problems

not only of computer science but also of every other field of science. The importance
of efficient sorting algorithms has been long realized by computer scientists. Many
application programs like compilers, operating systems, etc., use sorting extensively
to handle tables and lists. Due to both its practical value and theoretical interest,
sorting has been an attractive area of research in computer science.

The problem of sorting a sequence of elements (also called keys) is to rearrange
this sequence in either ascending order or descending order. When the keys to be
sorted are general, i.e., when the keys have no known structure, a lower-bound result
[1] states that any sequential algorithm (on the random access machine (RAM) and
many other sequential models of interest) will require at least l)(n log n) time to sort
a sequence of n keys. Many optimal algorithms like QUICK_SORT and HEAP_SORT,
whose run times match this lower bound, can be found in the literature [1].

In computer science applications, more often, the keys to be sorted are from a
finite set. In particular, the keys are integers of at most a polynomial (in the input
size) magnitude. For keys with this special property, sorting becomes much simpler.
If each one of the n elements in a sequence is an integer in the range [1, n] we call
these keys integer keys. The BUCKET_SORT algorithm [1] sorts n integer keys in
O(n) sequential steps. Notice that the run time of BUCKET_SORT matches the trivial
(n) lower bound for this problem.

In this paper we are concerned with randomized parallel algorithms for sorting
both general keys and integer keys.

1.2. Known parallel sorting algorithms. The performance of a parallel algorithm
can be specified by bounds on its principal resources viz., processors and time. If we

* Received by the editors January 17, 1987; accepted for publication (in revised form) August 19, 1987.
A pre.liminary version of this paper appeared as "An optimal parallel algorithm for integer sorting" in the
18th IEEE Symposium of Foundations of Computer Science, Portland, Oregon, October 1985. This work
was supported by National Science Foundation grant DCR-85-03251 and Office of Naval Research contract

N00014-80-C-0647.
? Aiken Computation Laboratory, Harvard University, Cambridge, Massachusetts 02138.
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let P denote the processor bound, and T denote the time bound of a parallel algorithm
for a given problem, the product PT is, clearly, lower bounded by the minimum
sequential time, Ts, required to solve this problem. We say a parallel algorithm is
optimal if PT O(Ts). Discovering optimal parallel algorithms for sorting both general
and integer keys remained an open problem for a long time.

Reischuk [25] proposed a randomized parallel algorithm that used n synchronous
PRAM processors to sort n general keys in O(log n) time. This algorithm, however, is
impractical owing to its large word-length requirements. Reif and Valiant [24] presented
a randomized sorting algorithm that ran on a fixed-connection network called cube-
connected cycles (CCC). This algorithm employed n processors to sort n general keys
in time O(log n). Since f(n log n) is a sequential lower bound for this problem, their
algorithm is indeed optimal. Simultaneously, Atai, Koml6s, and Szemer6di [4] dis-
covered a deterministic parallel algorithm for sorting n general keys in time O(log n)
using a sorting network of O(n log n) processors. Later, Leighton [17] showed that
this algorithm could be modified to run in O(log n) time on an n-node fixed-connection
network.

As in the sequential case, many parallel applications of interest need only to sort
integer keys. Until now, no optimal parallel algorithm existed for sorting n integer keys
with a run time of O(log n) or less.

1.3. Some definitions and notations. Given a sequence of keys kl, k2, , kn drawn
from a set S having a linear order <, the problem of sorting this sequence is to find
a permutation cr such that k(l < k(2) <. <

By general keys we mean a sequence of n elements drawn from a linearly ordered
set S whose elements have no known structure. The only operation that can be used
to gain information about the sequence is the comparison of two elements.

GENERAL_SORT is the problem of sorting a sequence of general keys, and
INTEGER_SORT is the problem of sorting a sequence of integer keys.

Throughout this paper we let [m] stand for {1, 2,..., m}.
A sorting algorithm is said to be stable if equal elements remain in the same

relative order in the sorted sequence as they were in originally. In more precise terms,
a sorting algorithm is stable if on input kl, k,. , kn, the algorithm outputs a sorting
permutation cr of (1, 2,’", n) such that for all i,j In], if ki kj and i<j then
o-(i) < or(j). A sorting algorithm that is not guaranteed to output a stable sorted sequence
is called nonstable.

Just as the big-O function serves to represent the complexity bounds of determinis-
tic algorithms, we employ to represent complexity bounds of randomized algorithms.
We say a randomized algorithm has resource (like time, space, etc.) bound O(g(n))
if there is a constant c such that the amount of resource used by the algorithm (on
any input of size n) is no more than cag(n) with probability >= 1-1/n for any > 1.

1.4. Our model of computation. We assume the CRCW PRAM (concurrent-read
concurrent-write parallel RAM) model proposed by Shiloach and Vishkin [26]. In a
PRAM model, a number (say P) of processors work synchronously communicating
with each other with the help of a common block of memory. Each processor is a
RAM. A single step of a processor is an arithmetic operation, a comparison, or a
memory access. CRCW PRAM is a version of PRAM that allows both concurrent
writes and concurrent reads of shared memory. Write conflicts are resolved by priority.

All the algorithms given in this paper, except the prefix sum algorithm, are
randomized. Every processor, in addition to the operations allowed by the deterministic
version of the model, is also capable of making independent (n-sided) coin flips. Our



596 S. RAJASEKARAN AND J. H. REIF

stated resource bounds will hold for the worst-case input with overwhelming proba-
bility.

1.5. Contents of this paper. Our main contributions in this paper are
1) An optimal parallel algorithm for INTEGER_SORT. This algorithm uses

n/log n processors and sorts n integer keys in time (log n), and
2) Sublogarithmic time algorithms for GENERAL_SORT and INTEGER_SORT.

GENERAL_SORT algorithm employs n(log n) (for any e > 0) processors,
and INTEGER_SORT algorithm employs n(log log n)Z/log n processors. Both
these algorithms run in time O(log n/log log n).

The problem of optimal parallel sorting of n integers in the range [nl] still
remains an open problem. Our sublogarithmic time algorithm for GENERAL_SORT
is optimal as implied by a recent result of Alon and Azar [2].

In our sublogarithmic time sorting algorithms we reduce the problem of sorting
to the problem of prefix-sum computation. We show in this paper that prefix sum can
be computed in time O(log n/log log (P log n/n)) using P_-> n/log n processors. We
also present a sublogarithmic time algorithm for computing a random permutation of
n given elements with a run time of (log n/log log n) using n(loglog n)2/log n
processors.

Some of the results of this paper appeared in preliminary form in [22], but are
substantially simplified in this manuscript. In 2 we present some relevant preliminary
results. Section 3 contains our optimal INTEGER_SORT algorithm. In 4 we describe
our sublogarithmic time algorithms.

2. Preliminary results.
2.1. Prefix circuits. Let E be a domain and let be an associative operation that

takes O(1) sequential time over this domain. The prefix-computation problem is defined
as follows

input (X(1),S(2),..., X(n))
output (S(1), X(1)o X(2),..., X(1)o X(2) X(n)).

The special case of prefix computation when E is the set of all natural numbers
and is integer addition is called prefix-sum computation. Ladner and Fischer [18]
show that prefix computation can be done by a circuit of depth O(log n) and size n.
The processor bound of this algorithm can be improved as follows.

LEMMA 2.1. Prefix computation can be done in time O(log n) using n/log n PRAM
processors.

Proof. Given X(1), X(2), , X(n), each one of the n/log n processors gets log n
successive keys. Every processor sequentially computes the prefix sum of the log n
keys given to it in log n time. Let S(i) be the sum of all the log n keys given to processor

(for i= 1,..., n/log n). Then, n/log n processors collectively compute the prefix
sum of S(1), S(2), ., S(n/log n), using Ladner and Fischer’s [18] algorithm. Using
this prefix sum, each processor sequentially computes log n prefixes of the original
input sequence. [3

The above idea of processor improvement was originally used by Brent in his
algorithm for expression evaluation, and hence we attribute Lemma 2.1 to him. Recently
Cole and Vishkin [9] have proved the following lemma.

LEMMA 2.2. Prefix-sum computation of n integers (O(log n) bits each) can be
performed in O(log n/log log n) time using n log log n/log n CRCW PRAM processors.

2.2. An assignment problem. We are given a set Q {1, 2,..., n} of n indices.
Each index belongs to exactly one of m groups G1, G2, Gin. Let g stand for the
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number of indices belonging to group Gi, i= 1,..., m. We are given a sequence
N(1), N(2),’’’, N(m) where Yi=l N(i)= O(n) and N(i) is an upper bound for
i= 1, 2,..., m. The problem is to find in parallel a permutation of (1, 2,..., n) in
which all the indices belonging to G1 appear first, all the indices belonging to
appear next, and so on. (Assume that given an index i, the group Gi, to which belongs
can be found in O(1) time.)

As an example, if n 5, m 2, G1 {2, 5}, G2 {1, 3, 4}, then (5, 2, 1, 3, 4) and
(2, 5, 3, 1, 4) are (two of the) valid answers.

LEMMA 2.3. The above assignment problem can be solved in ((log n) parallel time
using n/log n PRAM processors.

Proof We present an algorithm. We use a shared memory of size 2 i=1 N(i)
(= L, say). This memory is divided into m blocks, BI, B2," B the size of Bi being
2N(i). A unique assignment for the indices belonging to G will be found in the block
B, for i= 1,2,..., m.

Each one of the P(- n/log n) processors is given log n successive indices. Pre-
cisely, processor r is given the indices (r 1) log n + 1, (r 1) log n + 2, , r log n,
for r 1, 2,’.., P. There are three phases of the algorithm. In the first phase, boun-
daries of the m blocks are computed. In the second phase every processor sequentially
finds unique assignments for the log n indices given to it in their respective blocks. In
the third phase, a prefix-sum computation is done to eliminate the unused cells, and
the position of each index in the output is read. Details follow.

Step 1.

P processors collectively do a prefix sum of (N(1), N(2), , N(m)) and
hence compute the boundaries of blocks in the common memory.

Step 2.

Each processor r is given a total time of d log n (d being a constant to be
fixed) to find assignments for all its indices sequentially.

r starts with its first index (call it) l. If Gr is the group to which belongs,
r chooses a random cell in Br and tries to write its identification in it. If the
chosen cell did not contain the identification of any other processor and r
succeeds in writing, then that cell is assigned to I. The probability of success
in one trial is _->. If r has failed in this trial, then it tries as many times as
it takes to find an assignment for and then it takes up the next index.

After d log n steps, even if there is a single processor that has not found
assignments for all its keys, the algorithm is aborted and started anew.

Step 3.

Each processor r writes a 1 in the cells that have been assigned to its indices.
Unassigned cells in the common memory will have 0’s. P processors perform
a prefix sum computation on the contents of the memory cells (1, 2, , L).
Finally, every processor reads out from the prefix sum the position of each
one of its indices in the output.

Analysis. Steps and 3 can be completed in O(log n) time in accordance with
Lemma 2.1.

In Step 2, the probability that a particular processor r successfully finds an
assignment for one of its keys in a single trial is --2. Let Y be the random variable
equal to the number of successes of r in d log n trials. We require Y to be >_-log n
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for every processor. Clearly Y is lower bounded by a binomial variable (see Appendix
A for definitions) with parameters (d log n, 1/2). It follows from the Chernoff bounds
(see Appendix A, equation (3)) that the probability that there will be at least a single
processor that has not found assignments for all of its indices after d log n trials can
be made <-n for any a-> 1, if we choose a proper constant d. Therefore the whole
algorithm runs in time ((log n). This completes the proof of Lemma 2.3. 7q

It should be mentioned here that when the number of groups, m, is 1, the above
algorithm outputs a random permutation of (1, 2, , n). An algorithm for this special
case was given by Miller and Reif [19].

2.3. Some known results. We state here the existence of optimal sequential
algorithms for INTEGER_SORT and optimal parallel algorithms for
GENERAL_SORT.

LEMMA 2.4. Stable INTEGER_SORT of n keys can be done in time O(n) by a
deterministic sequential RAM 1].

LEMMA 2.5. GENERAL_SORT of n keys can be performed in time O(log n) using
n PRAM processors ([4] and [8]).

3. An optimal INTEGER_SORT algorithm. In this section we present an optimal
algorithm, for INTEGER_SORT. This algorithm employs n/log n processors and runs
in time O(log n).

3.1. Summary of the algorithm. The main idea behind our algorithm is radix
sorting 15]. As an example of radix sorting, consider the problem of sorting a sequence
of two-bit decimal integers. One way of doing this is to sort the sequence with respect
to the least significant bits (LSB) of the keys and then to sort the resultant sequence
with respect to the most significant bits (MSB) of the keys. This will work provided,
in the second sort keys with equal MSBs will remain in the same relative order as they
were in originally. In other words, the second sort should be stable.

We have a sequence of keys kl, k2,"" ", kn [n], where each key is a log n-bit
integer. We first (nonstable) sort this sequence with respect to the (log n-3 log log n)
LSBs of the keys. (Call this sort Coarse_Sort.) In the resultant sequence we apply a
stable sort with respect to the 3 log log n MSBs of the keys. (Call this sort Fine_Sort.)

Even though the sequential time complexity of stable sort is no different from
that of nonstable sort, it seems that parallel stable sort is inherently more complex
than parallel nonstable sort. This is the reason we have divided the bits of the keys
unevenly.

In Coarse_Sort we need to (nonstable) sort a sequence of n keys, each key being
in the range 1, n/log n] and, in Fine_Sort we have to (stable) sort n keys in the range
[1, log n]. In terms of notation, our algorithm can be summarized as follows.

Let D= n/log n and k= [ki/D] and k7 ki-k * D for all i[n].
Coarse_Sort. Sort k’, k,..., k"n [D]. Let o. be the resultant permutation.
Fine_Sort. Stable-sort k(1), k(2, ., k(n) [log n]. Let p be the resultant per-

mutation.
Output. The permutation p.o-, the composition of p and o-.

In 3.2 and 3.3 we describe Fine_Sort and Coarse_Sort, respectively.

3.2. Fine_Sort. We give a deterministic algorithm for Fine_Sort. First we will
show how to stable-sort n keys in the range [log n] using n/log n processors in time
O(log n) and then apply the idea of radix sorting to prove that we can stable-sort n
keys in the range [(log n)] within the same resource bounds.
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LEMMA 3.1. n keys kl, k2,’’ ", kn 6[log n] can be stable-sorted in O(log n) time

using P n/log n processors.
Proof In Fine_Sort algorithm, each processor r is given log n successive keys.

Each one of the P processors starts by sequentially stable-sorting the keys given to it.

Then, collectively, the P processors group all the keys with equal values. (There are
log n groups in all.) Finally, they output a rearrangement of the given sequence in
which all the l’s (i.e., keys with a value 1) appear first, all the 2’s appear next, and so
on. Throughout the algorithm the relative order of equal keys is preserved. More details
follow.

To each processor 7r [P] we assign the key indices J(r)= {jl(Tr- 1) log n <j-<
min (n, r log n)}. There are three steps in the algorithm.

Step 1.

Each processor 7r sequentially stable-sorts the keys {kljJ(Tr)} in time
O(logn) (see Lemma 2.4), and hence constructs log n lists J,,k
{jJ(Tr)lk=k} for k[logn]. Elements in J,k are ordered in the same
relative order as in the input

Step 2.

The P processors collectively perform the prefix sum of

where q log n. Call this sum

(Sl,1, S2,1, Sp,1,

Sl,2 S2,2

S,q, S2,q,

Step 3.

Each processor r sequentially computes the position of each one of its keys
in the output using the prefix sum. The position of keys in the list J,t will
be S=_l,t + 1, S_,+ 2, , S=,.

Analysis. It is easy to see that Steps 1 and 3 can be performed within the stated
resource bounds. Step 2 also can be completed within the stated resource bounds as
given in Lemma 2.1.

LEMMA 3.2. If n keys in the range [R] (for any R n)) can be stable-sorted in

O(log n) time using P n/log n processors, then n keys kl, k2, ", kn [R2] can be
stable-sorted in time O(log n) using the same number ofprocessors.

Proof Let kl [ki/R] and kl:= ki-kl* R for every i[n]. First, stable-sort
k,k,... ,k obtaining a permutation tr. Then stable-sort k’ k_ ,ko-(n)

obtaining a permutation p. Output p. or. Clearly both these sorts can be completed in
time O(log n) using P processors.

Lemmas 3.1 and 3.2 immediately imply the following lemma.
LEMMA 3.3. n integer keys in the range [(log n)] can be stable-sorted in time

O(log n) using n/log n processors.
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3.3. Coarse_Sort. In this section we fix a key domain [D], where D= n/log n.
We assume, without loss of generality, that log n divides n.. Let the input keys be
kl, k2,"" ", kn [D]. Define the index sequence for each key k [D] to be I(k)-
{il ki--k}. The randomized algorithm for Coarse_Sort to be presented in this section
employs P= n/log n processors and runs in time O(log n). The sorted sequence is
nonstable.

The main idea is to calculate the cardinalities of the index sequences I(k), k [D]
approximately, and then to use the assignment algorithm of 2.2 to rearrange the given
sequence in sorted order.

LEMMA 3.4. Given as input kl,k2," .,kn[D] we can compute N(1),
N(2), ., N(D) in ((log n) timeusing P n/log nprocessors such that kOl N(i)
O(n) and furthermore, with very high likelihood N(k)>=lI(k)l for each k [D].

Proof. The following sampling algorithm serves as a proof.

Step 1.

Each processor 7r [D log n] in parallel chooses a random index sT e In].
Let S be the sequence {sl, s2,..., Soog}.

Step 2.

The P processors collectively sort the keys with the chosen indices. That is,
they sort ks,,ks2,...,kso,ogn and compute index sequences Is(k)=
{i S]ki k} (for each k [D]).

Step 3.

D of the P processors in parallel set N(k)= d(log n)max (lls( k)], log n)
for k 6 [D], d being a constant to be fixed in the analysis.

Output S(1), S(2),..., N(D).

Analysis. Trivially, Steps 1 and 3 can be performed in O(1) time. Step 2 can be
performed using any of the optimal GENERAL_SORT algorithms in O(log n)-time
(see Lemma 2.5). (Notice that we have to sort only n/log2 n keys in step 2.) It remains
to be shown that N(i)’s computed by the sampling algorithm satisfy the conditions
in Lemma 3.4.

If II(k)l<-_dlogan, then always N(k)>-dlog3n>-lI(k)]. So suppose
d log n. Then it is easy to see that ]Is(k)l is a binomial variable with parameters
(n/log n, lI(k)l/n). The Chernott bounds (see Appendix A, (2)) imply that for all
a >-1, there exists a c such that

Probability (lls(k)l <- clI(k)l/log n)

Therefore, if we choose d (ca)- then N(k) <= II(k)l (for every k [D]) with
probability ->_ 1 n -". The Chernoff bounds (3) also imply that for all a => there exists
an h such that N(k) >- (ha)[I(k)[ (for every k [D]) with probability =>1-n-.

The bound on ktOl N(k) clearly holds since

N(k) <- dlogn[lIs(k)l+logn]=dlog3nD+dlog2n [Is(k)
ke[D] ke[D] ke[D]

dn + d log nD log n 2dn.

This concludes the proof of Lemma 3.4.
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Having obtained the approximate cardinalities of the index sets, we apply the
assignment algorithm of 2.2. The set Q is the set of key indices viz., {1, 2,..., n}.
An index belongs to group Gi, if the value of the key with index is i’. Under this
definition, group G is the same as index sequence l(j), j 1, 2,..., D. Since we can
find approximate cardinalities of these groups (Lemma 3.4), we can use the assignment
algorithm of 2.2 to rearrange the given sequence in sorted order. Thus we have the
following lemma.

LEMMA 3.5. n keys k k2, kn [D] can be sorted in time ((log n) using n/log n
processors.

Lemmas 3.3 and 3.5 together with the algorithm summary in 3.1 prove the
following theorem.

THEOREM 3.1. INTEGER_SORT of n keys can be performed in randomized
0(log n) time using n/log n CRCW PRAM processors.

4. Sublogarithmic time algorithms. In the previous section we presented an optimal
algorithm for INTEGER_SORT. In this section we will be presenting nonoptimal
sublogarithmic time algorithms for (1) prefix sum computation, (2) finding a random
permutation of n elements, (3) GENERAL_SORT, and (4) INTEGER_SORT.

Algorithms 3 and 4 are direct consequences of algorithms and 2. Our prefix algorithm
employs P=> n/log n processors and runs in time O(log n/loglog (P log n/n)).
Algorithms 2, 3, and 4 run in time ((log n/log log n). GENERAL_SORT uses n(log n)
processors and algorithms 2 and 4 use n(log log n)2/log n processors.

4.1. A sublogarithmic prefix algorithm. We have a sequence of integers
X(1), X(2), , X(n). We need to find the prefix sum of this sequence. This problem
can be solved in sublogarithmic time if we use more than n/log n processors as is
stated by the following lemma.

LEMMA 4.1. Prefix-sum computation can be performed in time O(logn/log
log (P log n/n)) using P>= n/log n CRCW PRAM processors.

Proof The algorithm can be summarized as follows: (1) divide the given sequence
into blocks of d (to be determined later) successive keys; (2) sequentially compute
prefix sums in each block; (3) apply prefix to the final prefixes in each block; and (4)
compute prefixes in each block by using the result from 3 for the previous block.

More details follow. Let n n/d.

Step 1.

In O(d) time using n<-P processors compute X’(i,m), i[n], me[d],
-, (/-- 1)d+rnwhere X’(i, ml ==<i-1)d+ X’(j).

Step 2.

Compute the prefix sum of the total sum of each part, i.e., compute
Y’(1), Y’(2), , Y’(n), where Y’(i) =Yj= X(j, d), for i= 1,...,

Step 3.

In time O(d), using n processors compute

(X’(1, 1), X’(1, 2),..., X’(1, d),

Y’(1) X’(2, 1), r’(1) X’(2, 2), , Y’(1) X’(2, d),

Y’(n-l)oX’(n,l), Y’(n-l)oX’(nl,2),..., Y’(nl-1)oX’(n,d))

which is the required output.
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Analysis. Clearly, Steps 1 and 3 can be performed with n processors in time
O(d). It remains to show that Step 2 can be performed within the same time using P
processors.

Let Cn,2 be a circuit of size n and in-degree 2 that computes the prefix sum of n
elements in depth O(log n). Obtain an equivalent circuit Cn2,b of size n2 n/b (n2>= n)
and in-degree b in the obvious way (by collapsing subcircuits of height log b into
single nodes starting from the bottom of the circuit [11]). We will simulate Cn2,b.

Each input key is a log n bit integer. Each one of the keys is divided into d parts,
each comprising log n/d successive bits. The simulation proceeds in d stages. In the
first stage, we input the log n/d least significant bits of the keys to the circuit C,,.
In the second stage, we input the next most log n/d significant bits of the input keys
to the circuit. Similarly we pipeline all the parts of the keys one part per stage. The
computation in the circuit proceeds in a pipeline fashion.

At any stage, every node v of C, has to compute the sum.of b integers that
arrive at this node from its children and the carry it stored from the previous stage, v
also has to store the carry from this stage to be used in the next. Each one of these b
integers and the carry can be of at the most 2 log n/d s bits. Therefore, the computa-
tion at v can be made to run in time O(1) if we replace v by a constant depth circuit
of size b2+). The depth of C,2, is 1Ogb n. Thus, the run time of the circuit (and
hence the simulation time) will be logb n:+ O(d). The size of the circuit is nzb2+.

We require b2+-< P/n2, s 2 log n/d, n n/d, n <= n and log n2 O(d). It
is easy to see that choosing s log log (P log n/n) will satisfy all the above constraints.
This concludes the proof of Lemma 4.1.

4.2. A sublogarithmic permutation algorithm. The problem is to compute a random
permutation of (1, 2, , n) in sublogarithmic parallel time. The algorithm presented
in this section is very similar to the assignment algorithm of 2.2. It employs P
n(log log n)2/log n processors and runs in time ((log n/log log n).

A shared memory of size 2n is used. The main idea is to find unique assignments
(in the common memory) for each one of the indices i [n] and then to eliminate
unused cells of common memory using a prefix sum computation. Processors are
partitioned into groups of size (log log n)2. Each group of (log log n)2 processors gets
log n successive indices. Detailed algorithm follows.

Step 1.

The log n indices given to each group of processors are partitioned into groups
of size (log log n)2. Step consists of log n/(loglog n) phases. In the ith
phase (i 1, 2,. , log n/(log log n)2) each processor is given a distinct index
from the group of indices. Each processor spends d log log n time (for some
constant d) to find an assignment for its index (as explained in Step 2 of

2.2). After d log log n time the ith phase ends.

Step 2.

P processors perform a prefix-sum computation to determine the number
(call it N) of indices that"do not yet have an assignment. Let z [P/NJ.

Step 3.

A distinct group of z processors in parallel work to find an assignment for
every index j that remains without an assignment. A group succeeds even if
a single processor in the group succeeds. Each group is given C log n/log
log n time (for some constant C).
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After C log n/loglog n time, even if a single index remains without an
assignment the whole algorithm is aborted and started anew. (Grouping of
processors in this step can easily be done using the prefix sum of Step 2.)

Step 4.

Finally, P processors perform a prefix-sum computation to eliminate unused
cells and read the positions of their indices in the output.

Analysis. Consider the ith phase of Step 1. The probability that a given processor
r succeeds in finding an assignment for its index in a single trial is --2. Let Y be a
random variable equal to the number of processors failing in the jth trial of phase i.

Then Y is upperbounded by a binomial random variable with parameters (NJ, 1/2)
(where N is the number of processors that have not succeeded until the beginning
of the jth trial of phase i). (Note that NJ P.) The Chernoff bounds (3) imply that Y
is at the most a constant (<1) fraction of N with probability _->1-2-NI (for some
fixed e < 1). Therefore the number of unsuccessful processors at the end of phase is
O(P/log n)..The number of keys without assignments at the end of Step 1 is
li=gln/(iglgn)z N/dlglgn, Using additive property of binomial distributions and the
Chernoff bounds we conclude that the number of keys without assignments at the end
of Step is O(n/log n) (and hence z =f((log log n)2))with probability ->l-n- for
any/3->1.

Step 2 runs in time O(log n/log log n) (Lemma 2.2). In Step 3, probability that a
particular group fails in one trial is (1/2) K((lglgn)2). This implies that the probability
that there is at least one unsuccessful group at the end of Step 3 can be made <-n -a,
for any c -> 1, if we choose a proper C.

Thus we conclude that he whole algorithm will run successfully in time
((log n/log log n). Clearly, this algorithm can also be used to solve the assignment
problem of 2.2. Thus we have the following lemma.

LEMMA 4.2. The problem of computing a random permutation of n elements (and
hence the assignment problem of 2.2) can be solved in time ((log n/log log n) using
P n(log log n)2/log n processors.

4.3. An optimal sub-logarithmic GENERAL_SORT algorithm. Given as input
k, k2,"" ", k,, Reischuk’s algorithm [25] for GENERAL_SORT samples v keys at
random. If l, 12," ", l,/-- are the sampled keys in sorted order, these keys divide the
input keys into p-<v+l collections S1,S2,’",Sp, where S={qlq<-l}, Si
{qlli_ <q<--l} for i=2,3,..., (p,-1), and S,={qlq> kp_,}. With very high likeli-
hood [25], each one of these collections will be of size O(v log n). (Reifand Valiant
[24] give an algorithm for sampling v keys that will ensure that each one of these
collections will be of size O(v).) Having identified these collections, his algorithm
sorts each one of them recursively and merges the results trivially.

As such, the algorithm in [25] requires a computer of word length f(v log n).
This problem can be circumvented using the assignment algorithm of 2.2. Moreover,
such a modified algorithm can be made sublogarithmic if n(log n), processors are
used. A detailed algorithm follows.

Procedure sublogGS({kl, k2, kn});
Step 1. If n is a constant sort trivially.
Step 2. x/ processors in parallel each sample a random key.
Step 3. Sort the x/ keys sampled in Step 2 by comparingevery pair of keys

and computing the rank of each key. This can be donein O(log n/log
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log n) time using n processors. Let the sorted sequence be
11, 12,""", 1,/-

Step 4. Processors are partitioned into groups of size (log n). Each group
gets an index n ]. In parallel each group does a (log n)-ary search
on 11, 12,..., l,/--to find out the collection Si, to which ki belongs.

Step 5. n processors collectively compute N(1), N(2),..., N(p) such that

=1 N(j) O(n) and N(j) > ISjl for every j [p]. (Recall that
p _-< x/-ff+ 1).

Step 6. n processors use the sublogarithmic assignment algorithm of 4.2 to
rearrange kl, k2," ", kn such that all the elements of $1 will appear
first, all the elements of $2 will appear next, and so on.

Step 7. Recursively sort S1, S,. ., Sp. Here O(x/-ff(log n)) processors work
on each subproblem. Finally output sublogGS(S), ,
sublogGS(Sp).

Analysis. If T’(n) is the time sublogGS takes to sort n general keys, Step 1 and
Step 2 take O(1) time each. Step 3, Step 4, and Step 6 take O(log n/log log n) time
each. Step 7 takes time T’(cv/-ff) (for some constant c) with probability >-1- n (for
any a _>-1). This is because no collection will be of size more than O(v/-ff) with the
same probability (if we employ Reif and Valiant’s [24] sampling algorithm). Computing
N(1),N(2),...,N(p) (Step 5) can be done in time O(logn/loglogn) using n
processors that employ a sampling algorithm very similar to the one given in 3.2.
(For details see Appendix B.) Therefore, the recurrence relation for T’(n), the expected
value of T’(n) can be written as

’(n) -< ]’(cx/rff) + ((log n/log log n)+(n-)’(n-v/-ff+ 1).

By induction we can show that T’(n) <- O(log n/log log n). Thus we have the following
theorem.

TrEOREM 4.1. GENERAL_SORT can be done in time ((log n/log log n) with
n(log n) CRCW PRAM processors.

4.4. A sublogarithmic algorithm for INTEGER_SORT. In 3, we presented an
INTEGER_SORT algorithm that used n/log n processors to sort n integer keys in
time t(log n). The same algorithm can be used to sort in time ((log n/log log n) if
the number of processors used is P- n(log log n)2/log n. Here we will indicate only
the modifications that need to be made.

The P processors are partitioned into groups of size (log log n)2 and each group
is given log n successive indices. In Fine_Sort Step 1, each group of (loglog n)2

processors stable sorts the log n keys given to it using any of the parallel optimal stable
GENERAL_SORT algorithms, in time O(logn/loglogn). Step 2 runs in time
O(log n/log log n). In Step 3, each group of processors computes the position of each
one of its log n keys in the output using the prefix sum of Step 2. The time needed
for Step 3 is log n/(log log n).

In Coarse_Sort, while computing the N(i)’s, Steps 1 and 3 run in time O(1). In
Step 2, we need to sort n/logEn keys. The sublo.garithmic algorithm of 4.2 for
GENERAL_SORT can be used to run Step 2 in time O(log n/log log n) using <n/log n
processors. After computing N(i)’s, rearranging of the keys can be done using P
processors in time O(lo.g n/log log n) (Lemma 4.2). Therefore, both Coarse_Sort and
Fine_Sort run in time O(log n/log log n). Thus we have the following theorem.

THEOREM 4.2. INTEGER_SORT can be performed in O(log n/log log n) time

using P-- n(log log n)2/log n CRCW PRAM processors.
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5. Conclusions. All the sorting algorithms appearing in this paper are nonstable.
It remains an open problem to obtain stable versions of these algorithms. If we have
a stable algorithm for INTEGER_SORT then the definition of integer keys can be
extended to include integers in the range [n)]. Any deterministic algorithm for
INTEGER_SORT using a polynomial number of CRCW PRAM processors will take
at least f(log n/log log n) time, as has been shown by Beam and Hastad [6]. However
it is an open question whether there exists a randomized CRCW PRAM algorithrn that
uses a polynomial number of processors and runs in time (R)(log n/log log n).

A recent result of Alon and Azar [2] implies that our sublogarithmic time
GENERAL_SORT algorithm is optimal. Their lower bound result is for a more
powerful comparison tree model of Valiant and hence readily holds for PRAMs as
well. Alon and Azar’s theorem is that if P is the number of processors used, then the
average time, T, required for sorting n elements by any randomized algorithm is
(R)(log n/log (l+P/n)) for P>-n, and the average time is (R)(log n/(P/n)) for P<=n.
In particular, if P n(log n) , then T (R)(log n/log log n). It remains an open problem
to prove or disprove the optimality of our sublogarithmic INTEGER_SORT algorithm.

Appendix A. Probabilistic bounds. We say a random variable X upper bounds
another random variable Y (equivalently, Y lower bounds X) if for all x such that
0 =< x -< 1, Probability (X =< x) -<_ Probability Y-<_ x).

A Bernoulli trial is an experiment with two possible outcomes viz., success and

failure. The probability of success is p.
A binomial variable X with parameters (n,p) is the number of successes in n

independent Bernoulli trials, the probability of success in each trial being p.
The distribution function of X can easily be seen to be

Chernoff [7] and Angluin and Valiant [3] have found ways of approximating the
tail ends of a binomial distribution. In particular, they have shown the following.

LEMMA A.1. IfX is binomial with parameters (n, p), and m > np is an integer, then

Also,

(2)

and

(3)

for all 0 < e < 1.

Probability (X >= m) <_- e "-np.

Probability (X _-< [(1 e)pnJ)=<exp (-e2np/2)

Probability (X => [(1 + e)np])<=exp (--82np/3)

Appendix B. A sampling algorithm. We have an index set 0 {1, 2, , n}. Each
index belongs to exactly one of v/-ff groups G, G2,’", G. For any index i, in
constant time we can find out the group Gi, that belongs to.

Problem. Compute N(1),N(2),...,N(v) such that /-1N(i)=O(n) and
N(i)>=lGil for each [v/-], given that each IG, l-<x/-glog n.

LEMMA B.1. The above problem can be solved in time (log n/log log n) using n
processors.
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Proof We provide a sampling algorithm. A shared memory of size n is used. This
shared memory is divided into blocks B1, B2," ", B,/-h- each of size x/-.

Step 1.

n/log n processors in parallel each choose a random index (in [n]).

Step 2.

Every processor r [n/log n] has to find an assignment for its index in the
block Bi,. It chooses a random cell in Bi, and tries to write in it. If it succeeds,
it increments the contents of that cell by 1. If it does not succeed in the first
trial, it tries a second time to increment the same cell. It tries as many times
as it takes.

A total of h log n/log log n (for some h to be determined) time is given.

Step 3.

n processors perform a prefix-sum computation on the contents of the shared
memory and hence compute L(1), L(2),..., L(x/) where L(i) is the sum of
the contents of block Bi, i [x/-].

Step 4.

x/ processors set in parallel N(i)= d(log n) max (1, L(i)) and output N(i),
i [x/-]. d is a constant to be determined.

Analysis. Let M(i), 6 [v] stand for the number of indices chosen in Step 1 that
belong to Gi and let R(i)= d(log n)max (1 M(i)). Following the proof of Lemma
3.4, the R(i)’s satisfy the conditions ,__ R(i)-O(n) and R(i)>-IGil, i6 [v/-]. The
proof will be complete if we can show that L(i)= M(i) with very high probability.

Showing that L(i)= M(i), i6 [x/] is the same as showing that no cell in the
common memory will be chosen by more than h log n/log log n processors in Step 1.
Let Y be a random variable equal to the number of processors that have chosen a
particular cell q. Following the proof of Lemma 3.4, no M(i) will be greater than
c/3x/ with probability ->_1-n- for any /3->_ and some fixed c. Therefore, Y is
upperbounded by a binomial variable with parameters (cflx/, 1/v/). The Chernoff
bounds (1) imply that Y_-< h log n/log log n with probability _>- n -a, for any a _->
and a proper h.

Aeknowletlgments. The authors thank Yijie Han, Sandeep Sen, and the referees
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PRECISE ANALYSES OF THE RIGHT- AND LEFT-SHIFT GREATEST
COMMON DIVISOR ALGORITHMS FOR GF(q)[x]*

G. H. NORTON

Abstract. The precise average and worst-case running times of the right- and left-shift gcd algorithms
for GF( q)[x are derived. A new approximate integer model for the binary greatest common divisor algorithm
is obtained. The right-shift polynomial worst case differs markedly for q 2 and q > 2. The method also
yields an easy analysis of the Euclidean algorithm.

Key words, polynomial, finite field, greatest common divisor

AMS(MOS) subject classifications, primary 68Q25, 68Q40; secondary 11A05, 12E99

Introduction. Let q_-> 2 be a prime power. This paper derives the precise running
times of the right-shift greatest common divisor (gcd) algorithm for GF(q)[x] of I-N]
and the left-shift gcd algorithm of [BK] (by way of comparison). The method used to
obtain the averages for uniformly distributed polynomials is similar to the lattice-point
analysis of the binary gcd algorithm [K, p. 330 ft.l, except that exact "transition
probabilities" are derived. The first part of this paper ( 1-4) treats the right-shift gcd
algorithm. Sections 5, 6, and 7 treat the left-shift algorithm. The case q 2 suggests a
new approximate model for the binary gcd algorithm for integers. The worst-case
polynomial running times, however, are quite different from the integer case, and were
obtained by first computing upper bounds and then the polynomials which realise the
upper bounds. Three families were found: one for q 2 and one for q > 2 in part one,
whereas one family suffices for the second part.

A polynomial is said to be (right) normalized if it does not vanish at zero. (This
is no restriction in computing gcd’s, since the number of common powers of x may
be accumulated beforehand.) The right-shift gcd algorithm of IN] for normalized
polynomials will be called "Algorithm B2" and the left-shift algorithm of [BK] will
be called "Algorithm A2." Both algorithms perform a number of steps or iterations
of the following form: each iteration has a pair (u, v) of polynomials as input, with
u 0 and replaces (u, v) by another pair (u’, v’) such that gcd (u’, v’)= gcd (u, v) and
either (i) deg u’< deg u (continuation) or (ii) u’= 0 (termination). See Algorithms 1.2
and 5.1 for precise details. It is not hard to see that Algorithm A2 and Algorithm B2
compute the gcd of (normalized for Algorithm B2) polynomials of degree m, n over
a field K in at most m + n + iterations. This paper improves this worst-case result
for Algorithm B2 when K GF(2); it also determines coefficients aq and q explicitly
so that the average number of iterations is aqm+qn+O(1) when K GF(q).

The principal results for Algorithm B2 are the following theorems.
THEOREM A. For uniformly distributed normalized GF(q) polynomials of degree

m, n, the average number of iterations of Algorithm B2 is

q-1 q-1m+ n +0(1) if m => n >-- 0.
q q+l

THEOREM B. Let N >-1. For uniformly and independently distributed GF(q) poly-
nomials with degree in the range 0 to N-1, the average number of iterations of

Received by the editors August 18, 1987; accepted for publication (in revised form) February 26, 1988.
t Department of Electrical Engineering, University of Bristol, Bristol, United Kingdom. Present address,

Laboratoire d’Analyse Num6rique, Math6matiques, Universit6 Paul Sabatier, 31062 Toulouse, France.
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Algorithm B2 is

2q+l q-1
N+0(1).

q+l q
THEOREM C. Let m >- n >- O. For u, v GF(q)[x] with degree m, n respectively, the

maximum number of iterations of Algorithm B2 is m+ In/2] + 1 if q=2 and m+ n+ 1
if q > 2. In both cases, the maxima are attained.

The proof of Theorem A proceeds by first obtaining the recurrence relations
satisfied by the averages and then by solving these relations. This method readily yields
the probability that two normalized polynomials are coprime and the general solution
will also be used in a future paper to analyse a related gcd algorithm.

The approximate integer model suggested by Theorem A is discussed after Theorem
2,3.

The corresponding principal results for Algorithm A2 are the following theorems.
THEOREM D. Let m >-_ n >= O. For uniformly distributed GF(q) polynomials ofdegree

m, n, the average number of iterations ofAlgorithm A2 is (m + n + 1)(1 l/q)+ l/q"+1.
THEOREM E. Let N >- 1. For uniformly distributed GF(q) polynomials with degree

in the range 0 to N- 1, the average number ofiterations ofAlgorithm A2 is (2(q- 1)/ q +
e)N + 0(1), where e tends to zero with q- s.

THEOREM F. Let m >= n >=0. For u, v GF(q)[x] performs with degree m, n, the
maximum number ofiterations ofAlgorithm A2 is m + n + and this maximum is attained.

In conclusion, it can be seen that Algorithm B2 always performs faster (on the
average) than Algorithm A2 and that the most improvement occurs over GF(2).

The averages for A2 also satisfy a recurrence relation, and Theorem D was obtained
by solving it. Indeed, the average analysis of the classical Euclidean algorithm (see
[K, p. 417, 44]) may also be found by calculating certain transition probabilities and
then by solving the associated recurrence relation; the reader may verify that this
recurrence has the same characteristic equation as Algorithm A2.

The results of this paper were first announced at AAECC-4 in Karlsruhe and in
[No].

Conventions. K denotes a field, not necessarily finite, and q 2 denotes a prime
power. The zero polynomial has degree -1, to simplify the transition probabilities.
K[x] denotes the ring of polynomials with coefficients in K, that is, finite power series

fx’ withf K.
i=0

1. The right-shift algorithm. This section states the right-shift gcd algorithm for
GF(q)[x] of IN] for normalized polynomials, shows that uniformity is preserved, and
determines the transition probabilities, an essential step in the precise average analysis.

DEFINITION 1. For non-zero g in K[x]
(a) let L(g) be the leading coefficient of g
(b) define the symbol g//x to be g/xk if for some k >=0, x k divides g but xk/l

does not
(c) go denotes the constant term of g.
ALGORITHM 2. GCD by Right shifting.
Input. Normalized f, g K[x].
Output. gcd (f, g).

procedure B2 ., fx , gx
=0 =0

while true do begin
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if deg (f) < deg (g) then swap (f, g);
f := f-Lg-21g;
if f 0 then exit;
f :=f//x;
end;

return L(g)-l g.

Note that after one iteration of the algorithm, (i) g is normalized and (ii) either f=0
or f is normalized.

EXAMPLE 3. Over GF(2), the iterations are

x -t- X -k 1, X4 -I- X t- 1) X
4 -l- X nt- X nt- 1, X4 + X -k 1)

(1, X4+X-k 1) (x3+ 1, 1)= (1, 1)= (0, 1)

and the gcd 1 is returned.
An example using GF(13) coefficients is given in [N, Ex. 2]. It is clear that the

computation may be stopped if deg (f)= 0, returning a gcd of 1 in this case.
We now show that Algorithm B2 preserves uniformity.
PROPOSITION 4. Let >- 1, let u, v be uniformly distributed normalized GF(q)

polynomials of degree m >= n >- 0 and let <- k <- m + 1, 0 <- <- n. Suppose that after
iterations u, v) is replaced by (u’, v’) of degree m- k, n- l, respectively. Then u’, v’ are

uniformly distributed in degree m- k, n- 1.
Proof It suffices to prove this with 1, so that v’= v, and deg u’= m k. Then

u u(O)v(O)-v(x)+ xku’(x) and so for given polynomials u’, v there is a unique u, v
with u(0)- yielding u’, v in one step. Since u, v are uniformly distributed so are u’,
v as required.

DEFINITION 5. For m>--n>--O and -<k<- m+ 1, let P[(m, n)-(m-k, n)] denote
the probability that one iteration of Algorithm B2 replaces uniformly distributed,
normalized polynomials of degree m, n by normalized polynomials of degree m- k,
n, or terminates (if k m + 1).

THEOREM 6. (a) For m > n >-_ 0

p[(m,n)_(m_k,n)]={(q-1)q-k ifl-<k<-m-1,
ql-m ifk= m.

(b) Forn>=O,

P[(n, n)- (n k, n)]

rk(q-1)-I
k

n(q-1)-I
(q- 1)q "-1

if 1_<- k<- n- 1, n_->2,

ifk=n,n>=l,

(q- 1)-q 1-" ifk=n+l,n>=l,

ifk=n+l,n=O.

Proof (a) Suppose that rn > n and let u, v be normalized polynomials of degree
m, n, respectively. We begin with the case k m. For the algorithm to produce an
output of degree zero, there are rn constraints (ui 0 for n + _-< <- rn and

VoUi-UoV =0 if n > 0 and 1 <-iN n) each of which occurs with probability 1/q. To
obtain an output of degree rn- k for <_-k_-< rn- 1, the argument is similar: there will
be k- equalities and one inequality yielding q-k. (q 1)q- (q 1)q-k. This proves
part (a).
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(b) The case n=0 is trivial, so suppose now that u and v are normalized
polynomials of degree n>0. 7I’hen v=A(u+w), where A GF(q) is non-zero, -1=<

deg (w)_<- n- 1 and wo # -Uo. The first iteration produces WoU- UoW
n--1

WoUnX +i=O (WoUi--UoWi)xi (upto ascalar) and P[wo=O] 1/(q-1),P[woUi-UoWi
0] 1/q if n =>2 and 1 <= i<= n- 1. The cases k n+ 1, k= n, and 1 <= k<_- n-1 (if n >_-2)
correspond to no, one or at least two non-zero coefficients of WoU- UoW, respectively,
giving the stated probabilities.

2. A general recurrence relation. The method used in [K, p. 330 ft.] to analyse the
binary gcd algorithm is adapted to Algorithm B2 for GF(q)[x] in this section. Using
the exact transition probabilities of Theorem 6, 1, we define a set of double recurrence
relations A,n (a, c, Aoo), from which a single recurrence relation (Theorem 8) is derived.
This is then solved using generating functions and partial fractions, and leads to the
general solution (Theorem 13). Two applications of this solution are given in the next
section, and it will be shown in a future paper that Amn(q/(q-1), 0, 1) yields the
uniform average for the algorithm discussed in [K, p. 618, #6].

DEFINITION 1. Let a, c be constants and let A,n Amn(a, c, Aoo) be given by

Amn(a c, Aoo)

Ao0 ifrn=n=0,

’ k(q- 1)-a+ qk=l

m(q-1)-I
Am-k,m + m-1 Aom if rn n -> 1,

(q- 1)q

1 Amk,n Aonc+(q- 1) -k:l q q

Anm if n > rn => 0.

The calculation of A,n for n 0 is straightforward.
PROPOSITION 2.

if m> n->0,

q-1
(a) Am+k,n:ck+Amn if m> n>=O,k>=O

q

q-1 c
(b) Amo- tnc +-+ Aoo iftn>O.

q q

q-1
(a) Am+l, :c+

q

=c+q -1

q

1 q-1=c+ q lAmn+-(Amn-C):
q q q

and part (a) follows from a trivial induction.
(b) By part (a),

q-1

q

q-1
1

=2 qk Am+l_k,n-k- Aon

Amn +1 q_ 1 1

k= qk+ Am-k,n + Aon,

c + A,,n,

-c(m-1)+AlO,

c(m- 1)+c+Aoo

if m>0.
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For simplicity let Am Atom for m_-> 0. Our next step is to find the recurrence
satisfied by Am. A key role is played by the terms Sm in Definition 3 below; Sm is used
to express Am+l,m in terms of A (Lemma 6) and the recurrence of Theorem 8 below
is derived from a recurrence satisfied by Sm (Lemma 7).

DEFINITION 3. For rn _--> 2, let

Am+l,m-k Am+l,OSm
k=l qk+l - qm

LEMMA 4. For m >- 2,

q-1
Am+l,m

q
q-2

-Am+(q-1)Sm Aoo-
q

(q-2)(q- 1)
m+lq

me

( 1 /_)q-2+ 1---q q2
c.

Proof.

Am+1,m C + q Ao_____v_
k=l qk Am+l-k,m + qm

lq--1
C + _k Am+l-k,m

k=l q

q- 1 Aom
qm+l Aom +---,

q

=c+q-lAm+ q-1 Aom
k+l am-k,m d- m+----,

q =lq q

=c+ q-1
q Am+?=l qk+, Am-k,m+l -cq +Aomqm+l

by Proposition 2(a). Now

Am q-1
E +-k7 Sm m+ Am+ 1,0
k=l q q

so that

Am+l, c + Am +(q- 1)Sin -(q- 1)2A’;--’q-

q q

(q 1)2c Z
1 Aom

--t-k--!

Expanding Am+,o and Amo via Proposition 2(b) and collecting terms gives the stated
formula.

LEMMA 5. For m >--_ 2,

q-1 AmAm+ a++(q-1)Sm+(q-2) Am+’m Am
q q q qm

q2 qm+ + c.
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Am+,=a + q-2, Atom+,+ E
q-2+(k-1)(q-1)

k Am+l-k,m+l
q k= q

+ Aom +c
q

q m+
q q i

and by Proposition 2(a), the summation is, after re-indexing,

The first term contributes

A, a -qm-1 (m

and the second contributes

Applying Proposition 2(a) to A,,+l,0 and collecting terms completes the proof.

2(q- 1)(q-2)
Aoo

Proof.

Proof Part (a) follows by substituting the value for Am+l, obtained in Lemma
4 in the expression for Am+l of Lemma 5, and part (b) follows by using part (a) to
eliminate Sm from Lemma 4.

LEMMA 7. For m >-_ 3,

Sm= q2 +
q

Sin-1 d- -t qm qm+l C.

Am+l,m_k Am+,o
k=l q

Am m-k -Jr- C q + Amo-k- C q-m
q ,=l q q

l(2Amm--I Amo) q-l ’ q-1Am,m-_! +__q \ k=l --7 t- qm_ + C
k= --- + q’+ Cq2

q2 ff--q S,._ + +qm qm+l
C.

Am+l’)(q- 1) S
q
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THEOREM 8. For m >- 2,

A.,+ + Am - A.,_
q

a + 1 -5 -3q--- m+2 "
Proof Lemmas 6(a) and 7 give two expressions for S,. In the latter, Am,m-I may

be expanded using Lemma 6(b), and St,-1 may be expanded by Lemma 6(a). What
results is an equation (with left-hand side involving A,,+ and A,, and right-hand side
involving A,, and Am_) which simplifies to the above.

We now solve the recurrence relation using the method of generating functions
and partial fractions.

Let G be the generating function G(z)= ,,=o A,,zm.
LEMMA 9.

(Z 1 )(Z qZ)G(z) qZAo + {q2A, -(q2 + )A0}z + {qZA2 (q+ 1 )A, + Ao}z

+{(q- 1)3
a+ (q 3+) }Z3 +q 1 Z

q 1-z q q-z

Proof This is a straightforward consequence of Theorem 8.
PROPOSITION 10.

q-2 2q-1
Ao=Aoo+C Al=a+ (Aoo+C) Ao=Aoo+C,

q-1 q

q-1 2q-1
A2 (a + Aoo)+c,

q q

A22-- {1 + (q-2)!q-1)} {(q-2)(q- 1)
q- a+ q

2q-3 }q(q- 1) Aoo

+ {(q-2)(2q- 1)
q2

(2q-3)(2q- 1)}(q_l)q2 c.

Proof These follow directly from the definition of
LEMMA 11.

G(z) ( 1-2q2q-1=a+ Ao+-) qc 1

q q-1 q(q-1 q-1 z-q

+{(q-l)2a
q(q+l) qZ-3+2/qc} 1

q-I (z-l)2

q3
+

-4q:-q +2 q
q(q+ 1):z

a-
q+l

q4+2q3--4q2+3 } 1ao + -(-q

_
(---{i c

z -1

-a Ao+ (q+l)2 - q2_l
c ) 2q4

(q-1)(q+l)2 z-q2"

Proof This follows from Lemma 9 using the method of partial fractions (see, e.g.,
[BM, pp. 79-81]) and also uses the values for A, A of the previous proposition.

PROPOSITION 12. A,,,=((q-1)/q)(m-n-1)c+A,,+t,, if m> n>-O.
Proof This follows from Proposition 2(b) by a simple change of subscripts.
Finally, the general solution is given in Theorem 13.
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THEOREM 13. (a) For tn >= 3

Am={ (q-1)2
q(q+l)

q
q+l

q+l

(b) For m-l>-_n>-2

Am,,
q -1 {(q -1)2 }mc+ a+ q-1 2q2-1
q q(q+l) q(q+l)

C n+--q(q+l)2a

{ a Ao c iIq-1 ,_2,,+ q Ao+C+ - _q+l q(q+l) q+l q-1 q q+l
q

Proof Part (a) is an immediate consequence of the definition of G and Lemma
11. Lemma 6(b) and part (a) give a formula for A,+I,,, and an application of
Proposition 12 completes the proof of part (b).

3. The average analysis of Algorithm B2. Two average running times for Algorithm
B2 are calculated in this section" one for uniformly distributed normalized polynomials
in degree m >_-n _>-0 (Theorem 2), which is then used to determine the average (up to
0(1) terms) for uniformly distributed polynomials with degree in the range 0 to N- 1,
N->_ 1 (Theorem 7); we also compare a new approximate model for the binary integer
algorithm with the lattice point model, and determine the probability that normalized
polynomials are coprime (Theorem 8).

Recall that A,,n (a, c, Aoo) is defined in Definition 1, 2.
PROPOSITION 1. Amn(1, 1, 1) is the average number of iterations of Algorithm B2

for uniformly distributed normalized polynomials of degree m >- n >- O.
Proof By virtue of Theorem 6, 1, it suffices to show that the average is equal to

1 + k=l P[(m, n)-(m- k, n)]A,,_k,n. This is proved by induction on m + n, the case
m + n =0 being clear. For non-negative integers i, r, s, let rr,s(i) be the probability
that iterations of Algorithm B2 are required to calculate the gcd of uniformly
distributed normalized polynomials ofdegree r, s and set r-1,, (i) 6io. Then for m + n > 0
and > 0,

m+l

"rrmn(i) 2 P[(m,n)-(m-k,n)]r,._k,.(i-1)
k=l

and the average in question can be written as
m+l

ir,,(i)= 2 P[(m,n)-(m-k,n)](l+(i-1))r,_k,,(i-1)
il il k=l

2 P[(m, n)-(m-k, n)] 1+ Y irm_k,n(i)
k=l i>O

m+l

+ P[(m, n)-->(m-k, n)] i’n’_k,,,(i)
k:l

1 + E P[(m, n)->(m-k, n)]A.,_k,,,
k=l

by the inductive hypothesis and the definition of 7/’_1,
Theorem A of the Introduction is an immediate consequence of the following

result.
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THEOREM 2. For uniformly distributed normalized GF(q) polynomials ofdegree m,
n, the average number of iterations of Algorithm B2 needed to compute gcd u, v) is

1 ifm=n=O,

q-1

m+-+l ifm>n=O,

(q 1)(2q + 1) q3 + 2q2 3q 2 q-" 2q2-2"

---+1- m+
(q_l)(q+2) q-1 (q-1)(q+l)

q-1 q-1 q2+3q+ 1 q-Zn
m-k-

q+l (q+ 1)2 (q+ 1)2 ifm>n=l.

ifm n >- 1,

Proof This follows from the preceding proposition and the results of 2:
for m=n=>3 or m> n=>2 from Theorem 2.13 and the remaining cases from
Proposition 10, 2.

Recall that there is an integer analogue of Algorithm B2, which repeatedly subtracts
(non-negative) odd integers rather than normalized GF(2) polynomials. Thus for 17
and 5, the iterations would be

(17,5)=(5,3)=(3, 1)= (1, 1)= (0, 1)= 1.

Further, the lattice-point model [K, p. 330 ff.] is similar to the above model for
q 2. Indeed, the lattice-point model uses the same probabilities as Theorem 6(a), 1,
for the case m > n and differs only in the transition probabilities when m n and
0 <-k-<_ n- 1. It is therefore natural to compare the solutions of these two models in
abstracto.

Thus, ignoring o(1) terms and setting q 2 in Theorem 2 gives m/2+ n/3+ 11/9-
,n/3 as another estimate of the average number of iterations of the binary gcd
algorithm for uniformly and independently distributed odd (m + 1)- and (n + 1)-bit
integers where m, n are both nonzero. This model was compared to the lattice point
model as follows: fix m, n with <-n _-< m _-< 7. Compute the actual average amn using
all 2"+"-2 possible pairs of (m + 1)- and (n + 1)-bit odd integers. This gives 28 actual
averages. Now compute the error terms (a,, A,,, )2, where Amn
m/2+ n/3+ 11/9-m/3. The average of these squares (the mean square error of the
model) is 0.144, whereas the corresponding value for the lattice point model is 0.213.
It would seem therefore that the transition probabilities of Theorem 1.6 are a slightly
better approximation to the actual ones.

We now deal with the case where the inputs are uniformly distributed with degree
in the range 0 to N- 1, N_-> 1. The approach is completely analogous to that used in
[K, p. 335].

LEMMA 3. Let N >- 1 and let u, v be GF(q) polynomials, uniformly distributed with
degree in the range 0 to N- 1. Then, the average number of iterations C of Algorithm
B2 satisfies

N-1

(qN_l)2C=(q_l)2N2Coo+2(q_l)N E (q-1)2q"-l(N-n)C.o
n=l

+2 2 (q-1)4q’+"--(N-m)(N-n)C,.
l--n<m<N

N-1

+ E {(q-1)Zq’-l( N-n)IzCn.
r-----1

where Cm, denotes the average of Theorem 2.
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Proof There are (q- 1)N polynomials with degree in the range 0 to N- which
can be shifted right until they have degree 0, and there are (q-1)2qm-l(N-m)
polynomials with degree in the range rn to N-1 which can be shifted right until they
have degree rn > 0.

LEMMA 4. (a) For m >= 2,

+1
XZ nx"= )2[mxm -(m+l) +1].

,= (x-1

(b) For m >= 2,

X
2, n(n-1)x" ={m(m-1)xm+l

n=l (x--l)
-2(m-1)(m+ 1)x + m(m+ l)xm-’-2}.

Proof Part (a) is obtained in the standard way by differentiating the geometric series
with ratio x, and part (b) follows from the series of part (a) in the same way.

LEMMA 5. If Cmn am +n + % m >= n, then

(a) Y
l<=n<m<N

(b) 2
l<__n<N

(N-m)(N-n)qm+n-2Cmn =q2N( 2q2+q+l )(q )4(q _k_ 1)
(ce + fl)N +0(1)

(N-n)Zq2"-2C,,=q2N( q2+l )(-:-i) (a+/3)N+0(1)

Proof Both parts follow from Lemma 4 by a routine calculation similar
to [K, p. 597].

THEOREM 6. Let N >-1. For uniformly and independently distributed GF(q) poly-
nomials with degree in the range 0 to N-1, the average number of iterations of
Algorithm B2 is

(q- 1)(2q+ 1)
(q+l)q

N+0(1).

Proof By Lemmas 3 and 5 and by Theorem 2, the coefficient of N in the uniform
average C is

(q_l)4{2(2q2+q+ll(q-1(q-1)4(q+ q q+l (q2- 1)3\q+ q

and this simplifies to the stated value.
We conclude this section with another application of the results of 2.
TrEOREM 7. Let f g be uniformly distributed normalized GF(q) polynomials of

degree m, n, respectively. Then the probability that f and g are coprime is

ifm>=n=O,

q 2

q+ 1 (q2_ 1)q2m-2 ifm=n_>-l,

q
2n--1q+l (q+ 1)q

if m> n=>l.
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Proof As in the proof of Proposition 1, the required probability is clearly
A,,,(0, 0, 1), and, so for rn n => 3 or rn > n => 2, the result follows from Theorem 13,

2. The reader may check that in the remaining cases the stated formulae agree with
Proposition 10 when a c 0 and Aoo 1.

Theorem 7 is also a simple consequence of the following result, which is due to
an anonymous referee. First some notation is given:

for m, n => 0, let
P,, {u GF(q)[x]: deg u m, u monic and normalized}
R,,, {(u, v) Pm P,: gcd (u, v)= 1}

THEOREM 8.

ifm=n=0,
qm-l(q--1) if m> n=0,

r, (q2, q2n-1 2) if rn n > 0,
q-t-

(q-l) m--n--l/q tq -J) ltm>n>0.

Proof The first two cases are trivial since ]Po] 1 and for rn > 0, ]Pm] qm-(q_ 1).
Fix m => n _--> 1, and for 1 _-< k _-< n, define O0’.Rm_k,n_k Pk -+ Pm Pn by Ck ((U, V), W)
(UW, VW). To see that crk is one-to-one onto its image, suppose that (s, t) Pm P, are
not relatively prime. Put g gcd (s, t), where d deg g => 1. It is elementary that

if k#d
al(s, t)=

((s/g, t/g),g) ifk=d

so that each ak is one-to-one and Pn X P Rmn (_J U:=I im(ak) is a disjoint union.
Since [Pro[ qm-(q_ 1), this gives the double recurrence relation

rmn qm+n-2(q__ 1)2__ rm_k,n_kqk-(q__ 1).
k=l

The remaining two formulae for r,,, are now straightforward verifications based on
the first two cases.

We note in conclusion that the same argument shows that the probability that
unnormalized polynomials (of positive degree) are relatively prime is (q-1)/q: (cf.
[K, p. 417, 5]). To wit, let

Qn {u GF(q)[x]: deg u n, u monic},

Smn {(U, V) Qm X Qn gcd (U, V) 1},

THEOREM 9.

ifm=n=0,
Sin, q ifm>n=0,

qm+"+(q--1) if m_> n>0.

Proof As for Theorem 8, but using the fact that ]Qm[ q for rn => 0.

4. The worst-case analysis of Algorithm B2. The worst-case analysis of Algorithm
B2 for GF(q)[x] differs when q-2 and when q> 2. A more elaborate polynomial



ANALYSES OF GCD ALGORITHMS 619

construction, as well as a more elaborate argument, is needed in the former case. Both
constructions incorporate a type of polynomial Fibonacci term.

PROPOSITION 1. Let m >--n >--_ O. If u, v K[x] have degree m, n, respectively, then
Algorithm B2 requires at most m + n + 1 iterations to compute gcd (u, v).

Proof This is completely analogous to the proof of the integer case given in [N,
A] and is omitted.

If K is GF(2), it is easy to check that the upper bound of Proposition is the
best possible if either polynomial has degree 0 or 1, but Algorithm B2 applied to
u(x) x2 + x + 1 and v(x) x + 1 requires three iterations, less than the expected upper
bound of 4.

PROPOSITION 2. If U, V GF(2)[X] have degree m, n, respectively, where m >- n >- O,
then Algorithm B2 requires at most m + [n/2J + iterations to compute gcd (u, v).

Proof Without loss of generality, we may assume that u and v are normalized. We
use induction on m + n. The result is clearly true for m n 0. Suppose that m + n > 0
and the first iteration yields polynomials of degree m k, n for some k, 1 -< k-< m + 1.
If m=n, at most m+ [(m-k)/2]+l further steps are required where k->2, since
u, v GF(2)[x]. If k m + 1, the algorithm terminates and there is nothing to prove.
If m > n, either m k + [n/2J + or n + [(m k)/21 + further steps are required,
according as m k _->. n or m k _-< n. In all cases, the inductive hypothesis implies that
at most m + [n/2J + steps are needed.

Note that the preceding proof works because m n k -> 2 where q 2. This fails
for q_-> 3 since there is no longer automatic cancellation of leading terms.

It will be shown that the following construction realises the previous upper bound;
note that for m even, Umm is defined in a way reminiscent of Fibonacci numbers.

DEFINITION 3. Define Umn Vtn GF(2)[x] by Uoo(X)= Voo(X)= and

v,,+l,,(x)=v,,,(x) if n is even and O<-n<-m,
XVm+1,,-I(X) ifn is odd and l_-<n-<m+l;

Um+I,n(X)={XU’n(X)+V"+I,"(x) if nisevenandO<=n<-m,

Um+,,-l(X) ifnisoddandl<_-n_<-m+l;

Vm+I,,+(X) U,+,m(X) if m is odd,

u,+,,,+,(x) U,+,m(X)+ Vm+,m(X) if m is odd.

The reader may check that deg (u,n)= m, deg (v,,)= n by inducting on m + n.
LEMMA 4. (a) For all m >-_ n >- O, u,,,(O) 0,
b If n is even, vn, (0) O.
Proof This is trivial.
LEMMA 5. Let m >--n >=0 and let P(m, n) be the proposition that Algorithm B2

requires m + [n/2] + steps to compute gcd (Um,, Vrnn).
(a) P(n+ 1, n)==>P(n+ 1, n+ 1)
(b) if n is even, P(m, n)P(m+ 1, n)
(c) if n is odd, P(m, n- 1):=>P(m, n).
Proof This follows from Definition 3 and from Lemma 4 using the parities of m

and n, and is omitted.
PROPOSITION 6. For m>--_n>--O, Algorithm B2 computes gcd (Um,, Vm,) in m+

[n/2J + 1 steps.
Proof The proof is by induction on m + n. P(0, 0) is true. The case m n follows

from part (a) of Lemma 5, and the case m> n follows from part (b) or part (c)
depending on whether n is even or odd.
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The last topic is the worst case for q > 2. This is easier than the case q 2, being
independent of parity and attaining the first upper bound.

DEFINITION 7. For q > 2 and m > n -> 0 define u,,n, vm, GF(q)[x] by

Uoo(X) Too(X)= ,
u.(x)=xu_,.(x)+v..(x),

v.(x)-v..(x),

v.+,,o+(x)=u.+..(x),

u.+,,.+,(x) M(xv..(x) +

where M(f) L(f)-lf makes f GF(q)[x] monic, and 0, -1.
The condition on easily implies that (a) deg (u,,)= m and deg (vm,) n and

(b) u,+,,(0) 0, v,,(0) 0 for all n =>0. This latter property and a simple induction
establish the last result.

PROPOSITION 8. For q > 2, Algorithm B2 requires m + n + iterations to compute
gcd (u,,, Vm,).

It follows that for q > 2, the upper bound m + n + 1 of Proposition 1 is tight.

5. The left-shift algorithm. This section states the left-shift gcd algorithm for
GF(q)[x] and determines the transition probabilities. These in turn yield the recurren-
ces to be solved for the average analyses. Recall that for non-zero g K[x], L[g] is
the leading coefficient of g.

ALGORITHM 1. GCD by Left shifting.
Input. Polynomials f, g K[x] with g non-zero.
Output. gcd (f, g).

procedure A2 fix, gjx
i=0 j=0

while f 0 do begin
if deg (f) < deg (g) then swap (f g);
f:= L(g)f L(f)xdeg(f)-deg(gg;
end;

return L(g)- g.

EXAMPLE 2. Over GF(2), the iterations are

(XS+ X2+ 1, X4+Xn 1) (X4+ X-k 1, X+ 1) (X3+X+ 1, X+ 1)

(x2+x+ 1, x+ 1) (x+ 1, 1)= (1, 1)= (0, 1)= 1.

We now show that Algorithm A2 preserves uniformity.
PROPOSITION 3. Let i>= 1, let u, v be uniformly distributed GF(q) polynomials of

degree m >-_ n >= O, and let <= k <- m + 1, 0 <= <= n. Suppose that after iterations, u, v)
is replaced by (u’, v’) of degree m- k, n- l, respectively. Then u’, v’ are uniformly
distributed in degree m- k, n- I.

Proof This is similar to Proposition 4, 1, and is omitted.
DEFINITION 4. For m=>n_-->0 and l_-<k_-<m+l, let P[(m,n)-(m-k, n)] denote

the probability that one iteration of Algorithm A2 replaces polynomials of degree m,
n by polynomials of degree m- k, n, or terminates (if k m + 1).
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PROPOSITION 5. For rn >= n >= 0
q-1

ifl<k< m

P[(m, n)-> (rn- k, n)]=
qk

ifk=m+l.

Proof. Suppose that m > n and let u, v be of degree m, n, respectively. The degree
m-k of the result falls into one of three cases" m-n_-<m-k_-<m-1, O_-<m-k-<

m-n-1, and m-k=-l. The first case requires VnUj= U,Vj+n-, for m-k+ 1 <-j<-
m 1 and VnUm_k t UmVn_k" The second requires l)n$.l l,rnVj+n_ for m n <-j -< rn 1,
uj 0 for m k + 1 <-j <- rn n 1, and Um-k # O, whereas the last requires that vnuj

UmVj+n-., for m-n<=j<=m-1 and Uj=0 for O<=j<=m-n-1. Each equality occurs
with probability I/q, and each of the first two cases has k-1 equalities and one
inequality, whereas the last case has m equalities.

The case rn n is similar (requiring the first and last case only) without the zero
conditions, and is omitted.

6. The average analysis of Algorithm A2. Two average running times for Algorithm
A2 are calculated in this section: one for uniformly distributed polynomials in degree
m => n _>- 0 (Corollary 5), which is then used to determine the average (up to 0(1) terms)
for uniformly distributed polynomials with degree in the range 0 to N-1, N->

(Theorem 8).
DEFINITION 1. Let A.,n be given by

ifrn=n=O,

a.,n 1+ q,l A,._,.n ifm>=n>=O,(m,n)#(O,O)
k=l q

An. ifn>=m>-O,(m,n)#(O,O).

As in Proposition 1, 3, A,.n is the required average number of iterations of
Algorithm A2. The following results are used to determine the recurrence satisfied by
A.. and to express A.. in terms of Ann.

PROPOSITION 2. For m >= n >= 0 and k >= O,

Proof.

Am+.=Amn+k(q-l)q

m+l

Am+l. =1+
q-1

k Am+l-k,n,
k=l q

m+l_l+q-lA,+ q-1
’k Am+l-k,n,

q k--2 q

q-1
1 +.q A.. +- k Am-k,n,

q q:l q

1=l+q-lAm,,+-(A.,,,-1),
q q

q-1
A.,n

q

The general result now follows by induction on k.
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For simplicity, let Am A’,, for m -> 0.
PROPOSITION 3. For m >--_ O,

q qm+l

Proof.
lq-1Am+ + k Am+l-k,m+qk=l

Am,m+l d-
k=2 qk A’+l_k,m+l,

=l+q-l(Am +
q ---- k Am-k,m+

q qk=l

nt--- Am_k, n
q q qk=l q

=l+q-lAm+-(Am-1)+
q q q k=lq-’

Am+q -1 (q--1)21--qm+lq4;-
qm+lq q 1-q

q q q +1--1

=Am+
q 1

2- .,+1q q

The recurrence of Proposition 3 is readily solved using the generating function
(Proposition 4).

PROPOSITION 4. For m >-- O,

Am+ (2(m+l)+ 1)(q-l] m+2"
\ /q q

Proof. Let G(z) --o A.,z.,. Proposition 3 implies that

G(z) l zG(z) 2(0-1) q__lzOO()mzYz Y
q m=0 q q

and the method of partial fractions (see, e.g., [BM, pp. 79-81]) yields

( )-G(z)= Z z.,+2
q 1 y (m+l)zm+

z zm +
m_-O q m_-->.0 q 0 >=0

Collecting terms on the right-hand side yields the formula for Am+l.
COROLLARY 5. Let m >- n >- O. For uniformly distributed u, v GF(q)[x] ofdegree

m, n, respectively, the average number of iterations required to compute gcd u, v) using
Algorithm A2 is (m+ n+ l)(1-1/q)+ l/q n+.

Proof By Proposition 2, Amn=(m-n)(1-1/q)+A,. Now A0o and if n>0,
A, is given by Proposition 4. Combining these formulae yields the result.

The remainder of this section deals with the case where the inputs are uniformly
distributed with degree in the range 0 to N-1, N_-> 1.
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LEMMA 6. Let N >- 1 and let u, v be GF(q) polynomials, independently and uniformly
distributed with degree in the range 0 to N- 1. Then C, the average number of iterations

of Algorithm A2 satisfies
(qN--1)2C= 2 qm+"(q-1)2C,,,

O<=m,n<N

where Cmn denotes the average of Corollary 5.
Proof There are (q- 1)q’ GF(q) polynomials of degree t_->0.

LEMMA7. If m >= n >- O and Cmn am +n + y, then

(a) q’+n(q--1)2C,, qN( )o__<,<,,<N q+i (a+fl+e)N+O(1)

(b) qZ"(q-1)Zc,, qU(q-1o_-<,<u q+l
(a+fl+e)N+O(1)

where e tends to zero with q-U.
Proof These are routine summations using the change of indices r= N-m,

s-N-n.
TZORM 8. Let N >-1. For uniformly and independently distributed GF(q) poly-

nomials with degree in the range 0 to N-1, the average number of iterations of
Algorithm A2 is (2(1 1 / q) + )N+ 0(1), where tends to zero with q-.

Proof. By Lemmas 6 and 7 and by Corollary 5, the coefficient of N in the uniform
average is

+ 2+e
q+l q+l q

as required.

7. The worst-case analysis of Algorithm A2. This short section gives a simple
polynomial construction to realise the maximum number of iterations for Algorithm A2.

PROPOSITION 1. Let m >= n >= O. If u, v K[x] have degree m, n, respectively, then
Algorithm A2 requires at most m + n + iterations to compute gcd (u, v).

Proof This is a trivial induction on m + n >-0.
DEFINITION 2. Define Umn Vmn GF(q)[x] by

Uoo(X) Voo(X)= ,
v,..(x) u.,._l(x) if m >= n >= 1,

u..(x) v._l,._(x) + u..._(x) if n => 1,

Umn(X)=Xm--"V.n(X)+Um_,.(X) if m> n_-->0.

It is trivial to verify that deg (u.,.)= m, deg (Vm.)= n and that each u,.., v.,. is monic.
PROPOSITION 3. For q >= 2 and m >- n >- O, Algorithm A2 requires m + n + 1 iterations

to compute gcd (u.., v.,.).
Proof The result is true for m n--0. The general result follows by induction on

m + n since one iteration replaces (u.,., Vmn) by (Um-.., V._I..) if m > n and (u..,
by (u.,._, v._,._) otherwise.

It is not hard to see that the Euclidean algorithm requires n + steps to compute
gcd (Umn Vmn ).
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especially to "referee A" for his report on a first version of this paper. The first version
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discussed the average number of subtraction steps as well as the average number of
shifts, but for the case q 2 only, and conjectured Theorem 3.7. Referee A kindly
supplied a proof of this (see Theorem 3.8). His first report thus led to the current
solution. The second reports of the referees also suggested many improvements. The
time that they have spent is much appreciated.

REFERENCES

[BK] R.P. BRENT AND H. T. KUNG, Systolic VLSI arrays for polynomial GCD Computation, IEEE Trans.
Comput., C-33 (1984), pp. 731-736.

IBM] G. BIRKHOFF AND S. MACLANE, A Survey ofModern Algebra, Third edition, MacMillan, London,
1965.

[K] D.E. KNUTH, The Art of Computer Programming, Vol. 2, Seminumerical Algorithms, Second edition,
Addison Wesley, Reading, MA, 1981.

IN] G.H. NORTON, Extending the binary GCD algorithm, in Algebraic Algorithms and Error Correcting
Codes, Springer Lecture Notes in Computer Science, Vol. 229, (1986), pp. 363-372.

[No] G. H. NORTON, A unified design and analysis of some GCD algorithms, 1986, September, preprint.



SIAM J. COMPUT.
Vol. 18, No. 3, pp. 625-638, June 1989

(1989 Society for Industrial and Applied Mathematics
014

EXPRESSIBILITY AND PARALLEL COMPLEXITY*

NEIL IMMERMAN

Abstract. It is shown that the time needed by a concurrent-read, concurrent-write parallel
random access machine (CRAM) to check if an input has a certain property is the same as the
minimal depth of a first-order inductive definition of the property. This in turn is equal to the
number of "iterations" of a first-order sentence needed to express the property.

The second contribution of this paper is the introduction of a purely syntactic uniformity notion
for circuits. It is shown that an equivalent definition for the uniform circuit classes ACi, _> 1 is
given by first-order sentences "iterated" login times. Similarly, uniform AC is defined to be the
first-order expressible properties (which in turn is equal to constant time on a CRAM by our main
theorem). A corollary of our main result is a new characterization of the Polynomial-Time Hierarchy
(PH)" PH is equal to the set of languages accepted by a CRAM using exponentially many processors
and constant time.

Key words, computational complexity, parallel complexity, first-order expressibility, polynomial-
time hierarchy
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1. Introduction. Parallel time on a random access machine has a surprisingly
simple mathematical definition involving well-studied objects of mathematical logic.
We show that the time needed by a concurrent-read, concurrent-write parallel random
access machine (CRAM) to check if an input has a certain property is the same as
the minimal depth of a first-order inductive definition of the property. This in turn
is equal to the number of "iterations" of a first-order sentence needed to express the
property.

We now state our main result. (See 2 for relevant definitions. In particular, the
iteration of a first-order sentence is defined in 2.2, and the CRAM is defined in 2.3.
The definition of the CRAM differs from the standard definition of the CRCW PRAM
in [17] only in that a processor may shift a word of local memory by any polynomial
number of bits in unit time. It follows from our results that for parallel time greater
than or equal to logn there is no distinction between the models with and without
the Shift instruction.)

THEOREM 1.1. Let S be a set of structures of some vocabulary 7. For example,
S is a set of boolean strings, or a set of graphs, etc. For all polynomially bounded,
parallel time constructible t(n), the following are equivalent:

1. S is recognizable by a CRAM in parallel time t(n), using polynomially many
processors.

2. There exists a first-order sentence g) such that the property S for structures of
size at most n is expressed by iterated t(n) times.

3. S is definable as a uniform first-order induction whose depth, for structures of
size n, is at most t(n).

For t(n) >_ log n, the equivalence of (1) and (2) in Theorem 1.1 may also be
obtained by combining a result of Ruzzo and Tompa relating CRAMs to alternating
Turing machines [17, Thm. 3], together with a result of ours relating alternating
Turing machines to first-order expressibility [9, Thm. B.4]. In order to prove the
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theorem for t(n) < log n, we were forced to modify the models slightly, adding the
Shift operation to the CRAMs and adding BIT as a new logical relation to our first-
order language (see 2). We believe that the naturalness of Theorem 1.1 justifies these
modifications.

This paper is organized as follows. In 2 we give all relevant definitions. In 3
we prove our main result. In 4 we give a more detailed analysis of the bounds in
Theorem 1.1. We show that the number of distinct variables in a first-order inductive
definition is closely tied to the number of processors in the corresponding CRAM.

Until now, a principal unaesthetic feature of the theory of complexity via boolean
circuits was that one had resorted to Turing machines to define the uniformity con-
ditions for circuits [15]. As a corollary to Theorem 1.1, we obtain a purely syntactic
uniformity notion for circuits. In 5 we describe this result as well as other relations
between circuits and first-order complexity.

As another corollary to Theorem 1.1, we present in 6 a new characterization of
the Polynomial-Time Hierarchy (PH): PH is equal to the set of languages recognized
by a CRAM using exponentially many processors and constant time. In 7 we give
some suggestions for future work in this area.

2. Background and definitions.

2.1. First-order logic. We begin this section by making some precise defini-
tions concerning first-order logic. For more information see [4].

A vocabulary 7 /RI, ,Rk,cl, ,cr/ is a tuple of relation symbols and
constant symbols. R is a relation symbol of arity hi. In the sequel we will usually
omit the superscripts and the underlines to improve readability. A finite structure of
vocabulary 7 is a tuple, /{0,1,...,n- 1},R,...,R,Cl,...,cl, consisting of
a universe I1 n {0,...,n- 1} and relations R,...,R of arities al,...,ak on

I1 corresponding to the relation symbols RI, R of 7, and constants c,..., Cr
from I1 corresponding to the constant symbols cl,... ,cr from 7.

For example, a graph on n vertices, G {{0...n- 1},E), is a structure whose
vocabulary 70 (E2/ has a single binary relation symbol. Similarly, a binary string
of length n is a structure S ({0...n- 1}, M/,whose vocabulary 71 (MI/consists
of a single unary relation symbol. Here the ith bit of S is 1 if and only if S M(i).

Let the symbol "<_" denote the usual ordering on the natural numbers. We will
include _< as a logical relation in our first-order languages. This seems necessary in
order to simulate machines whose inputs are structures given in some order. It is
convenient to include logical constant symbols, 0, 1,..., referring to the zeroth, first,
etc., elements of the universe, respectively. (If the universe is smaller than a given
constant, then interpret that constant as 0.) We also include the logical predicate
BIT, where BIT(x, y) holds if and only if the xth bit in the binary expansion of y is
a one.

We now define the first-order language .(T) to be the set of formulas built up
from the relation and constant symbols of 7 and the logical relation and constant
symbols, =, <_, BIT, 0, 1,..., using logical connectives, A, V, --, variables, x, y, z,...,
and quantifiers, ’, B.

We will think of a problem as a set of structures of some vocabulary 7. It suffices
to consider only problems on binary strings, but it is more interesting to be able to
talk about other vocabularies, e.g., graph problems, as well. For definiteness, we will

The relation BIT is crucial for the truth of Theorem 1.1, when t(n) < log n, and for the
plausibility of Definition 5.5.



EXPRESSIBILITY AND PARALLEL COMPLEXITY 627

fix a scheme for coding an input structure as a binary string. If A ({0, 1,..., n-
1}, Re... R, c... c/, is a structure of type T, then ,4 will be encoded as a binary
string bin(A) of length I(n) nal +... + nak + r[logn], consisting of one bit for
each a-tuple, potentially in the relation R, and [log n] bits to name each constant,
cj. Thus we reserve n to indicate the size of the universe of the input structure. I(n),
the length of bin(A), is polynomially related to n, and in the case where - consists of
a single unary relation- i.e., inputs are binary strings I(n) n.

Define the complexity class FO to be the set of all first-order expressible problems.
We will see in 5 that FO is a uniform version of the circuit class AC. (See also [1],
where it is shown that FO is equal to deterministic log time uniform AC.)

EXAMPLE 2.1. An example of a first-order expressible property is addition.2 In
order to turn addition into a yes/no question, we can let our input have the vocabulary
7a (A, B, k consisting of two unary relations and a constant symbol. In a structure
,4 of vocabulary ’a, the relations A and B are binary strings of length n [AI. We
will say that .4 satisfies the addition property if the kth bit of the sum of A and B is
one.

In order to express addition, we will first express the carry bit,

CARRY(x) (3y < x)[A(y) A B(y) A (Vz.y < z < x)A(z) V U(z)].
Then with @ standing for exclusive or, we can express PLUS,

PLUS(x) =_ A(x) (R) B(x) @ CARRY(x).

Thus the sentence expressing the addition property is PLUS(k).
2.2. Iterating first-order sentences. To describe properties that are not in

AC, we need languages that are more expressive than FO. We now recall the def-
inition of the complexity classes FO[t(n)]3. Intuitively, FO[t(n)] consists of those
problems that may be described by a first-order sentence "iterated t(n) times."

Let x be a variable and M a quantifier-free formula. We will use the nota-
tion (Vx.M) read, "for all x such that M, ," to abbreviate
Similarly we will write (3x.M) read, "there exists an x such that M, ,"
to abbreviate (x)(M A ). We will call the expressions (Vx.M) and (x.M) re-
stricted quantifiers. Let a quantifier block be a finite sequence of restricted quanti-
tiers: QB (Qlxl.M1).’. (Qkxk.Mk). We will use the notation [QB] to denote the
quantifier block QB repeated t times. I mean this literally:

[QB] QBQBQB...QB
% ,,y

times

Note that for ny quantifier-free formulas Mo, MI,..., Mk (), and any N,
the expression [QB]M0 is a well-formed formula in (-).

DEFINITION 2.2. Let t" N - N be any function, and let - be any vocabulary.
A set C of structures of vocabulary " is a member of FO[t(n)] if and only if there
exists a quantifier block QB and a quantifier-free formula Mo from (-), such that if
we let [QB]t(n)Mo, for n 1, 2,..., then for all structures G of vocabulary
with IGI n,

GC ,
This is a standard construction, see e.g., [17].

3 The notation FO[t(n)] was first used in [12]; however, the same classes were defined in [10] using
the notation IQ[t(n)], standing for "iterated queries." See [13] for a survey of descriptive complexity.
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A more traditional way to iterate formulas is by making inductive definitions, [14],
[10]. Let IND-DEPTH[t(n)] be the set of problems expressible as a uniform induction
that requires depth of recursion at most t(n) for structures of size n. In [7], Harel and
Kozen introduce a programming language called IND, which is closely tied to inductive
definitions. They prove that the execution time for their IND programs is equal to the
depth of the inductive definitions that describe the programs’ input output behavior.
Let IND-TIME[t(n)] be the set of languages accepted by IND programs using O[t(n)]
steps for inputs of size n. Then:

FACT 2.3 ([7]). For all t(n),

IND-TIME[t(n)] IND-DEPTH[t(n)].

This fact, together with Theorem 1.1, shows that there is a simple, high-level
programming language for which time corresponds exactly to time on a CRAM. In
the remainder of this paper we write IND[t(n)] to signify IND-TIME[t(n)] as well as
IND-DEPTH[t(n)].

The following fact relates IND[t(n)] to FO[t(n)]. This fact follows easily from
Moschovakis’ Canonical Form for Positive Formulas, [14].

FACT 2.4 ([10], [14]). For all t(n),

IND[t(n)] C_ FO[t(n)].

(In particular, a property in IND[t(n)] is expressible as a FO[t(n)] property in which
Mo =- false, cf. Definition 2.2.)

EXAMPLE 2.5. We show how to transfer a log n depth inductive definition of the
transitive closure of a graph to an equivalent FO[log n] definition.

Let E be the edge predicate for a graph G with n vertices. We can inductively
define E*, the reflexive, transitive closure of G, as follows:

E*(x,y) =_ x= yV E(x,y) V (z)(E*(x,z) AE*(z,y))

Let Pn (x, y) mean that there is a path of length at most n from x to y. Then we
can rewrite the above definition of E* as:

Pn(X,U) V V

This can be rewritten:

Pn(X,y) (Vz.M1)(2z)(Pn/2(x,z) A Pn/2(z,y))

where M1 --(x y V E(x, y)). Note that there is no free occurrence of the variable
z after the Vz quantifier. Thus, in this case (Vz.M1)a is equivalent to (M - a).
Next,

Pn(X, y) =- (Vz.M)(- z)(Vuv.M2)(Pn/2(u, v))

where M2=(u=xAv=z) V(u=zAv=y). Now,

Pn(x, y) (Vz.M1)(=iz)(Vuv.M2)(Vxy.M3)(Pn/2(x, y)),
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where M3(x=uAy=v). Thus,

Pn (x, y) -= [QB] (P1 (x, y)),

where QB (Vz.M1)(Bz)(Vuv.M2)(Vxy.M3). Note that

Pl(x,y) =_ [QBl(false)

It follows that

p(,y) =_ [qB]r+lo(fle),

and thus E* E FO[log n] a8 claimed.

2.3. Concurrent random access machines. We define the concurrent ran-
dom access machine (CRAM) to be essentially the concurrent-read, concurrent-write
parallel random access machine (CRCW PRAM) described in [17]. A CRAM is a
synchronous parallel machine such that any number of processors may read or write
into any word of global memory at any step. If several processors try to write into the
same word at the same time, then the lowest-numbered processor succeeds.4 In ad-
dition to assignments, the CRAM instruction set includes addition, subtraction, and
branch on less than. Each processor also has a local register containing its processor
number.

The difference between the CRAM and the CRCW PRAM described in [17] is that
we also include a Shift instruction. Shift(x, y) causes the word x to be shifted y bits
to the right. Without Shift, CRAM[t(n)] would be too weak to simulate FO[t(n)] for
t(n) < log n. The reason behind the Shift operation for CRAMs and the corresponding
BIT predicate for first-order logic is that each bit of global memory should be available
to every processor in constant time.

Let CRAM[t(n)] be the set of problems accepted by a CRAM using polynomially
many processors and time O[t(n)]. Recall that we encode an input structure
({0, 1,..., n- 1}, R,..., R, c,..., crY), as the binary string bin(A) of length I(n)
nal +...-t- nak - rlogn, Where ai is the arity of the ith input relation. The input
string is placed one bit at a time in the first I(n) global memory locations. 5

3. Proof of the main theorem. Theorem 1.1 follows immediately from three
containments: Fact 2.4, and the following two lemmas.

LEMMA 3.1. For any polynomially bounded t(n) we have,

ORAM[t(n)] c_ IND[t(n)].

Proof. We want to simulate the computation of a CRAM M. On input A, a
structure of size n, M runs in t(n) synchronous steps, using p(n) processors, for
some polynomial p(n). Since the number of processors, the time, and the memory
word size are all polynomially bounded, we need only a constant number of variables

4 This is the "priority write" model. Our results remain true if instead we use the "common
write" model, in which the program guarantees that different values will never be written to the
same location at the same time. See Corollary 3.4.

5 We show in Corollary 3.4 that if placement of the input is varied, e.g., if the first I(n)/logn
words of memory contain log n bits each of the input, or even if all I(n) bits are placed in the first
word, then all our results remain unchanged. Note that this is not true of the models used in [2],
for example. There processors are assumed to have unlimited power and thus the partition of the
inputs is crucial.
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Xl,’’’,Xk, each ranging over the n element universe of , to name any bit in any
register belonging to any processor at any step of the computation. We can thus
define the contents of all the relevant registers for any processor of M, by induction
on the time step.

We now specify the CRAM model more precisely. We may assume that each
processor has a finite set of registers including the following: Processor, containing
the number between 1 and p(n) of the processor; Address, containing an address of
global memory; Contents, containing a word to be written into or read from global
memory; and Program_Counter, containing the line number of the instruction to be
executed next. The instructions to be simulated are limited to the following:

READ" Read the word of global memory specified by Address into Contents.
WRITE: Write the Contents register into the global memory location specified
by Address.
OP Ra Rb" Perform OP on Ra and Rb, leaving the result in Rb. Here OP
may be Add, Subtract, or Shift.
MOVE Ra Rb: Move Ra to Rb.
BLT R L: Branch to line L if the contents of R is less than zero.

It is straightforward to write a first-order inductive definition for the relation
VALUE(, , 5, r, b) meaning that bit in register r of processor just after step is
equal to b. Note that since the number of processors, the time, and the word size
are all polynomially bounded, a constant number of variables ranging from 0 to n- 1
suffice to specify each of these values.

The inductive definition of the relation VALUE(, ,, r, b) is a disjunction de-
pending on the value of ’s program counter at time - 1. The most interesting case
is when the instruction to be executed is READ. Here we simply find the most recent
time t < t at which the word specified by p’s Address register at time t was written
into, and the lowest-numbered processor p that wrote into this address at time .
In this way we can access the answer, namely, the th bit of ps Contents register at
time .

It remains to check that Addition, Subtraction, BLT, and Shift are first-order
expressible, and that we can express the fact that each processor begins with its own
processor number in its Processor register. Addition was done in Example 2.1. In
a similar way we can express Subtraction, and Less Than. The main place we need
the BIT relation is to express the fact that the initial contents of each processor’s
Processor register is its processor number. The relation BIT allows us to translate
between variable numbers and words in memory. Using BIT we can also express
addition on variable numbers and thus express the Shift operation.

Thus we have described an inductive definition of the relation VALUE, coding
M’s entire computation. Furthermore, one iteration of the definition occurs for each
step of M.

LEMMA 3.2. For polynomially bounded, and parallel time constructible t(n),

FO[t(n)] c_ CRAM[t(n)].

Proof. Let the FO[t(n)] problem be determined by the following quantifier-free
formulas and quantifier block,

Mo, MI,. .,Mk, QB=(Qx.M1)...(Qkxk.Mk).

Our CRAM must test whether an input structure satisfies the sentence,

n --[QB]t(n)Mo
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The CRAM will use nk processors and nk-1 bits of global memory. Note that
each processor has a number al...ak with 0 _< ai < n. Using the Shift operation it
can retrieve each of the ai s in constant time.6

The CRAM will evaluate n from right to left, simultaneously for all values of
the variables xl,..’, xk. For 0 <_ r <_ t(n) k, let

rn =_ (Qixi.Mi) (Qx.Mk)[QB]qMo

where r k. (q / 1) + 1 -i. Let Xl"’i’"xk be the k- 1-tuple resulting from
Xl...xk by removing xi. We will now give a program for the CRAM which is broken
into rounds, each consisting of three processor steps such that:

(,) Just after the rth round, the contents of memory location al (zi’"ak is 1 or 0
according to whether (al,..., a).

Note that xi is not free in ! At the rth round, processor number al...ak
executes the following three instructions according to whether Qi S or Qi V:
{Qi _}

1. b loc(al ...Si+l...ak);
2. loc(al...hi...ak) 0;
3. if Mi(al,’",ak) and b then loc(al...Si...ak) 1;

v}
1. b -- loc(al..-Si+l "’ak);
2. loc(ai’"5i’"ak) (-- 1;
3. if Mi(al,’",ak) and -b then loc(al...Si...a) 0;

It is not hard to prove by induction that (.) holds, and thus that the CRAM
simulates the formula.

REMARK 3.3. The proof of Lamina 3.2 provides a very simple network for
simulating a FO[t(n)] property. The network has n-1 bits of global memory and
kn gates, where k is the number of distinct variables in the quantifier block. Each
gate of the network is connected to two bits of global memory in a simple connection
pattern. The blowup of processors going from CRAM to FO to CRAM seems large
(cf. Corollary 4.1); however, it is plausible to build first-order networks with billions
of processing elements, i.e., gates, thus accommodating fairly large n and moderately
large k.

An immediate corollary of Theorem 1.1 is that the complexity class CRAM[t(n)]
is not affected by minor changes in how the input is arranged, nor in the global
memory word size, nor even by a change in the convention on how write conflicts are
resolved.

COROLLARY 3.4. For any function t(n), the complexity clas CRAM[t(n)]
not changed if we modify the definition of a CRAM in any consistent combination of
the following ways. (By consistent we mean. that we don’t allow input words larger
than the global word size, nor larger than the allowable length of applications of Shift.)

1. Change the input distribution so that either (a) the entire input is placed in
the first word of global memory, or (b) the I(n) bits of input are placed logn bits at
a time in the first I(n)/log n words of global memory.

2. Change the global memory word size so that either (a) the global word size
is one, i.e., words are single bits (local registers do not have this restriction so that

6 This is obvious if n is a power of 2. If not, we can just let each processor break its processor
number into k [log n-tuples of bits. If any of these is greater than or equal to n, then the processor
should do nothing during the entire computation.
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the processor’s number may be stored and manipulated); or (b) the global word size is
bounded by O[log n].

3. Modify the Shift operation so that shifts are limited to the maximum of the
input word size and of the log base 2 of the number of processors.

4. Remove the polynomial bound on the number of memory locations, thus allow-
ing an unbounded global memory.

5. Instead of the priority rule for the resolution of write conflicts, adopt the
common write rule in which different processors never write different values into the
same memory location at a given time step.

Proof. The proof is that Lemmas 3.1 and 3.2 still hold with any consistent set of
these modifications. This is immediate for Lemma 3.1. For Lemma 3.2, we must only
show that processor number al...ak still has the power in constant time to evaluate
the quantifier-free formula Mi(al,... ,ak), and to name the global memory location

hi...ti’. "ak, for 1

_
_< k. Recall that we are assuming that the input structure

4 ({0, 1,... ,n-l}, Re,... ,RpA, CA, ,CAq) is coded as a bit string of length I(n)
nrl +...+nrp +q[log n. It is clear that all of the consistent modifications above allow
processor a.. "ak to test in constant time whether or not the relation R(t,...
holds, where R is an input or logical relation, and tj E {a,..., ak} U {cjll <_ j <_ q}.

4. On the efficiency of the simulations. In this section we analyze the proof
of Theorem 1.1 in more detail in order to give the following bounds for translating
between CRAM and IND. After we prove Corollary 4.1, we discuss the cost of the
simulation, and how these bounds can be improved. The proofs in this section involve
counting how many variables are needed in various first-order formulas. This whole
section should be omitted by the casual reader.

COROLLARY 4.1. Let CRAM[t(n)]-PROC9(n)] be the complexity class CRAM
It(n)] restricted to machines using at most O[p(n)] processors. Let IND[t(n)]-VAR[v(n)]
be the complexity class IND[t(n)] restricted to inductive definitions using at most v(n)
distinct variables. Assume for simplicity that the maximum size of a register word,
and t(n) are both o[v/-, and that 7 >_ 1 is a natural number. Then,

CRAMIt(n)]-PROC[n
c IND[t(n)]-VAR[2 + 21

C_ CRAM[t(n)I-PROC[n2+2].

Proof. We prove these bounds using the following two lemmas.
LEMMA 4.2. /f the maximum size of a register word, and t(n) are both o[v, and

if M is a CRAM[t(n)]-PROC[n] machine, then the inductive definition of VALUE
may be written using 2r + 2 variables.

Proof. We write out the inductive definition of VALUE in enough detail to count
the number of variables used:

VALUE(, t, x, r, b) ZVWVSVRVMVBVA,

where the disjuncts have the following intuitive meanings:
Z: t 0 and the initial value of r is correct.
W" t 0 and the instruction just executed is WRITE, and the value of r is

correct, i.e., unchanged unless r is Program_Counter.
S,R,M,B,A: Similarly for SHIFT, READ, MOVE, BLT, and, ADD or SUB-

TRACT, respectively.
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It suffices to show that each disjunct can be written using the number of variables
claimed. First we consider the disjunct Z. The only interesting part of Z is the case
where r is "Processor". In this case we use the relation BIT to say that b 1 if and
only if the xth bit of is 1. No extra variables are needed. Note that the number of
free variables in the relation is r + 1 because we may combine the values t, x, r, and
b into a single variable.

Next we consider the case of Addition. Recall that the main work is to express
the carry bit"

C[A, B](x) (2y < x)[A(y) A B(y) A (Vz.y < z < x)A(z) V B(z)].

This definition uses two extra variables. Thus r + 3 _< 2r + 2 variables certainly
suffice. The cases S, M, and B are simpler.

The last, and most interesting case is R. Here we must say,
1. The instruction just executed is READ,
2. Register r is the Contents register,
3. There exists a processor p and a time t such that:

t’ < t,
(b) Address(p’, t’) -Address(, t),
(c) VALUE(p’, t’, x, r, b),
(d) Processor p’ wrote at time t,
(e) For all p" < p’, ifp" wrote at time t’, then Address(p" t’) Address(p’, t’),
(f) For all t" such that t < t" < t and for all p", if p" wrote at time

then Address(p", t") :Address(p’, t’).
Let’s count variables. On its face this formula uses three s and three t’s.

However, two copies of each suffice. Observe that where we quantify p" in lines
3e and 3f, we no longer need , so we may use these variables instead. Similarly,
when we quantify t on line 3f, we don’t need p" so we may temporarily use one
of its variables for t. Finally, we would seem to need an extra variable to say
"Address(p",t") Address(,t’)," in 3f. Here we use the fact that t is o[v, so
t and t" can be coded into a single variable. Then with one more variable we can
say that there exists a bit on which Address(p", t") and Address(p’, t’) disagree. Thus
2r + 2 variables suffice as claimed. [:l

The second lemma we need (Lemma 4.3) is a refinement of Lamina 3.2.
LEMMA 4.3. Let (R,) be an inductive definition of depth d(n). Let k be the

number of distinct variables including -2 occurring in . Then the relation defined by
is also computable in CRAM[d(n)]-PROC[O[nk]].
Proof. This is very similar to the proof of Lemma 3.2. Let T be the parse tree

of . The CRAM will have nklTI processors: one for each value of the k variables
and each node in T. Let 5 be the depth of T. In rounds consisting of 35 steps, the
CRAM will evaluate an iteration of . Let r arity(R) the number of variables in
; so r _< k. The CRAM will have nr bits of global memory to hold the truth value of
Rt t(0). It will use an additional nklTI bits of memory to store the truth values
corresponding to nodes of T. Thus Rd(n), the least fixed point of , is computed in
time Old(n)], using O[nk] processors, as claimed.

This completes the proof of Corollary 4.1.
The above proofs give us some information concerning the efficiency of our simu-

lation of CRAM s with first-order inductive definitions. The main questions is, "Why
is the number of variables needed to express a computation of n processors 2 + 2,
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instead of ?" We discuss the multiplicative factor of two, and the additional two
variables, respectively in the next two paragraphs.

We need the 2r term for two reasons: we must specify and p at the same time
in order to say that their Address registers are equal; and we need to say that no
lower-numbered processor p" wrote into the same address as p. This term points
out a difference between the CRAM model and the network described in Remark 3.3
that was used to simulate a FO[t(n)] property. The factor of two would be eliminated
if we adopted a weaker parallel machine model allowing only common writes7, and
such that the memory location accessed by a processor could be determined by a very
simple computation on the processor number.

The additional two variables arise for various bookkeeping reasons. This term
can be significantly reduced if we make the following two changes:

1. Rather than keeping track of all previous times, we can assume that every bit
of global memory is written into at least every T time steps for some constant T.

2. The register size can be restricted to O[log n] so we need only O[log log n] bits
to name a bit of a word.

REMARK 4.4. The above observations show that the relation between the
number of variables needed to give an inductive definition of a relation, and the
logarithm to the base n of the number of processors needed to quickly compute the
relation are nearly identical. The cost of programming with first-order inductive
definitions rather than CRAM s is theoretically very small. More work and even some
experimentation must be done before one can say whether or not this will turn out
to be a practical approach.

5. NC versus FO. In this section we relate the uniform NC circuit classes to
FO[t(n)], and we derive a completely syntactic definition for circuit uniformity. We
show that our definition is equivalent to the usual Turing machine-based definition in
the range where the latter exists.

Let NC (respectively, AC) be the set of problems recognizable by a uniform
sequence ofpolynomial size, bounded fan-in (respectively, unbounded fan-in) boolean
circuits of depth log n. Let NC AC I,J NC. Ruzzo characterized these uniform
circuit classes in terms of alternating Turing machines"

FACT 5.1 ([15]). Fori>_l,

ASPACE- TIME[log n, log n]
ASPACE-ALlog n, log n]

Ruzzo and Tompa proved the following relationship between the uniform AC
classes and the CRAM

FACT 5.2 ([ 1 7]). For i >_ 1, AC CRAM[log hi.
The following corollary of Theorem 1.1 and Fact 5.2 shows that the uniformity

condition for the AC circuit classes can be described in a syntactic way. A first-order
sentence iterated t(n) times.is also an AC circuit "iterated" t(n) times. Thus we no
longer need to mention machines when discussing uniform circuit complexity.

COROLLARY 5.3. For i >_ 1, AC FO[log n].
Before now there was no satisfactory definition,for uniform AC. It is easy to

see that a first-order sentence corresponds to a particularly simple sequence of AC

7 See [6] for an earlier proof that a common write machine can simulate a CRAM with a linear
increase in time and a squaring of the number of processors.
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circuits. Each quantifier Sx (respectively, ’x) is just an n-cry "or" (respectively,
"and"). In [11] we showed that an appropriate way to make first-order sentences
nonuniform is to add an arbitrary new logical relation. The following fact says that
nonuniform AC is equal to nonuniform FO.s

FACT 5.4 ([11]). Given a problem $ and an integer d > 1 the following are
equivalent:

1. S is recognized by a sequence of depth d+l, polynomial-size circuits, with
bounded fan-in at the bottom level.

2. There exists a new logical relation R c Na and a first-order formula in
which R occurs such that expresses $. The formula contains d alternating blocks
of quantifiers.

In view of the above results, we propose the following:
DEFINITION 5.5. Let (uniform) AC de=__f FOIl] CRAM[l]
Since we first made this suggestion, much evidence concerning the appropriateness

of Definition 5.5 has appeared. In particular, see [1] for a study of low-level uniformity.
It is shown there that FO is equal to deterministic log time uniform AC.

In [11] we introduced the notion of first-order translations. These reductions con-
sist of a fixed first-order formula translating all instances of one problem to instances
of another. (First-order translations are interpretations between theories, cf. [4], that
are also reductions in the complexity theoretic sense.) It follows from Definition 5.5
that first-order translations are exactly uniform AC reductions.

One way to evaluate the appropriateness of Definition 5.5 is to examine examples
of AC reductions in the literature and see whether or not they can be made uniform.
Of those we have considered, the answer is yes, with the following interesting excep-
tion. (The UGAP problem is the set of undirected graphs for which there exists a
path from vertex 0 to vertex n- 1.)

FACT 5.6 ([3]). UGAP is nonuniform AGO reducible to UNDIR-CYCLE.
Now UNDIR-CYCLE is in DSPACE[log n] [8], but UGAP is not known to be in

DSPACE[logn]. Of course,
REMARK 5.7. If UGAP is uniform AC reducible to UNDIR-CYCLE, then

UGAP is in DSPACE[log n].
We mention one more interesting justification of Definition 5.5. In [3] it is shown

that the obvious bounds,

nonuniform NC C nonuniform AC

can be improved to
FACT 5.8 ([3]).

nonuniform NC C_ nonuniform AC-DEPTH[log n/loglog n].

When i 1 this bound is optimal because nonuniform AC-DEPTH[log n/log log n]
is necessary for Parity [18]. We next show that the same bound holds in the uniform
case:

THEOREM 5.9. For t(n) >_ logn,

ASPACE[log n -TIME[t(n)I

_
FO[t(n)/log log hi.

s In [17] Stockmeyer and Vishkin showed that nonuniform AC is equal to constant time on a
nonuniform CRAM. This, together with Fact 5.4, gives a nonuniform version of Theorem. 1.1.
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Proof. This is a log log n factor improvement of Theorem B.3 in [9]. There we
showed how to code a log space Turing machine configuration using a constant number
of variables, as well as how to write the predicate M1 (2, ), meaning that (, } is a
valid move of the given alternating Turing machine. We could then inductively define
the predicate Acceptt(2), meaning that the configuration 2 leads to acceptance in the
sense of alternating Turing machines in steps:

Acceptt( --(.Ml(,))(V2.M2)Acceptt_ (2),

where M2 =- (2 ) V ("2 is universal" A M1(2, 2)).
To improve this simulation by a log log n factor, observe that a list of which exis-

tential moves to make in the event of each possible sequence of (log log n)/2 universal
moves can be given in log n bits. Thus we can write

(1) Acceptt(2 (eVu)(2)(R A Acceptt_ogogn(2)),
where R says that 2 follows from 2 in the log log n moves determined by e and u.

Now it is easy to write an inductive definition of R whose depth is log log n.
This definition uses the BIT predicate to decode from e and u which of the possible
two moves the Turing machine makes at each of the log log n steps. The simulta-
neous inductive definition of Accept is given in Equation 1. Obviously its depth is
log n/log log n.

COROLLARY 5.10. For i

_
1, NC c_ FO[log n/loglog n]

6. The polynomial-time hierarchy. In second-order logic we have first-order
logic, plus new relation variables over which we nay quantify. Let A be a j-ary
relation variable. Then (’A) means that for all choices of j-ary relation A,
holds. It is well known that second-order formulas may be transformed into prenex
form, with all second-order quantifiers in front. Let SO be the set of second-order
expressible properties, and let (SO 2) be the set of second-order properties that may
be written in prenex form with no universal second-order quaatifiers. Fagin gave
the following interesting characterization of nondeterministic polynomial-time (NP)
in terms of logical expressibility"

FACT 6.1 ([5]). (SO=i)=NP.
A few years later, when he defined the polynomial-time hierarchy (PH), Stock-

meyer showed that it coincided with the set of second-order expressible properties:
FACT 6.2 ([16]). PH-SO.
As a corollary to Fact 6.2 and Theorem 1.1, we obtain the following characteri-

zation of PH as a parallel complexity class"
COROLLARY 6.3. PH is equal to the set of properties checkable by a CRAM

using exponentially many processors and constant time9"

PH U CRAM[]-PROC[2]
k--1

Proof. The inclusion SO C_ CRAM[1]-PROC[2nl] follows just as in the proof
of Lemma 3.2. A processor number is now large enough to give values to all the

9 Up to this point we had been assuming for notational simplicity that a CRAM has at most
polynomially many processors. However, the class CRAM[t(n)]-PROC[p(n)] still makes sense for
numbers of processors p(n) that are not polynomially bounded.
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relational variables as well as to all the first-order variables. Thus, as in Lemma 3.2,
the CRAM can evaluate each first or second-order quantifier in three steps.

The inclusion CRAM[1]-PROC[2nl c_ SO follows just as in the proof of Lemma
3.1. The only difference is that we use second-order variables to specify the processor
number. [’]

7. Conclusions. To recapitulate, we have shown that parallel time has a simple
mathematical definition: the minimal parallel time needed to compute a property
using at most polynomially many processors is equal to the minimum depth of a
first-order inductive definition of the property. Furthermore, the number of proces-
sors needed by the CRAM is closely tied to the number of variables needed in the
inductive definition. We have also given purely syntactic definitions for uniformity of
the circuit complexity classes ACi, >_ 0. Finally, we have given a striking, new char-
acterization of the polynomial-time hierarchy. We believe that these results help to
explain the nature of parallel complexity and will lead to an improved understanding
of the subject.

There is much work to be done. The following general directions suggest them-
selves:

1. This paper provides a new way to think about parallel programming. The
programmer provides efficient inductive definitions of the problem to be solved. Our
simulation results then automatically give an efficient implementation on a CRAM.
Much work is needed to explore whether or not this approach is practical.

2. We have given characterizations of parallel time and number of processors in
terms of the depth and number of variables in inductive definitions. One should now
develop upper and lower bounds on these parameters for all. sorts of problems. We
also feel that the analysis of the simulation in 4 can and should be improved.

3. There are many fascinating questions concerning uniformity and the power
of precomputation. We hope that the notion of syntactic uniformity of circuits will
help researchers determine when precomputation/nonuniformity can help; or, to prove
lower bounds on what can be done by uniform circuits and formulas.

Acknowledgments. Thanks to Steve Cook, Steven Lindell, Ruben Michel, and
Larry Ruzzo, who contributed comments and corrections to previous drafts of this
paper.
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MATRIX PADI FRACTIONS AND THEIR COMPUTATION*

GEORGE LABAHN? AND STAN CABAY$

Abstract. For matrix power series with coefficients over a field, the notion of a matrix power series
remainder sequence and its corresponding cofactor sequence are introduced and developed. An algorithm
for constructing these sequences is presented.

It is shown that the cofactor sequence yields directly a sequence of Pad6 fractions for a matrix power
series represented as a quotient B(z)-lA(z). When B(z)-A(z) is normal, the complexity of the algorithm
for computing a Pad6 fraction of type (m, n) is O(p3(rn+ n)2), where p is the order of the matrices A(z)
and B(z).

For a power series that are abnormal for a given (m, n), Pad6 fractions may not exist. However, it is
shown that a generalized notion of Pad fraction, the Pad6 form, which is introduced in this paper, does
always exist and can be computed by the algorithm. In the abnormal case, the algorithm can reach a
complexity of O(p3(m + n)3), depending on the nature of the abnormalities. In the special case of a scalar
power series, however, the algorithm complexity is O((rn + n)2), even in the abnormal case.

Key words, matrix Pad6 fraction, matrix power series, matrix Pad6 form

AMS(MOS) subject classifications. 41A21, 41A63, 68Q40

1. Introduction. Let

(1.1) A(z) E aizi,
i=0

where ai, 0, , is a p p matrix with coefficients from a field K, be a formal power
series. Loosely speaking, a matrix Pad6 approximant of A(z) is an expression of the
form U(z). V(z) -1, or V(z)-. U(z), where U(z) and V(z) are matrix polynomials
of degree at most m and n, respectively, whose expansion agrees with A(z) up to and
including the term zm+’.

The definition of a Pad6 approximant can be made more formal in a variety of
ways. For example, Rissanen [17] restricts V(z) to be a scalar polynomial and allows
U(z) to be a p q matrix. Typically, however, U(z) and V(z) are p p polynomial
matrices, and V(z) is further restricted by the condition that the constant term, V(0),
is invertible (cf., Bose and Basu [2], Bultheel [5], and Starkand [19]). In this paper,
we call such approximants matrix Pad6 fractions, which is consistent with the scalar
(p 1) case (cf., Gragg [12]).

For a particular rn and n, however, matrix Pad6 fractions need not exist. Therefore,
in this paper, we introduce the notion of a matrix Pad6 form, in which the condition
of invertibility of V(0) is relaxed. The definition is a generalization of a similar one
given for the scalar case (cf., Gragg [12]). It is shown that matrix Pad6 forms always
exist, but that they may not be unique. In general, matrix Pad6 forms need not have
an invertible denominator, V(z). However, for m and n given, by obtaining a basis
for all the Pad6 forms, we are also able to construct a matrix Pad6 form with an
invertible denominator, V(z), in the case that one does exist.
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Pad6 approximants have many applications in mathematics and in engineering-
related disciplines. Applications include numerical computations for special power
series such as the Gamma function (cf., Nemeth and Zimanyi [15]); algorithms in the
field of numerical analysis (cf., Gragg 12]); triangulation of block Hankel and Toeplitz
matrices (cf., Rissanen [18]); solving linear systems of equations with Hankel of
Toeplitz coefficient matrices (cf., Rissanen 16]); in digital filtering theory (cf., Bultheel
[7] and Brophy and Salazar [4]; and also in linear control theory (cf., Elgerd [11]).

In the one-dimensional case, examples of algorithms that calculate Pad6
approximants for normal power series (Gragg [12]) include the e-algorithm of Wynn
[21]; the Levinson-Durbin algorithm [10], [14]; and the algorithm of Trench [20].
Examples of algorithms that are successful in the degenerate nonnormal case include
those given by Brent, Gustavson, and Yun [3]; Bultheel [6]; Cabay and Choi [8]; and
Rissanen 16].

The matrix case parallels the scalar situation in that most algorithms are restricted
to normal power series. Algorithms that require the normality condition include those
of Bultheel [5], Bose and Basu [2], Starkand [19], and Rissanen [18]. An algorithm
that calculates Pad6 approximants in a nonnormal case is given by Labahn [13].
However, in his algorithm there are still strict conditions that need to be satisfied by
the power series before Pad6 approximants can be calculated.

The primary contribution of this paper is an algorithm, MPADE, for computing
matrix Pad6 forms for a matrix power series. Central to the development of MPADE
are the notions of a matrix power series remainder sequence and the corresponding
cofactor sequence, which are introduced in 4. These are generalizations of notions
developed by Cabay and Kossowski [9] for power series over an integral domain. The
cofactor sequence computed by MPADE yields a sequence of matrix Pad6 fractions
along a specific off-diagonal path of the Pad6 table for A(z).

Unlike other algorithms, there are no restrictions placed on the power series in
order that MPADE succeed. For normal power series, the complexity of MPADE is
O(p (m + n)2) operations in K. This is the same complexity as some of the algorithms
proposed by Bultheel [5], Bose and Basu [2], Starkand [19], and Rissanen [18]. In
the abnormal case, the complexity of the algorithm can reach O(p3. (m+n)3)
operations in K, depending on the nature of the abnormalities.

2. Matrix Pad6 forms. Let A(z) and B(z) be formal power series

(2.1) A(z)= aiZi, B(z)-- hiZi
=o i=o

with coefficients from the ring of p xp matrices over some field K. Throughout this
paper it is assumed that the leading coefficient, bo, of B(z) is an invertible matrix. For
nonnegative integers rn and n, let

(2.2) U(z): giZi, V(z)-- viZi
=o i=0

denote p x p matrix polynomials.
DEFINITION 2.1. The pair of matrix polynomials (U(z), V(z)) is defined to be a

right matrix Pad form (RMPFo) of type (m, n) for the pair (A(z), B(z)) if
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I. O(U(z)) <= m, O(V(z)) <- n,’

(2.3) II. A(z). V(z)+ B(z). U(z)= z"+"+ W(z), where W(z) is a formal matrix

power series, and

III. The columns of V(z) are linearly independent over the field K. [3

The matrix polynomials U(z), V(z), and W(z) are usually called the right numerator,
denominator, and residual (all of type (rn, n)), respectively.

There is an equivalent definition for a left matrix Pad6 form (LMPFo). Condition
Ii is replaced with an equivalent version with matrix multiplication by U(z) and V(z)
being on the left. Condition III is replaced with the condition that the rows, rather
than the columns, of the denominator are linearly independent over the base field K.

However, there is a one-to-one correspondence between RMPFo’s and LMPFo’s.
By taking the transposes of the matrices on both sides of (2.3), it follows that

(2.4) V’(z) A’(z)+ U’(z) B’(z)= zm+’+l W’(z).

The degree and order conditions are identical. It is clear that if (U(z), V(z)) is a
RMPFo for (a(z), B(z)), then (U’(z), V’(z)) is a LMPFo for (a’(z), B’(z)). Thus,
any algorithm that calculates a right matrix Pad6 form of a certain type can also be
used to calculate the left matrix Pad6 form of the same type.

For ease of discussion, we use the following notation. For any matrix polynomial

(2.5) U(z) Uo+ uz +. + UkZ k,

we write U (i.e., the same symbol but without the z variable) to mean the p(k + 1) by
p vector of matrix coefficients

(2.6) U

or, equivalently, U= [u0, u,. u
Let

b/0

ao bo

(2.7) Sm,

i aoi bo.
a +n am bm+n in

denote a Sylvester matrix for A(z) and B(z) of type (m, n). Then (2.3) can be written
as

THEOREM 2.2 (Existence of matrix Pad6 forms). For any pair of power series
A z ), B z and anypair ofnonzero integers m, n ), there exists a RMPFo oftype tn, n ).

0( denotes the degree of a matrix polynomial. This is the power of the largest nonzero coefficient

of the polynomial.
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Proof Let X denote a vector oflength p(m + n + 2), and consider the homogeneous
system of linear equations

(2.9) Sin,," X O.

Because Sm, has p(m + n + 1) rows, it follows that (2.9) has at least p linearly indepen-
dent solutions. Let [V’, U’]’ denote p such solutions arranged by columns. Then
IV’, U’]’ satisfies (2.8); consequently U(z) and V(z), determined according to the
convention (2.5) and (2.6), satisfy (2.3). Clearly, the pair (U(z), V(z)) also satisfies
conditions I in Definition 2.1. Finally, bo being nonsingular implies that the linear
independence of the columns of V’, U’] is equivalent to the linear independence of
the columns of V(z). Thus condition III is satisfied. V]

From the proof of Theorem 2.2, it follows that if Sm, has maximal rank, then
Pad6 forms are unique up to multiplication of U(z) and V(z) on the right by a
nonsingular matrix. On the other hand, if the rank of S,,,, is less than maximal, then
more than one independent Pad6 form exists.

Example 2.3. Let B(z) I and

(2.10) A(z)=
0

+ + + +’’’"
0

With rn 2 and n 3, a basis for the solution space of (2.9) is given by the two vectors

(2.11) X1 =[0, 1, 0, 0, 0,-1, 0, 0, 0, 1, 0, 0, 0, 0]’
and

(2.12) X2 [0, O, O, l, O, O, O,-1, O, O, O, 1, O, 0]’.
Thus,

0 0 0 0 -1 0 OJ(2.13) V=
0 0 0 0 0 0 -1

and

0 0 0 0 0]’(2.14) U=
0 0 0 0 0

is a solution of (2.8), and the pair (U(z), V(z)), where

z z z
and U(z)=

is a Pad6 form of type (2.3) for (A(z), B(z)). Vl

In Example 2.3, note that the columns of V(z) are linearly independent over the
field K, but that they are linearly dependent over the ring of polynomials K[z] (i.e.,
V(z) is singular). Indeed, for this example, a RMPFo (U(z), V(z)) of type (2, 3), for
which V(z) is nonsingular, cannot be found. The problem occurs because, although
the solution space has dimension 2 when considered as a vector space over the field
K, it has only dimension 1 when considered as a module over the ring K[z].

We note that having an invertible denominator is highly desirable, since often the
purpose of Pad6 forms is to approximate the infinite power series

(2.16) -(B(z)) -1. A(z)

by the finite rational form

(2.17) U(z).(V(z))-’,
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where the approximation is to be exact for the first m+n+l terms. When the
denominator is singular, we cannot form this rational expression and this limits the
usefulness of Pad0 approximation. For example, a singular denominator gives no
information from the poles since every point is a pole in this case.

3. Matrix Pad fractions. One case when the denominator of a RMPFo is invertible
is given by

DEFINITION 3.1. A pair (U(z), V(z)) of p p matrix polynomials is said to be a
right matrix Pad6 fraction (RMPFr) of type (m, n) for the pair (A(z), B(z)) if

I. (U(z), V(z)) is a RMPFo of type (m, n) for (A(z), B(z)), and
II. The constant term, V(0), of the denominator is an invertible matrix.

Condition II ensures that the denominator, V(z) is an invertible matrix polynomial.
As in the case of Pad6 forms, there is an equivalent definition for a left matrix

Pad fraction (LMPFr). Also, there is a correspondence between RMPFr for
(A(z), B(z)) and LMPFr for (A(z)’, B(z)’). It is interesting to note that a power series
may have a matrix Pad6 fraction on one side but not on the other. In Example 2.3,
the power series A(z) does not have a right matrix Pad6 fraction of type (2, 3), but it
does have a left matrix Pad6 fraction of type (2, 3). When a power series does have
both a right and a left matrix Pad6 fraction of the same type, then the two resulting
rational forms are equal (cf., Baker [1]).

The problem with PadO fractions, as mentioned in the previous section, is that
they do not always exist. However, let

(3.1) Tin,

ao

am n--1

ao

bo

bm+n_l

Oo

and define

(3.2) d,,n={l’ m=0, n=0,
det Tin,n), otherwise.

Then, a sufficient condition for the existence of a RMPFr is given by the Theorem 3.2.
THEOREM 3.2. If dm, O, then every RMPFo of type m, n) is an RMPFr of type

m, n ). In addition, a RMPFr of type m, n) is unique up to multiplication on the right
by a nonsingular p x p matrix having coefficients from the field K.

Proof Equation (2.8) may be written as follows:

0 bo "Vl ao
ao

ao Vn

bo Uo

am+n--1 am bb+n" b .Urn_ .am+n.

(3.3)

The matrix on the left of (3.3) is nonsingular, since din, 0 and bo is nonsingular.
Thus, all the solutions of (3.3) can be obtained by assigning Vo arbitrarily and solving
(3.3) for the remaining components vl,"’, v,, Uo,’", Urn. If VO is chosen to be a
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singular matrix, then the solution obtained by solving (3.3) violates condition III in
the definition of Pad6 form. Thus, in this case, all RMPFo’s are RMPFr’s.

To show uniqueness, suppose (U(z), V(z)) and (U’(z), V’(z)) are two RMPFr’s
for (A(z), B(z)). Then, Vo and v are both nonsingular matrices with coefficients from
the field K. Thus, there exists a nonsingular matrix M with coefficients from K satisfying

(3.4) Vo v/. M.

It follows from (3.3) that

(3.5) V(z)= V’(z). M and U(z)= U’(z). M,

and so uniqueness holds.
In the next section we also require the following theorem.
THEOREM 3.3. Let A(z) and B(z) be given by (2.1). lfm and n are positive integers

such that d,,,, O, then RMPFo’s (P(z), Q(z)) of type (m- 1, n 1) for (a(z), B(z))
are unique up to multiplication of P(z) and Q(z) on the right by a nonsingular matrix

from K. In addition, the leading term R(O) of the residual in condition II for RMPFo’s,

(3.6) a(z) Q(z)+ B(z) P(z)= zm+"-lR(z),
is a nonsingular matrix.

Proof S(,,-,(n-) can be obtained from T,,, by deleting the last block row (i.e.,
the last p rows). Since T,,,, is of maximal rank p(m+ n), then S(m-1),(,- has rank
p(m + n- 1). Consequently, the dimension of the solution space to

(3.7) S(m_l),(n_l) X 0

is exactly p. Then, Q’, P’]’ is obtained by collecting by columns a basis for the solution
space of (3.7). Clearly, if Q", P"]’ and Q’, P’]’ are two such collections, then there
exists a nonsingular matrix M from K such that

(3.8) [Q’, P’]’ [O", P"]’" M.

Thus, P(z)= P’(z)" M and Q(z)= O’(z)" M, proving uniqueness.
To prove the invertibility of R(0) in (3.6), let ro R(0) and suppose that ro is a

singular p x p matrix. Then, there is a nonzero p x 1 vector X that satisfies

(3.9) to" X O.

But, from (3.6) and (3.7), it follows that

o

Thus,

Since the coefficient matrix for the above system is invertible, we deduce that

But this contradicts the fact that the columns of [Q’, P’]’ are made up of linearly
independent vectors. This implies that ro is invertible. VI
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The fact that PadO forms of type (m, n) and (m 1, n 1) are uniquely determined
after suitable normalizations, when T,,n is nonsingular, allows us to prove such
properties as argument invariance (cf., Baker [1]) for the Pad6 forms computed by
the algorithm MPADE given in 5.

4. Matrix power series remainder sequences. We define a right matrix Pad table
for (A(z), B(z)) to be any infinite two-dimensional collection of RMPFo’s of type
(m, n) for (A(z), B(z)) with m 0, 1, and n 0, 1, . It is assumed that there is
precisely one entry (i.e., one RMPFo) assigned to each position in the table. From
Theorem 2.2, it follows that a right matrix Pad6 table exists for any given (A(z), B(z)).
However, the table is not unique, because RMPFo’s are not unique. This is unlike the
definition of a Pad6 table for scalar power series (cf., Gragg [12]), since here a Pad6
table consists of a collection of Pad6 fractions, which are unique.

A matrix power series pair (A(z), B(z)) is said to be normal (ef., Bultheel [5]) if
dm, # 0 for all m, n. For normal power series, it follows from Theorem 3.2 that every
entry in the right matrix PadO table is a RMPFr. Consequently, from condition II in
Definition 3.1 of RMPFr’s a right-matrix PadO table for normal power series may be
made unique by insisting that the constant term V(0) in the denominator of any Pad6
fraction be the identity matrix.

Following the convention used in the scalar case (cf., Gragg [12]), we also define

(4.1) (U(z), V(z))=(z"I,O) for m=>-l, n--l,

and

(4.2) (U(z), V(z)) (0, z"I) for m -1, n -> 0.

A right matrix Pad6 table appended with (4.1) and (4.2) is called an extended right
matrix Pad table. The use of an extended table is strictly for initialization purposes.
The entries given by (4.1) and (4.2) are not right matrix PadO forms (indeed, the
(-1,-1) entry is not even a matrix polynomial). However, they do satisfy property II
of Definition 2.1. For example, for rn->-1 and n =-1, we have that

(4.3) a(z) V(z)+ B(z) U(z)= z"+"+1W(z)
with

(4.4) W(z)=B(z);

whereas, for rn =-1 and n >-0, we obtain (4.3) with

(4.5) W(z)=a(z).

Given the power series (2.1) and any nonnegative integers rn and n, we introduce
a sequence of points

(4.6) (m0, no), (ml, n,), (m2, n2),

in the extended right matrix Pad6 table by setting

’(m-n-1,-1) forrn>-n
(4.7) (,no, no)

(-1, n-m-I) form<n

and

(4.8)

where si >-1. Observe that

mi+ hi+l) mi + si, ni + si O, 1, 2,

(4.9) mi- ni rn n, 0, 1, 2, .,
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and consequently the sequence (4.6) lies along the rn-n off-diagonal path of the
extended right matrix Pad6 table. In (4.8), the si are selected so that

(4.10)

and

(4.11 d(mi+j),(n,+j) O,

for j 1, 2, , si- 1.
For i= 1,2,..., let (Ui(z), V(z)) be the unique RMPFr (cf., Theorem 3.2) of

type mi, n for (a(z), B (z)). Thus VI, U’] satisfies

(4.12) SITIi,li"
Ui

and, according to (2.3), there exists a matrix power series W(z) such that

(4.13) A(z) V(z)+ B(z) Ui(z)= 2 tni+ni+l Wi(z).

Generalizing the notions of Cabay and Kossowski [9], we introduce the following
definition.

DEFINITION 4.1. The sequence

(4.14) W/(z)}, i=1,2,...,

is called the power series remainder sequence for the pair (A(z), B(z)). The sequence
of pairs

(4.15) {(U(z), V/(z))}, i= 1, 2,...,

is called the corresponding cofactor sequence. The integer pairs {(mi, ni)} are called
nonsingular nodes along the rn n off-diagonal path of the extended right matrix Pad6
table for (A(z), B(z)).

We note that each term of a power series remainder sequence is unique up to
multiplication on the right by a nonsingular matrix. This is also true for each term of
the corresponding cofactor sequence.

Initially, when rn >_- n, observe that ml rn- n and nl 0 (i.e., So 1), because in
(3.2) the nonsingularity of bo implies that d(m-n),o O. Thus, VI(z) is some arbitrary
nonsingular matrix from K and, using (4.12), Ul(z) can be obtained by solving

(4.16) "’.
bin, bo am,

That is, Ul(z) can be obtained by multiplying the first ml + terms of the quotient
power series B-l(z) A(z) on the right by -Vl(z).

Initially, when rn < n, depending on ao there are two cases to consider. The simple
case, when det (a0) 0, yields

ao
(4.17) do,(n-m) det ". O.

an_m_ a0
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Thus, So 1, ml =0, and nl n m. Then, the RMPFr (U(z), V(z)) of type (rn, n)
is determined by setting U(z) to be an arbitrary nonsingular matrix from K and then
solving

(4.18) .. V U.
an ao )n

That is, when rn < n and det (ao) # 0, V(z) can be obtained from the first nl + 1 terms
of the quotient power series A-l(z) B(z) multiplied on the right by -U(z).

When rn < n and det (ao) 0, we must first determine the smallest positive integer
So (i.e., the smallest ml rno+ So and n no+ So) so that d,,,n, # 0. Notice that here

So> 1. Once So has been obtained, then (U(z), V(z)) is obtained by solving

(4.19) Sm, n,’[V1]--O.U

In 5, we give an algorithm which computes a RMPFo of type (m, n) for
(A(z), B(z)) by performing a sequence of the above types of initializations (albeit,
each for different power series).

When the power series pair (A(z), B(z)) is normal, only the initializations corre-
sponding to (4.16) and (4.18) are required. Thus, for normal power series si for all
i_>- 1, and the algorithm reduces to a sequence of truncated power series divisions.

There are also some nonnormal power series that share this property. For each
pair of integers rn and n, let rrn, be the rank of the matrix Tm, Then normality is
equivalent to

(4.20) rm,n=(m+n) "p

for all m and n. A matrix power series pair (A(z), B(z)) is said to be nearly normal
(cf., Labahn [13]) if, for all integers rn and n,

(4.21) rm,n=krn,n’p

for some integer kn,n. Clearly, every normal power series is also a nearly normal power
series. In addition, all scalar power series are nearly normal.

For a nearly normal power series pair (A(z), B(z)) it is easy to see that when ao
is singular, then ao 0. This follows from the observation that the rank of ao is just
ro,, which, if it is not p, must be zero. Also, if ao ak_l 0 and ak # 0, then a
must be a nonsingular matrix for similar reasons. When k > rn this implies that there
are no nonsingular nodes along the rn-n off-diagonal path before and including the
node (m, n). Otherwise, when k<=m, the initialization (4.19) becomes

0 bo

(4.22) am’. "’" V1 O,
".. bo U

am+n am, bm+n
where So- k + 1, ml k, and nl n m + k. Consequently the RMPFr (U(z), V(z))
of type (ml, n) is obtained from (4.22) first by setting Ul(Z)= z m’’ U, where U is any
nonsingular matrix from K. Then, V(z) is obtained by multiplying the first n + terms
of the quotient power series (z-,. A(z))-. B(z) on the right by -U. Thus, also for
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nearly normal power series (and therefore also for all scalar power series), all initializ-
ations reduce to truncated power series divisions.

Corresponding to the power series remainder sequence, we introduce
Definition 4.2.

DEFINITION 4.2. The sequence

(4.23) {(Pi(z), Q,(z))}, i= 1, 2,. ,
where (P(z), Q(z)) is the (m-1, ni-1) entry in the extended matrix Pad6 table for
(A(z),B(z)), is called a predecessor sequence of the power series remainder
sequence.

The pair (P(z), Q(z)) satisfies the equation

(4.24) A(z). Qi(z)+ B(z). Pi(z)= z",+’,-’. Ri(z).

THEOREM 4.3. For i= 1, 2,’.., the predecessors (Pi(z), Qi(z)) are unique up to
right multiplication by a nonsingular matrix from K. In addition, the leading term of the
residual, Ri (0), is nonsingular.

Proof For m > 0 and n > 0, the predecessors are right matrix Pad6 forms and
the result is a direct consequence of Theorem 3.3. Thus, it remains only to show that
the result holds when either m or nl is zero.

When n 0, from (4.7) and (4.8) m _-> n, and the predecessor node is the (m n
1,-1) entry of the extended right matrix Pad6 table. By (4.1), this entry is given
uniquely by

(4.25) (P,(z), Q(z)) (z’-"-I, 0).

From (4.4), the residual R(z) is B(z) and the theorem therefore holds for n 0, since
det (bo) # 0.

When m 0, then from (4.7) and (4.8) n n m > 0, and the predecessor node
is the (-1, n-m-1) entry of the extended table. By (4.2), this is uniquely given by

(4.26) (P,(z), Ql(Z))= (0, zn-m-’I).

From (4.5) the residual of this node, R(z), is A(z). But by (4.17), (0, n-m) is the
first nonsingular node if and only if det (ao) # 0. Hence the leading term of the residual
is nonsingular.

The main result of this section is given in Theorem 4.4.
THEOREM 4.4. For any positive integer k, (k-1, k) is a nonsingular node in the

Padd table for Wi (z), R (g)) if and only if mi q- k, ni q- k) is a nonsingular node in the
Padd table for (A(z), B(z)).

Proof. Let M, M2, M2, and M22 be matrices of dimension p(ni+ k)pk,
p(m + k) pk, p(n + k) p(k- 1), and p(mi + k) x p(k- 1), respectively, defined by

(4.27) MI

/3o

Oon

o

0

0

qo

qni- qo

qni-
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(4.28) M2

0

P-1

l’lmi. Pmi-1
In (4.28), p_ =0 except when m =0 and n =0, in which case, according to (4.25),
P-1---1. Let M be

(4.29) M=
M21 M22j,

if we set

(4.30) R,(z) Z t3zJ, with det (ro) 0, and W(z) Z wiz,
=o =o

then, from (4.13) and (4.24), it follows that

(4.31)

T(rni+k),(ni+k) M

Wo

0 0

0 0

ro

Wk- r2k-2W2k-2

T(k-l),kl’
where 0 represents a zero matrix of size p(mi + ni + 1) x p(2k 1) and

(4.32) Tk-).k

Wo ro

Wo ro
W2k-2 Wk- r2k-2 rk

ro

We are now in a position to prove the theorem. Assume T(mi+k),(ni+k is nonsingular.
We show that Tk-),k is then also nonsingular. Let

(4.33) X=[X,,

be a p(2k- 1) x vector that satisfies

(4.34) Tk- 1),k X 0.

Since T,,,+g).n,+k)is nonsingular, (4.31) implies

(4.35) M. X 0.

From (4.35), we then obtain that

(4.36) Vo" X 0,
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and consequently X1 =0, because Vo is nonsingular. The first block equation from
(4.34) then implies

(4.37) r0" Xk+l 0.

Thus, Xk+ 0 because ro is nonsingular. In a similar fashion, it follows that X2 0
and X+2 0. Continuing in this way, we obtain that X 0, that is, TI_), is nonsin-
gular.

Conversely, suppose that Ti_,k is nonsingular. Let X (X,..., Xzk_l) be a
p(2k- 1) vector, Y=(Y1,’", Y,,i+n,) a 1 p(mi+ni) vector, and Z a 1 p vector.

Consider

(4.38) (Z, Y, X). T(,,i+g,(,i+=O.

Multiplying both sides of (4.38) on the right by M, and using equation (4.31), it follows
that

(4.39) X. TI_1), 0.

Since Tik_, is nonsingular, then X =0. Then, in (4.38), using block columns 2 through
ni + and block columns ni + k + 2 through to mi + n + k + of T(m+),(+), we obtain

(4.40) Y" Tmi,,i 0.

Since Tm,i is nonsingular, Y 0. Finally, block column n + k + of T(m+,(i+k now
yields

(4.41) Z. b0 0.

Since bo is nonsingular, Z 0. Hence, T(+,(ni+ is nonsingular.
Theorem 4.4 allows us to calculate nonsingular nodes of a pair of power series

by calculating nonsingular nodes of the residual pair of power series. This gives us an

iterative method of calculating nonsingular nodes.
TVEOREM 4.5. The cofactor and predecessor sequences for (A(z), B(z)) satisfy

(4.42) [U/+,(z) P+l(z)]=[U(z) P/(z)l [ 0 ]. [V’(z) O’(z)]Vi+ (Z) Qi+l( z Vi(z) Qi( z Z2" I Ut(z)

where (U’(z), V’(z)) is the RMPFr of type (s-l, s) for (W(z), R(z)) and
(P’(z), Q’(z)) is its predecessor.

Proof Since (Ui(z), V(z)) and (U+l(z), V+(z)) are successive elements of the
cofactor sequence (4.14), then, according to (4.10) and (4.11), (m, ni) and (mi+, n+)
are successive nonsingular nodes along the m n off-diagonal path of the Pad4 table
for (A(z), B(z)). By Theorem 4.4, then si is the smallest positive integer for which
(si- 1, s) is a nonsingular node in the Pad4 table for (W(z), Ri(z)). Accordingly, we
can determine (U’(z), V’(z)) to be the RMPFr of type (s-1, si) for (W(z), Rg(z))
and (P’(z), Q’(z)) to be its predecessor.

Let U(z), V(z), P(z), and Q(z) be defined by

(4.43) [U(z) P(z)]=[U(z)Pi(z)l.[ 0 l. IV’(z)O’(z)]V(z) O(z) Vi(z) Oi(z) z2.[ U’(z) P’(z)"

We shall first show that (U(z), V(z)) given by (4.43) is the RMPFr of type (m+l, ni+)
for (A(z), B(z)). Because RMPFr"s are unique, then (U(z), V(z)) must be the (i+ 1)st
term in the cofactor sequence.

Since (U’(z), V’(z)) is a RMPFr of type (si-1, s) for (W(z), R(z)), it satisfies

(4.44) Wi(z) V’(z)+ R(z) U’(z)= z2",W’(z),



MATRIX PADI FRACTIONS AND THEIR COMPUTATION 651

where V’(0) is nonsingular. Then, using (4.13), (4.24), (4.43), and (4.44), we get

A(z) V(z)+ B(z) U(z)

=A(z). {V/(z) V’(z)+zZQi(z) U’(z)}

+(z). {U(z) V’(z)+ze(z) U’(z)}

(4.45) ={A(z)" V/(z)+B(z)" Us(z)}" V’(z)

+{a(z)" O(z)+ (z)" /’(z)}" zU’(z)

=z+"+’. {(z) V’(z)+n(z). U’(z)}

Z(mi+si)+(ni+si)+l Wt(Z).

Thus, condition II for a RMPFo of type (rni+ sg, ni+ si) for (A(z), B(z)) is satisfied.
To verify condition I, expanding (4.43) gives

(4.46) U(z)= U(z). V’(z)+z_p(z) U’(z),

so that

(4.47)
O(U(z))<-max (m+s,2+(m-l)+si-1)

mi + si.

Similarly,

(4.48) O(V(z)) <- ni + si.

Finally, to verify condition II for a RMPFr (and, thus, condition III for a RMPFo,
as well), observe that

(4.49) V(0) V(0) V’(0),

and, consequently, V(0) is invertible since both V/(0) and V’(0) are invertible. Notice
that we have a somewhat stronger result here, namely that if V(z) and V’(z) are both
normalized with V(0)= I and V’(0)=/, then so is V(z).

Therefore, (U(z), V(z)) is a RMPFr of type (mi + si, n + s) for (A(z), B(z)).
Thus, it is the (i+ 1)st term in the cofactor sequence and W’(z) is the (i+ 1)st term in
the power series remainder sequence for (A(z), B(z)).

Notice that the above arguments also hold in the special case when m n and
i= 1. In this case P(z)= z-lI which is not a matrix polynomial. However, the right
side of equation (4.43) immediately multiplies the predecessor by z2 which subsequently
results in a matrix polynomial.

A similar argument shows that (P(z), Q(z)) given in (4.43) is the predecessor of
the nonsingular node (m+, n+). Hence the recurrence relation (4.42) holds. V]

For purposes of the algorithm given in the next section, observe that if
(U’(z), V’(z)) is a RMPFo of type (s-l, s) for (W(z), R(z)) and (P’(z), Q’(z))
(0, I) then in (4.43) (U(z), V(z)) yields a RMPFo (rather than a RMPFr) of type
(mi + s, ni + s) for (a(z), B(z)) and (P(z), Q(z)) (U(z), V(z)).

5. The algorithm. Given nonnegative integers rn and n, the algorithm MPADE
below makes use of Theorem 4.5 to compute the cofactor and predecessor sequences
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(4.10) and (4.18), respectively. Thus, intermediate results available from MPADE
include those RMPFr’s (Ui(z), Vi(z)) for (A(z), B(z)) at all the nonsingular nodes
(mi, hi), 1, 2,. , k- 1, smaller than (m, n), along the off-diagonal path rni- ni
rn- n. The output gives results associated with the final node (mk, nk). If (m, n) is also
a nonsignular node, then the output (Uk(Z), Vk(Z)) is a RMPFr of type (m, n) for
(A(z), B(z)), and (Pk(Z), Qk(Z)) is a RMPFo of type (m-l, n-l). If (m, n) is a
singular node, then the output (Uk(Z), Vk(Z)) is simply a RMPFo of type (m, n) for
(A(z), B(z)), and now (Pk(Z), Qk(Z)) is set to be the RMPFr of type (mk-1, nk-1). An
exception occurs in the latter case when k 0 and m < n. Here, all nodes along the
off-diagonal path must have been singular, and for (Pk(Z), Qk(Z)) the algorithm returns
instead the initial value (0, zn-m-!I).

Note that, when (m, n) is not a nonsingular node, a simple modification ofMPADE
allows the computation of all RMPFo’s of type (m, n) for (A(z), B(z)). It is only
necessary to arrange to compute q columns of V,, U,], rather than p, in order to
form a basis for the solution space of the equation n step 3.1 of MPADE. From this
basis, it is then possible to construct a p x p matrix V(z), and a corresponding U(z),
for which (U(z), V(z)) is a RMPFo of type (rn, n) for (A(z), B(z)) and has the property
that V(z) is an invertible matrix, assuming such a RMPFo exists. This enhancement
is not included in MPADE primarily to simplify the presentation of the algorithm.

MPADE(A, B, m, n)
If m>-n

M1)

M2)

M3)

M4)

MS)

M6)
M7)
MS)
M9)

M10)

then

else

Mll)

M12)

M13)

mo m-n-l]
SO’ gl(z p,(7)

/,no

( [ U(z)PI(Z)])INITIAL_PADE(A(z)B(z),m,n)So,
V,(z) Q,(z)

/11 no + So d

i<-I
Do while mi < m

Compute Ri(z) satisfying (4.24)
Compute W/(z) satisfying (4.13)

Si’ Vt( z Q’(z)
<- INITIAL_PADE W’ (z), Ri (Z), m mi 1, n rt

i-i+l
End do

Q,(z) o z2. I U’(z) P’(z)
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M14) k-i

M15) Return
Vk(z)

End MPADE

INITIAL_PADE(W(z), R(z), m’, n’)
I1) s<-0
I2) d -0
I3) Do while s-< m’ and d =0
I4) Compute d - det Ts,n,_m,+s
I5) s-s+l

End do
I6) Solve

Ss_l,n,_m,+s_ Ut
---0

Ifs>l and de0
then

I7) Solve

Ss_2,n,__m,+s_ p, =0

else

I8)
P’ - 0

I9) Return s,
V’ Q’

End INITIAL_PADE

THEOREM 5.1. The MPADE algorithm is valid.

Proof The argument is by induction on i.
Initially, in step M2 of MPADE, where m_-> n, the parameters input to

INITIAL_PADE are W(z)= B(z), R(z)=A(z), m’= n and n’= m. Consequently,
INITIAL_PADE computes s 1, since in step I5

(5.1) d det To,,,- det ".. 0

bm_n_ bo

when m > n, and d when m n. In step I6, the algorithm solves

(5.2) So, U’ U’
=0

bm-n bo a._,,

and step I8 yields

(5.3)
P’ 0
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Since the substitution in step M2 of MPADE yields So s and

Vl Q1 U! P’

it follows that the initialization for rn => n is exactly that given by (4.16) and (4.25).
Alternately, when rn < n, initialization is accomplished by step M4. In this case,

the parameters input to INITIAL_PADE are W(z)= A(z), R(z)= B(z), m’= m, and
n’= n. If det (ao) # 0, INITIAL_PADE again computes s 1, since in step I5

Iao(5.5) d det (T0.n-m) det ",. # 0.

an-m-1 ao
Step I6 then solves (4.18) with U1 U’ and V1 V’, and, with the substitution (P1, Q1)
(P’, Q’), step I7 yields the required predecessor (4.26). If det (ao)=0, then step I5
determines the smallest integer s _-> 2, if one exists, for which d det (Ts-l,n_,,,+.-) # 0.
Consequently, step I6 solves exactly the system (4.19) and step I7 must then yield the
correct predecessor.

Assume that, for i>_-1, MPADE calculates (Ui(z), V(z)) and (Pi(z), Qi(z)) cor-
rectly. We shall show that one pass through the while loop M7 correctly computes
(Ui+l(z), V/+(z)) and its predecessor.

In step M10 and MPADE, the parameters input to INITIAL_PADE are W(z)=
W(z), R(z).= Ri(z), m’= m-mi-1, and n’= n-hi. Noting (4.9), step I4 computes
the smallest positive integer s, if one exists, for which d det (Ts_.,) # 0. Clearly, then
I6 computes a RMPFr of type (s-1, s) for (W(z), Ri(z)), and steps I7 and I8 its
predecessor. Thus, the matrix polynomials in step M11 correspond exactly to those of
(4.42); that is, the algorithm correctly computes (Ui+(z), V+m(Z)) and its predecessor.

To complete the proof of algorithm validity, consideration must be given to the
case for which there exists no s such that d # 0 in the while loop I3 of INITIAL_PADE.
On exit from the while loop, observe that s=m’+l. Step I6 then computes
(U’(z), V’(z)) to bea RMPFo oftype (m’, n’) for(W(z), R(z)) and sets (P’(z), Q’(z))
(O,z"-"-I).

The case where there exists no s such that d 0 can occur when INITIAL_PADE
is invoked in steps M4 and M10 of MPADE, only. If it occurs at step M4, then
(U(z), V(z)) becomes a RMPFo of type (m, n) for (A(z), B(z)) as computed by
INITIAL_PADE, and (P(z),Q(z)=(O,z"-m-I). Since step M5 next yields
(m, n) (m, n), the algorithm immediately terminates. On the other hand, if it occurs
at step M10, then si=m-mi, (U’(z), V’(z)) is a RMPFo of type (si-l, si) for
(W(z), Ri(z) and (P’(z), Q’(z))=(0, I). Accordingly (cf., last paragraph of 4),
(Ui+(z), V+(z)) computed in step Mll is a RMPFo of type (m, n) for (A(z), B(z))
and (P+l(z), Qi+l(Z)) (Ui(z), V(z)). Since step M12 yields (mi+, ni+) (m, n), the
algorithm terminates.

6. Complexity of the MPADE algorithm. Note that, in steps M8 and M9 of
MPADE, only the first rn + n mi- rti terms in Ri(z) and W/(z) are required to ensure
the subsequent success of step M10. Indeed, only the first 2si terms, si <= m-mi, are
sufficient, but unfortunately si is not known prior to step M10. Nevertheless, an efficient
implementation can take advantage of this observation by delaying the computation
of Ri(z) and W/(z). Declaring (A(z), B(z)), Ui(z), Vi(z)) (Pi(z), Qi(z)) to be global
variables, the coefficients of Ri(z) and W,.(z) can be computed in INITIAL_PADE

only when they become necessary. The cost analysis below assumes that the algorithm
has been implemented in such a fashion.
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In assessing the costs of MPADE, it is assumed that classical algorithms are used
for the multiplication of polynomials. Only the more costly steps are considered. For
these steps, Table 6.1 below provides cruder upper bounds on the number of multiplica-
tions in K required. The table provides separate bounds for the normal and abnormal
cases.

In step 15 of INITIAL_PADE, it is assumed that the Gaussian elimination method
is used to obtain the LU decomposition of T(s-l,n,-,,,+s-1. In addition, it is assumed
that Gaussian elimination is accompanied with bordering techniques. Thus, as s
increases by in step 14, the results of the previous pass through the while loop are
used to achieve the current LU decomposition. The bound for step 15 in Table 6.1 for
the abnormal case assumes we do not take any advantage of the special nature of
T(s_l),n,_m,+s_ 1. In the normal case s 1, and To,n,-,,, is already in triangular form, and
so no computation is required in step 15.

For step 16, it is assumed that the LU decomposition of T(s-l,n,-,,,+s-1 from step
15, is used to simplify the triangulation of S(,-l,n,-m,/s-. The solution IV’, U’] is
obtained finally by solving this triangularized S. Similar observations apply to step 17
in the abnormal case.

Since steps M2, M4, and M10 simply invoke INITIAL_PADE, estimates of their
costs are obtained by summing the costs of steps 15, 16, and 17 with appropriate
substitutions of variables. Note that the cost of M2 is the same in both the normal
and abnormal case, since for m => n it is always true that So 1.

An upper bound for the number of multiplications in K required by MPADE is
obtained by summing the costs of the last six rows in Table 6.1 for i= 0, 1,...,/C We
use the fact that

k k

(6.1) si=m, ifrn-->n, and si=n, ifrn<n.
=o =0

In addition,
k k

(6.2) mi Si <--m and r/i --r/

=0 =o

Then, steps M4 and M10 in the abnormal case have a complexity of O(p3(m+ n)3)
and the remaining steps a complexity of O(p3(m at- n)2), at worst. When (A(z), B(z))
is normal, then due to the fact that T,-1,n’-m’+-I is always in triangular form, the
complexity of MPADE reduces to O(p3(m + n)2). This is also true when (A(z), B(z))
is nearly normal. In this case si is often larger than 1, but the matrix T,-,n’-m’+,-1 is

TABLE 6.1
Bounds on operations per step.

Step Normal case Abnormal case

I5 0 p3(n’- m’- +2(s- 1))3/3
I6 p3(n’- m’+ 1)2/2 p3(n’- m’+ 2s- 1)2/2
I7 0 p3(n’-m’+2s-l)2/2
M2 p3(m-n)2 p3(m-n)2
M4 p3(m n) p3[(n m + 2(So- ))3/3 + (n m + 2s )2]
M8 2p3(mi + n + 2) 2p3(mi + n + 2)s
M9 2p3(mi + n + 2) 2p3(mi + ni + 2)s
MIO 0 8p3(si--1)3/3
Mll 8p3(m; + n + 2) 8p3(mi + n + 2)si
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also always in triangular form and so again the complexity is O(p3(m+ n)2). In
particular, in the scalar case the complexity of MPADE is O((m + n)2).

The algorithm gives the worst performance when no nonsingular nodes are encoun-
tered along the rn n off-diagonal path. In this case, with m < n, the algorithm reduces
to solving one Sylvester system

V1]=O(6.3) S,,n U,

in step M4 of MPADE. In Table 6.1, with So m + 1, then the cost is simply that of
Gaussian elimination, namely, approximately p3(m+n)3/3. Note that with the
existence of even one nonsingular node the cost of MPADE can be dramatically
reduced. If, for example, this one nonsingular node is (ml, n) (m/2, n m/2), where
m is even, then So 1 + m/2, s m/2 and the algorithm reduces essentially to solving
(in steps M4 and M10) two Sylvester systems, each of approximately half the total
size. This results in a saving of a factor of 4 over the simple use of Gaussian elimination.
Algorithms requiring normality, on the other hand, break down when even one
intermediate node is singular.

7. Conclusions. We have considered the problem of determining an adequate
definition for a rational approximant of a formal matrix power series and also, given
a suitable definition, the problem of computing it. We have restricted our attention to
square matrix power series.

In attempting to extend the notion of Pad6 approximation to matrix power series,
we have followed the classical theory of Pad6 approximants for scalar power series.
We introduce the notion of a Pad6 form, which always exist but may not be unique,
and also the notion of Pad6 fraction, which is unique but need not exist. The definition
of Pad6 form is meant to be as broad as possible. By constructing all the Pad6 forms
of type (m, n), it is always possible to determine ones for which the denominator is
invertible, should one exist.

The notion of a matrix power series remainder sequence introduced in this paper
is a generalization of one given by Cabay and Kossowski [9] for scalar power series.
The cofactor sequence, which is shown to be associated with the remainder sequence,
yields directly all the Pad6 fractions at the nonsingular nodes of a particular off-diagonal
path of the Pad6 table. By determining also the (unique) Pad6 form at nodes preceding
the nonsingular nodes, we are able to compute Pad6 fractions iteratively from one
nonsingular node to the next. The resulting algorithm is at least as fast as other
algorithms for computing matrix Pad6 fractions, and it is the only one that succeeds
in the abnormal case.

The algorithm can be improved in a number of ways. We expect that the cost of
the decomposition of Ts-,n,-m,+s- in step 15 and, consequently, of S._,,_,,+.-1 in
step I6 can be improved by taking advantage of the special structure of Sylvester
matrices. The algorithm would also experience an improvement if it were possible to
identify additional points between nonsingular nodes for which Theorem 4.5 is valid.
This would improve the algorithm by decreasing the si. This, and in general the nature
of Pad6 forms between nonsingular nodes, is a subject for further research. Finally,
by appealing to fast methods for polynomial arithmetic, it is of interest to attempt to
develop a recursive divide-and-conquer version of MPADE.

For normal and nearly normal power series, progressing from one nonsingular
node to the next is equivalent to power series division of the residuals associated with
the nonsingular nodes (because S_l,,_m,+,,._ in step I5 of INITIAL_PADE, with the
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exception of one column, reduces to a triangular matrix). Thus, in this case and in
addition when A(z) and B(z) are matrix polynomials, there is a strong analogy between
MPADE and Euclid’s algorithm. It is a subject for future research to investigate the
possibility of using MPADE to compute the greatest common divisor of two matrix
polynomials in the abnormal case.
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WORST-CASE COMPLEXITY BOUNDS ON ALGORITHMS FOR
COMPUTING THE CANONICAL STRUCTURE OF FINITE
ABELIAN GROUPS AND THE HERMITE AND SMITH

NORMAL FORMS OF AN INTEGER MATRIX*
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Abstract. An O(s5M($2)) algorithm for computing the canonical structure of a finite Abelian group
represented by an integer matrix of size (this is the Smith normal form of the matrix) is presented.
Moreover, an O(s3M(s2)) algorithm for computing the Hermite normal form of an integer matrix of size

is given.
The upper bounds derived on the computational complexity of the algorithms above improve the upper

bounds given by Kannan and Bachem in [SIAM J. Comput., 8 (1979), pp. 499-507] and Chou and Collins

in [SIAM J. Comput., 11 (1982), pp. 687-708].

Key words. Smith normal form, Hermite normal form, integer matrices, computational complexity
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1. Introduction. Recently Chou and Collins [2] improved the results of Kannan
and Bachem [6] on the computation ofthe Hermite and Smith normal form (abbreviated
HNF and SNF, respectively) of an integer matrix. Reduction to the HNF and SNF
can be done via integer row-column operations (abbreviated IRC operations; see [8]).

A closely related problem is the computation of the canonical structure [8] of a
finite Abelian group G represented by a set of defining relations that is associated
with an integer matrix. We can reduce the exponents of the generators in the set of
defining relations modulo the order of the group, say d, and add to the set the relation
xa= 1, for every generator x, respecting the structure of the group. This fact allows
the use of arithmetic modulo d for the IRC operations over the associated matrix (as
formulated in 2).

The computational complexity is measured in terms of elementary operations. An
elementary operation is a Boolean operation on a single binary bit or pair of bits or
an input or shift of a binary bit. M(n) denotes an upper bound on the number of
elementary operations required for multiplication of two integers of length n bits 10]
and the size s of an m x n matrix A is the number m+n+log ]la[[, with [[All
maxi, {[aij[}.

The main results of this paper are the following:
(i) An O(s3M(s2)) elementary operations algorithm for computing the HNF of

a nonsingular integer matrix of size s.
(ii) An O(sSM(s2)) elementary operations algorithm for computing the SNF of

a nonsingular integer matrix of size s.
The upper bounds found for (i) and (ii) improve the upper bounds given by Chou

and Collins in [2] (see also Kannan and Bachem [6]). For (i) Chou and Collins proved
an upper bound of O(s8) elementary operations and for (ii), using the Kannan-Bachem
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method for reduction to SNF together with the improvements of Chou and Collins,
we can derive an upper bound O(s 11) elementary operations.

The IRC operations performed on A in reduction to HNF matrix T are associated
with a factorization of T as MA, where M is a square unimodular matrix. Similarly
the IRC operations performed on A in reduction to SNF matrix D are associated with
a factorization of D as BAC, where B and C are square unimodular matrices. Bounds
on the complexity of the computation of the matrices M, B, C are also provided.

1.1. Preliminaries. Some upper bounds on the size of the determinant of an integer
matrix and on the running time of algorithms for matrix multiplication and for
computing the greatest common division (gcd) of two integers are exposed here.

THEOREM 1.1. (Hadamard). Let A be an n x n matrix and let di--maxlj__<n
for <= <--_ n. Then

) /2

[det (A)-<[ [ao
i=1 j=l

COROLLARY 1.2. Let A be an n x n matrix with integer entries. Then we have the
following"

(i) ]det (A)l =< n"/llAll .
(ii) log (Idet (A)])= O(s), where s is the size of A.
THEOREM 1.3 (Gaussian elimination). There exists an algorithm for computing the

row-echelon form of an m x n matrix A with entries from a field in O(mnrM(log Idl))
elementary operations, where r=rank (A), and d is the largest in absolute value
determinant of a minor of A.

Proof. It follows from the fact that the numerators and denominators of the
rationals arising during the Gaussian elimination have modulos at most d, with d the
maximum determinant of all square submatrices of A (see [4, p. 26]). ]

The problems "computing the determinant of a square matrix," "computing the
inverse of a nonsingular matrix," and "matrix multiplication" are computationally
equivalent (for details see Strassen [12], Winograd [13], or Aho et al. [1]). In 1969
Strassen showed in [12] that matrix multiplication of 2 x 2 matrices can be done with
seven multiplications instead of eight and, in general, the multiplication of n x n
matrices can be done with O(nlg7) O(nTM) multiplications instead of O(n 3) multipli-
cations required by the classical algorithm. This surprising result led to a series of
improved algorithms for matrix multiplication, requiring even fewer multiplications.
Currently the best upper bound on the number of multiplications required for matrix
multiplication is the following.

THEOREM 1.4 (Coppersmith-Winograd [3]). There exists an algorithmfor multiply-
ing two n x n matrices using O(n) multiplications, where

2.376.

In the sequel, when the time required for the "computation of the determinant"
is not the bottleneck of the overall time complexity of the problem in investigation,
we make use of the Gaussian elimination; otherwise we make use of the algorithm of
Theorem 1.4. The reason is that the Coppersmith-Winograd algorithm is not practical,
due to the very large hidden constant in the upper bound on the number of multiplica-
tions required.

The following theorem yields an upper bound on Knuth’s algorithm (see [7]) for
computing the greatest common divisor of two integers. This upper bound was proved
by Sch6nhage in [9].
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THF.ORF.M 1.5 (Extended Euclidean Algorithm (EEA)). There exists an algorithm
for computing the greatest common divisor r of two n bit integers a and a2 and two

integers x and x2 such that

xla -at- x2a2 r

with

Ixll [a21/2, Ix2l =< la,I/2

in O(log nM( n)) elementary operations.
COROLLARY 1.6. There exists an algorithm for computing r, the gcd of the integers

al, ak of length at most n binary bits and k integers tl, tk such that

t a 4r-. + tkak r

with

log Iltll := max {It, I}- O(n log k)

in O(k log nM(n)) elementary operations.
Proof Without loss of generality, assume that k is a power of 2. Let a,..., ak

be leaves of a balanced binary tree. Moreover let each parent node be the gcd of its
children. Therefore the root of the tree is the gcd (al,’", ak).

We can build up the tree using the EEA of Theorem 1.5. The ti’s can be computed
by combining the expressions of the gcd’s at each level of the tree.

The upper bounds can be found by a simple manipulation of the upper bounds
of Theorem 1.5 and using the fact that the height of the tree is equal to log k.

2. The procedures ELIMINATECOL-ELIMINATEROW. Suppose that A is an
m n integer matrix associated with the set of defining relations of a finite Abelian
group G. The matrix A has rank n and if B is an n n nonsingular submatrix of A,
then the determinant of B denoted det (B), is readily shown to be a multiple of the
order of the group G. Moreover if In denotes the n n identity matrix, then the
(m + n) n matrix

(2.1) K
din

with d det (B)

presents the same group.
Matrix B and its determinant d can be computed by means of Gaussian elimination

over the rationals.

ALGORITHM 2.1.
INPUT: The matrix K of (2.1) and an integer p such that =< p _-< n.
OUTPUT: An (m + n) n matrix K* of the form

* 0"" 0) rwhere the pth column of A* is of the form (a*,,..., a,f
and K* is a transformation of K via integer row operations.

Procedure ELIMINATECOL (K, d, p)
begin
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()
(2)

(3)
(4)

if koo 0 then
begin
rgcO(ko, ko+,,o);
compute integers Xl, x2: Xlk + x2k+l,o r;
comment Use the algorithm of Theorem 1.5.
y - ko/,/ r;
y2--k,o/r;

Yl Y2L- 0
x, x2

L--0--’, 0

comment Note that L is unimodular.
(5) K-L. K;

comment The result of step (5) is a matrix K having ko. =0 and k.+l,. r.
end

(6) s -gcd (ko+l,o, ko+2,o,""", kmp, d);
(7) compute integers tj for p + 1 =<j =< m + 1" j=o+l tkjo + tm+ld s;
(8) tjt(modd) for p + =<j <-_ m;

tm+l (-’(s-Ej+o+ tikjp)/d;
(9) ROW (p)- ROW (P)+j=o+l tj ROW (j)+ t,,,+, ROW (re+p);

comment The entry kin, of K is equal to s. Note that the computation of t,+ is
not necessary, since we can merely assign koo s

(10) ROW (i),- ROW (i)-(kio/s) ROW(i), for p+l<=i<-m;
comment Now COL(p)=(klo,...,koo, 0,...,0, d, 0,...,0)7

(11) ROW(i)-ROW(i)-([ki/d]) ROW(m+j), l<-_i<-m, l<-j<-_n;
comment At this step all the entries of K are reduced mod d.
return K;

end

Remark 2.1. We may speed up (in practice) the above procedure by making the
following modifications:

(i) At the beginning of the procedure ELIMINATECOL we can check if there
exists a kio for some p-<_i=< m such that ki divides kj, for every p _<-j =< m + p and if
it exists, then interchange ROW (i) and ROW (p) and go to step (10) with s kip.

(ii) At the beginning of the procedure we may check whether or not there exists
a kio for some p -_< <- m such that kio 0 and if it exists then interchange ROW (i) and
ROW (p) and go to Step (6).

Note that the amount of computational time that can be saved with the above
modifications does not effect the asymptotic worst-case time complexity.

Remark 2.2. Suppose that the matrix K of (2.1) is transformed to K* after an
application of the procedure ELIMINATECOL (K, d,p). Since every integer-row
operation can be expressed as matrix multiplication of K by a unimodular matrix, we
can easily modify ELIMININATECOL to compute a unimodular matrix L such that
LK K*. Note that this can be done without an increase in asymptotic time complexity
and log LII O(log g II),

PROPOSITION 2.2. The procedure ELIMINATECOL terminates in

O(mnM(log (mllKll)+ mM(log IIKII) log log IlK II)
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elementary operations in the worst-ease and the norm IlK*I] of the output matrix K* is
equal to

Proof Steps (1)-(2) require O(M(log [Jail)log log [[a[[) elementary operations
for an application of the EEA and

(2.2)

Steps (3)-(4) require O(M(log ]]a]])) elementary operations for divisions.
In view of (2.2), step (5) requires at most 4n multiplications comprising

O(nM(log [[a[])) elementary operations. If a’ denotes the m top rows of K after step
(5), then we can see that

(2.3) I[a’ll- o(llall=),

Steps (6)-(7) require O(mM(log Ilgll)log log Ilgll) elementary operations for an
application of the algorithm of Corollary 1.6, since, using (2.3), it follows that

max {k,+,,,,...,

where K denotes the input matrix. (Note that lal= O(llgll).)
Step (8) requires O(mM(log Ilgll)) elementary operations for divisions.
Step (9) requires O(mnM(log IlK II)) elementary operations for mn multiplications

in the worst case. If A" denotes the m top rows of K after Step (9) then

(2.4) IIA"II- O(mllgll).

Step (10) requires O(mnM(log]lA"ll))=O(mnM(og(ml[Kl])))elementary
operations for divisions/multiplications when we use (2.4).

Step (11) requires O(mnM(log (mllgll))) elementary operations. The entries of
K are reduced modulo d; hence the entries of the output matrix are bounded by
Idl-- O(llg II).

Remark 2.3. We can observe that the dominant complexity of the procedure is
the computation in lines (9), (10), and (11)that require O(mnM(log (milk II))) elemen-
tary operations, except in the case of A with enormous entries

ilall_>_ 22

AGOgVM 2.3.
INPUT: The matrix K of (2.1) and an integer p such that

l<__p<-m.
OUTPUT: An (m + n) n matrix K* of the form

[a*dIl
* * 0,... 0) andwhere the pth row of A* is of the form (ap, ., aoo

K* is a transformation of K via IRC operations.
(Note that procedure ELIMINATEROW is almost symmetric with
the procedure ELIMINATECOL; steps (6), (10), and (12) are the
only nonsymmetries.)

Procedure ELIMINATEROW (K, d, p)
begin

if koo 0 then
begin
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(1) rgcd (kin, k,,o+,);
(2) compute x, x2" Xlk,, + x2k,,,+ r with Ix[-< Ikp,,+,]/2,
() y,k,+/r;
(4) y2-k,,o/r;

0

0

(6) km+o,o d; km+o+,o+d; km+o+,o0; km+o,o+l0;
comment The above operation can be expressed as a sequence of row

operations. See Remark 2.4 below.
end

(7) gcd (o,o+l," ,
(8) Compute t for p + 1Nj N n" 2j=o+ tki s;

t t mod d forp+lNjNn;
(9) COL (p)COL (P)+2=o+l t COL (j);
(10) ROW(m+j)ROW(m+j)-t ROW (re+p), for p+lNjNn;

comment This step is not necessarily executed, since we can merely assign
km+o+l,o km+n,O O.

(ll)COL(j)COL(j)-(ko/s)COL(p), p+lNjNn;
(12) ROW (m+p) ROW (m +p)-=o+ (ko/s) ROW (m +j);

comment This step is not necessarily executed, since we can merely assign
km+o,o+ kin+o, 0

(13) ROW(i)ROW(i)-([ku/d]) ROW(re+j), pNiNn, pNjNm;
return K;

end

Remark 2.4. If M is the inverse of

then we can see that

lm+p-I
o o
0 0

K is equivalent to step (6), and thus it can be expressed as a sequence of row operations.
The row operations at steps (6), (10), and (12) are necessary in order to preserve

the form of the n bottom rows of K as dI,.
Remark 2.5. We may speed up the above procedure by modifying it in a way

similar to the modification suggested for procedure ELIMINATECOL in Remark 2.1.
Remark 2.6. Suppose that K* is the output matrix of ELIMINATEROW (K, d, p).

Then it is not difficult to modify ELIMINATEROW in order to compute two unim-
odular matrices L and R such that

LKR K*.

PROPOSITION 2.4. The procedure ELIMINATEROW terminates in

O(mnM(log (mllKll)) + nM(loglKII) log log IlK II)
elementary operations and the norm IIK*II of the output matrix K* is equal to dl.
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Remark 2.7. We can show that the computation of the matrices L and R of
Remark 2.6 can be done without any asymptotic increase in the worst-case complexity
of the procedure ELIMINATEROW and log(max {IILII, IIRII)= O(og Ilgll),

3. The main algorithm.

ALGORITHM 3.1.
INPUT: An m x n matrix representing a finite Abelian group G.
OUTPUT: The canonical structure of the group G.

begin
(1) d The determinant of an n x n nonsingular submatrix of A;

(2) /=
a’

(3) for p= l to n do
begin

(4) repeat
(5) ELIMINATEROW (K, d,/9);
(6) ELIMINATECOL (K, d,
(7) until kpplkp, for p + 1 <= -<_ n;

kpi0 for p+l<-_i<=n;
(8) end

A the n top rows of K;
(9) forp= l rondo

begin
(10) for q=p+ l to n do

begin
h-ap;
av - gcd (a,q, h);
aoq - aqq h/avv;

(11) end
(12) end

return A;
end

PROPOSITION 3.2. Algorithm 3.1 correctly computes a canonical basisfor the Abelian
group G in O(mn(n+log log IIKII) log IlKIIM(log (mllKII))+ mnM(log d*)) elemen-
tary operations, where IIKll max {Idl, IIAII} and d*-max {ll: is the determinant of
a squao’e submatrix of A}.

Proof. The computation of a multiple of the order of the group G (Step (1))
requires O(mnEM(log d*)) elementary operations by Theorem 1.3.

Steps (5)and (6)require O(mnM(logm]lKII)+mM(logllKl[)loglogllKll
elementary operations; this follows from Propositions 2.4 and 2.2 and the facts

IIK’llldlllKll, m>=n

where Ki) denotes the current matrix K at the ith iteration of the loop (4)-(7). The
number of iterations required by loop (4)-(7) is at most O(log Ilgll) since

Hence loop (3)-(8) requires O(n log IIKII) iterations.
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Loop (9)-(12) requires O(n 2) applications of EEA and O(n 2) multiplications/
divisions comprising O(nZM(logldl) log log Idl)= O(nZM(log
elementary operations.

The proposition follows from the above analysis.
COROLLARY 3.3. Algorithm 3.1 terminates in O(mn2[n+log(n log(nllAII))]

log (nllall)M(n log (mnllall)))elementary operations.

Proof We derive the proof from Proposition 3.2, using the fact that

max IIK II, d*}= max {IIAII, Idl, d*} =< (nllAII) n.
COROLLARY 3.4. If a finite Abelian group is represented by a matrix of size s, then

we can compute its canonical structure in 0(s5M(s2)) elementary operations.

4. Hermite normal form.
THEOREM 4.1 (Hermite, see [5]). Given a nonsingular n x n integer matrix A, there

exists an n x n unimodular matrix M such that MA T is upper triangular with positive
diagonal elements. Further, each off-diagonal element of T is nonpositive and strictly less
in absolute value than the diagonal elements in its column.

The algorithm below for computing the HNF of an integer matrix makes use of
a version of the procedure ELIMINATECOL (K, d, p) with K =[ AJl,,], which eliminates
all the entries below the diagonal element k,o of the pth column of the matrix K. The
modified version of ELIMINATECOL is as follows:

(i) Eliminate the entries a+l,,,’", Cn,, of K in a similar manner as
ELIMINATECOL followed by reduction modulo d.

(ii) Do the row operation ROW (m+p)-ROW (m+p)-(d/k,) ROW (p) and
let A <-the n top rows of K and ROW (m + p) as last row.

(iii) The output matrix is of the form

A

dI,_ 0

0 0

The above modified version of
ELIMINATECOL* in the sequel.

ELIMINATECOL will be called

Remark 4.1. The pth column of the output matrix (say K*) is of the form
(kl,,"’", k,, 0,..., 0) . The running time of ELIMINATECOL* is asymptotically
the same with the running time of ELIMINATECOL. Moreover, there exists a unim-
odular matrix L such that L. K K* and log ]]L]] O(log IlK]I).
ALGORITHM 4.2.

INPUT: An n x n nonsingular matrix A.
OUTPUT: A matrix T the HNF of A and a matrix M such that MA T.

begin
(.1) d,-det(A);

(3) for i= l to n do
begin
ELIMINATECOL* (K, d, i);

(4) end
T*-[kij], l<=j<-_n, l<-i<=n;
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comment T* is upper triangular now, but its off-diagonal entries do not satisfy
the conditions of Theorem 4.1.

E T* ](4.1) K
din

ROW (i) - -ROW (i) for each kii < 0;
(5) for i=2 to n do

begin
(4.2) ROW(j)<-ROW(j)-([kii/kii]) ROW(i) for i<=j<=i;
(4.3) ROW(j)ROW(j)-([kj,/d]) ROW(n+/) for l<=j<=i, i<=l<=n;
(6) end

comment The re-introduction of K at (4.1) was necessary, since the entries of
K would grow exponentially at (4.2) without the reduction modulo
d at (4.3).

T[k!] for l<=i,j<=n
Solve the system: X. T= A;
return M X-1, T;

(7)
(S)
end

Remark 4.2. The employment of ELIMINATECOL* was necessary, since the use
of ELIMINATECOL instead of ELIMINATECOL* would lead to an upper triangular
of determinant qd, with q not necessarily equal to +1.

PROPOSITION 4.3. Algorithm 4.2 correctly computes the HNF of A in O(n2[n +
log n log n A II))]M n log n A [[)))etementary operations.

Proof First observe that there exists an integer matrix such that

WA din

and since every application of ELIMINATECOL* and every IRC operation corre-
sponds to a multiplication of K by an (m + n) x (m + n) unimodular matrix, this implies
the existence of a matrix L such that

and thus

Hence, if

L
din 0

Z3 Z4 W In
with Zi matrices of dimension n n for _-<i=< 4, it then follows that

ZA T*.

The matrices T* and A represent the same group; hence det (T*)= det (A) and thus
Z is unimodular.

In a similar way we can show the existence of a unimodular matrix Z* such that
Z’T*-- T and thus prove that T is the HNF of A.

The computation of the determinant requires O(n3M(n log (nllAII))) elementary
operations when we use Theorem 1.3 and Corollary 1.2(i).
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Loop (3)-(4) requires O(nSM(log nllKII)+ n2M(log IIKII)( og log IlK II)) elemen-
tary operations when we use Proposition 2.2.

We can show easily that loop (5)-(6) requires O(ns) multiplications comprising
O(nSM(log [dl)) elementary operations.

The computation of X is not difficult since T is triangular and it requires O(n 2)
divisions comprising O(n2M(log ]d])) elementary operations.

The computation of the inverse of X requires O(nSM(n log (nllAII))) elementary
operations, by Theorem 1.3 and Corollary 1.2(i) (see the discussion below Theorem 1.3).

Hence, when we use

max {IIAII, Idl) (nllAll) n,
the proposition follows.

COROLLARY 4.4. There exists an algorithmfor computing the HNF ofa nonsingular
matrix with integer entries of size s and the multiplier unimodular matrix M of Theorem
4.1 in O(s3m(s2)) elementary operations.

In [2] Chou and Collins gave an O(n4(n+ n og(nllAII)):)=O(s) elementary
operations upper bound for computing the HNF of an integer matrix. This bound has
been improved by a factor of O(ss-) for any e > 0.

5. Smith normal form.
PROPOSITION 5.1 (Smith, see [11]). Given a nonsingular n x n integer matrix A,

there exist n x n unimodular matrices B, C such that D BAC is a diagonal matrix with
positive diagonal elements such that dlld2l Idnn.

From Corollary 3.3 we have the following.
PROPOSITION 5.2. The SNF of an n x n matrix A can be computed in O(nS[n +

log (n log ( llall))3 log (nllall)M(n log (nllall))) elementary operations.
COROLLARY 5.3. The SNF of a nonsingular matrix A of size s can be computed in

O(sSM(s:)) elementary operations.
PROPOSITION 5.4. There exists an algorithm for computing the matrices B and C oj

Proposition 5.1 in O(n+2 log (n ]]a]]) log (n log (n]lA]l))M(n log (nllAII))) elementary
operations, where O(n) multiplications are required for matrix multiplication.

Proof We can compute the matrix D the SNF of A using Algorithm 3.1. Each
application of ELIMINATECOL in Algorithm 3.1 is equivalent to a pro-multiplication
of K (as in (2.1)) by a unimodular matrix Li (see Remark (2.2)) and each application
of ELIMINATEROW is equivalent to LjKR, where Lj, R are unimodular matrices
(see Remark 2.6).

Hence there exist unimodular matrices L1,’’’, L, of dimension 2n x2n and
R,. , RA of dimension n x n (corresponding to applications of ELIMINATEROW-
ELIMINATECOL) such that

(5.1) L... L,
din

R,... RA
din

Let

A1 A2]L=L... LI=: As A4
where Ai is an n x n matrix for 1_-<i=<4, and R R... RA.

Moreover we can compute an n x n matrix W such that

(5.2) WA din
by computing the inverse of A.
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From (5.1), (5.2) it follows that

W I
which implies that

R=
dI.

(A + A2 W)AR D

and the matrix A1 + A2W is unimodular, since det (R) and det (A) det (D) (from
Proposition 5.2). Hence in order to compute the matrices B and C, it suffices to compute
the matrices L, R, and W.

Proposition 3.2 and Remarks 2.2, 2.6, and 2.7 yield the running time required for
the computation of the Li’s and Ri’s. Moreover the computation of W requires O(n)
multiplications (see comments below Theorem 1.3).

Hence the analysis of the computation of L and R only remains. Using (3.1), we
can show

(5.3) max {A,/z}= O(n log Idl)- 0(//2 log (n IIAII)),

and using Remarks 2.2 and 2.7 we can show that

(5.4) O:--max {llLIl, llRjll}max {llAIl, ldlI<=(nllAII) .
The computation of L is done as follows. Let L,,..., L1 be the leaves of a

balanced binary tree and without loss of generality assume that /x is a power of 2.
Moreover, let each parent node represent the product (in order) of its children. Then
the root represents L.

We can observe that the entries of a matrix at the ith level of the tree is at most
Q2, in absolute value, and the computation of the root requires O(Y i=1 (/x/2i)) matrix
multiplications, where h O(log/x) is the height of the tree. Therefore the computation
of L requires

elementary operations,

comprising O(n ’+2 log (nllAII)log (n log (nllAII))M(n log (n IIAII))) elementary
operations, using (5.3) and (5.4). The computation of R is done in a similar way.

COROLLARY 5.5. Let the matrices A, B, and C be as in Proposition 5.1. Given A,
there exists an algorithm for computing the matrices B and C in O(s5"376 log sM(s2))
elementary operations, where s is the size of A.
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COMPUTING THE CANONICAL STRUCTURE OF INFINITE
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LINEAR DIOPHANTINE EQUATIONS*
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Abstract. An O(sSM(s2)) elementary operations algorithm for computing the canonical structure of
infinite Abelian groups represented by a matrix of size is presented. Also given is an algorithm for solving
systems of linear Diophantine equations (say, Ax b) in O(s33761og sM(sZ)+s2M(s*)) elementary
operations, where is the size of A and s* is the size of b. The upper bounds mentioned above improve
the results given by Chou and Collins in [SIAM J. Comput., 11 (1982), pp. 687-708].

Key words, complexity, Abelian group, Hermite normal form, Smith normal form, Diophantine
equations
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1. Introduction. Recently in 1 Chou and Collins gave an algorithm for transform-
ing an integer matrix via integer row-column operations (abbreviated IRC operations)
into a diagonal one whose nonzero diagonal entries have the property of a Smith
normal form matrix. They make use of an improved version of the Kannan-Bachem
polynomial algorithm (see [8]).

Here the equivalent problem of computing the canonical structure of an infinite
Abelian group represented by a set of defining relations is considered. Let A be the
m n matrix of the coefficients of a set of defining relations for an Abelian group G
and let s rn + n + log Ilall, with IIAll- maxii {la,.-[} be the size of a. An algorithm for
computing the canonical structure of G in O(sSM(s2)) elementary operations is
presented here, where M(k) denotes an upper bound on the number of elementary
operations required for multiplication of two integers of length of k bits (see [9]).

From [1] we can derive an upper bound of O(s 11) for computing the canonical
structure of an infinite Abelian group; this bound has been improved by a factor of
O(s-).

Moreover, in 1 an algorithm for solving a system of linear Diophantine equations
(say, Ax= b) is given, which requires O(sS+ s4s *) elementary operations, where s is
the size of A and s* is the size of b. An algorithm for solving the above system in
O($337610g sM(s2)+sM(s*)) elementary operations is presented here; in this case
the bound is improved by a factor of at least O(sZ).

Both the algorithms presented here make use of procedures and algorithms given
in [7].

2. Preliminaries. The algorithms and theorems presented in this section form the
necessary background for proving the main results of this paper.

THEOREM 2.1 (see [7]). Suppose that m x n integer matrix A with rank (A)= n, an

integer p such that <= p <= n and d the determinant of an n x n nonsingular subrnatrix of
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A are given. Moreover, let

dI,

Then there exists an algorithm (namely procedure ELIMINATECOL* (K, D, p)).[or
transforming K, via integer row operations, into a matrix K* of the form

A’

(2.1) dI,,__, 0 0

0 0 dln_,

where the pth column of A’ is of the form (a’j,, , a,,,,; 0,... O) , that requires
O(mnM(log m]K{])+ raM(log ]]K]])log log ]]K) elementary operations and K*]
O(JdJ). It also computes a unimodular matrix L such that

L. K K* with log IILII O(og KII).
Now we consider the following problem.
Suppose that A is an m x n integer matrix with rank n. Compute a unimodular

(m + n) x (m + n) matrix Lsuchthat

0

where T is an upper triangular n x n matrix, and zero represents an m x n zero matrix.

Aoa 2.2.
INPUT: An m x n matrix A with integer entries and rank (A)= n.
Output: A matrix L satisfying (2.2).

begin
(1) Ban n x n nonsingular submatrix of A;
(2) ddet (B);
(3) Transform A via row interchanges to a matrix that the n top rows form the matrix

B;
(4) Let L’ be the unimodular matrix corresponding to the above transformation;
(5) W(dl,)B-1;

(6)

(7)

(S)

L*+- 0

W

K <-- L*[o,A,];
comment Note that K [da,,].
jbr i= to n do

begin
ELIMINATECOL* (K, d, 1)
Let Li be the corresponding unimodular matrix as in Theorem 2.1;

L

K[Ko] for 2<= l<- n i+ l, 2<=j<=n-i+l;
(9) end
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(10) L- LnLn_I L1L*L’;
end

PROPOSITION 2.3. Algorithm 2.2 correctly computes L in

O(n[n log n + mn + m log (n log (nllAll))]M(n log

elementary operations, where O( n) denotes an upper bound on the number ofmultiplica-
tions required for multiplication of two n n matrices. Moreover,

log IILII O(n log

_Proof The computation of the determinant d and the matrix B can be done by
means of the Gaussian elimination in O(mn2M(log d*)) elementary operations, where
d*= max 11: is the determinant of a square submatrix of A} (see Gantmacher [5,
p. 26] and the remark below).

Step (3) requires at most O(n2) elementary operations for row interchanges and
it is not difficult to show that

L’II 1.

Step (5) requires O(nSM(log d*)) elementary operations for computing the inverse of
B and W =dI,B-1. Moreover, we can show that

Therefore

wll O(d*).

IIL*II O(d*).

Step (6) merely introduces dI, in the bottom n rows of the matrix [o,A,] of (2.2).
Using Theorem 2.1 we can find that loop (7)-(9) requires O(mn2M(log mllKII)/

mnM(og IIKII)og og [[KII) elementary operations.
The computation of L at Step (9) can be done as follows. Let the Lls, L*, and L’

be the leaves of a balanced binary tree (without loss of generality we assume that the
number of matrices is a power of two). Moreover, let each parent node represent the
product of its children (in order). Then the root of the tree represents L. It is not
difficult to see that the computation of all nodes of the tree require

matrix multiplications. From Theorem 2.1 it follows that IILll--O(IIKIIC) for some
constant c > 0 for all i’s; it is not difficult to show that the matrices of the ith level of
the tree have entries of O(IIK I1). Therefore the computation of L requires

O n E M(2 log Ilgl) o(a+l log nM(nM(n log (n[lAl]))))
i=l

elementary operations.
Now, using the fact that

max {]1K
the upper bound on the running time of Algorithm 2.2 follows and

IIll o($ II:’")
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Remark 2.1. Above we make use of the Gaussian elimination procedure for
computing the determinant of a matrix and for computing the inverse of a matrix.
Strassen in [11] and Coppersmith and Winograd in [2] give asymptotically faster
methods for these computations. Here and in the sequel [7] we shall make use of the
Gaussian elimination instead of the Coppersmith-Winograd algorithm (currently the
fastest asymptotic method) when the computation of the determinant (or inverse) is
not the bottleneck of the algorithm. This is because the Coppersmith-Winograd
algorithm supersedes the Gaussian elimination only in the case of very large dimension
matrices.

Remark 2.2. Suppose that A is the input matrix of Algorithm 2.2 and L is the
output matrix. Let

L=
A3 A4

where A1 is an m m matrix, A2 is an m n matrix, A3 is an n m matrix, and A4 is
an n n matrix.

Then

AA 0
where zero is an m n zero matrix,

but A is not necessarily unimodular. The author is not aware of an efficient way of
computing a unimodular matrix A such that

AA=I T] wherezeroisan mn zero matrix.
[ J0

This will lead to some inelegancies in the presentation of algorithms for computing
the structure of infinite Abelian groups and for solving systems of linear Diophantine
equations.

PROPOSITION 2.4 (see [7, Cor. 3.3]). There exists an algorithm for computing
the canonical structure of a finite Abelian group G represented by an m n integer
matrix A in O(mnZ(n + log (n log (nllAll))) log (nllall)M(n log (mnllall))) elementary
operations.

3. Infinite Abelian groups. An algorithm for computing the canonical structure of
an infinite Abelian group represented by a matrix is presented below. The basic idea
involved is the computation of a matrix representing the subgroup of all the finite-order
elements ofthe group, and then the algorithm for computation ofthe canonical structure
of finite Abelian groups given in [7] (see Proposition 2.4) is applied.

ALGORITHM 3.1.
INPUT: An m n matrix A representing the infinite Abelian group G.
OUTPUT: The canonical structure of G.

begin
(1)
(2)
(3)

r rank (A);
B an r r nonsingular submatrix of A;
A[ B

comment The matrix D is an (n r) r matrix, C is an r (n r) matrix, and
E is an (m- r) (n r) matrix. The transformation is done with
column and row interchanges in such a way that the r top and the r
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(4)

left-row columns form the matrix B in the left top corner of A.

A

comment Note that the addition of trivial relations to the set of defining relations
of G does not change its structure.

Compute a unimodular (m + r) x (m + r) matrix L such that:

B
V

L D
0

where V is an rx r upper triangular matrix;

Or

comment We can use Algorithm 2.2, since

rank D r.

Or

(5) A +- LA;
(6) Let A=[ov o];

comment See the proof of Proposition 3.2, part (ii).
(7) for i= r down to do

begin
(8) COL(j)COL(j)-([mii/t,])COL(i) for r+l<=j<-n;

comment We reduce M’s entries modulo the diagonal elements
(9) end
(10) A*-[V, M] r

comment A* is an n x r matrix with rank r and thus represents a finite Abelian
group, say, G*.

(11) Compute the canonical structure of G* using the algorithm of Proposition 2.4.
end

PROPOSITION 3.2. Algorithm 3.1 correctly computes the canonical structure of G.
Proof (i) All steps are expressed in terms of IRC operations, which respect the

structure of the group G.
(ii) In step (6) the bottom right corner (m-r)x(m-r) submatrix of A is a

matrix where all of its entries are zeros, because if its jth column had a nonzero entry
for some j, then A would have r + linearly independent columns (the first r columns
of A and the jth of the submatrix), which contradicts the fact that r rank (A).

(iii) In step (10), A* represents the finite group G*. Let G’ be the maximal finite
subgroup of G. It will be shown that G* is isomorphic to G’. Let A1 V, M]. Since

A represents G, there exists unimodular matrices L and R such that

(3.1) LAIR D

where D represents the canonical structure of G. Moreover, let

(3.2) G’=C(dll)X. .xC(drr),

where C(k) represents a cyclic group of order k.
From (3.1) it follows that

RTALr= D or RTA*Lr= Dr
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and D represents the canonical structure of G*. Therefore

G*=C(d,,)x.." C(d,.r),

and using (3.2) it follows that G* G’. V1

PROPOSITION 3.3. Algorithm 3.1 computes the canonical structure of G in

O(r[r log r+ mn + nr log (rllAII)(r+ log (r log (rllAII)))]
M(r log (nllAII)+(r2n+ mn)M(r: log

elementary operations.
Proof Step (1)-(2) requires O(mnrM(log Id*l)) elementary operations by means

of Gaussian elimination, where Id*l=max{Idl: d is the determinant of a square
submatrix of A}. Moreover using Hadamard’s bound on the size of a determinant of
a square matrix, it follows that

Id*l (rl A ).

The running time of step (4) is given by Proposition 2.3.
Step (5) requires O(mn) multiplications comprising O(mnM(rZlog(rllAII)))

elementary operations, using that log IILI] O(r log (rllall)) by Proposition 2.3. Loop
(7)-(9) requires O(r:n) multiplications comprising O(r:nM(r log (rllA[[))) elemen-
tary operations.

Using Theorem 2.1 (bound on TII), we can see that after the reduction modulo
the tii’s, it follows that

(3.3) ]IA*II =< TII (rllAl[) .
From Proposition 2.4 and (3.3) we can derive the running time of step (11) comprising
O(nrlog(rllall)[r+log(rlog(rllal[))]M(rlog(nllall))) elementary operations. S

COROLLARY 3.4. There exists an algorithm computing the canonical structure of an
infinite Abelian group G represented by a matrix A of size s, in 0(s5M($2)) elementary
operations.

Proof From Proposition 3.3 and using the fact that -<_ 3 (c 3 in the classical
algorithm for matrix multiplication). [-1

4. Linear Diophantine equations. Let A be an m n matrix with integer entries
and b an n 1 vector with entries from the integers Then the system of equations

(4.1) Ax b, x Zn

is called a system of linear Diophantine equations.
The computation of a solution or all (if any) of the system (4.1) is closely related

to the triangularization of the matrix A. If the matrix A of (4.1) is of rank n, then (4.1)
has exactly one solution or none and this can be found by means of Gaussian
elimination. In the case in which the rank r of A is less than n, the system (4.1) has
an infinite number of solutions (n r linearly independent solutions) or the system is
inconsistent. In this case the classical algorithm for solution of a system of linear
Diophantine equations makes use ofthe classical triangularization algorithm (see Smith
[10]) and therefore has the problem of "Intermediate expression swell."

The first polynomial algorithms for solution of (4.1) were given by Frumkin in
[3] (see also [4]) in some special cases. Frumkin’s algorithm for computing a particular
solution of (4.1) or establishing that there is not one requires in the worst case

O(n:m: log (nl[al])M(n log (nlla[[)) + n:M(n log (nllall)+log Ilbl]))
O(sM(s) + sM(s*)),



676 COSTAS S. ILIOPOULOS

where s is the size of the matrix A and s* is the size of the vector b. Moreover, in (4)
Frumkin gave an algorithm for computing the set of all solutions (if any) of an
homogeneous system of linear Diophantine equations (that is, (4.1) with b (0, , 0)),
which requires

O(n3m log (nllall)M(m log m log (mllall))) O(sSM(s log s))

elementary operations.
The best-known polynomial algorithm for solving a general system of linear

Diophantine equations is given by Chou and Collins in [1]. Their algorithm requires

O(n3(m + n)[n + r log (rllAII)]Z/ r(m + n)log Ilbll[n + r log (n Ilall)])= O(s8+ $4s)

elementary operations for the computation of the set of all the solutions of (4.1), if
any, where s is the size of A and s* is the size of the vector b.

An algorithm for solving (4.1) whose upper bound improves the upper bounds
of Frumkin and Chou and Collins is presented below.

ALGORITHM 4.1.
INPUT: The system of equations (4.1).
OUTPUT: A set of all integral solutions of the system (4.1), if any.

begin
(1) r - rank (A);
(2) B - an r r nonsingular submatrix of A;
(3) A [A o"];
(4) compute unimodular matrices L, R1 such that LIAR [DR ’];

comment The matrix D is an (m- r) r matrix, C is an r (n- r) matrix, and
E is an (m- r) (n- r) matrix. The transformation is done with
column and row interchanges in such a way that the top left r r

submatrix of A is the matrix B.
(5) A LAR
(6) b-L.b;
(7) H- [B 0r]T;
(8) Compute a square unimodular matrix L: LH-

where U is an r r upper triangular matrix.
comment We may use Algorithm (2.2), since rank (H)--r equal to the number

of columns of H.

(9) A-AR2;
(10) U- U"’U(11) Let A=la4

comment M denotes the (n- r) r submatrix at the bottom left of the matrix
A of Step (9).

(12) compute a particular solution W of the system Ax b over the rationals;
comment The computation of if" is done by means of U- (note that U is

triangular).
/f W has noninteger entries then

return "The system (4.1) has not any integral solutions"
else
Vthe first n coordinates of W;

(13) RR1.R2;
(14) R’R-"

R*-[r0] r+l<=j<=n+r, l<=i<=n;
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return {= R’f/+ R*(t, tn)
comment The ti’s are free variables.

end

PROPOSITION 4.2. Algorithm 4.1 correctly computes a solution of the system (4.1),
if any.

Proof Let A’ denote the matrix A at Step (3) and let A" denote the matrix A at
Step (11). Then we have

(4.2) A"= A’. R.

Let = 5+(y,. .,y,, t,. , t,) r be the set of all integral solutions of the system

(4.3) a". zT=b.

Then we have

(4.4) a"= a"+ A"(y,. ., Yr, t,," ",

When we use (4.3), (4.4), and the fact that Aft b follows

A"(y Yr, tl t) r 0

or equivalently (see Step (11))

M
(Y,’’’, Yr, t,’’’, tn)r--o,

implies that Yi 0 for 1 -< <_- r.
Now let R’. Then yields the set of all integral solutions for the system

A’Y=b,

since A’2 A"RR-z A"z b, when we use (4.2) and (4.3). Moreover,

= R’5+R’(0,. ., 0, t,,. ., t,)

PROPOSITION 4.3. Algorithm 4.1 correctly computes the set of all integral
solutions of (4.1) in O(r[rlogr+mn+nlog(rlog(rllall))]M(rlog(n[[a[I))+
mnM(r log (rllAII)+ log Ilbll)) elementary operations.

Proof Steps (1)-(5), (7)-(11) require

O(r[r log r+ ran+ n log (r log (rllAII))]M(r log

elementary operations. Their analysis is the same as in Proposition 3.3 (Steps (1)-(5)).
Step (6) requires O(n log Ilbll) elementary operations when we use the fact that

the rows of L are of the form (0,. , 0, 1, 0,. ., 0).
Step (12) requires O(mn) divisions/multiplications comprising

O(mnM(rZ(log(r[[a ))+log l[bll) elementary operations, since if A* denotes the
matrix A at step (8) then

log Ila*ll log IIL,AR,R]I O(r2 log (rllall))
when we use IIZ, ll-IIRll-a and IIR21<_-IIAII " by Proposition 2.3, for some
constant c > 0.

Step (13) requires only O(mn) elementary operations for column interchanges on
R. Step (13) makes use of the Gaussian elimination (or the Coppersmith-Winograd
algorithm).

The proposition follows from the above.
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COROLLARY 4.4. There exists an algorithm for computing the set of all solutions, if
any, of a linear Diophantine system (4.1) in

O(s+l log sM(s2)+ s2M(s*))
elementary operations, where s is the size ofA and s* is the size of b.

Aeknowlelgment. thank the referee for pointing out various errors and for his
helpful suggestions.
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ON THE COMPLEXITY OF PARTIAL ORDER PRODUCTIONS*

ANDREW CHI-CHIH YAO

Abstract. Let P (<i,, Y) be a partial order on a set Y {y, Y2,’ ", Y,,} of n elements. The problem
of P-production is as follows: Given an input of n distinct numbers x, x, , x,,, find a permutation cr of
(1, 2, , n) such that y; < eYe implies x(i)< x,(j. Let C(P), (P) be, respectively, the minimum number
and the minimum average number of binary comparisons xi:xj needed by any decision-tree algorithm to

produce P. It is proved that C(P)=(R)((P)). As an intermediate result, it is shown that C(P)=
(R)(log2 (n !/p, (P)) + n ), where/x (P) is the number of permutations consistent with P, thus proving a conjecture
of Saks.

Key words, algorithm, complexity, decision tree, Dilworth’s theorem, partial order, permutation
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1. Introduction. Sorting and median-finding of a set of n numbers are two of the
classical problems in combinatorial computation. It is well known (see Knuth
[Kn, 5.3]) that sorting n numbers takes asymptotically (R)(n log n) binary comparisons
of the form xi’x., both in the worst case and in the average case. For median-finding,
it was first proved that the average-case complexity is (R)(n) (Floyd and Rivest [FR]),
and later it was discovered that the worst-case complexity is also (R)(n) (Blum et al.
[BFPRT]). Thus, in both problems, the worst-case complexity and the average-case
complexity are of the same order of magnitude. Are they special cases of a general
class of problems for which this phenomenon is true? In this paper we will show that
this is indeed so.

Let P (<,, Y) be a partial order on a set Y= {Yl, y2," ", yn}. The P-production
problem is the following. Given n distinct numbers x, x2,’", xn, find a permutation
cr of (1, 2,’", n) such that y< ,yj implies x,i<x(). We are interested in the
intrinsic complexity of this problem in the decision tree model. Clearly, sorting and
median-finding are both special cases of the P-production problem.

A decision tree T is a binary tree, each of whose internal nodes u contains a

comparison of the form x’x., and has two outgoing edges labeled by "<" and ">";
associated with each leaf is a permutation o- of (1,2,..., n). Given any input

(x, x2, , x) of distinct numbers, we traverse a path ((T, ) in T from the root
down, making comparisons and branching according to the outcomes, until a leaf
is reached. We call T an algorithm for P-production if, for every , y < e y. implies
x) < x,., where p cry. Let cost (T, 9) denote the number of comparisons made by
T along the path ( T, )?), and let cost (T) be max. cost T, Y). Denote by ,ge the family
of all algorithms for P-productions. The minimax complexity C(P) of P-production is
defined as rain {cost (T)IT Sp}.

Let F, be the set of all permutations of (1, 2,..., n). A permutation p is said to
be consistent with P, if y < ,yj implies p(i) < p(j) for all i, j. Let A(P) c__ F be the set
of all permutations consistent with P, and define/x(P)

The complexity problem of P-production was formulated and investigated by
Schanhage [Sch], who showed by an information-theoretic argument that C(P) >-

log2 (n!/tx(P)). Further results on this problem have been derived by Aigner [Ai].
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Saks has conjectured [Sa] that Sch6nhage’s lower bound can be achieved asymptoti-
cally, in the sense that C(P)= O(log2 (n!/tz(P))+ n).

For any TCe, the average cost of T is defined as cost’(T)=
1/n! Y,v,, cost (T, p), where p (p(1), p(2), ., p(n)). The minimean complexity of
P-production is defined as t(P) min {cost’ (T)IT See}.

A partial order P (<e, Y) is said to be connected, if for every two distinct
elements y and y’ in Y, there exists a sequence Y=Yl,Y2,’", Ym =Y’ such that

Yi < e Yi+l or y > eY+ for all i. Every partial order P can be uniquely decomposed
into the disjoint union of connected partial orders P (<e,, Y), where the sets Y
form a partition of Y. Let/3(P) denote the number of connected components in this
decomposition.

In this paper we will prove the following results.
THEOREM 1. For all P, C(P)=O(n-(P)+log2 (n!/lz(P))).
THEOREM 2. For all P, C(P)= O(n-(P)+log2 (n!/tx(P))).
THEOREM 3. For all P, C(P)=6)(C(P)).
Theorem 2 proves the conjecture of Saks [Sa] mentioned earlier. Since C(P) >-

C(P) by definition, Theorem 3 is an immediate consequence of Theorems and 2.
The rest of this paper is devoted to a proof of Theorem 1 and Theorem 2.

2. Proof of Theorem 1. We will prove two lemmas. The first is an extension of
Sch6nhage’s lower bound on the minimax complexity C(P) to the minimean com-
plexity.

LEMMA 1. C(P)->_log2 (n!/la.(P)).
Proof Let T de. We will prove that

(1) cost, (T)=> log2 ( /z(P)
For each leaf of T, let Q! be the partial order on X generated by the constraints

x > xj along the path from the root to I. As T e, each Q! contains an isomorphic
copy of P as a subpartial order. This implies that/ (Q) -< (P). Let q =/(Q)/ n Then

(2)
n!

If we consider a random input , (p(1), p(2), , p(n)),-where p is uniformly chosen
from Fn, then q is the probability that the traversed path ((T, Y,) in T will end in the
leaf 1. Let d be the distance from the root to I. Then,

(3) Yq,=l,

(4) cost’ (T) Y q,d,.

It follows from (3) and (4) that cost’ (T) is the expected length of a uniquely decipher-
able code for an alphabet with symbol frequencies ql. It is a well-known fact (see, e.g.,
[Ab, 4.1]) in information theory that a lower bound is given by the entropy, that is,

cost’ (T) >= Y qt log2--.

Inequality (1) now follows from (2) and (3).
LEMMA 2. C(P)>= n-fi(P).
Proof Suppose the lemma is false. Then there exists T p and an input Y

(x, x2,""", xn), such that cost (T, Y)< n-/3(P). Let tr be the output permutation for
:. We will derive a contradiction.
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Let W be the sequence of inequalities xi < x2 generated along the path :(T,
then ]W < n-/3(P). Denote by Q the partial order on X imposed by W. Then Q has
more than n- (n-/3(P)) =/3(P) connected components. Thus, there are integers r, s

such that Yr, Ys are in the same component in P, while Xo-(r), Xo-(,l) are in different
components in Q.

Let yr Yi,, Yi2 Yi,,, Y, be such that, for each j, either Yii % P yii+, or Y!J > P Yii+,"
By the definition of TMp, every adjacent pairs in the sequence Xo-(r
Xo-i,, Xo-(i2), ", Xo-(i,,, Xo-(,) must also be related in Q. This contradicts the assumption
that Xo-r and x,, are in different components in Q.

Theorem 1 follows immediately from Lemmas 1 and 2.

3. Reduction. In this section, we show that to prove Theorem 2, it suffices to prove
the following result.

THEOREM 4. There exists a constant A > 0 such that

c(e-<a n-+lo (p
Assume that Theorem 4 is true. We will prove Theorem 2. Let c=fl(P). By

definition, P can be written as the disjoint union of partial orders Pi (< p;, Y), _-< _-<

c, where the Y’s form a partition of Y. Let IYI n. Then n > 0 for all i, and

(5) ni=n,

(6) /(P) (nl! n! )n2i..n.! (P,)/(P2)’"/(P).

We now describe an algorithm T for P-production. Let No=0. Define Ni
Zl<=k<=ink, and li {j[N-i <j----< Ni} for _-< _-< c. Given any input set X {xi]l _-< =< n},
consider for each <_- <- c, the set X as input to Pi-production, where Xi {x2]j L}.
Apply Theorem 4 to each P, and let cri’/// be the permutation found for
production. Then define the output permutation cr Fn by o-(j)= cri(j) if j Ii. It is
clear that T Me, since the output permutation cr satisfies the constraint that y./< eY
implies x() < x(.

Using (5) and (6), we obtain

A n - + loge
/- (Piii /- (P.)

=A n-c+log2
t,t(

We have proved Theorem 2, assuming that Theorem 4 is true. In the next two
sections we will prove Theorem 4.

4. An algorithm.
4.1. Preliminaries. Let P= (< p, Y) be a partial order. A subset A_ Y is an

independent set of P, if y : py’ is true for all distinct y, y’ A. The width of P, denoted
by width (P), is the maximum size of any independent set of P. We associate with
each P an independent set Yp of maximum size. (Pick any one if there are several
choices.)
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Let k_-> 2 be any integer. A k-partition of P is a k-tuple (A1, A2,’’’, Ak), where
the Ai’s are disjoint subsets of Y whose union equals Y, such that y < ,y’, y Ai and
y’Aj imply i<-j. We are interested in two special k-partitions. Let
(B,,1 Bp2 Bp,3), where Bp1 {YlY < ".... y’ for some y’ Ye}, Bp2= YP, and Bp3-
Y-Y,-B,,1. Clearly, 5, is a 3-partition. Note that some B,, may be empty. To
describe the second partition, let //, be the set of all 2-partitions (A1, A2) of P such
that IAll- Vn/21 and IA21-- In/2]. Let @, (De, l, De,2) be a member of, such that
(P1)(P2) is maximum over all possible (A1, A2) ,, where Pi is the partial order
P restricted to A.

Notation. For the rest of the paper, P (< ,, Y) will denote a partial order on
Y={Yl,Y2,’",Yn}, and X will denote the input set {xl, x2,"’, xn}. For any J
{1, 2,..., n}, we will use Yj to denote the set {YjlJ J}, and Pj to denote the partial
order induced by P on Yj; we agree that I(Pj)= when J . Similarly, for any
I
_

{1, 2, , n}, we use X to denote the set {x]i I}. For any two sets of numbers
A, B, we write A < B if y < z for all y A and z B. We adopt the convention that
0! 1, and we will employ two constants c2 40 and c 80.

LEMMA 3. Let k{2,3}. Let I be a nonempty subset of {1,2,..., n}, and
nl, n2, nk be nonnegative integers satisfying 1i n ]I]. Then there is a decision
tree Tofheight clI such that, given any input ofn distinct numbers X {xl, x2, , x},
T determines disjoint 11, I2,’", I satisfying (a) U L I, (b) ILl n for all i, and (c)
X, <X< < X6,.

Proof If k 2, the decision tree first finds the (nl + 1)st smallest element x. in X,
and then determines I, {ilxi < x} and Iz {ilx >-_ x}. This can be done in less than
40n comparisons using the selection algorithm in [BFPRT]. Similarly, if k 3, we can
find the (nl + 1)st smallest and the (nl + n2-k- 1)st smallest elements in X, by applying
the selection algorithm in [BFPRT] twice, and then find 11, I2, 13.

4.2. Procedure POPROD. The algorithm can be described as a recursive pro-
cedure. Depending on the width of P, we will either use comparisons to divide X into
three parts X, satisfying X, <X<X, or use comparisons to divide X into two
parts X; satisfying Xt. < X. In the first case, we can match the elements y, B,, with
elements in X in any fashion, and then recursively solve two subproblems: X, as
input to the production problem of P restricted to B,,, and X as input to the
production problem of P restricted to B,,3. This gives a valid final output, because
B,2 is an independent set in P and (Be, l, B,,2, Be,3) is a 3-partition. In the other case,
we will simply solve recursively two subproblems: X as input to the production
problem of P restricted to D,,1, and X as input to the production problem of P
restricted to D,,2. Of course, the cardinality of the sets L needs to be chosen to match
those of the 3-partitions and 2-partitions.

The criterion for deciding which case to use is whether the width of P is greater
than a fraction of n. Intuitively, the first case is more like the median-finding problem
and the second case is more like the sorting problem. In the first case, we would like
to get immediately a large independent subset of the elements y. in Y assigned, while
in the second case, we rely on the technique of divide-and-conquer, and try to divide
the problems into two subproblems of nearly equal size.

As an example, consider the partial order P shown in Fig. 1. The width of P is
relatively large, and we have the first case. For this partial order, B,, {y, Y2, Y3, Y4},
B,,z {ys, ys, Yo, Y}, and Be,3 {Y6, Y7, Y9, Y12, Y13}. We thus use comparisons to
divide X into three parts X,, satisfying X,,<X,<X,_, where 11,1=4, 112]=4, and
113] 5. The elements in Be,2 can be assigned in a 1- way to the x’s in X without
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Yl

Y2

Y3

y4

Yll Y5

y6

Y12

Y13

FIG. 1. A partial order P; smaller elements on top, e.g., Y2 < PY4.

further comparisons. Of the two subproblems to be solved recursively, we will examine
just the first one. To match the elements in Be,1 with XI, we observe that Q, the partial
order P restricted to Be,, is y < o Y2 < o Y3< Y4, which has width equal to 1. This
means we have the second case for this subproblem. Clearly, Do, {y, Y2} and
DO,2 {Y3, Y4}. Therefore, we use comparisons to divide XI, into two parts A and A’
with A < A’. Now we need to solve two subproblems: matching Do, to A, and D,2
to A’.

We now specify the algorithm formally. Given an input set X {x, x2,"’, xn},
the algorithm will output a permutation cr in the form of a set {(i, cr(i))]l _-< _-< n}; the
correctness requirement is that Yi < P Yj implies Xcr(i " Xcr(j ). We will give a recursive
algorithm that takes as. additional input arguments two sets J_ {1, 2,..., n} and
I c__ {1, 2,..., n} of equal size, and returns a matching between J and I, i.e., a set
V J x I such that each j J appears exactly in one element (j, k) V, and each e I
appears exactly in one element (m, i) V. We will later prove that the matching
produced satisfies the condition that, for (j, m) V and (j’, m’) V, y.j < p yj, implies
x,, <xm,. Thus, if we let J I {1, 2,..., n}, we obtain the required permutation cr

in the output.

PROCEDLJRE POPROD (X, J, I).
Case 1. ]J]-_< 1:

if J I , then return ;
if J= {j}, 1 {i} then return {(j, i)};

Case 2. (]J] > 1) ^ (width (Pj) > [IJ[/100 ]):
(a) Use c31I[ or less comparisons to divide I into disjoint I1,12, 13 such

that X,, < X,2 < X,3 and [//[ [Be.,,,[ for -< iN 3;
[Comments: This can be done by Lemma 3.]
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(b) Suppose Bpj., {y. j 6 J}, for -< 3;
let V2-{(k,,i,)ll<=s<=lJ2l} where k, and i. are the sth smallest
elements in J2 and I2.
[Comments: No comparisons are used here.]

(c) V POPROD (X, J,, I);
V3 - POPROD (X, J3,/3);

(d) return g- V1 U V2 U V3;
Case 3. (IJ[> 1) ^ (width (Pj)

(a) Use C21I or less comparisons to divide I into disjoint I, I such that
X,,<X,2, Illl- In/Z], and [121-In/Z];
[Comments: This can be done by Lemma 3.]

(b) Suppose D5. {YjlJ Ji}, for 1 <_- i<=2;
(c) V POPROD (X, J1, I);

V2 - POPROD (X, J,/);
(d) return V e-V U V;

4.3. Correctness.
LEMMA 4. In Procedure POPROD, the returned value V is a matching between J

and I.
Proof We prove the lemma by induction on the size of J. The base case J] _-< is

obvious. Inductively, suppose [J[ > 1, and that the first recursive call results in Case 2.
Then V2 constructed in step (b) is clearly a matching between J2 and I. In step (c),
by induction hypothesis, V is a matching between J and Ii for i {1, 3}. Thus, V is
a matching between J and I. A similar argument can be given when the first recursive
call results in Case 3.

LEMMA 5. Let V be the returned value in Procedure POPROD, when X, J, I are the
input arguments. If k, k’) V, m, m’) V and yk < , Ym, then xk, < Xm’.

Proof We prove the lemma inductively on the size of the set J. The base case

IJI =<1 is obvious. Inductively, suppose IJI > 1, and that the first recursive call results
in Case 2. Suppose that (k, k’) V and (m, m’) V. As y < ’Ym, we have i<=j (since
(Bp,l, Be,,, Be,,3) is a 3-partition of Pj by definition). If i<.L then X,<Xm,, as
x, Xi, Xm’ Xj, and Xi < Xlj. If j { 1, 3}, then the lemma holds by the induction
hypothesis. The case i=j 2 does not arise, since no two distinct y and Ym in B,j,2
are comparable in Pj. A similar argument can be given when the first recursive call
results in Case 3.

This proves that Procedure POPROD defines a decision tree algorithm for P-
production, when we set J I { 1, 2, , n} in the input arguments. To complete the
proof of Theorem 4, it remains to analyze the number of comparisons used in this
procedure. This will be done in the next section.

5. Analysis of POPROD. Let fe(J) be the maximum number of comparisons used
in POPROD (X, J, I) for any I and any relative ordering of the elements in X. Let
A2 5000c, and A3 100C3. In this section, we will prove

(7) Y,(J)

This will complete the proof of Theorem 4.

5.1. Two lemmas. We digress to prove two auxiliary lemmas before proving (7).
We need a classical theorem due to Dilworth [D].
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DILWORTH’s THEOR.M [D]. Let P=(<p, W) be any partial order, and
width (P)= rn >0. Then W can be written as the disjoint union of rn nonempty sets

W wi., wi,2, ", w.,,}, <= <- m, such that wi, < e wi,2 < e" < e w,,, for all i.

Proof See [D] for the proof.
Let P < e, Y) be any partial order on a nonempty set Y {y, Y2, Yn}. Let

YJe (Be,, Be.2, Be,s) and @e (De.l, De,2) be the two special k-partitions defined in
4.1.

LEMMA 6. Let J1, J2, J3 be such that Be, {y2]j Ji} for {1, 2, 3}. Then

tz(Pj,) tz(Pj.) > t(P)
]J,]! ]Jl! [Y]!

Proof Take a random r Fn. Let E be the event that o-(j) < or(k) for all y < p Yk,
and for i {1, 3}, let E be the event that o-(j) < o-(k) for all y2 < eYk with j, k6J. Thus,
E is the event that r A(p), and E is the event that is consistent with Pj,.

Clearly, E implies E ^ E3. Furthermore, E1 and E3 are independent events. It
follows that

/z(P)
-Pr{E}

=< Pr { E1 ^ E3}

Pr {El}. Pr {E3}

p,(Pj,) tz(Pj)

This proves Lemma 6.
LEMMA 7. Suppose n > 1. Let J, J2 be such that Dp, { y2]j J} for {1, 2}. If

width (P)_-< In/100], then

/z (Pj,) (Pj) (P)
J,[ IJ2l

Proo Let m width (P). Ifm 1, then P is a linear order, and it is easy to see
that the lemma is true in this case. We can thus assume that m > 1. Since
we have n > 100. Clearly, both J are nonempty. By Dilworth’s Theorem, P can be
covered by m chains of lengths, say, 1, 12,
p can be specified by integers k, k,..., k, where k is the number of elements
of A on the ith chain. After standard manipulations for optimizing expressions, we
obtain

H (l+l,)

<__ (200) n/l.

For each cr A(P), let K={yll<-r(j) < In/2]}. Then (K, Y-K)e. If we
partition A(p) according to the value of K, then there are J/p] classes, each containing
at most tx(Pj,)tx(Pj)cr’s. Thus,

(9) Ix(P)
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From (8), (9), and the fact n > 100, we obtain

/(P) -<_ (200)./,OOl/ (pj,)t(pj)

(1.01-- In/2] (PJ’)(PJ:)"

Rearranging terms in the above expression gives the inequality to be proved in the
lemma.

5.2. The analysis. If n 1, then fp(J)=O and (7) is clearly true. We can thus
assume n _-> 2. In the algorithm POPROD, we can group the comparisons used into
steps, each step performing either a 2-partition or a 3-partition of a subset of the input
X. In our analysis, we will estimate separately the number of comparisons used for
2-partitions and for 3-partitions. To facilitate the analysis, we will utilize an auxiliary
tree, with each internal node representing a step; the structure of the tree, together
with information associated with the nodes, will contain enough details about the
execution of the algorithm to permit an upper-bound estimate of the cost.

Given P, J, where J #: , we construct a cost tree Vp,j. Each node v will be associated
with a triplet ,l(v)=(6(v), c(v),S(v)), where 6(v) {0, 2, 3}, c(v) is a nonnegative
integer, and S(v)_ Y. We will say that v is of type 6(v) and weight a(v).

The cost trees are recursively constructed. If J] 1 with, say, J {j}, then Vp,,
consists of a single node v with ,/(v) (0, 0, y./}).

If (IJl>l)^(width(Pj)>[IJI/lO0]), then the root v of Vp,j has /(v)=
(3, c31JI, Bp.), and for each nonempty Bp.,, {1, 3}, there is a son vi of the root such
that the subtree rooted at vi is Vp,j,, where Ji is the set ofj with Y.i

If (IJ[ > 1) ^ (width (Pj) <- [IJI/100 ]), then the root v of Vp,j has /(v) (2, c21JI, ),
and for each i {1, 2}, there is a son vi of the root such that the subtree rooted at
is Vp,j,, where Ji is the set ofj with Y.i De,.i. (Note that in this case both J are nonempty.)

We have defined the cost tree Vp,j. An example of Vp,j is shown in Fig. 2, where
P is the partial order in Fig. and J {1, 2, , n}; square nodes are of type 0, oval
nodes with c2 beside them are of type 2, and those with c3 beside them are of type 3.

We now relate fp(J) to the cost tree. Let ai(P, J) be the total weight of type-/
nodes in Vp,j. That is, let ai(P, J)-’Zv,8(v)=i a(V) for i {2, 3}.

LEMMA 8. fp(J)<- az(P, J)+ a3(P, J).
Proof We prove the lemma by induction on the size of ]JI. If ]J[ 1, then

fp(J) az(P, J)= a3(P, J) 0, and the lemma holds. Inductively, assume that ]JI m >
1, and that we have proved the lemma for all J with size less than m. If width (Pj)>
[IJI/100], then in the execution of Procedure POPROD, for any I and X, Case 2
occurs at the top level, and thus

fp(J) < c31JI + 2 fP(Ji),
i-{l,3},JiQ

where J are the sets ofj such that Y.i Bp,,. Applying the induction hypothesis, we have

fP(J)<:c3[J]+ 2 (az(P, Ji)+a3(P, Ji))
i{1,3},Ji

az(P, J)+ a3(P, J).

a similar argument works when width (Pj)_-< [[J]/100]. This completes the inductive
step of the proof.

We now analyze ai(P, J).
LEMMA 9. a3(P, J) -< lOOc3lJI.
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Y5, Y8,YlO, Yll} 13 c

4 c2 c

2 c2

o y[_[ o

2c2 0 2c2

{YO 0 0 0

FIG. 2. V,,j with the P in Fig. and J={1,2,..., 13}; S(v) is shown inside the nodes v, and a(v) is

shown just outside v.

Proof We first state two facts that can be easily verified. For all type-3 internal
nodes v,

(10) Is(v)l> [a(v)/(lOOc)].

For any two distinct internal nodes v and v’,

(11) S( v) f-I S( v’) .
It follows from (10) and (11) that

a3(P,J) 2

IOOc3 2 Is( )l
v,a(v)=3

lOOc31YjI

-lOOc31JI,

where the summation of v is over nodes in Vp.j. This proves the lemma.
LEMMA 10. a2(P, J) 5000c log2 (I J] !/z (Pj)).
Proof We prove the lemma inductively on the size of J. If ]J] 1, then a2(P, J)

0, ]J[ x(P.,)= 1, and the lemma is valid. Inductively, suppose that ]J] m >1 and
that we have proved the lemma for all J, P with J] < m.

If width (Pj)> []J]/100], then in the execution of Procedure POPROD, for any
I and X, Case 2 occurs at the top level. Let Ji be the set of j with yj Be,.i. Applying
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the induction hypothesis to each son vi, and keeping in mind that we employ the
convention that 0! =/z (P) 1, we obtain

a2( P, J) E a2(P, Ji
i{1,3},Jif

=<5000c2 log(
i{1,3}

Applying Lemma 6 to the partial order Pj, we then have

a2( P, j) <= 5OOOc21og2 ( (1:,

If width (Pj)<- []J]/100], Case 3 occurs in the execution of POPROD. Let Ji be
the set of j with yj D,j.,. Both Ji are nonempty in this case. We have

x (p,) + 5000c2 log \x (Pj2)

Applying Lemma 7 to P, we obtain

a2( P, J) <- c2m nt- 5000c2 log
/z (Pa)(1.01)

_-< 5000c log

This completes the inductive step of the proof.
Inequality (7), and hence Theorem 4, follows immediately from the preceding

three lemmas. This completes the proof of Theorem 2.

6. Remarks. In this paper we have determined up to a constant factor the com-
plexity of a class of problems involving partial orders, in terms of a familiar com-
binatorial quantity x(P). It is of interest to explore the complexity of other classes of
problems involving partial orders. An excellent survey of this topic can be found in
Saks [Sa]. We list below some open problems directly related to our present discussion.

(a) Can we characterize the complexity of producing o- that satisfies more general
constraints than a single partial order P? For example, let P1, P2," ", P, be partial
orders on Y {yl, yz,..., y,}. What is the complexity of producing, for any input
X {Xl, X2," ", Xn} acr such that for some i, y < v;yk implies x,(.j) < x,(k) for all j, k?

(b) The results in this paper imply that the randomized decision tree complexity
for P-production is asymptotically of the same order of magnitude as the worst-case
complexity. Is this true for more general class of production problems, such as the
one mentioned in (a) ? It is also of interest to study the question of whether randomiza-
tion helps for other types of partial order problems.

(c) The present paper gives an existence proof of a near-optimal height decision
tree for P-production. If the partial order itself is also given as an input, is there a
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polynomial time algorithm (counting all the bookkeeping steps) that uses a near-optimal
number of comparisons for producing a partial order?
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A FAST ALGORITHM FOR MULTIPROCESSOR SCHEDULING OF
UNIT-LENGTH JOBS*

BARBARA B. SIMONS AND MANFRED K. WARMUTH$

Abstract. An efficient polynomial time algorithm for the problem of scheduling n unit length jobs with
rational release times and deadlines on rn identical parallel machines is presented. By using preprocessing,
a running time of O(mn 2) is obtained that is an improvement over the previous best running time of
O(n log log n). The authors also present new NP-completeness results for two closely related problems.

Key words, scheduling, multiprocessor, release time, deadline, parallel computing, computational
complexity, NP-complete
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1. Introduction. We present an efficient polynomial time algorithm for the problem
of scheduling n unit length jobs with rational release times and deadlines on m identical
parallel machines. The question of how the requirement that the jobs all have the same
length affects the problem was first answered in 10], where a polynomial time algorithm
with time complexity O(n 2 log n) is presented for the single machine case. An alterna-
tive algorithm with the same time complexity was subsequently obtained by ]. Finally,
an algorithm with time complexity O(n log n) for the single machine case was presented
in [5].

In the multimachine case, the only previously known polynomial time algorithm
has a worst-case running time of O(n log log n) [11]. We improve this running time
to O(mn 2) by doing some preprocessing before the jobs are actually scheduled. This
speedup is obtained by generalizing to an arbitrary number of machines the notion of
"forbidden regions," which was developed in [5].

If different integer job lengths are allowed, then by a simple reduction from 3
PARTITION [4], determining whether or not a schedule exists is strongly NP-complete,
even if rn and all release times and deadlines are integers. If rn is arbitrary, then
there is a similar reduction in which all jobs are released at time 0 and have the same
integer deadline.

We strengthen the above NP-completeness result by allowing only a small number
of integer job lengths:

(A) Three integer job lengths (1, 3, and q for some integer q), m machines, integer
deadlines, but only one overall release time;

(B) Two integer job lengths (1 and q), rn machines, integer release times and
deadlines.

2. An overview. The algorithm, called BOUNDED_REGION, has two major
sections. The first, called the BACKSEQUENCE Algorithm, is the preprocessing
section. It determines a set BR of regions in which only a bounded number of jobs
can be started in any feasible schedule. The actual scheduling of the jobs is done by
SCHEDULE (BR). This procedure schedules jobs as early as possible subject to the
restriction that the regions of BR are not violated. Below is a top level description of
the algorithm.

* Received by the editors June 16, 1986; accepted for publication (in revised form) June 15, 1988.
? IBM Almaden Research Center, K53-802, 650 Harry Road, San Jose, California 95120-6099.
: Computer and Information Sciences, University of California, Santa Cruz, California 95064. The

work of this author was supported by Office of Naval Research grant N00014-86-K-0454.
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ALGORITHM BOUNDED_REGION.

Begin
Read input;
BR := BACKSEQUENCE;
If BACKSEQUENCE returns failure condition then HALT in failure;
Call SCHEDULE (BR);

end BOUNDED_REGION.

3. Definitions. We shall assume that there is a set J of njobs, J(1), J(2), , J(n),
and a set M of m machines. Each job J(i) has a nonnegative integer processing
requirement, p(i), a nonnegative rational release time, r(i), and a nonnegative rational
deadline, d (i), with d (i) => r(i) + p(i). When we speak of a job J(i) being released by
time t, we mean that r(i)=< t. If job J(i) is started at time t, then it is finished at time
+p(i) and occupies the interval [t, +p(i)). A schedule SCH for a problem instance

J and M is an assignment of a nonnegative start time s(i) and a machine re(i),
0<= re(i)<= m- 1, for each J(i) J such that the following conditions hold.

(1) No job is started before its release time or finished later than its deadline,
i.e., s(i) => r(i) and s(i) + p(i) =< d (i).

(2) No two jobs overlap, i.e., if job J(i) is started at time on machine re(k),
then no other job assigned to m(k) is started in the interval [t, t+p(i)).

Note that in our definition of schedule preemption is not allowed, that is, once a

job has begun execution it cannot be interrupted and consequently must run until it
is completed.

Except for the section on NP-completeness, in which p(i) is allowed to assume
one of several integer values, we shall assume that p(i)- 1. For this case a schedule
consists of a sequence of start times, where a sequence S for n jobs and m machines
is a nondecreasing list of n nonnegative start times with the additional constraint that
for > rn the ith start time of the sequence is at least one unit greater than the (i m)th
start time. This constraint guarantees that no more than m jobs are being processed
simultaneously. We say that such a sequence S is of length n, i.e., ]SI n. If S is a

sequence with [S --n, then Si, =<i=< n, denotes the ith start time counting forward
from the beginning of the sequence. Likewise, S denotes the ith start time counting
backward from the end of the sequence. Note that Si--Sn+-i, for =<i<= n, and that

S is the ith smallest and S is the ith largest start time of S. Given a problem instance
J and M, a sequence S of length n is an r-sequence if there exists a 1-1 mapping s

(written s(i) instead of s(J(i))) from jobs to elements of S such that r( i) <= s( i).
Similarly, a sequence S of length n is a d-sequence if there exists a 1-1 mapping s

from jobs to elements of S such that s(i) =< d (i) 1. The aim is to produce an rd-sequence
of length n for the set of n jobs, namely, a sequence for which there exists a 1-1
mapping s such that r(i)<=s(i)<-d(i)-l.

Given a schedule SCH for a problem instance J and M, then the sorted list of
start times is clearly an rd-sequence. For the opposite direction, assume the m machines
are numbered 0, 1,..., m-1. Given an rd-sequence of length n for J, the jobs in J
can be assigned start times in SCH by applying the following Earliest Deadline Rule
first to S, then $2, then $3, and so on: the unscheduled job with the smallest deadline
from among all jobs released by time S is started at time S on machine mod m.

4. Bounded and forced regions. If the release times are integers, the deadlines
rationals, and the processing requirement one unit, then it is possible to construct a

schedule in linear time if one exists [3], [7]. (Recall that our definition of schedule is
an assignment of start times and machines to jobs.) A simple reduction from sorting
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shows, however, that the construction of an rd-sequence requires f(n log n) time. This
time bound is attained by the Earliest Deadline Algorithm [8], which constructs an
rd-sequence as well as a schedule for that sequence directly from the problem instance
in O(n log n) time. The Earliest Deadline Algorithm computes start time Si by setting
Si to be the minimum of the release times of the unscheduled jobs and Si-m + 1, for
> m. It then uses the Earliest Deadline Rule to select the job that is assigned start

time Si and machine mod m.
This approach fails if arbitrary rational release times and deadlines are allowed.

Intuitively, this happens for two reasons. First, jobs may be released during the time
that other jobs are already running. (Note that this can be avoided if the release times
are integers, since this implies that the start times can be constrained to be integers.)
Second, there may be a set of jobs all of which are released on or after some release
time, say r(j), and have deadlines less than or equal to some deadline, say d(i), such
that the jobs in this set fill up almost the entire interval between r(j) and d(i). If "too
many" jobs are started just before r(j), then these jobs will extend into the interval
Jr(j), d (i)), and there will not be enough space in which to schedule all the jobs from
the set. Consequently, it is necessary to bound the number of jobs that start less than
one unit prior to r(j). In the single machine case, it may be necessary to construct a
forbidden region in which no job can start. Such a region has length no greater than
one and has a release time as its right endpoint [5]. The m machine case becomes
more complex because there can be up to m such intervals, each interval having a
different length and a different restriction on the number of jobs that can start in its
interior, but having the same release time as its right endpoint.

A region is defined to be an interval, either opened at both ends or closed at both
ends. The length of a region is always no greater than one and can equal one only if
the region is an open interval. The BACKSEQUENCE Algorithm computes regions
in which at least k jobs must start in any rd-sequence. Because each job runs for one
unit of time, this implies regions in which at most m- k jobs are allowed to start in
any rd-sequence. We refer to such a region as a k-forced start region and an (m- k)-
bounded start region, respectively. We also say that k (respectively, m k) is the degree
of the k-forced (respectively, (m- k)-bounded) start region. If the region [c,/3] is a
k-forced start region, then the region (/3-1, a) is an (m-k)-bounded start region.
Note that if more than m- k jobs start in the region (/3-1, c), then k jobs cannot
start in the region [a,/3]. (We require that the parameter k always lies in the range
from one to m.) Lemma 0 below follows directly from the definitions of forced and
bounded regions.

LEMMA 0. If [a, ] is a k-forced region, then (- 1, or) is an (m-k)-bounded
region.

We say that an (m- k)-bounded start region is correct if there is no rd-sequence
for the problem instance in which more than (m-k) jobs start in the region. If a
sequence or schedule has no more than m-k jobs started in an (m-k)-bounded
region, we say that the (m- k)-bounded region has been avoided. If more than m- k
jobs are scheduled to start in a (m- k)-bounded region, then we say that the (m- k)-
bounded region is violated. The terms correct, avoided, and violated are defined similarly
for k-forced regions.

Forced and bounded regions always come in pairs. The reader should bear in
mind that we are concerned only with the number of jobs that actually start on all m
machines in such a region (as opposed to those that have started earlier and are already
running in the region). For reasons that will become apparent later, a k-forced region
has a release time at its left endpoint and an (m-k)-bounded region has a release
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time as its right endpoint. Bounded regions are open intervals and forced regions are
closed intervals.

4.1. How to avoil botmclel regions. We distinguish between two modes of con-
structing sequences. In the backward mode we select the latest possible start time by
scanning backward starting from a deadline. In the forward mode we select the earliest
possible start time for each job by scanning forward starting from a release time.
BACKSEQUENCE constructs n sequences using the backward mode starting from
each ofthe deadlines. At the end of each iteration, BACKSEQUENCE uses information
from the sequences it has constructed to create a new set of up to m bounded regions.
It then calls procedure ADD, which computes additional bounded regions implied by
those already constructed. Finally, forward sequencing is used in the procedure
SCHEDULE to construct the schedule for the problem instance.

Let S be a sequence, SI v. The subroutine NEXTFORWARD (S, BR, t), given
below, returns the smallest start time So such that sO_-> t, sO_>- S i, _-< =< v, and all the
bounded regions of BR are avoided by the start times of SIS, where denotes
"appended to." Note that if S’=SIS, then S’i-- Si-l, for _-< iN v+ 1. Similarly, the
subroutine NEXTBACKWARD (S, BR, t) returns the largest start time So such that
So_-< t, So_-< Si, for _-<iN v, and all the bounded regions of BR are avoided by Sol S.
We use both procedures iteratively to construct sequences that avoid all bounded
regions of BR. For examples of how bounded regions are avoided, see Figs. 3 and 4
in 11.

SUBROUTINE NEXTFORWARD (S, BR, t) (* returns minimum start time sO=>
such that the bounded regions of BR are avoided *)
(0) Let ISI v;

if v < rn then S := t- 1; (* This prevents S from being undefined *)
(1) S:= max (t, S1, Smq 1); (*This guarantees that SIS is a sequence *)
(2) process the bounded regions of BR in order of nondecreasing left endpoints:

let R be the next bounded region of BR, let rn-k be the degree of R, and let

fi- and cr be the left and right endpoints, respectively, of R;
if rn k <_- v then
if sm-k (/- 1, C) then S:= max {S, c}; (* So is increased by the minimum
amount such that the (rn k)-bounded region (fi 1, c) is avoided *)

(3) return (S).
SUBROUTINE NEXTBACKWARD (S, BR, t) (* returns maximum start time So -<
such that the bounded regions of BR are avoided *)
(0) Let ISI v;

if v < rn then Sm := + 1; (* This prevents S, from being undefined *)
(1) So := min (t, $1, Sm 1); (* This guarantees that Sol S is a sequence *)
(2) process the bounded regions of BR in order of nonincreasing right endpoints:

let R be the next bounded region of BR, let rn-k be the degree of R, and let

fi- and c be the left and right endpoints, respectively, of R;
if rn k _-< v then
if Sm-k e (/3 1, Or) then So: min (So,/3 1); (* So is decreased by the minimum
amount such that the (m k)-bounded region (/3 1, or) is avoided *)

(3) return (So).

LEMMA 1. Let S be a sequence with IS[ v in which all bounded regions of BR are
avoided. Then NEXTFORWARD computes the minimum start time So>- such that

SIS is a sequence and the bounded regions of BR are avoided.
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Proof Clearly, S_-__ t. Since S is a sequence, sO_-> S implies that sO_-> S i, _-< =< v.
Because S>- Sin+ for v_-> m, it follows that S[ So is a sequence. The regions are
processed according to nondecreasing left endpoint; consequently, So is never assigned
a value that violates a region that has been previously processed. (We could have
processed the bounded regions by right endpoint instead of left endpoint, as long as
the approach was used consistently throughout the processing of the bounded regions.)
Since So is increased only if it falls within an m k)-bounded region already containing
m k jobs, and since So is increased the minimum amount required to avoid the region,
So is the minimum start time greater than or equal to that avoids the bounded regions
of BR.

LEMMA 2. Let S be a sequence, with IS] v, in which all the bounded regions of BR
are avoided. Then NEXTBACKWARD computes the maximum start time So<= such
that Sol S is a sequence and the bounded regions of BR are avoided.

The proof is similar to the proof of Lemma 1.

5. Computing bounded regions by sequencing backward. Without loss of generality,
assume that the jobs are sorted by release times and renamed, so that r(1) _-> r(2) ->. _->

r(n). In addition, let d’(1),..., d’(n) be the set of deadlines listed in sorted order
so that d’(1)=<d’(2)=<.. .<=d’(n). Note that r(i) remains the release time for J(i)
but that d’(i) is almost certainly not the deadline for J(i). We call the index
of J(i).

Let E(i, j) be the set of jobs with index less than or equal to j and deadlines less
than or equal to d’(i), <= i, j <= n, and let ni := IE(i, j)[. Note that all jobs in E(i, j)
have release times that are at least as large as r(j). The BACKSEQUENCE Algorithm
(presented below) iteratively constructs a set of n sequences, SE [i], <=i-< n, and a
set of bounded regions BR. SE [i] corresponds to deadline d’(i), and the jth iteration
(1 =<j _-< n) corresponds to processing job J(j) with release time r(j). At the end of the
jth iteration SE i] contains n,..j start times for the jobs E(i, j). All these start times are
at most d’(i)- and are as late as possible subject to the constraint that all bounded
regions already constructed are avoided. (Details are given in Theorem 1.) Since no
job of E(i, j) is released before r(j), the algorithm stops in failure if SE [i] < r(j) for
some during the jth iteration. Also, if r(j)< SE i] and SE [i]- r(j)< 1, for some
i, then some job(s) of E(i, j) must be started in the interval [r(j), d’(i)-1). This
constraint triggers the creation of a bounded region with right endpoint r(j). The
bounded region guarantees that not too many jobs are started just prior to r(j) such
that they are running in the interval [r(j), d’(i)] and interfering with the scheduling
of Z(i, j).

SUBROUTINE BACKSEQUENCE
Initialize all sequences of SE [1..n] and BR to ;
(* SE [i] is the sequence ending at deadline d’(i) *)
(1) For j to n do (* Update SE [i] so that it contains precisely n0 start times *)
Begin for loop
(2) For all i, <= -< n, such that d’(i) _-> d(j) do

(* d(j) is the deadline of the job with release time r(j) *)
begin
(* since each value of corresponds to a different list, the order in which the
d’(i)’s are processed is irrelevant *)

So := NEXTBACKWARD (SE [i], BR, d’(i) 1);
SE [i]:: SoISE [i1;

end;
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(3) For
For l_-__i<n do

f := min (fk, SE [i]);
(4) If f < r(j), then declare "infeasibility" and halt;
(5) For k= to m do

If fg r(j) < then
BR:= BRU {the (m- k)-bounded region (f- 1, r(j))}.

End for loop;
Return BR;
End BACKSEQUENCE.

For the correctness proof below we use the notation BR [j] to denote the set BR after
the jth iteration of the global for loop of step (1). Examples of both the construction
of the sequences and the creation of the bounded regions by BACKSEQUENCE are
given in Figs. and 2 in 11.

THEOREM 1. Let j be between one and n. The following statements are true at the
completion of the processing of the jth iteration of the global for loop of BACK-
SEQUENCE.

(i) If BACKSEQUENCE does not halt in failure, then SE [i]1 => r(j) for all such
that SE [i] is not empty, and there is no d-sequence for Z(i, j) in which all regions of
BR [j are avoided whose kth smallest start time is larger than SE i], -< k _<-ISE i]1.

(ii) All regions of BR [j] are correct and are no more than one unit in length.
(iii) All regions of BR [j] are avoided by SE i] for all such that SE [i] is not empty.
Proof The proof is by induction on j. Let j 1. Then clearly SE [i]1--> r(j) for all

such that SE[i] is not empty (which in this case is all such that d’(i)>-d(1)).
Otherwise, BACKSEQUENCE would have halted at step (4). Furthermore, any d-
sequence could not have the last job in the sequence start later than SE i] d’(i) 1.
Since BR[0]=, there are no bounded regions for SE[i] to avoid. This proves
condition (i) for the base case.

If BR
Then f-r(1)<l in step (5), where f=d(1)-I (since SE[i]=d’(i)-I for d’(i) >
d(1)). Thus, [r(1),f] is a 1-forced region, which by Lemma 0 implies the correctness
of the (m 1)-bounded region (f 1, r(1)). Note that the latter region is of length no
greater than one, since otherwise we would have f < r(j), once again causing the
algorithm to halt at step (4). This proves the correctness of (ii) for the base case.
Finally, BR is avoided since SE [i] _-> SE ] _-> r(j) for all nonempty SE [i], which
proves the correctness of (iii).

Assume the lemma holds for j’-1; we now prove it holds for j’.
(i) If SE[i] is unchanged in iteration j’, then j’E,(i,j’), i.e., d(j’)> d’(i) and

by the induction assumption (i) holds forj =j’. Otherwise, it follows from the induction
assumption together with Lemma 2 that the value of So computed by NEXTBACK-
WARD is at least as large as the smallest feasible start time for SE [i]. Furthermore,
if one of the other start times of SE i] were not to satisfy condition (i), then we would
have a contradiction to the induction assumption that was made for j’-1. Finally,
since by (iii) all regions of BR [j’-1] are avoided by SE [i] after iteration j’-1, it
follows from Lemma 2 that (i) holds for j=j’.

(ii) Let (fk-1, r(j)) be an (m-k)-bounded region. Because of the way bounded
regions are constructed, we have r(j) <=fg, f r(j) < 1, and r(j)-(fg- 1) < 1. In
addition, for some i, SE [i]-< SE [i]2-<" "<-SE [i]k =fk. (Note that r(j)<=SE [i].)
Consequently, by condition (i), [r(j),fg] is a k-forced region, which implies by Lemma
0 the correctness of the (m k)-bounded region (fk- 1, r(j)).
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(iii) By induction we know that all regions of BR[j’-1] are avoided by SE [i]
after iteration j’- for nonempty SE [i]l. From Lemma 2 we know that if a new start
time is computed in step (2), it avoids the regions BR[j’-1]. Thus, SE [i] avoids
BR [j’-1] after iteration j’. Now, any new regions added to BR [j’] have their right
endpoints at r(j’). But by step (4) of BACKSEQUENCE, the values of SE [i] are at
least as large as r(j’). Consequently, these new regions are also avoided by SE i]. El

Assume BACKSEQUENCE does not halt in failure. Consider the sequence SE [i]
after the completion of BACKSEQUENCE. As the following 1-machine example
illustrates, the sequences SE [i] are not necessarily d-sequences for Z(i, n). Let r(1)
1.2, d(1)=4, r(2)= 1, and d(2)=2.5. Then SE[2]={2,3}. But if Y(2) is started at
either time 2 or time 3, it will not be completed by its deadline. However, the sequences
SE [i] are r-sequences for Z(i, n), as the following trivial algorithm demonstrates. If
J(j)(i, n), i.e., if d’(i)>= d(j), then schedule job J(j) at time So computed in step
(2) of BACKSEQUENCE during the jth iteration of the global for loop. Clearly, J(j)
will start no earlier than r(j) in any of the SE [i] that is updated in step (2), since
otherwise BACKSEQUENCE would have halted in step (4).

COROLLARY 1. For all bounded regions created by BACKSEQUENCE, (/3 1, a)
is an m- k)-bounded region if and only if a, is a k-forced region.

Proof If [cr,/3] is a k-forced region, then by Lemma 0, (/3-1, a) is an (m-k)-
bounded region. So suppose that (/3-1, a) is an (m- k)-bounded region. Since all
bounded regions are created in step (5) of BACKSEQUENCE, it follows that for some
value of i, SE[i] has k jobs starting in the region [a, 13]. By condition (i) of Theorem
1, it follows that it is necessary for k jobs to begin in the region [a,/3 ]. Hence, [a,/3
is a k-forced region.

COROLLARY 2. If BACKSEQUENCE does not halt in failure, then after the jth
iteration of the global loop, SE [i] does not violate any bounded regions of the final set

of bounded regions computed by BACKSEQUENCE.
Proof By (iii) of Theorem 1, SE [i] avoids BR [j]; because BACKSEQUENCE

does not halt in failure, SE i] >- r(j). Since all bounded regions computed at iteration
j or later have a right endpoint no greater than r(j), SE [i], as it is computed at the
jth iteration, avoids all of BR [n].

COROLLARY 3. If BACKSEQUENCE halts in failure, then there is no rd-sequence
for the problem instance.

Proof If the algorithm halts in failure for i= i*, j-j*, then it follows from
BACKSEQUENCE togethe,r with Theorem that r(j*)>f--SE [i*]= So (as com-
puted in step (2) of BACKSEQUENCE). Combining the fact that all jobs in Z(i*,j*)
have release time at least r(j*) together with the correctness of (i) of Theorem 1, we
get that there is no rd-sequence for Z(i*,j*) and hence for the entire problem
instance.

6. Regions may imply additional regions. If two bounded regions overlap and
together cover an interval of length greater than one, then they imply a new bounded
region. We call the set of regions created by BACKSEQUENCE original regions.

LEMMA 3. Let ( 1, or) be an original (m k)-bounded region, and let (’- 1,
be an original rn k’)-bounded region such that < a’ < ’ < a. Then [a’, is a

(k + k’)-forced region, (- 1, a’) is an (m- k-k’)-bounded region, and both regions
have length less than 1.

Proof Note that the (m-k)-bounded region (/3-1, a) strictly contains the k’-
forced region [c’,/3’]. By Corollary 1, [c,/3 and [a’,/3’] are k- and k’-forced regions,
respectively. Since /3’< a, [c,/] and [a’,/3’] do not overlap. /3-1 < or’ implies that



MULTIPROCESSOR SCHEDULING OF UNIT-LENGTH JOBS 697

/3- c’< 1. Therefore, c’,/3 is a (k + k’)-forced region that, by Lemma 0, implies the
(m- k-k’)-bounded region (/3-1, or’) (see Fig. 4).

To prove that the regions are well defined, we must show that k + k’_-< m. Assume
for contradiction that k’> m- k. Then it follows from BACKSEQUENCE that at the
completion of the iteration in which the (m k’)-bounded region (/3’- 1, c’) is created
there is some value I such that there are at least k’ elements of SE [I] within the
interval [c’,/3’]. But then at least one of these start times will violate the (m-k)-
bounded region (/3-1, c). (Since c > c’, we know that the (m- k)-bounded region
(/3-1, c) is computed prior to the processing of release time or’.) Therefore, at least
one value of SE [I] will be set to/3- 1. But (/3- 1)< or’, so BACKSEQUENCE will
declare infeasibility and halt. Consequently, the region (/3’-1, or’) would not have
been declared. Finally, the fact that c’ lies between/3-1 and/3 trivially implies that
the regions (/3- 1, or’) and [or’,/3] have length less than one.

The bounded regions implied by Lemma 3 are computed by the subroutine
ADD (BR), presented below. Note that the only overlapping regions that are examined
by ADD are regions that are in the set BR.

SUBROUTINE ADD (BR) (* Computes the additional bounded regions implied by
Lemma 3 *)
ADDITIONAL:= :
For all pairs of original bounded regions (/3-1, c) and (/3’-1, c’) of BR such that
(/3-1, c) is an (m-k)-bounded region, (/3’-1, c’) is an (m-k’)-bounded-region,
and/3- < a’= r(j) <fl’< a do

ADDITIONAL:= ADDITIONALU {the (m k- k’)-bounded region (/3 1, ’)}.

BR := BR (J ADDITIONAL;
end ADD.

We call the set of regions created by ADD additional regions. It follows from the
statement of Lemma 3 together with ADD that additional bounded regions are precisely
those bounded regions that Lemma 3 proves correct. Note that to incorporate ADD
into the algorithm, we need only add the following instruction to the global for loop
of step (1) of BACKSEQUENCE.

(6) Call ADD (BR);

A more efficient routine for computing the regions implied by Lemma 3 called
FASTADD is given in 8.

Remark. It is easy to see that Theorem and Corollaries 1, 2, and 3 still hold
after the insertion of step (6) in BACKSEQUENCE. Observe that when an additional
bounded region (/3 1, r(j)) is created, all entries in the sequences SE [. are at least
r(j). Thus, the additional regions are never violated when they are created, and they
are avoided during later iterations in the same manner that the original regions are
avoided.

An obvious question is whether or not the additional regions are necessary. As
Figs. 3 and 4 in 11 demonstrate, NEXTFORWARD might return a start time that
violates an additional bounded region if the additional bounded regions are not
incorporated into the algorithm. Consequently, the resulting sequence is not a d-
sequence. Figure 4 in 11 is an rd-sequence that does not violate the additional
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bounded region. Thus, additional bounded regions are necessary if BACKSEQUENCE
is used to create the regions that are used to construct r-sequences.

7. Producing the final schedule. In this section we show how to produce an
rd-sequence and a schedule using the set of regions created by BACKSEQUENCE
and ADD.

SUBROUTINE SCHEDULE (BR) (* constructs an rd-sequence by iteratively com-
puting the earliest possible start time and then assigning a job to the newest start time *)
S:=O;
For/--1 to n do

(1) Let r be the minimum release time of all unscheduled jobs;
(2) Si := NEXTFORWARD (S, BR, r); S := S Si;
(3) Use the Earliest Deadline Rule to select the job that starts at time S on

machine mod m;
end SCHEDULE.

LEMMA 4. SCHEDULE produces an r-sequence in which all bounded regions are
avoided.

Proof The selection of r in step (1) guarantees that there is always some
unscheduled job that has been released by the time returned by NEXTFORWARD.
In addition, by Lemma all bounded regions are avoided.

Let S be a sequence, and let J(i) be the job that is assigned start time S by the
Earliest Deadline Rule. We say that J(i) is in slotj of sequence S. We also say that
slot j contains J(i) in sequence S. When speaking of slots, we shall omit the sequence
name if the reference is unambiguous.

LEMMA 5. Let S be the r-sequence produced by SCHEDULE, and let So-=-c. If
some job in the schedule produced by SCHEDULE is completed after its deadline, then
there exist v, w, i, and j such that

(1) The jobs in slots v, v + 1,. , w consist exactly of the set Z( i, j);
(2) Sw + > d’( i), i.e., some job of 2,(i, j) is finished after its deadline;
(3) Sv_, < r(j) <- Sv.
Proof Let X be the job in S that is finished later than its deadline and is in the

largest numbered slot, say w, of all such jobs. That is, d(X)= d’(i) for some i, and
Sw + > d’(i). It follows from the choice of X that all jobs with deadlines no greater
than d’(i) are in slots numbered no greater than w.

If all jobs in slots through w have deadlines no greater than d’(i), then by setting
v and j--n, we get that conditions (1)-(3) of the lemma are satisfied. Otherwise,
let v-1 be the largest numbered slot less than w that contains a job with deadline
greater than d’(i). Let r be the minimum release time of the jobs in slots v through
w, and let j be the maximum such that r= r(j). Note that E(i, j) consists of all jobs
with release time at least r(j) and deadline at most d’(i). Since S is an r-sequence, it
follows that r(j)<-S. Furthermore, since slot v-1 contains a job with a deadline
larger than the deadlines of the jobs in slots v through w, it follows from the Earliest
Deadline Rule that none of the jobs in slots v through w was available at time S_.
Therefore, S-l < r(j)<--S, and condition (3) of the lemma is proved. All the jobs in
slots v through w are in E(i, j), i.e., they must have deadlines at most d’(i) (from the
choice of v) and release time at least r(j) (from the choice ofj). Also no jobs of E(i, j)
are scheduled in slots 1 through v-1, since they are not yet released. Similarly, no
jobs of E(i, j) appear in slots w + 1,..., n: the jobs of E(i, j) have deadlines at most
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d’(i), and thus they would be late if they were scheduled in slots w + 1 through n; but
w is the last slot with a late job. This shows that condition (1) holds, and completes
the proof of the lemma.

LEMMA 6. If V, W, i, j are chosen as in Lemma 5 with the additional constraint that
nj is minimal, then the following condition holds"

(4) If a job from slots v through w starts at its release time, then it starts at S.
Proof Assume that Lemma 5 holds for v, w, i, and j, with nij being minimal, and

that condition (4) does not hold. In other words, there is some slot v’, v < v’_-< w, such
that the job in slot v’ has release time S,. Let j’ be maximum such that r(j’)= S,.
Now conditions (1), (2), and (3) of Lemma 5 hold for v’, w; i, and j’, and no,<nj.
This contradicts the minimality of nij.

For the remainder of this section we assume that S is the sequence constructed
by SCHEDULE and that some job in the schedule produced by SCHEDULE is
completed after its deadline. Let v, w, i, and j be chosen to satisfy Lemmas 5 and 6.
Recall that SE [i] corresponds to deadline d’(i) and that the jobs in Z(i, j) all have
deadlines less than or equal to d’(i).

To simplify the notation, let Fq_+ denote Sq, 0 <-q <-n. Then the relevant start
times in S for the jobs in E(i,j) are F, F2,’’’, Fni.j instead of S, S+1,’’’, Sw.
Condition (3) of Lemma 5 now states that Fo < r(j)<-F. (Recall that So

We compare the start times Fq to the start times of the sequence SE [i] computed
by BACKSEQUENCE in iteration j. Again for the sake of notation, let Bk SE [i]k
after iteration j, 1-<_ k-< n,..j. It follows from the construction of SE [i] and from the
fact that BACKSEQUENCE did not halt at step (4) that r(j)<-B <= B2<- <= Bn,.j <=
d’(i)- 1.

LEMMA 7. ffq <= Bq, < q <= n!.
Before we prove Lemma 7, observe that since its correctness implies that F,. =<

B,. <_- d’(i) 1, we get an immediate contradiction to the assumption that job X, which
is scheduled in slot w in S, is finished later than its deadline of d’(i). Therefore,
Lemmas 4 and 7 imply the following theorem.

THEOREM 2. SCHEDULE produces an rd-sequence and a schedule.
Proof of Lemma 7. Assume q is the minimum value such that Fq Bq. Since the

value of Fq is assigned either in step (1) or in step (2) of" NEXTFORWARD and there
are three different possible assignments for step (1), we break the analysis into four
cases.

Case 1. Fq= Fq_l (SO:= S in step (1) of NEXTFORWARD). Since condition (3)
of Lemma 5 implies that F1 > Fo, we have in this case that q > 1. But Fq Bq Bq_
leads to Fq_ Bq_, and this contradicts the minimality of q.

Case 2. Fq Fq_m + (SO := S + in step (1) of NEXTFORWARD). If q m _-> 1,
then Fq_, Bq_ Bq Fq Fq_ + 1. This implies that Bq Bq_m 1, which contra-
dicts the fact that SE [i] is a sequence (Lemma 2).

If q- m < 1, then by condition (3) of Lemma 5 Fq_m <= Fo < r(j). Now, Fq > Bq
and Fq=Fq_m+l imply that Bq<r(j)+l. Since r(j)<=B<=...<-_Bq<r(j)+l,
Jr(j), Bq] is a q-forced region and (Bq 1, r(j)) is an original (m q)-bounded region.
Since Bq 1 < Fq Fq_m and since Fo < r(j), we have that Fq._r, Fq_m+,
start in the (m- q)-bounded region (Bq-1, r(j)). Therefore, there are m-q+ start
times in the (m-q)-bounded region (Bq-1, r(j)), and this region is violated by S.
This contradicts Lemma 4, which states that the sequence produced by SCHEDULE
does not violate any bounded regions.

Case 3. The job started at Fq in S has release time Fq (S:= and r-= mini-
mum release time of all unscheduled jobs when NEXTFORWARD is called by



700 B.B. SIMONS AND M. K. WARMUTH

SCHEDULE). By condition (4) of Lemma 6, q can only be 1. Therefore, when
NEXTFORWARD is called, all jobs of E(i, j) are unscheduled. Thus, r--Fq r(j).
Now the assumption that FI> B implies Bl<r(j), contradicting condition (i) of
Theorem 1.

Case 4. Fq received its final value in step (2) of NEXTFORWARD (to avoid
violating a bounded region). This implies both that there exists an original p-bounded
region (/3 1, Fq) and that S has p start times within that region. These start times are

< Bq_p+l <" < Bq < Fq. ThisFq_p, Fq_p+l, Fq_ If q > p, then Fq_p <= Bq_p
implies that SE [i] violates a bounded region, which contradicts Corollary 2.

Assume that q _<-p which implies that/3-1 < Fq_p < r(j). Recall that (/3-1, Fq)
is a p-bounded region. Since all B1, B2,’’ ", Bq lie within Jr(j), Bq], (Bq-1, r(j)) is
an original (m-q)-bounded region. Combining inequalities, we have /3-1 < r(j)<
Bq < Fq. Therefore, the conditions of Lemma 3 hold, with a Fq, rn- k p,/3’=
a’= r(j), and k’= q. Thus, (/3-1, r(j)) is a (p-q) additional bounded region. We
know that the interval r(j), Fq) contains q start times from S, namely F, ,
and that Fo < r(j). Because the p-bounded region (/3-1, Fq) contains p start times
from S, it follows that (/3 1, r(j)) contains p q + 1 start times from S, which violates
the additional (p- q)-bounded region (/3-1, r(j)).

COROLLARY 4 (to Theorem 2). There is no rd-sequence that has a qth smallest time
smaller than the qth smallest time of the sequence S produced by SCHEDULE, -< q =< n.

Proof Suppose for contradiction that S’ is an rd-sequence with start times
S, S,..., S’, and let q be the minimum value such that S<Sq. As in Lemma 7,
we analyze the four cases for the assignment of the value of Sq.

Case 1. Sq Sq_ This is contradicted by Sq_ S;_ S; < Sq.
Case 2. q > m and Sq Sq_rn -- 1. Again we get a contradiction since Sq_rn <= Stq_m

Sq < Sq Sq_ -- implies that S; < S_,, + 1.
Case 3. Sq is the minimum release time of all the jobs in slots q through n in S.

None of the jobs in slots q through n in S can be scheduled in slots through q of
S’ since S < Sq. But this is impossible since it is not possible to place n-q + jobs
in slots q + through n of S’.

Case 4. There exists a k-bounded region (/3 1, Sq) and there are k jobs starting
in (/3-1, Sq) in S. It follows from the definition of q that Sq_ k

< Stq_k =< Sq-k+l =<" "<=
S’q < Sq, and hence (/3- 1, Sq) is violated by S’, contradicting the assumption that S’
is an rd-sequence.

In particular, Corollary 4 implies that the output of SCHEDULE has minimum
makespan over all schedules that observe the release time and deadline constraints.

8. An O(mn2) implementation of BACKSEQUENCE. We first indicate how to
speed up the running time of ADD. For each value of j for which BR (j) has been
computed by BACKSEQUENCE, only the largest of each of the (at most) m regions
is recorded in step (5). Thus, the total number of regions is O(mn). If (/3 1, r(j)) is
an original k-bounded region, then all possible additional regions that are implied by
( 1, r(j)) can be computed in O(mn) time. However, since there might be m original
regions computed by BACKSEQUENCE for r(j), the running time could be O(m n2)
for the entire algorithm. This can be avoided by methodically checking for overlapping
regions.

Let B-REGION be an mn array. When an original (m-k)-bounded
region (fk-1, r(j)) is created by BACKSEQUENCE, set B-REGION (rn-k,j):=
fk-1, l<-k<=m. Note that B-REGION(m-I,j)<-B-REGION(m-2, j)-<...=<
B-REGION (0, j).
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SUBROUTINE FASTADD (j) (*j is the j-value that has just been processed by
BACKSEQUENCE *)
(1) q:=j-1; (* start by comparing with B-REGION (*,j-l) *)
(2) while q>0 and O<r(q)-r(j)<l do (* B-REGION (*, q) is the next one to
check *)

(3) Compute K and W such that:
(3a) K := minimum value of k such that B-REGION (m k, q) < r(j);
(3b) W:-minimum value of w such that B-REGION(m-w,j)<r(q)-I;

(4) If K and W are both defined then (* the necessary condition for additional
bounded regions *)
for k:= K downto 1 do
If f,,-w-k)-l> B-REGION (m-k, q) then replace the (m- W-k)-
bounded region (f,,_w_k)-l,r(j)) with (B-REGION(m-k,q), r(j))
(* update fm_W-) because of additional region *)

(5) q := q 1; (* compare with the next set of regions *)
end while statement;
end FASTADD.

LEMMA 8. The total amount oftime required by all the calls to FASTADD is O(mr/2).
Proof There are O(n) calls to FASTADD. For each call to FASTADD there are

at most O(n) iterations of the while loop with each iteration requiring O(m) time for
step (3) and O(m) time for step (4). [3

The speedup of FASTADD depends on the following observation.

(*) If(/3- 1, a)isbothan(m-k)-boundedregionandan(m-k’)-boundedregion,
for k’-< k, then the (m- k’)-bounded region is redundant.

The correctness of (*) follows immediately from the definition of bounded regions
and implies that the (m- k’)-bounded region can be discarded.

LEMMA 9. The additional bounded regions created by FASTADD are correct.

Furthermore, all additional bounded regions created by ADD that are not created by
FASTADD are redundant.

Proof Lemma 3 implies that any (m W- K)-bounded region created by FAST-
ADD for k K is correct. Since B-REGION (m- k, q)=< B-REGION (m- K, q) for
k<-K, it follows that B-REGION(m-K,q)<r(j) implies that B-REGION(m-
k, q) < r(j), k<- K. Since B-REGION (m- W, j) < r(q)- l, the conditions of Lemma
3 hold for k _-< K, and therefore the (m W- k)-bounded regions created by FASTADD
are correct. By (*) any bounded region implied by B-REGION (m- w, j) for w _-< W
is redundant. The definition of W implies that there are no additional regions created
by B-REGION (m-w, j) for w> W. [3

We remind the reader that ALGORITHM BOUNDED_REGION, referred to
below, is the main procedure that is presented at the beginning of this paper.

THEOREM 3. The running time of ALGORITHM BOUNDED_REGION is
O(mn2).

Proof We first show how to implement SCHEDULE in O(mn log n) time. Steps
(1) and (3) of SCHEDULE cost only O(n log n) overall to implement. To implement
step (2) efficiently, we make m sorted lists of bounded regions with each list containing
no more than n regions as follows. For 0 =< k _-< m 1, sort the O(n) k-bounded regions
by their left endpoints, with ties being broken by the right endpoint. This takes
O(mn log n) time. The ordered lists of regions are examined in step (2) of NEXTFOR-
WARD starting from the 0-bounded regions and ending with the (m-1)-bounded
regions. A pointer associated with each list of regions denotes the region most recently
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examined. This pointer is updated to the next region on the list whenever a slot is
moved through a region. If the start time of So is increased because of a /c-bounded

region, step (1) of NEXTFORWARD guarantees that all start times that are sub-
sequently computed will be at least as large as S. Therefore, once the start time of a
slot is moved through a region, that region will never again have to be examined.
Consequently, the total number of times that all regions are examined by NEXTFOR-
WARD is O(mn), and each region is examined in O(1) time.

We now show that BACKSEQUENCE can be implemented in O(mn2) time. This
is easy to verify for all but the calls to NEXTBACKWARD. Note that we have already
shown how to implement ADD efficiently (Lemma 9). When we use the same technique
as was used to implement step (2) of SCHEDULE, all calls associated with SE [i] can
be processed in O(mn) time. Note that the bounded regions are created according to
the sorted right endpoint, which is the order required by NEXTBACKWARD. For
each of the n sequences SE [i] the list of bounded regions needs to be scanned only
once. Thus, BACKSEQUENCE has running time O(mn2). [3

9. NP-completeness results. The NP-completeness proofs are reductions from the
following problem that has been shown to be strongly NP-complete in [6].

1/1/1 SCHEDULING.
Instance: Set T of triplets that are to be executed in the time interval [0, 3f), with

[T t. A triplet consists of three unit-length jobs, each of which has an integer release
time that is at most 3f-1.

Question: Is it possible to schedule f triplets of T on one machine in the time
interval [0, 3f) such that all 3f jobs are started no earlier than their release times?

For the sake of completeness of this paper we present an alternative reduction
for the I/I/l-scheduling problem to that given in [6].

THEOREM 4. 1/1/1 scheduling is strongly NP-complete.
Proof The reduction is from the strongly NP-complete 3-partition problem [4].

3-PARTITION.
Instance: A multiset Q of 3m natural numbers {hi: 0 -< i-<_3m-1} and a natural

3rn-1
number B, with i=o ni mB.

Question: Can Q be partitioned into m 3-element multisets Q1, Q2," ", Qm such
that the numbers in each Qi sum to B?

Given an arbitrary instance of 3-partition as defined above, we assume without
loss of generality that np_ _-< np, for =< p _-< 3m- 1. We define Q’ to be the set of all
possible combinations of three elements of Q that sum to B. Each triple of numbers
(ni, nj, nk) of Q’ corresponds to a triplet of jobs (J( i), J(j), J(/c)) with release times
i, j, and /c, respectively. Let T be all such corresponding triplets of jobs. The instance
of 1/1/1 scheduling consists of T and the interval [0, 3m), with f= m.

Note that ITI < (3m) and r(i)<=3m-1, for all jobs of T. Thus, even with a unary
encoding of the release times this reduction is polynomial.

Given a solution to the 3-partition problem, it is easy to produce a schedule for
the l/l/l-scheduling problem. Each Qi in the solution to the 3-partition instance
corresponds to a triplet of T. We simply schedule the jobs in the corresponding triplets
at their release times. The resulting schedule maps the jobs onto the start times
{0,..., 3m-l}.

The definition of 1/1/1 scheduling given in [6] uses deadlines instead of release times as is done here.
However, the definitions are symmetric.
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Given triplets T, , Tm and a one-processor schedule SCH of the corresponding
3m jobs onto {0,..., 3m-1}, we have

3m-1, hi-- Z ns(i)--mB.
i=0 k J(i) T,

Since no job starts before its release time and since n,_ =< n, it follows that

n.i)>= nr(i=B for l<-k<-m.
J(i)G Tk J(i) Tt,

We conclude that ,J(-r,, n) B, for l<-k<-m, and thus the rn sets {n.(" J(i) Tk}
constitute a solution to the instance of 3-partition.

PROBLEM A. Instance" rn identical machines and n jobs, each job having a release
time of 0, an integer deadline, and length 1, 3, or q, for some integer q.

Question" Does there exist a valid schedule for the set of jobs?
THEOREM 5. Problem A is strongly NP-complete.
Proof Let T={T(i)’O<=i<=t-1} and f be an instance of 1/1/1 scheduling.

Denote the triplet T(i) as (T(i, 1), T(i, 2), T(i, 3)), and the release time of T(i,j) as
r(i,j). Without loss of generality we assume that r(i, 1)<r(i, 2)<r(i, 3). (If r(i,j)=
r(i, k), then one of these release times can be increased by one since the jobs are
identical.)

The corresponding instance of Problem A consists of machines, numbered
0, 1, (")" t-1, and the following set4(,_lof jobs (see Fig. 5 in 11):

A set of filler jobs F=Ui= F(i). The subset F(i) contains t-[i/4] filler
jobs F(i,j) each of which has length one such that d(F(i, j)) i, l <-j <-
t-[i/4].

(2) A set of chain jobs C=U=0 C(i). The ith chain C(i) corresponds to the
triplet T(i). It contains 3f+2 chain jobs C(i, j), <-j<-3f+2, each of which
has length q =4t such that

d(C(i,j))---4i+jq

4i +jq +

=4i+jq+2

=4i+jq+3

for <-j<- r(i, 1)+ 1,

for r(i, 1)+ <j<=r(i, 2)+ l,

for r(i, 2)+l<j<-r(i, 3)+l,

for r(i, 3)+ <j=<3f+2.

(3) A set of interval jobs I= {I(j): <-j<-3f} each of which has length 1, with
d(I(j))=(j+l)q-1. I(j) corresponds to the interval [j-l,j) in the 1/1/1
schedule.

(4) A set of pusher jobs P= {P(i): <-iN t-f} all of which have length 3, and
deadline (3f+ 2)q- 1. The pusher jobs correspond to the unscheduled triplets.

Let T’ be a solution to the instance of 1/1/1 scheduling, that is, T’ is a subset of
f triplets of T for which there exists a schedule SCH /1/1 on one machine with all jobs
appearing in the interval [0, 3f). We construct a schedule SCHA for the corresponding
instance of Problem A. (See Fig. 5 in 11.)

Machine i, 0_-<i<- t-1, contains 4i filler jobs in the interval [0, 4i). The chain
C(i), for 0<- iN t-l, is scheduled on machine i. We distinguish between two cases:

Case T(i) : T’. Job C(i, j), for <=j <- 3f+ 1, is scheduled on machine finishing
at 4i+jq. The only exception is the last chain job C(i, 3f+2) of C(i). It finishes at
4i + (3f+ 2)q + 3 instead of three time units earlier so that a pusher job can be scheduled
in the interval [4i+(3f+ 1)q, 4i+(3f+ 1)q+3) on machine i.
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Case T(i) T’. In this case three interval jobs of length are scheduled on machine
instead of one pusher job. Without loss of generality we can assume that T(i, 1)

precedes T(i, 2) and T(i, 2) precedes T(i, 3) in SCH//, since r(i, 1) < r(i, 2) < r(i, 3).
Otherwise, we could swap the jobs of T(i) to make them appear in the above order.

Assume that T(i, 1), T(i, 2), and T(i, 3) are scheduled in the intervals [j 1, j),
[k- 1, k), and [l- 1, l), respectively, in SCH/1/1. Schedule the interval jobs I(j), I(k),
and I (1) on machine such that they finish at times 4i +jq + 1, 4i + kq + 2, and 4i + lq + 3,
respectively. Schedule the chain jobs of C(i, r) on machine such that they finish at
the following times:

4i+rq for l<=r-<j,

4i + rq + for j < r <= k,

4i+rq+2 for k<r<3f+2,

4i+rq+3 for r=3f+2.
This completes the construction of SCHA. Note that all jobs of the instance of A are

completed before or at their deadlines.
To show the reverse, suppose we are given a schedule SCHA for the instance of

A. We want to show that SCHA determines a subset T’ of f triplets of T such that
there exists a schedule SCH// for T’ on one machine in the interval [0, 3f).

CLAIM A. (i) The jobs C (i, 1), for 0 _-< _-< 1, are scheduled on different machines
in SCHA. Without loss of generality, assume C(i, 1) is scheduled on machine i.

(ii) The filler jobs are scheduled in SCHA such that the interval [0, 4i) of machine
is occupied with filler jobs and C(i, 1) is scheduled on machine such that it finishes

at 4i+ q, 0=<i <- t-1. (See Fig. 5 in 11.)
(iii) All jobs of the chain C(i) are scheduled on the machine in SCHA. The job

C(i,j) can have one of at most four different finishing times in SCHA: 4i +jq, 4i +jq + 1,
4i +jq + 2, or 4i +jq + 3.

(iv) Machine i, 0-< i-< t- 1, contains either three interval jobs of length one, or
one pusher job of length 3.

(v) The set T’= {T(i): machine in SCHA contains interval jobs} is a solution
of the instance of 1/1/1 scheduling. Assume SCHA is normalized, where by normalized
we mean that no interval job can be moved to the right by swapping it with the chain
job or interval job that is following it on the same machine. Then l(j), for 1-<_j-< 3f,
is scheduled in the interval [jq, (j + 1)q-1) in SCHA. We can construct a schedule

SCH1//1 for T’ as follows. If I(j) is the kth interval job on machine i, -< k=<3, then
schedule job T(i, k) in the interval [j-1,j) of SCH//1.

Proof of (i). Assume two .jobs C(k, 1) and C(k’, 1), k < k’, are scheduled on the
same machine in SCHA. Since chain jobs have length q, the earliest time both jobs
can finish is time 2q. This contradicts the assumption that there is a feasible schedule
for Problem A since, for 0N iN t- 1, d(C(i, 1))_-< d(C(t- 1, 1)) =4(t- 1)+q <2q.

Proof of (ii). The job C(0, 1) has to start at time 0 and finish at its deadline q.
Assume -j_-< 4. Then, since IF(j)[ t- 1, and the jobs of F(j) have deadline j, the
intervals [j-l, j) of machines through t-1 of SCHA must be occupied with the
filler jobs of F(j). This implies that C(1, 1) is started at time 4 in SCHA and finished
at its deadline 4 + q. Simple induction on j implies that the jobs of F(j) are scheduled
on machine [j/4] through and that C(i, 1) starts at 4i and finishes at its deadline 4i + q.

Proof of (iii). We define the lexicographic order _-< on the tuples (i, j) as follows.
If < t- 1, then (i, j) immediately precedes (i+ 1, j); otherwise, t- 1 and (t- 1, j)
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immediately precedes (0, j + 1). We use this lexicographic order to do an induction
on the index tuple (i, j) of C(i, j).

The base case that (iii) holds for (i, j) =< (t 1, 1) follows from claim (ii). Assume
that (iii) holds for all jobs C(i, j) such that (i, j) _-< (i’, j’). Let (i*, j*) be the next tuple
after (i’, j’) in the lexicographic ordering. By induction we know that machine is
busy in the interval [4i+(j-1)q+3, 4i+jq), for (i, j)_-< (i’, j’), since it is executing
C(i, j). In particular, all machines such that iS i* are busy in the interval [4i*+
(j*-l)q+3, 4i*+(j*- 1)q+4). Since d(C(i*, j*))<-4i*+j*q+3, we conclude that
C(i*, j*) has to be executed on machine i*. Clearly, C(i*, j*) has to be completed
by its deadline, since SCHA is a valid schedule. The fact that C(i*, j*) has to be
finished at time 4i* +j*q or later follows by induction, since C(i*, j*- 1) is finished
at time 4i*+ (j*-1)q or later. This completes the proof of (iii).

Proof of (iv). From (i) and (iii), we know that machine of SCHA receives 4i
filler jobs of length and 3f+ 2 chain jobs of length q. The deadlines of the pusher
jobs and interval jobs are no greater than (3f+2)q-1. Therefore, the last job on
machine i, for 0=<i=<t-1, is the chain job C(i, 3f+2). Since d(C(i, 3f+2))=
4i +(3f+ 2)q+ 3, it follows that there are exactly three units available on machine
for interval and pusher jobs. This gives us 3t time units for interval and pusher jobs
on all machines. Since there are 3f interval jobs of length and t-f pusher jobs of
length 3, we conclude that each machine of SCHA contains either three interval jobs
or one pusher job.

Proof of (v). Assume SCHA is normalized and assume by contradiction that I(j)
is an interval job that is scheduled in the interval [lq, (l + 1)q- 1), for some <j. If
I(j) is scheduled on machine i, then by (iii), it has to be scheduled between the chain
jobs C(i,l) and C(i,l+l) in the interval [4i+lq, 4i+lq+3). Since d(C(i,l+l))<=
d(C(t-1, l+ 1))-<_ (/+2)q _-< d(I(j)), we can move I(j) past C(i, 1+ 1) as follows.
Iteratively swap l(j) with the interval jobs between I(j) and C(i, l+ 1), and finally,
swap I (j) with C (i, + 1). The fact that I (j) could be swapped with a chain or interval
job to its right contradicts the fact that SCHA is normalized. We conclude that =j
and that I(j) is scheduled in the interval [jq, (j+ 1)q-1) in SCHA.

To complete the proof of (v), we need to show that the constructed schedule
SCH//1 is a valid schedule for T’, that is r(i,k)<-_j-1, for l_-<k<-3. By (iii), we
know that I(j) is scheduled between C(i, j) and C(i, j+ 1) in the interval [4i+jq, 4i+
jq + 3) on machine i. Since k- interval jobs are scheduled before I(j) and 3 k after
I(j) on machine i, it follows that I(j) is executed in the interval [4i +jq + k 1, 4i +jq +
k) on machine i. This implies that d(C(i,j+l))_->4i+(j+l)q+k and therefore by
the definition of the deadlines of the chain jobs, we have r(i, k)+ <j + 1, which is
equivalent to r(i, k) -<j 1. This completes the proof of Claim A and the theorem. [3

In Problem B instead of having jobs of length 3 as in Problem A we have arbitrary
integer release times as well as arbitrary integer deadlines.

PROBLEM B. Instance: m identical machines and n jobs, each job having a re-
lease time and deadline that are arbitrary integers, and having length or q, for some
integer q.

Question: Does there exist a valid schedule for the set of jobs?
The reduction for B is similar to the reduction for A. The jobs of length 3 in the

reduction of A are replaced in B by an additional set of jobs R, all of which have
length or q.

THEOREM 6. Problem B is strongly NP-complete.
Proof In Problem A the length-3 jobs were used to guarantee that either three or

zero interval jobs were scheduled on a machine. In the latter case the machine received



706 B.B. SIMONS AND M. K. WARMUTH

a pusher job of length 3. In the reduction below the same set of jobs is used as in
Theorem 5 except that the length-3 pusher jobs are replaced by R.

The slack, A(J) of job J is defined to be the difference d(J)-r(J)-p(J). The
jobs of R have release time at least (3f+ 2)q. Thus, for any machine i, 0_-< _-< 1, in
a valid schedule all jobs of R follow all other jobs. The set R consists of the following
sets of jobs"

A set offramejobs a A i)" 0 -<_ }, with r(a(i) (3f+ + 3) q + 4i + 3,
d(A(i))= r(a(i))+ q, and p(a(i))= q. Note that/X(A(i)) 0.

(2) Aset of gliderjobs G=i:1G(i), with G(i)={G(i,j)’j t-i,O<-j<-_t-1},
r(G(i,j))=(3f+Z+j)q+4i, d(G(i,j))=r(G(i,j))+q+3, and p(G(i,j))=
q. Note that A(G(i, j)) 3.

(3) A set of early jobs E={E(i)’O<-i<=t-1}, with r(E(i))=(3f+2)q+4i,
d(E(i))=(3f+t-i+3)q+4i+3, and p(E(i))=q.

(4) A set of late jobs L={L(i)’O<=i<=t-1} with r(L(i))=r(E(i))+3, d(L(i))=
d(E(i))-3, and p(L(i))= q.

(5) A set of stuffer jobs U={U(i)" l<=i<=3(t-f)}, with r(U(i))=(3f+t+3)q,
d(U(i))--(3f+t+4)q-1, and p(U(i))= 1.

The jobs of R can be scheduled such that A(i), G(i), E (i), and L(i), for 0-< =< 1,
appear on machine in one of the following two ways. (See Fig. 6 in 11.)

Case 1. E(i) starts at (3f+2)q+4i on machine i. E(i) is followed by G(i, 1),
G(i, 2), , G(i, t-i-l), L(i), G(i, t-i+ 1),. , G(i, t),threestufferjobs, anda(i).

Case 2. L(i) starts at (3f+ 2)q + 4i + 3 on machine i. L(i) is followed by G(i, 1),.., G(i,t-i-1), E(i), G(i,t-i+l),..., G(i,t),a(i).
Since [U 3(t-f), case 1 occurs exactly t-f times and case 2 occurs f times.
To show that R has to be scheduled as outlined above, we prove the following

claim (see also Fig. 6 in 11). Note that the jobs of R have the same function as the
pusher jobs of the previous reduction.

CLAIM B. For 0_-< _-< 1, (i) Machine receives + 2 jobs of length q of R. The
last job of R of length q on machine is A(i).

(ii) The vth job of R of length q on machine starts either at time (3f+2+
v-1)q + 4i or no more than three time units later. The job G(i, j), for j # t-i, 1 _-<

j _-< t, is the (j + 1)st job of R of length q on machine i.
(iii) The jobs E (i) and L(i) share the first and (t + 1)st position of the length

q jobs of R on machine i.

(iv) The first job of R is an early job on eactly (t-f) machines, and a late job
on the remaining f machines. In the case where the first job on machine is E(i), the
start time for E(i) is (3f+ 2)q + 4i, and three stuffer jobs are scheduled before A(i).
In the case where the first job on machine is L(i), L(i) begins at (3f+ 2)q + 4i + 3.

Proof of (i). Since all frame jobs A(i) start at (3f+t+3)q+4i+3 and run for
q 4t units of time, exactly one of the frame jobs has to be scheduled on each of
the machines. In statement (iii) of Claim A (of the reduction for problem A), it was
shown that the last job not in R on machine finishes either at (3f+ 2)q +4i or no
more than three time units later. Thus, if machine were to run more than + 2 jobs
of R of length q, then the (t+3)rd job could not be finished earlier than time
(3f+ + 5)q + 4i. Since all deadlines of the jobs of R are smaller than (3f+ + 5)q, we
conclude that each machine runs at most + 2 jobs of R of length q. Because R contains
t:+ 2t jobs of length q and there are machines, each machine receives exactly + 2
jobs of R of length q.

From part (iii) of Claim A, we know that the first job of R of length q on machine
can start no earlier than (3f+ 2)q + 4i. Thus the (t + 2)nd such job can start no earlier
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than (3f+t+3)q+4i. By a simple induction, it can be shown that this implies that
A(i) is scheduled on machine i.

Proof of (ii). Since r(G(i, j)) (3f+j + 2)q + 4i and A(G(i, j)) 3, the second
part of statement (ii) is implied by the first part. To prove the first part, note that by
statement (iii) of Claim A the first job of length q of R can start no earlier than
(3f+ 2)q + 4i. Additionally, by statement (i) above, machine receives + 2 jobs of R
of length q, with the last such job starting at time (3f+ + 3)q + 4i + 3.

Proofof (iii). By (i) and (ii) above, we know that every job of E and L is scheduled
as the first or (t + 1)st job of R of length q on some machine i. It is easy to see that
the first and tth job of R of length q of machine 0 are E(0) and L(0). No other job
of E and L is released early enough to be the first, and no job of E or L has a deadline
large enough to be the (t + 1)st job of machine i. By a simple induction it can be
shown that E(i) and L(i) are the first and the (t-i+ 1)st jobs of R of length q on
machine i.

Proof of (iv). If L(i) is the first job of machine i, then by (ii) above, it must start
at its release time of (3f+2)q+4i+3. In this case, no stuffer jobs can be scheduled
on machine i.

If L(i) is the (t-i+ 1)st job on machine i, then by (ii) above it must finish at its
deadline of (3f+ t-i+ 3)q+4i. This implies that E(i) is started at its release time of
(3f+ 2)q + 4i and that no more than three stuffer jobs can be scheduled in the interval
[(3f+t+3)q+4i, (3f+t+3)q+4i+3). Since there are 3(t-f) stuffer jobs of length
1, E(i) must be the first job of R on at least t-f machines.

Using arguments similar to the reduction of Problem A, the existence of 3f interval
jobs implies that there are at least f machines whose last job finishes later than
(3f+2)q+4i. We conclude that exactly t-f machines start with a job from E(i), and
the remaining f machines start with a job from L(i).

This completes the proof of Claim B. It follows from the proof for Problem A
that the f machines starting with a job from L(i) will contain the interval jobs. F1

10. Open problems. (1) We conjecture that ALGORITHM BOUNDED_REGION
can be modified to obtain a running time of O(mn log n). We have already shown
that SCHEDULE runs in O(mn log n) time. It is also possible, using a technique of
[5] to avoid computing the additional regions. This technique determines whether or
not start times being computed by BACKSEQUENCE might violate a newly computed
bounded region by comparing the start times mod 1. If the answer is determined to
be yes, then the start times are decremented accordingly. It can be shown that this
process will not cause a feasible problem instance to be incorrectly designated infeasible.
It is also straightforward to show that this precomputation corresponds to the additional
regions.

In [5], it was shown that the running time for the single machine version of this
problem is O(n log n). This running time was obtained by eliminating the need to

compute all sequences for those jobs with deadline at least as great as the deadline of
the job whose release time is currently being processed. We believe that similar
techniques should work for the general problem, but we have not been able to solve
the problem of how to capture the notion of different degrees of boundedness, i.e.,
the fact that we have regions with restrictions on the number of jobs that can start
within them.

(2) Can the NP-completeness proofs be made tighter, or are there polynomial
time algorithms for the more constrained problems? In particular, what can be said
about variations of Problems A and B in which there is only a single machine or there
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are a constant number of machines. There ia polynomial time algorithm for the single
machine version of Problem B [2], but we have been unable to generalize the algorithm
to the case where the running time of a job is one of two arbitrary integers, as opposed
to being either one or an arbitrary integer.

11. Figures. We use the example below to illustrate the BOUNDED_REGION
Algorithm.

Example m 2, n 7. The release time and deadline of a job are listed as an
ordered pair after the job:

A(0, 4.4), B(0.2, 2.2), C(0.3, 2.3), D(0.5, 1.8), E(1.6, 3.4), F(2.4, 3.6), G(2.4, 4.0).

The table constructed for the above example is given in Fig. 2. In column j we
list only those entries that are changed in iteration j.

BR [1] ((1.6, 2.4), )
BR [3] ((1, 1.6), )
BR [5] ((-0.2, 0.3), )
BR [7] ((-0.7, 0.0), )

BR [2] ((1.6, 2.4), (2, 2.4))
BR [4] ((-0.2, 0.5), O)
BR [6] ((-0.7, 0.2), (0.0, 0.2))

FIG. 1. The original bounded regions computed by BACKSEQUENCE.

release
times F G E D C B A

deadli 2.4 2.4 1.6 0.5 0.3 0.2 0.0

D 1.8 0.8

B 2.2 1.2 1.03

C 2.3 1.3 1.02 0.3

E 3.4 2.4 2.4 1.4 1.04

F 3.6 2.6 2.6 1.6 1.6 0.6

13 4.0 3.0 3.0 2.0 1.61 1.0 0.6

A 4.4 3.4 3.4 2.4 2.4 1.4 1.04

was 2.0
was 1.3
was 1.2
was 1.4

FIG 2. The sequences computed by BACKSEQUENCE.
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0- bounded

bounded

time
-1

-0.7

0.2 2.4

0.,3 1.6
0.5

0 2 3

D c F

0.5 1.5 2.5 3.5

Fro 3. Output of SCHEDULE (BR), where BR consists only of original regions.

0 bounded additional

0- bounded
-0.7

bounded

time
-1

-0.2 0.2

0.2 2.4

0.3 1.6
0.5

0 2 3

1.2 2.2 2.4 3.4

I’,’, ’ I,’, c Ii’
0.2 D II E C

o. . . 2. .
FIG. 4. The final rd-sequence produced by SCHEDULE (BR), with additional regions included in BR.

0 2 3 4 5... 16 20 24 28
0 c(0,1)

.1 C(1,1) ’3 I C(3,1)

Filler jobs of length

The beginning of a schedule for m 4

Gaps for interval jobs

!| ii
11 !!

II !!

C(.,2)

II II

Gaps for
pusher jobs

!!

C(.,3f+1) C(.,3f+2)

Outline of SCH Afor m 5

FIG. 5. SCHA.
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Reduction of
Problem A

E(0)or L(0) G(0, I) G(0,2)

E(1)or L(1) G(1,1) G(1,

E(2) L(2)I G(2,1) E(:

Gaps for stuffer jobs

2) E(1)or L(1) GI1,4/ AI,I

or L(= =,3 (,4

G(3,2) 6(3,3) 16(3,4) AI3)

Outline of SCH B for m 4

FIG. 6. SCH

The bounded regions computed at each iteration of the for loop of BACK-
SEQUENCE are listed in Fig. 1. The first entry in the ordered pair is the 1-bounded
region, the second is the 0-bounded region. The symbol is used when there is no
bounded region.

Figure 3 shows how NEXTFORWARD avoids the original bounded regions. For
the purpose of illustration, we ignore the additional regions. Observe that if only the
original bounded regions listed above are used, C is completed later than its deadline,
so the sequence is not a d-sequence. This follows because BR [4] and BR [6] satisfy
the conditions of Lemma 3 and hence create the additional 0-bounded region (-0.2, 0.2).
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comments and criticisms we received from the two very thorough referees.
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MINIMUM-KNOWLEDGE INTERACTIVE PROOFS
FOR DECISION PROBLEMS*

ZVI GALIL’?, STUART HABER$, AND MOTI YUNG

Abstract. Interactive communication of knowledge from the point of view of resource-bounded compu-
tational complexity is studied. Extending the work of Goldwasser, Micali, and Rackoff [Proc. 17th Annual
ACM Symposium on the Theory of Computing, 1985, pp. 291-304; SIAM J. Comput., 18 (1989), pp. 186-208],
the authors define a protocol transferring the result of any fixed computation to be minimum-knowledge if
it communicates no additional knowledge to the recipient besides the intended computational result. It is
proved that such protocols may be combined in a natural way so as to build more complex protocols.

A protocol is introduced for two parties, a prover and a verifier, with the following properties:
(1) Following the protocol, the prover gives to the verifier a proof of the value, 0 or 1, of a particular

Boolean predicate, which is (assumed to be) hard for the verifier to compute. Such a deciding
"interactive proof-system" extends the interactive proof-systems of [op. cit.], which are used only
to confirm that a certain predicate has value 1.

(2) The protocol is minimum-knowledge.
(3) The protocol is result-indistinguishable: an eavesdropper, overhearing an execution of the protocol,

does not learn the value of the predicate that is proved.
The value of the predicate is a cryptographically secure bit, shared by the two parties to the protocol.

This security is achieved without the use of encryption functions, all messages being sent in the clear. These
properties enable one to define a cryptosystem in which each user receives exactly the knowledge he is
supposed to receive, and nothing more.
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cryptography, security, probabilistic computations, factoring, quadratic residuosity, number theory
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1. Introduction. Transfer and exchange of knowledge is the basic task of any
communication system. Recently, much attention has been given to the process of
knowledge exchange in the context of distributed systems and cryptosystems. In
particular, several authors have concentrated on problems associated with the inter-
active communication of proofs [17], [1], [24].

In [17] Goldwasser, Micali, and Rackoff developed a computational-complexity
approach to the theory of knowledge: a message is said to convey knowledge if it
contains information that is the result of a computation that is intractable for the
receiver. They introduce the notion of an interactive proof-system for a language L.
This is a protocol for two interacting probabilistic Turing machines, whereby one of
them, the prover, proves to the other, the verifier, that an input string x is in fact (with
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very high probability) an element of L. The verifier is limited to tractable (i.e.,
probabilistic polynomial-time) computations. We do not limit the computational power
of the prover; in the cryptographic context, the prover may possess some secret
information--for example, the factorization of a certain integer N. (This is analogous
to the following model of a "proof-system" for a language L in NP: given an instance
x L, an NP prover computes a string y and sends it to a deterministic polynomial-time
verifier, which uses y to check that indeed x L.)

Goldwasser, Micali, and Rackoff called an interactive proof-system for L zero-
knowledge if it releases no additional knowledge--that is, nothing more than the one
bit of knowledge given by the assertion that x L 17]. Extending their definition, we
consider all two-party protocols for the purpose of transferring from one party to the
other the result of a specified computation--y =f(x), say--depending on the input x,
and call any such protocol minimum-knowledge if it releases nothing more than the
assertion that y =f(x). Naturally, such interactive protocols are of particular interest
in a cryptographic setting where distrustful users with unequal computing power
communicate with each other.

After giving our definition of minimum-knowledge protocols, we prove that the
concatenation of two minimum-knowledge protocols is minimum-knowledge. This
suggests the importance of the minimum-knowledge property for the modular design
of complex protocols. In fact, it is by serially composing several minimum-knowledge
subprotocols that we formulate the more complex minimum-knowledge protocol that
we introduce in this paper.

In this paper we extend the ability of interactive proof-system protocols from
confirming that a given string x is in a language L to deciding whether x L or x L.
That is, we give the first (nontrivial) example of a language L so that both L and its
complement have minimum-knowledge interactive proof-systems for confirming mem-
bership, where both the proof of membership in L and the proof of nonmembership
in L are by means of the same protocol, which releases no more knowledge than the
value of the membership bit (x L).

Furthermore, by following the protocol, the prover demonstrates to the verifier
either that x L or that x L in such a way that the two cases are indistinguishable
to an eavesdropping third party that is limited to feasible computations. In fact, the
protocol releases no knowledge at all to such an eavesdropper. As usual, we assume
that the eavesdropper knows both the prover’s and the verifier’s algorithms, and we
allow him access to all messages passed during an execution of the protocol. In spite
of the fact that our protocol makes no use of encryption functions, the eavesdropper
receives no knowledge about whether he has just witnessed an interactive proof of the
assertion that x L or of the assertion that x L. We call this property of our protocol
result-indistinguishability.

The proof that our protocol is minimum-knowledge with respect to the verifier
and result-indistinguishable with respect to the eavesdropper relies on no unproved
assumptions about the complexity of a number-theoretic problem.

The work of [17], [1], [24] concentrates on the knowledge transmitted by a prover
to an active verifier. Introducing a third party to the scenario, we analyze the knowledge
gained both by an active verifier and by a passive eavesdropper.

If membership or nonmembership in L is an intractable computation, then a

result-indistinguishable minimum-knowledge proof-system for L can be used as a tool
in building a cryptographic system. After an execution of our protocol, the string x
can serve as a cryptographically secure encoding--shared only by the prover and the
verifier--of the membership-bit (x L). The use of x as an encoding of the membership-
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bit exemplifies what we may call "minimum-knowledge cryptography": it is a prob-
abilistic encryption with the property that neither its specification (i.e., the interactive
proof of the value encoded by x) nor its further use in communication can release
any compromising knowledge, either to the verifier or to an eavesdropper. The
minimum-knowledge property ensures that each party receives exactly the knowledge
he is supposed to receive and nothing more. A cryptosystem based on such a minimum-
knowledge protocol has the strongest security against passive attack that we could
hopeto prove; in particular, it is secure againstbothchosen-messageandchosen-ciphertext
attack.

The predicate that our protocol tests is that of being a quadratic residue or
nonresidue modulo N for a certain number N (whose factorization may be the prover’s
secret information). We note that the language for which we show membership and
nonmembership is in NP f3 co-NP. A conventional membership proof for these
languages releases the factorization of N, while in the interactive proof-system presented
below no extra knowledge (about the factorization or about anything else) is given
either to the verifier or to an eavesdropper.

An important motivation in our work on this protocol comes from our desire to
guarantee the security of cryptographic keys, especially in situations where the genera-
tion of new keys is very costly or is otherwise limited by the context. If the integer N
is the prover’s public key in a public-key cryptosystem, then N is not compromised
by polynomially many executions of our protocol; a polynomially bounded opponent
knows no more after witnessing or participating in these executions than he knew
before the key was used at all.

2. Preliminaries.
2.1. Interactive Turing machines. We specify the model for which we describe our

protocol; this is an extension of the model used in [17]. Two probabilistic Turing
machines A and B form an interactive pair of Turing machines if they share a read-only
input tape and a pair of communication tapes; one of the communication tapes is
exclusive-write for A, while the other is exclusive-write for B. (The writing heads are
unidirectional; once a symbol has been written on a communication tape, it cannot
be erased.) We model each machine’s probabilistic nature by providing it with a
read-only random tape with a unidirectional read-head; the machine "flips a coin" by
reading the next bit from its random tape. The two machines take turns being active.
While it is active, a machine can read the communication tapes, perform computation
using its own work tape and consulting its random tape, and send a message to the
other machine by writing the message on its exclusive-write communication tape. In
addition, B has a private output tape; whatever is written on this tape when A and B
halt is the result of their computation.

In order to model the fact that the system is not memory-less, we also assume
that each machine has a history tape, with a unidirectional write-head, on which the
following records are automatically written:

When the machine flips a coin, the bit it reads from its random tape is recorded
on its history tape.
At the beginning of each active turn, when the machine reads a new message
from the other machine’s exclusive-write communication tape, it records this
message on its history tape.
At the end of each active turn, when the machine writes a message to the other
machine on its own exclusive-write communication tape, it records this message
on its history tape.
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The result written on B’s output tape is also recorded on B’s history tape.
These records are written on the history tape sequentially in order according to the
machine’s computation; for example, when the machine flips a coin several times
while computing its next message, these random bits are recorded on the history
tape immediately before the message. The input tape and communication tapes are
public, or shared by the two machines; each machine’s random tape, history tape,
and work tape are private, as is B’s output tape. This is not the only way to model the
situation we would like to describe, and some of the records written on the history
tape are redundant, but without loss of generality we may assume this mode of
operation.

When A and B begin their computation, an infinite bit-string is written on each
of their random tapes. The choice of these two bit-strings, independently and uniformly
at random from the set of all infinite strings, defines a probability measure on the set
of possible computation histories of (A, B) that begin in any particular configuration.

For any strings x, h we say that the interactive pair of Turing machines (A, B)
begins its computation with input x and B’s initial history h if in their initial configuration
x is written on the common input tape and h is the written portion of B’s history tape.
(Throughout this paper, we are not concerned with the contents of A’s history tape.)
We use (A, B)[x, h] to denote the set of computations that begin in this configuration.
In each of the protocols that we present in this paper, B never consults its history tape.
However, in discussing the properties of these protocols, we must be concerned with
an arbitrary Turing machine that may take the role of B in an interaction with A, and
that may make use of its history tape.

In what follows, B is limited to expected running time that is polynomial in the
length of the common input x, while we make no limiting assumption about A’s
computational resources. (For cryptographic applications, A is also limited to feasible
computation but possesses some trapdoor information.) Their messages to each other
are in cleartext, though these messages may depend on their private coin flips, which
remain hidden. We assume that both the length of B’s initial history, as well as the
total length of the messages written on the two communication tapes, are polynomial
in Ix]. For any input string x, we introduce the notation Hx={h}h{O, 1}*, ]hi=
O(]x](l))} for the set of associated initial histories that we allow.

Our scenario also includes a third probabilistic Turing machine, C, limited to

expected polynomial-time computation, that can read the input and communication
tapes of A and B and knows their algorithms. A is the prover, B is the verifier, and C
is the eavesdropper.

2.2. Ensembles of strings. In order to speak precisely of the knowledge transmitted
by communicated messages, we need the following definitions [17], [27], [6]. Let
I
_

{0, 1}* be an infinite set of strings, and for each x 1, let r[x] be a probability
distribution on a set of bit-strings. We call II {[x]]x I} an ensemble of strings
(usually suppressing any mention of 1).

For example, if M is a probabilistic Turing machine, then any input string x
defines a probability distribution, according to the coin-tosses (i.e., the random tape)
of M’s computation, on the set M[x] of possible outputs of M on input x. Thus, for
any I, {Mix]Ix e I} is an ensemble.

As a second example, suppose that (A, B) is an interactive pair of Turing machines.
For any strings x, h, let VIEWR{(A, B)[x, h]} denote the set of private "histories" that
may be written on B’s history tape during a computation that begins with input x and
B’s initial history h; each of these is B’s private view of the protocol execution. This
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set has a natural probability distribution according to the random tapes of A and B.
Thus, for any set I, { VIEW{(A, B)[x, h]}lx I, h Hx} is an ensemble of strings.

As another example, for any string x let COM{(A, B)[x]} denote the set of possible
ordered sequences of messages written on the communication tapes of A and B during
a computation that begins with input x. Each of these is the public view, and in
particular that of the eavesdropper C, of a protocol execution of A and B. This set
also has a natural probability distribution. (We assume that the specified computations
do not make use of previous private or public history.) Thus, for any set /,
{COM{(A,B)[x]}Ix I} is an ensemble of strings that we call the communications
ensemble produced by the interactive system (A, B).

A distinguisher is a family D {Dxlx I} of circuits with a single Boolean output;
we assume that there is a constant c so that circuit Dx has Ixl input gates and one
output gate. D is polynomial-size if there is a constant d so that Dx has at most ]xl d
nodes. Suppose that 1-I {r[x] Ix I} and 11’= {r’[x] Ix I} are ensembles of strings,
and that D is a distinguisher (all with respect to the same constant c). Let p(r[x])
be the probability that D, outputs a when it is given as input a single sample string
of length [xl c, randomly selected according to probability distribution r(x); and let
pD(r’[X]), depending on the distribution ’[x], be defined similarly. We call the two
ensembles (computationally) indistinguishable if for any polynomial-size distinguisher
D, for all n and sufficiently long x,

Ip,)([x])-p,)( ’[x])l < ]xl -".

This condition holds, of course, if the two ensembles are exactly identical. In this case,
for any distinguisher D the difference ]pD(r[X])--pD(r’[X])[ is equal to zero.

Let r and r’ be two probability distributions on strings, and suppose that the
number 3 satisfies 0 =< =< 1. We say that approximates r’with error probability if

2 IProb (r[x] s)-prob (r’[x] s) _-< 6

(where the sum is taken over all strings s in {0, 1}*). This implies that the difference
IpD(r[x])-p)(r’[x])l<=(3 for any distinguisher D, even if the definition of "distin-
guisher" is relaxed to allow as inputs to D, a set of many samples randomly chosen
either according to r[x] or according to r’[x].

2.3. Interactive proof-systems and transfer protocols. This paper is mainly devoted
to a special sort of two-party protocol, that of interactively proving or disproving
membership in a language L. A protocol that achieves this is called an interactive
proof-system for L [17]. The prover A and the verifier B share a common input x, the
string whose membership is in question. We assume that x belongs to a fixed set I,
I_ L, of input strings for (A, B). Depending on k Ixl, the length of the (binary)
representation of the input string, we allow an error probability 6(k) that vanishes
with increasing k. (In fact, all of the examples in this paper satisfy the stronger
requirement of an error probability that is exponentially vanishing in k.)

Extending the definition of 17], we distinguish between a confirming proof-system
for L, whose purpose is that the verifier confirm membership in L for the input string,
and a deciding proof-system for L, whose purpose is that the verifier decide whether
or not the input string is in L. At the end of a confirming protocol, the verifier may
either accept the proof that x L, or reject the proof; at the end of a deciding protocol,
the verifier may either accept a proof that x L, or accept a proof that x L, or reject
the proof. The execution ends normally when all of B’s messages appear as if B is
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following the protocol; if this is so, then A ends the execution in a success state. A
may halt the execution of the protocol if it detects that B is not following the protocol,
ending the execution in a failure state.

For any input string x, let k Ixl. We say that (A, B)k is a confirming interactive
proof-system for L with inputs I and error probability 6(k) if:

(1) For any x L given as input to (A, B), B accepts the proof with probability
at least 6(k).

(2) For any interactive Turing machine A*, and for any x I-L given as input
to (A*, B), B accepts the proof with probability at most 6(k).

We say that (A, B) is a deciding interactive proof-system for L with inputs ! and error
probability (k) if:

(1) For any x I given as input to (A, B), B accepts the proof, halting with the
correct value of the predicate (x L) on its output tape, with probability at
least 6(k).

(2) For any interactive Turing machine A*, and for any x I given as input to
(A*, B), B accepts a proof of the incorrect value of the predicate (x L) with
probability at most 3(k).

As part of the definition, we require that these conditions should hold independently
of the choice of the initial-history string (of length polynomial in k) that may be written
on B’s history tape at the beginning of the computation.

In the first definition, we require that (with high probability) B correctly accept
the proof for strings x L, and that no cheating adversary, no matter how powerful,
can convince B incorrectly to accept the proof for strings x L (except with vanishingly
small probability). In the second definition, we require that (with high probability),
given any input string x /, B correctly decide whether x L or x L, and that no
adversary can convince B to accept an incorrect proof (except with vanishingly small
probability). The probability is taken over all sequences of coin-tosses (i.e., over all
possible random-tape bit-strings) used by the probabilistic computations of the two
Turing machines.

The two definitions above describe correctness for protocols that transfer to B the
computed value of a Boolean predicate that supplies one bit of "knowledge" about
the input string. We can also study a more general sort of transfer protocol whose
purpose is to transfer the result F(x) of any specified computation depending on the
input string x. For example, a deciding interactive proof-system for the language L is
a transfer protocol for the function F(x) taking the value 1 or 0 according to whether
or not x L. Because the interacting machines are probabilistic, the intended result
may take values in a probability distribution whose value F(x, r) depends on x as well
as on a random input string r. As in the case of an interactive proof-system, B may
either accept or reject an execution of an interaction with another Turing machine. We
say that a given protocol (A, B) is correct for a specified probability distribution of
outputs if B’s computed result, when it interacts with A, has the intended distribution
(with very high probability), and no machine A*, no matter how powerful, can bias
the distribution of B’s outputs (except with vanishingly small probability).

In order to define "correctness" more precisely, we observe that the computations
of any interactive pair of Turing machines (A, B) determine a partial function fA, as
follows. Given strings x, rA, and rB, we define fA,l(X, rA, r) to be the result written
on B’s output tape at the end of an accepting computation of (A, B) that begins with
input x, when their random-tape strings begin with rA and r (respectively); this value
is well-defined, as long as rA and rB are sufficiently long. Notice that the choice of rA
and ru defines a probability distribution fA,(X, "," ).
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We say that (A, B) is a correct transfer protocol for the probability distribution
F(x, r), with inputs I and error probability 3(. ), if:

(1) For each x e I, the distribution fA,u(X, "," of B’s computed outputs approxi-
mates, with error probability a(Ixl), the distribution F(x, of intended results.

(2) Let A* be any interactive Turing machine. We require that for any x e I and
for any s e {0, 1}*, the probability that B accepts the computation of (A*, B)
on input x and writes out the string s as its output is bounded by the quantity
prob (F(x,.)= s)+

Note that, according to the second part of this definition, it may be possible for a
malicious adversary A* to bias the distribution of the set of conversations of (i.e., the
set of sequences of messages exchanged by) A* and B on a particular input string x.
But A* cannot significantly increase the probability that any given result string is
accepted by B; in particular, A* cannot force B to accept an erroneous result (one
that occurs with probability zero in the distribution F(x,.)) except with probability
a(Ixl).

Observe that the probability threshold occurs twice in the above definition. In
general, there may be protocols for which it makes sense to define correctness with
two different 6’s. In all our examples, the function 6(k) is exponentially vanishing in
k; therefore, for simplicity, we use the same 6 in both places.

3. Knowledge. In the setting of complexity theory, what do we mean by "knowl-
edge"? Informally, a message conveys knowledge if it communicates the result of an
intractable computation. A message that consists of the result of a computation that
we can easily carry out by ourselves does not convey knowledge. In particular, a string
of random bits--or a string of bits that is "indistinguishable" from a random string
(as defined above)--does not convey knowledge, since we can flip coins by ourselves.

3.1. Minimum knowledge. Suppose that (A, B) is a confirming interactive proof-
system for a language L, taking inputs from the set/. Following the definition in [17],
we say that the system (A, B) is minimum-knowledge if, given any expected polynomial-
time probabilistic Turing machine B*, there exists another probabilistic Turing machine
MB*, running in expected polynomial time, such that the ensembles {MB.[x, h]lx
L, h e H,} and VIEW.{(A, B*)[x, h]}]x e L, h e H} are (computationally) indistin-
guishable. If the ensembles are identical, we say that the proof-system is perfectly
minimum-knowledge.

The output of MB., on input x e L and initial history h, is a simulation of B*’s
view of the computation that A and B* would have on the same input and the same
initial history. Note that, in this definition, we are not concerned with inputs that do
not belong to L. When it takes part in a successful execution of the protocol with input
x, B* learns that (with high probability) the predicate of language-membership associ-
ated with the protocol, x e L, is true; however, it gains no more knowledge that this.
Note that in our examples, B (the machine that acts according to the protocol
specifications) does not use its initial history string at all; however, when we worry
about the "knowledge" that a cheating machine B* may try to extract from A we have
to consider the fact that B* can use its history string.

The authors of 17] called a confirming proof-system satisfying the above properties
"zero-knowledge." We now show how to extend this definition so as to be able to say
when a more general sort of protocol--for example, a two-party protocol whose purpose
is to transfer to one of the parties the result of a hard computation--should be called
"minimum-knowledge."
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Let (A, B) be an interactive pair of Turing machines which constitute a correct
transfer protocol for the probability distribution F(x, r), with inputs I and error
probability 6. We say that (A, B) is minimum-knowledge if, given any expected poly-
nomial-time probabilistic Turing machine B*, there exists another probabilistic Turing
machine Mu., running in expected polynomial time, such that:

(1) M. has one-time access to an F-oracle, as follows. Given any input x and
initial history h, Mu. queries the oracle with input x; the oracle returns a
value distributed according to F(x,.).

(2) The ensembles {M.[x,h]lxI,hHx and {VIEW.{(A,B*)[x,h]}Ix
I, h e Hx} are indistinguishable.

If the ensembles are identical, we say that the proof-system is perfectly minimum-

knowledge.
In order to motivate this definition, we recall that we are trying to formalize the

notion of the amount of knowledge transmitted by a sequence of messages. Speaking
informally, one gains no knowledge from a message which is the result of a feasible
computation that one could just as well have carried out by oneself. If the purpose of
a protocol followed by two interacting parties A and B is that A transmit to B a value
v chosen according to the probability distribution F(x, r), we would like to be able
to say exactly when the protocol transmits no more knowledge than this value. We
might also demand that the protocol accomplish this even if B somehow tries to
cheat--that is, even if the Turing machine B is replaced by another (polynomial-time,
but possibly "cheating") machine B*. The simple transmission of the value v can be
modelled by a single oracle query (with input x). If the provision of this oracle query
makes it possible, by means of a feasible computation, to simulate B*’s view of the
"conversation" that A and B* would have had on input x, then we can say that when
A and B* actually have a conversation (i.e., follow the protocol) with the same input,
there is no additional knowledge transmitted to B* besides the value v.

Note that if F is computable in expected polynomial time, then the F-oracle adds
no power to the machine M.. In this case M. can compute F without the assistance
of A.

In all our examples, the simulating machine Mu. uses the program of B* as a
subprogram or subroutine. This subprogram makes use of the simulator’s input tape
(containing the input string x), a virtual history tape (which is initialized to contain
the given initial history h), a virtual random tape, a virtual work tape, two virtual
communication tapes, and a virtual output tape. Without loss of generality we supply
the probabilistic machine Mu. with two random tapes; one of these is B*’s virtual
random tape. On its output tape--which is also the virtual history tape for the
subprogram B*--the simulator uses the subprogram to write records that correspond
to B*’s view of the simulated protocol execution.

While carrying on its computation, the machine Mu. may back up a few steps in
the simulated protocol and restore a previous machine configuration: It recovers the
old state of B* and the old content of the virtual work tape, and resets both the virtual
read-head of B*’s random tape and the write-head of its own output tape (the virtual
history tape) to where they had been earlier; then it proceeds with its simulation,
starting again from the old configuration but "flipping new coins" in its probabilistic
computation.

The virtual communication tapes are used to simulate the communication activities
of the simulated protocol. The simulator "sends. a message to B* by writing it on
the appropriate virtual communication tape and then activating the subprogram. The
subprogram operates for (the simulation of) one active turn and then writes a message
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on the other virtual communication tape; this is the next message "received" from B*.
Just as in the interaction of B* with A, the simulator’s subprogram B* records random
bits, messages read and written, and the computed result on the virtual history tape.
The operation of the subprogram B* during a simulated active turn, beginning in a
certain state with a certain configuration of the virtual tapes, is identical to the operation
of the interactive Turing machine B* during an active turn, beginning in the same state
with the same configuration of the actual tapes, of an actual protocol execution with
A. This matter of the difference in B*’s operation, either as a subprogram of the
simulator or as a Turing machine interacting with A, is discussed further in the remark
at the end of the next section.

3.2. Concatenation of protocols. Next, we investigate how protocols may be con-
catenated in order to achieve modularity in protocol design and how properties of the
resulting protocol can be derived from the properties of its subprotocols. The protocol
presented in this paper is an example of such a modular design.

We write s. s’ for the concatenation of the two strings s and s’.
Suppose that we are given two protocols P1 (A1, B1) and P2 (A2, B2). We define

the concatenation ofthe two protocols, denoted P P1 P_, to be the following two-stage
protocol: Its first stage is P1. If at the end of this stage A1 is not in a failure state and

B1 has not rejected, the protocol continues with P2; otherwise the protocol halts. We
write A1; A2 and B1; B2 for the interacting machines of the concatenated protocol. At
the end of an execution, the history tape of B1; B2 contains the initial history-string,
followed by Bl’s private view of the execution of P1, followed by Bz’s private view of
the execution of P2.

Assume that P1 and P2 are two transfer protocols for the probability distributions

F1 and F, respectively, both taking inputs from the set /. Then the concatenated
protocol, on input x /, transfers to B1; B2 the combined result [F(x,. ), F(x,. )]. As
a special case, suppose that P1 is a confirming interactive proof-system for L1 with
inputs I, and that Pz is a confirming interactive proof-system for L2 with inputs L1.
Then the concatenated protocol is a confirming interactive proof-system for L1 (3 L2,
with inputs /.

It may not be surprising that the concatenation of two correct protocols gives the
correct combined result. The more important observation is that, as we prove below,
the concatenated protocol is minimum-knowledge if P1 and P: are both minimum-
knowledge.

LEMMA. Given two protocols P1 and P as above, with error probabilities 61(k) and
6(k), respectively. Then the concatenation P= P1; P is a correct transfer protocol
for the combined result [Fl(x, ), Fz(x, )] with error probability 6(k)=
61 (k) + 62(k) + 61(k) 6(k). Furthermore, if P1 and P2 are both minimum-knowledge
(or, respectively, both perfectly minimum-knowledge), then so is their concatenation.

Proof First we show that correctness of protocols is preserved by concatenation.
It is clear that if the output distribution of (A1, B1) approximates the intended distribu-
tion F1 with error probability 61, and the output of (A2, B) approximates the intended
distribution F2 with error probability 62, then (A, B) approximates [F1, F2] with error
probability at most 61 + 62.

To show that the second correctness condition holds, let x I and let sl, sz be a
pair of possible output strings, occurring with probabilities Pl and p2 in probability
distributions Fl(x," and F:(x,. ), respectively. The pair (sl, s2) occurs with probability
PlP2 in the combined result distribution [F(x, .), l::2(X )]. Let us write 61 61(Ixl)
and 6= 6(Ixl). By the correctness of protocols P and P, if A* is any interactive
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Turing machine that interacts with B B; B2, then the probability that B writes out
(s, s2) is at most

(P q- 6)(P2 q- (2)--pip2+ 1p2 + 2Pl + 362<-P, P2+(6, + 32+ (1 (2),

as required.
Next we show that concatenation maintains the minimum-knowledge property.

Assume that P1 and P are both minimum-knowledge, and let B* be any probabilistic
interactive Turing machine, running in expected polynomial time, that interacts with
A; A2. We may write B*=B*; B2* to denote the two parts of B*’s program. For
convenience, let us write Vl[x, h] VIEWRT{(A, Bl*[X, h]} and V2[x, h]
VIEWR{(A2, Bz*)[x, h]}. Thus, for any input string x and any initial history h, we have
VIEWB.{(A, B*)[x, h]}= {vl" v2lv V[x, h], v2 V2[x, h. vl]}.

To show that the concatenated protocol P is minimum-knowledge we have to
show the existerce of a simulating expected polynomial-time probabilistic Turing
machine M MB. whose output ensemble {M[x, h]Jx I, h Hx} is indistinguishable
from the ensemble { VIEW.{(A, B*)[x, h]}lx I, h Hx}.

Our hypothesis on P1 implies that, given B l*, there is a simulating machine M,
running in expected polynomial time, with access to an F-oracle, so that the ensembles
{Ml[x, h]lx I, h H,} and {Vl[x, h]lx I, h H)} are indistinguishable. Similarly,
our hypothesis on P2 implies that, given B2*, there is a simulating machine M2, running
in expected polynomial time, with access to an F2-0racle, so that the ensembles
{M2[x, h][x I, h H)} and V2[x, h]lx I, h H} are indistinguishable. We specify
M to be the machine that operates as follows, given any input string x I and initial
history h H. First, M runs machine M on (x, h) to produce an output hi. Second,
if h is the simulation of a successful execution of P, then M runs M2 on (x, h) to
produce its final output; otherwise, M simply writes out h.

For any x 1, h Hx we define the sets of strings

E[x, h]= VIEW.{(A, B*)[x, h]}= {vl v21v, V[x, h], v2 V2[x, h" vl]}, and

E2[x, h] M[x, h] {ml" m2lm, Ml[x, h], m2 M2[x, h" ml] }.

(As usual, the choices of the bit-strings that are written on these probabilistic machines’
random tapes define a probability distribution on both of these sets.) We need to show
that the ensembles /l-- {E[x, h]lx I, h H.,} and /2 {E[x, h]]x I, h H} are
indistinguishable. For this purpose, we introduce the intermediate ensemble /3=
{ E3[x, h ]1 x I, h H}, where

E3[x, h]= {vl rrt2lvl V[x, h], m2 Me[x, h.

Assurne that E and E are not computationally indistinguishable. Then there is
a polynomial-size distinguisher D {D,hlX I, h H} that distinguishes between the
two ensembles. In other words, in the notation of 2.2, for some n and for infinitely
many pairs (x, h) (with x I, h H.)

Ipt)(E,[x, h])-pl)(E2[x, h])] ]x]-".

This implies, by the triangle equality, that at least one of the inequalities

(1) ]Pt)( E2fx, h ]) PD( EaEX, h 3) --> 1/2lxl-"
(2) Ip)(E[x, h])-p)(E[x, h]) >]x
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holds infinitely often, i.e., that the circuit-family D distinguishes either between E2
and E3 or between E1 and E3 (or both.) We next show that either of these possibilities
leads to a contradiction.

First, we show that if D distinguishes between E and E3 then we can construct
a distinguisher D that distinguishes between the ensembles {Ml[x, h][xe 1, h e
and {V[x, h]lx e I, h e H,}, contradicting the hypothesis that P is minimum-knowl-
edge. Let 11 be the infinite set of pairs (x, h) for which inequality (1) holds. Given as
input a string s, chosen either from M[x, h] or from V[x, h], let C,,,h be the (probabilis-
tic) circuit that does the following: It simulates the operation of M2 on input (x, s)
for a suitable multiple of its expected running time to produce either a string m2 or

(for those few sequences of coin-flips which may cause M2 to run too long) a null
output, then passes h m to the circuit D,,h, which gives its output. Since the simulation
of M is polynomial in length, and D is polynomial-size, the circuit-family C is also
polynomial-size. Inequality (1) shows that for all pairs (x, h)e I, the circuit
distinguishes between M[x, h] and V[x, h]. Therefore, C,. can be converted into a
deterministic polynomial-size circuit (D),., that distinguishes between the same two
sets.

Second, we show that if D distinguishes between E and E3 then we can construct
a distinguisher D that distinguishes between the ensembles {Mz[x, h]lxe I, he Hx}
and Vz[x, h]lxe I, he H,,}, contradicting the hypothesis that P2 is minimum-knowl-
edge. Let I2 be the infinite set of pairs (x, h) for which inequality (2) holds, and
consider the infinite set I= {(x, v)lve V[x, h], (x, h)e I2}. We define (D), to be
the circuit whose output, on input s (chosen either from M2[x, h] or from V[x, h]) is
the output of Dx., on input h.s. Since D is polynomial-size, it is clear that D is
polynomial-size, too. Inequality (2) shows that (Dz),h distinguishes between Mz[x, h]
and V2[x, h] for infinitely many pairs (x, h)--namely, for all pairs (x, v)e I.

We therefore conclude that the concatenated protocol is minimum-knowledge.
Analogous arguments show that the concatenated protocol is perfectly minimum-
knowledge if the same is true of both component protocols.

REMARK. We mention here a special case ofthe above lemma that we use implicitly
throughout the proofs in 5 and 6. Suppose that a protocol (A, B) is given, and
consider a certain point in the protocol execution when A has just sent a message and B
is about to perform its next active turn. Let P be the protocol up to this point, and
let Pz consist just of B’s next active turn. The lemma implies that if P and P are
minimum-knowledge, then so is the given protocol through the end of B’s next turn.
This allows us to specify a machine M. for our proofs below, simply by having the
machine activate a subprogram B* as explained at the end of the previous section: As
long as the subprogram, when activated, has access to a virtual history tape whose
contents are indistinguishable from the history tape of an actual protocol execution
carried on with A, its operation within MB* is identical to its operation during an
actual interaction.

3.3. Result indistinguishability. Next we introduce the eavesdropper C, as
described above. Recall that COM{(A, B)[x]} is the set of possibilities for C’s view
of the computation of A and B on input x. In all our examples of interactive pairs of
Turing machines (A, B), neither machine uses its history tape. Thus, without loss of
generality we can assume that A and B begin their computation with their history tapes
initially empty.

We call an interactive pair of Turing machines (A, B) result-indistinguishable if
an eavesdropper that has access to the communications of A and B on input x gains
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no knowledge. More precisely, the system (A, B) is result-indistinguishable if there
exists a probabilistic polynomial-time Turing machine M such that the ensembles
{Mix]Ix I} and {COM{(A, B)[x]}lx I} are indistinguishable. If the ensembles are
exactly identical, we say that the proof-system is perfectly result-indistinguishable.

Suppose that (A, B) is a transfer protocol for the probability distribution F(x, r).
Observe that unlike the simulating machine in the definition of the minimum-knowledge
property, this machine M does not have access to an oracle for F. In other words, M
can simulate the communications of A and B on input x, regardless of the value F(x, r)
(even if computing F is intractable). Since this simulation is by means of a feasible
computation that an eavesdropping adversary could carry out for itself, the adversary
gains no knowledge if it is given the text of a "conversation" belonging to the set
COM{(A,B)[x]}.

We remark that if two protocols are result-indistinguishable, then so is their
concatenation. The simulating machine for the concatenated protocol is simply the
concatenation ofthe two simulators for the component protocols; neither the interacting
parties nor the simulator makes any computation that depends on the history tapes.

4. Specification of the language
4.1. Preliminaries. We assume that the reader is familiar with the following notions

from elementary number theory. (See, for example, [19], [23] for the number theory,
and [21] for a computational point of view.) We will be working in the multiplicative
group Z* of integers relatively prime to N. Any element z Z* is called a quadratic
residue if it is a square mod N (i.e., if the equation x2= z mod N has a solution);
otherwise, z is a quadratic nonresidue rood N. Given N and z Z*, the quantity called
the Jacobi symbol of z with respect to N, denoted (), can be efficiently computed (in
time polynomial in log N) and takes on the values +1 and -1. If ()=-1, then z
must be a quadratic nonresidue rood N. On the other hand, if ()= +1, then z may
be either a residue or a nonresidue. Determining which is the case, without knowing
the factorization of N, appears to be an intractable problem, namely the quadratic
residuosity problem. (However, given the prime factorization of N, it is easy to determine
whether or not z is a quadratic residue.) Several cryptographic schemes have been
proposed that base their security on the assumed difficulty of distinguishing between
residues and nonresidues modulo an integer N that is hard to factor [16], [3], [22].

We also make use of Bernstein’s law of large numbers [25], [21]" Suppose that
the event E occurs with probability p, and let Fk(E) denote the frequency with which
E occurs in k independent trials. Then for any k-> and any positive e _-<_p(1-p),

Prob {IF()-pl => } _-<2 e -k2.
4.2. The language. The protocol introduced in [17] is a minimum-knowledge

confirming interactive proof-system for the language

{(N, z)lz Z*, z a quadratic nonresidue mod N}.

The protocol that we present below is a deciding interactive proof-system, which is
both minimum-knowledge and result-indistinguishable, for a language based on the
same problem.

We use the notation u(N) to represent the number of distinct prime factors of
an integer N.

Our protocol is concerned with integers of a special form, namely those with
prime factorization N Hi p’ such that for some i, pi 3 mod 4. Let BL (for Blum,
who pointed out their usefulness in cryptographic protocols) denote the set of such
integers. There are two equivalent formulations of membership in BL: (1) N BL if
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and only if for any quadratic residue mod N, half its square roots (mod N) have Jacobi
symbol +1 and half its square roots have Jacobi symbol -1. (2) N BL if and only
if there exists a quadratic residue mod N which has two square roots with different
Jacobi symbols [2].

The special integers that we require form a subset of BL, namely

N {NIN BL, N-= mod 4, u(N) 2}.
It is not hard to see that this set may be defined equivalently as

N= {p iqJ ]p # q prime, i, j >- 1, p qj_=3 mod 4}.
Finally, we define the languages

I={(N,z)INeN, zeZ*,(-)=+I} and

L {N, z) I lz a quadratic residue mod N}.
Taking I as the set of inputs, this paper gives a deciding interactive proof-system for
L. Notice that I L {(N, z) I lz a quadratic nonresidue mod N}.

4.3. Outline of the protocol. Our protocol is the concatenation oftwo subprotocols.
The first part is a confirming interactive proof-system for L If the first part is completed
successfully (i.e., if A proves to B that the input string is in I), then A and B perform
the second part of the protocol. The second part, taking inputs from the set I, is a

deciding interactive proof-system for the language L; A proves to B either that the
input string is in L or that it is not in L. Both parts are minimum-knowledge, and the
second part is result-indistinguishable as well. The eavesdropper learns that, with high
probability, the input is in/. But he gains no more knowledge than thismin particular,
he gains no computational advantage in deciding whether the input is in L or in I- L,
i.e., whether or not z is a quadratic residue mod N.

The confirmation that an input string (N, z) belongs to I in turn requires three
stages, each of which confirms a property of N or of z; these stages are carried out
in the following order:

(1) N=lmod4, u(N)>l, zZ*,and ()=+1.
(2) N BL.
(3) u(N) -< 2.
While proving that our protocol has the properties that we desire, we make no

limiting assumption about the computational power of Turing machine A. However,
we remark that the protocol can be performed by a probabilistic polynomial-time
Turing machine A which is given the factorization of the relevant integers N. (In the
cryptographic applications that we discuss later, the party that performs A’s role in
our protocol chooses N along with its prime factorization.)

We now give the details of our protocol: the confirming first part in 5, and the
deciding second part in 6.

5. Interactive confirmation of the input language. In each of the protocols that we
describe, we use the notation "A- B:..." to indicate the transmission of a message
from A to B.

5.1. Blum’s coin-flip protocol. Our confirmation protocol requires that A and B
jointly generate a sequence of bits. The verifier B has to be sure that A cannot bias
these bits. They do this by following a protocol due to glum [2].

An integer N BL, N rood 4, is given.

A and B generate a random bit b:
1. B chooses u Z* at random, and computes v := u rood N;
B-A: v
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2. A chooses o-:= +1 or -1 at random, its guess for (-);
A-* B: o"

3. BA:u
4. if v- u mod N, then A halts the protocol in the FAILURE state;

otherwise, if cr () then b := 1 else b := 0

The message triple (v, o-, u) may be regarded as an encoding of the bit b =-+ (-)r.
This protocol is correct: Since B picks u at random and A picks the sign o- at

random, the bit b chosen by the protocol is random. Furthermore, the first alternate
characterization of BL ( 4.2) implies that no interactive Turing machine A*, no matter
what its computational power, can bias the bit produced, since it cannot guess the
Jacobi symbol of the square root of v chosen by B with probability greater than .

We remark that a cheating Turing machine B* could bias the bit solely by using
its ability to produce two numbers u and u’, both square roots (rood N) of v, with
opposite Jacobi symbols; this capacity would enable B* to factor N simply by comput-
ing the greatest common divisor (u- u’, N).

The protocol is perfectly minimum-knowledge. The reason is that A’s only task
is to transmit a guess, r +1 or -1, for a sign, a task that may easily be carried out
by a simulator interacting with B*. We formalize this argument below.

5.2. The confirmation protocol. This is a minimum-knowledge confirming inter-
active proof-system by which A proves to B that the input (N, z) is in the language I
defined above. It consists of the concatenation of three subprotocols, each of which
takes, as legal input, a string that has been confirmed (with high probability) by the
preceding subprotocol. Let k denote the length of the input string.

First Stage: The easy properties of N and z

This stage involves no communications between A and B. Given (N, z) as input,
B checks that N-= mod 4, that N is not a prime power, and that (-) +1. Each of
these is easily accomplished in time polynomial in log N [21]. If any one of these
conditions does not hold, then B REJECTS the proof (and halts the entire protocol).

Second Stage: N belongs to BL

The following protocol is due to Blum [2]. The error probability of this proof-
system is 62(k)= 2-k. This stage does not concern itself with z at all. The integer N
must satisfy N mod 4; this condition holds if the first stage has been completed
successfully.

1. repeat k times:
1.1 A chooses a quadratic residue r Z* at random;

A- B: r
1.2 B chooses r := +1 or-1 at random;

B-A: cr

1.3 if r {-1, +1}, then A halts the protocol in the ALURE state;
otherwise, A computes s such that s-= r mod N and ()= o-;
A-B: s

1.4 B checks to make sure that s satisfies the above conditions; if not, then
B RJECTS the proof (and halts the entire protocol).
.PTS the proof.2. B ACC

Third Stage: N has two prime factors

This stage also does not concern itself with z.
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Let us use Z*(+I) to denote the set of elements of Z*N with Jacobi symbol +1
(respectively). This protocol relies on the fact that if N has exactly prime factors
(i.e., v(N) i), then exactly 1/2 i-1 of the elements of Z*N(+I) are quadratic residues.
A and B jointly pick random elements of Z*N(+I). If A can show that about half of
them are residues (e.g., by producing their square roots mod N), then B should be
convinced that v(N)_-< 2. Since N is not a prime power, v(N) must be equal to 2.

In order to pick a list of random elements of Z*(+I), A and B follow Blum’s
coin-flip protocol, which requires that N BL and N 1 mod 4. These conditions hold
(with very high probability) if the s’econd stage has been completed successfully.

This proof-system has error probability 3(k)= 2e-k(1/8)2.
1. A and B use Blum’s coin-flip protocol to generate k random elements

r,,..., rk Z*(+I)"
i:=0;
do until k"

a. generating it bit by bit using Blum’s coin-flip protocol, A and B choose
a number a, 0< a < N

b. if g.c.d. (a, N) (which happens with vanishingly small probability)
then rAIT the protocol

c. if ()= +1 then i:= i+ 1; r :’- a
2. for each i= 1,..., k such that ri is a quadratic residue, A computes s such

that r S mod N"
A B: (i, Si)

3. B checks that at least of the ri are quadratic residues; if so then B ACCEPTS

the proof (and otherwise B REJECTS the proof and halts the entire protocol).
THEOREM 1. This protocol is a perfectly minimum-knowledge confirming interactive

proof-system for the language I= {(N, z)l N-= rood 4, N BL, ,(N)= 2, ()= +1}.
Proof We treat each of the three subprotocol stages separately. As a consequence

of the lemma of 3.2, it then follows immediately that the concatenation of the three
has the required properties.

First Stage
The first stage is, trivially, a confirming proof-system for the language

I {(N, z) N --- mod 4, ,(N) > 1, z Z’N, ()= +1},
since each of these conditions is validated by B in polynomial time without interacting
with A at all.

Second Stage
Given an integer N 1 mod 4 (in particular, given input that has been confirmed

in the first stage), the second stage is a perfectly minimum-knowledge confirming
interactive proof-system for the language 12 {(N, z)lN BL} with error probability
62(k) 2-k

This stage requires O(k) communication rounds, during which O(k2) bits are

exchanged.
The correctness of this stage depends on the alternate characterizations of member-

ship in BL ( 4.2). If N BL, then each quadratic residue r sent by A has at least one
square root mod N with Jacobi symbol +1 and at least one square root mod N with
Jacobi symbol -1; no matter which sign o- B chooses, A can respond with a square
root of the appropriate sign. B accepts the proof with probability 1. On the other hand,
if N : BL then no quadratic residue mod N has two square roots with Jacobi symbols
of opposite sign. In this case, it is very likely that there is some for which A will be
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unable to send an appropriate si, and B will halt the protocol. The only way for a
cheating A* to convince B that N BL (by sending the appropriate elements si) is by
guessing the entire sign-sequence o-1," ", o-k; the probability that such a guess will
be correct is at most 2-k 2(k). Thus, this protocol is indeed a confirming interactive
proof-system for BL.

To prove the perfect minimum-knowledge property, choose any interactive Turing
maching B*; we have to specify the computation of a Turing machine M. whose
output, on input N BL and initial history h, is a simulation of B*’s view of the
computation that A and B* would have performed on the same input. This view
includes a message-history that consists of triples (r, or, s) satisfying the conditions
implicitly defined by the specification of the protocol. As described above in 3.1,
M. uses the program of B* as a subroutine. After initializing B*, M. operates as
follows:

1. repeat k times"
1.1 save the current configuration of B*;
1.2 choose s Z* at random, compute r :- s mod N, "send" r to the simu-

lated B*, and "receive" cr in return;
1.3 if r {-1, +1} then append HALT to A’S message-record in B*’s virtual

history, write out the updated virtual history, and halt;
otherwise if ()# o- then restore the saved configuration of B* and go
back to step 1.1;
(else ()= o- and the most recent exchange of messages recorded in B*’s
virtual history is the triple (r, or, s))

2. write out B*’s virtual history.

For each of the k iterations, the expected number of times the loop has to be
repeated is 2, since for any value of r the probability that ()= r is exactly 1/2; thus
the expected running time of M. is polynomial in k.

The simulated messages "sent" to B* are drawn from the same probability
distribution as the messages sent by A in an actual execution of the protocol, and the
random communications triples (r, o-, s) produced by M. satisfy the conditions s2-=

r mod N and (-/)= or. As explained in 3.2, these messages are interleaved on the
virtual history tape with the random-tape bits used by B*, exactly as they would be in
an actual interaction with A. Therefore the sets M.[N, h] and VIEW.{(A, B*)[N, h]}
are identical. This completes the proof for the second stage.

Third Stage

Given an integer from the set

{NIN BL, N.-= mod 4, u(N)> 1}

(in particular, given input that has been confirmed in the first and second stages), the
third stage is a perfectly minimum-knowledge confirming interactive proof-system for
the language I= {(N, z)[ p(N) 2} with error probability 63(k)= 2e-(/s).

This stage requires O(k) communication rounds, during which O(k3) bits are
exchanged.

During the third stage, A and B together choose random elements of Z*N(+I).
Since they do this by means of Blum’s coin-flip protocol, and no Turing machine A*
can bias the bits produced by Blum’s procedure, these elements are indeed produced
at random. In order to prove that this stage is a proof-system, consider the experiment
of choosing a random element of Z*N(+I), where the experiment is a success if the
chosen element is a quadratic residue mod N; let F,(N) denote the frequency of
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successes in k independent trials. Recall that B accepts N if the frequency Fk(N)=> -.
As mentioned above, the probability of success in one trial is exactly (1/2)N)-. (Since
N is known to have at least two prime factors, this probability is at most .) If u(N)
is exactly 2, then the probability that B does not accept N is, by Bernstein’s law of
large numbers,

t,(/8)Prob{Ft,(N)<}<=Prob{lF(N) 51>-1/2}-<2e =a3(k).
On the other hand, if N has more than two prime factors, the probability of success
in one trial is at most a, and thus the probability that B incorrectly accepts N (when
interacting with a cheating A*) is

e--k(1/8)2Prob{F(N)>-}<=Prob{lF,(N) 31->1/2}<2 =a3(k ).

To prove the minimum-knowledge property, given an interactive Turing machine
B* we have to specify the computation of a simulating Turing machin4 MB.. The
ensemble that M. must simulate includes a sequence of Blum coin-flips, so we begin
by showing that Blum’s coin-flip protocol is perfectly minimum-knowledge. To prove
this, we must specify the computation of a probabilistic polynomial-time Turing
machine Mco, whose output, on input N (satisfying N BL and N-= mod 4), and
initial history h, provides a simulation of the ensemble WEWu.{(A, B*)[N, hi}, which
includes a message triple (v, r, u) encoding a bit as described in 5.1 above. Modelling
the result oracle for the protocol, Mcon is given as additional input a (presumably
random) bit b.

Given any bit b, Mcoin (initializes B* and) proceeds as follows"
a. execute the protocol with B*:

1. let B* "send" v (simulating step 1)
2. save the current configuration of B*
3. simulate A’s action in step 2 by choosing o-:= +1 at random and

"sending" it to B*
4. let B* "send" u (simulating step 3)

b. if the bit encoded by (v, o-, u) is b, then write out B*’s virtual history (which
includes the triple (v, r, u)) and halt; otherwise"

1. restore the saved configuration of B*
2. simulating step 2 again, "send" -o- (instead of r) to B*
3. let B* "send" u’
4. write out B*’s virtual history (which includes the triple (v,-or, u’))

Note that if B* does not follow the protocol, it may happen that the numbers u
and u’ are not the same; if their Jacobi symbol is the same the outcome of the protocol
is the same random bit b and this has no effect on the output distribution of Mco
(since B*, when interacting with A, can decide to send either u or -u). On the other
hand, if they have opposite Jacobi symbols mod N, then the outcome bit 1- b has
been determined by B* and not chosen at random. As noted above, this can only
happen if B* can factor N, in which case it indeed has the ability to dictate the outcome
of the protocol, regardless of whether it is interacting with A or acting as a subroutine
for Mcoin.

Whether the virtual history of B* written out by Mcoin was generated in step a or
step b of the simulation, the distribution of its possible values (and thus the probability
distribution of the bit encoded by the message triple) is identical to that of
VIEWB.{(A, B*)[N h ]}. Thus the coin-flip protocol is perfectly minimum-knowledge.

Next we describe the simulation by MB. of the third stage of our protocol. The
set VIEWB.{(A, B*)[N, h]} that MB* must simulate begins with a sequence of Blum
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coin-flips, which are used to generate random elements of Z*N. This simulation can be
performed by following the program Mcoin as just described; the difficulty for MB*, a
polynomial-time machine that may not be able to factor N, is that those elements
which are quadratic residues must be randomly generated along with their square roots.

Given as input an integer N that has been confirmed by the first two stages and
that satisfies ,(N)= 2, and given an initial history h, MB. proceeds as follows:

1. := 0; A :-- the empty list
2. do until k:

choose a random number a, 0 < a < N;
if g.c.d. (a, N) (which happens with vanishingly small probability) then
FLAG the number a, adjoin it to A, and go to step 3;
else:
choose a random bit b (to decide the Jacobi symbol of the next element
generated);
if b--0 then adjoin to A a random element of Z’N(--1);
else:

a. i:= i+1
b. choose si Z*N at random
c. choose a random bit bi (to decide whether the next element generated

should be a quadratic residue);
if bi =0 then r := s rood N (a random residue in Z*N(+I))
else r:=-s mod N (a random nonresidue in Z*N(+I))

d. adjoin ri to A
3. (simulate as many executions as needed of Blum’s coin-flip in order to generate

the sequence of bits in the list A)
for each bit b in the representation of each number in A:

follow the procedure above for Mcoin (using B* as a subroutine), recording
the numbers u (and possibly u’) "sent" by B*;

if the outcome of the coin-flip simulation is indeed b, then continue with the
next bit in A;

otherwise B* has "forced" the complementary outcome 1- b by "sending"
u and u’ with ()# (), in which case"

a. use u and u’ to factor N
b. discard the rest of A
c. repeatedly execute Blum’s coin-flip with B* (as originally specified,

without backtracking to restore previous configurations of B*) in order
to choose elements of Z’N, bit by bit, until the resulting list contains k
elements (r,..., rk, say) with Jacobi symbol +1; again let A denote
the new list

4. if the last number in A is FLAGGED then halt
5. discard the elements in A with Jacobi symbol -1
6. if B* has not "forced" the outcome of any of the coin-flip simulations of step

3, then for each r in A such that bi =0 "send" (i, si) to B*;
otherwise, use the factorization of N to test each ri in A to see whether it is a

2quadratic residue; if it is, then compute s such that r-= s mod N and "send"
i, si to B*

7. write out the virtual history of B*.

If 9(N)= 2, then a randomly chosen element of Z’N--in particular, one that has
been chosen by A interacting with a machine B* that does not "force" the outcome
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of any Blum coin-flipsmwill have Jacobi symbol +1 with probability ; among these,
quadratic residues will occur with probability . If B*, as a subprogram of the simulator
MB., does not "force" any (simulated) Blum coin-flips, then the simulator generates
elements of ZN with exactly the same probabilities, and then perfectly simulates the
generating coin-flips; on the other hand, if B* does "force" a coin-flip, then MB. simply
performs with it a sequence of Blum coin-flips, exactly as in the specification of the
protocol. Either way, MB. generates lists of elements of ZN with the same distribution
as do A and B*, and B* makes identical use of bits from its random tape, so that the
sets VIEWB.{(A, B*)[N, h]} and M[N, h] are identical. This completes the proof for
the third stage.

Finally, to conclude the proof of Theorem 1, we see by the.concatenation lemma
that, given any input string at all, the concatenation of the three stages is a
perfectly minimum-knowledge confirming interactive proof-system for the language
I (-] I2 (] I3= L [q

6. Interactive decision of quadratic residuosity. If the confirming part of our pro-
tocol has been successfully completed, then with high probability the input string
(N, z) is in the language L In particular, we know that ,(N) 2, that z Z*, and that
()--+1; these are the properties that are required of the inputs to the next part of
the protocol.

This part is a deciding interactive proof-system for L, taking inputs from I. The
proof-system is both perfectly minimum-knowledge and perfectly result-indistinguish-
able. As noted above, a pair (N, z) that is known to belong to I either is or is not also
a member of L according to whether or not z is a quadratic residue mod N.

To make the exposition clearer, we present three successive versions of our
protocol.

Let y-=-1 mod N. Everything that follows holds for any nonresidue y Z* that
has Jacobi symbol +1. As long as N BL and N= mod 4, we can take y =-1.
(Remark. If another nonresidue y is desired, A can prove to B, as a preliminary
subprotocol stage, that y is a nonresidue by following the minimum-knowledge inter-
active proof-system of 17].)

Let us fix some notation. For any x Z* we define the predicate"

jo if x is a quadratic residue mod N,
RESu(x)

otherwise.

Recall that Z*(+I) denotes the set of elements of Z* with Jacobi symbol +1. Since
,(N) 2, half of these are quadratic residues mod N, and half of them are nonresidues.

Our protocol relies on the fact that if r Z* is chosen at random, then r2 mod N
is a random quadratic residue in the set Z*(+I) and yr mod N is a random quadratic
nonresidue in Z*(+I); similarly, zr mod N is either a random residue or a random
nonresidue in Z*(+I) according to whether or not z is a residue mod N.

This interactive proof-system has error probability 6(k)--2e-4’/8.

First version: A deciding proof-system

i. Repeat k times:
1. B chooses r Z* and c {1, 2, 3} at random, and computes CASE c of:

l:x:= r mod N
2: x:-yr2modN
3: x:=zrmodN

BA:x
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2. A computes b := RES N (x);
A-B: b

3. B checks that ifc=l then b=0, ifc=2then b-l, andifc=3 then
b is consistent with any previous case-3 iterations; if not then B REJECTS

the proof and halts the protocol
ii. B ACCEPTS the proof that RESN(z) is equal to the consistent value of b for

case-3 iterations.

As explained above, if z is a quadratic residue then x’s constructed in case are
indistinguishable from x’s constructed in case 3. If A acts as specified, then when the
protocol finishes B will be convinced that z is a residue. The only way that a cheating
A* can convince B that z is not a residue is by correctly guessing, among all iterations
during which B has sent a residue x, which of these were constructed in case and
which of them in case 3; if there are ck such iterations in a particular execution of the
protocol, then the probability of successful cheating is 2-Ck. Since c is very likely to
be close to _, a simple calculation using Bernstein’s law of large numbers shows that
the probability of successful cheating is at most 2e -4t’/81. Similarly if z is a quadratic
nonresidue. Hence the above version is a deciding interactive proof-system for L.

However, this version is not result-indistinguishable. An observer of an execution
of the protocol can easily tell whether he is watching an interactive proof that
RESu(z) or a proof that RESu(z)--0 by keeping a tally of the bits b sent by A
in step 2 of each iteration.

Second version: A result-indistinguishable proof-system

A simple modification of the above protocol does hide the result from an eavesdrop-
per. The only change is that at the beginning (before step i), A flips a fair coin in order
to decide whether to use R(x)= RESn(x) or R(x)--1-RESu(x) as the bit b to be
sent to B in step 2 of each iteration throughout the protocol. R(x) can be regarded as
an encoding, chosen at random for the entire protocol, of RESN(x).

In step 3, B checks for consistency in the obvious way: B should receive the same
bit b in all case-1 iterations and the complementary bit in all case-2 iterations; B should
receive a consistent bit b in all case-3 iterations, and its value indicates to B whether
or not z is a quadratic residue. As before, if in step 3 of any iteration B finds that the
value of b is not consistent then B halts the protocol, REJECTing the proof.

With this modification, the protocol is stillmarguing as above--a deciding inter-
active proof-system for L. Furthermore, it is result-indistinguishable. An eavesdropper
expects to overhear one bit about of the time during step 2 of each iteration and the
complementary bit the remaining of the time; whether the majority bit in a particular
execution of the protocol is 0 or gives him no knowledge. A formal proof of
result-indistinguishability of the full protocol is presented below.

However, the version so far presented is not minimum-knowledge. For example,
a cheating B* that wanted to find out whether a particular number--17, saymis a
quadratic residue mod N could, during one of the iterations, send x 17 in step 1
instead of an element x constructed at random according to B’s program. A’s response
in step 2 will convey to B* the value RESu(17), which is something that B* could not
have computed by itself.

Third version: A minimum-knowledge result-indistinguishable proof-system

We can make this a minimum-knowledge protocol by refining step 1 of the version
just presented; the refinement consists of several interactive substeps by which B gives
to A what amounts to a minimum-knowledge proof that the element x that it sends
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was constructed in one of the three ways specfied (without giving A any knowledge
about which of the three ways). The rest of the protocol is unchanged.

1.0 B chooses r e Z* and e e {1, 2, 3} at random, and computes CASE c of:
1: X :’- r mod N
2: x:=yr2modN
3: x:-zr2modN

BA:x
1.1 B chooses sie Z* at random (i= 1,...,4k) and computes:

Tl { t ", tk ti s mod N},
T { tk+, t2 t-- ys mod N},
r {t2k+l, t3k [t -- ZS2i mod N},
T4 { tag+l, ", t4k ti -- YZS2i mod S};
taking this to be matrix of 4 rows [T, T2, T3, T4] and k columns (where
column j contains the elements tj, tk+j, t2k+.j, t3k+j), B randomly permutes
each column of the matrix, resulting in a matrix T;
B--> A: T

1.2 A chooses S {1,. , k} at random (a query indicating a random subset of
T’s columns);
A-+B: S

1.3 for each j S, for each ti 6 column j, B--> A: si
(These numbers show A that B has correctly computed the jth column of T
for each j S and convince A that it is very likely that at least one other
column of T was also computed correctly.)

1.4 A verifies (for each such ti) that ti either s, ys ZS2i, or yzsi, mod N, with
each congruence being satisfied once in each column j e S;
if not, then A halts the protocol in the FAILURE state

1.5 for each j S, for each t; e column j, B computes wi according to Table 1: if
x was chosen as case e of step 1.0 and ti TI, then wi := the table-entry in
the /th row and cth column;

TABLE 1. (Step 1.5.)
(All computations of table entries are modulo N.)

X--..oo

ys

yzsi T4

yr zr

(c=l) (c=2) (c=3)

rs x/-((xt yrsi x/y(xt zrsi x/z(xti)

yrsi ) yrsi (x/i) yzrsi x/yz(xt

zrs ) yzrsi x/yz(xti) zrsi Ni/-((xti)

yzrs, x/)(xt,) yzrs, #7(-X7,) yzrs,

1.6

(For each j S, these four numbers show A that if B has correctly computed
the jth column of T, then B has correctly computed x.)
for each such ti, B- A: wi.
A verifies (for each such ti) that w/--either (xti), y(xti), z(xti), or
yz(xt) mod N, with each congruence being satisfied once in each column
j_S;
if not, then A halts the protocol in the FAILURE state.
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The protocol now continues as before. A sends b= R(x) to B (step 2), and B
checks b for consistency (step 3); and then they continue with step 1 of the next
iteration. Note that it is in A’s "interest" to choose S at random in step 1.2, so that
with overwhelming probability both S and {1,..., k}-S are reasonably large (and
thus the probability that any particular column of T will be queried is close to 1/2).

The idea is that any machine playing the role of B (and desiring that the protocol
succeed) must follow the protocol, because if it tries to cheat during any iterationm
either by sending a number x in step 1.0 for which it does not "know" the corresponding
number r, or by sending numbers ti in step 1.1 for which it does not "know" the
corresponding numbers si--then A will, with overwhelming probability, detect its
cheating either in step 1.6 or in step 1.4. This is formalized in the following proof.

THEOREM 2. Given input belonging to I {(N, z) lN mod 4, N c BL, ,(N) 2,
()- + 1}, this protocol is a perfectly minimum-knowledge and perfectly result-indistin-
guishable deciding interactive proof-system for L= {(N, z)c I Iz a quadratic residue
mod N}.

Proof First we prove that the protocol is a deciding proof-system for L. Since we
have already shown that the second version presented above is a proof-system, it
suffices to show that the refinement of step preserves this property.

Suppose that z is a quadratic residue. The question is whether a cheating A*meven
if it does not choose S at random in step 1.2--can use the numbers sent by B during
step to distinguish correctly between case-1 iterations (x r mod N for a random
r) and case-3 iterations (x zr mod N). Since B has chosen them at random, A* is
unable to distinguish between residues ti of the form s and residues t of the form
zs2. Table 2, the subtable of Table corresponding to these four possibilities, has rows
that are permutations of each other, and thus A* is not able to tell whether B is using
column c or column c 3 of the whole table.

TABLE 2
A subtable of Table 1.

c=l c=3

(xt,

V/Z(Xli /-( Xli

Similarly for nonresidues t of the form ys2 or yzs2. A like analysis holds if z is
a nonresidue mod N. Hence the protocol is indeed a deciding interactive proof-system
for L.

In order to prove the minimum-knowledge property, we choose an interactive
Turing machine B* that runs in expected polynomial time; we must describe the
computation of a simulating machine M MB..

M has one-time access to an oracle for the result of the protocol, as explained in
3.1. M begins by querying the oracle on the input string (N, z), and learns (with very

high probability) the value of RESN(z). The rest of the simulation is similar to that
of the proof that the protocol of [17] is minimum-knowledge.

As its next step, M flips a coin to simulate A’s choice of whether to compute
R(x)= RESN(x) or R(x)= 1-RESN(x) during the protocol.

In each iteration, M carries on the protocol through the end of (the refinement
of) step in a straightforward manner: M uses B* to perform its own version of B’s
role, and M easily simulates A’s role, choosing a random query S in step 1.2 and
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checking several congruences mod N in steps 1.4 and 1.6. If these congruences do
satisfy the check, the difficulty comes in simulating A’s communication in step 2, which
consists of the bit R(x); how can M quickly calculate the correct value of RESN(x)?
M accomplishes this by following the EXTRACTION procedure described below.

After B* has performed its computations in the simulation of step 1.1 and "sent"
the matrix T, M saves the current configuration Co of B*. At this point, given Co (which
includes a fixed random-tape string) and any fixed query-set S_ {1,..., k} that A
might choose in step 1.2, the lists of numbers that B* would "send" in steps 1.3 and
1.5 in answer to the query S are determined. Let us call S a satisfiable query if these
answers would satisfy A’s verifying checks of steps 1.4 and 1.6, causing the protocol
to continue with step 2. (A query that is not satisfiable would cause A to halt the
protocol in its failure state.) It is easy to check whether or not a query S is satisfiable,
by setting B*’s configuration to Co, "sending" S to B*, and checking the numbers that
B* "sends" in return.

In its simulation, M makes use of an auxiliary matrix T’ that contains two data
fields for each entry ti of the matrix T, one for the number si and one for the number
wi (where si and wi are related to ti as in the specification of the protocol). Note that
if M succeeds in filling both fields for any single entry ti, then M can easily deduce
the value R(x) that it needs in order to simulate step 2: M can use si to see how ti
was computed in step 1.1 (i.e., which set T; contains ti, and hence which row of the
table B* must use in step 1.5); next M can use wi to see which column c of the table
B* must use; and then the choice of column gives M the value of RESN(x), and hence
of R(x).

Next we describe the EXTRACrION procedure that M performs in each iteration
following the simulation of step 1.1.

1. save the current machine configuration Co
2. choose a query S 1, , k at random, store it, and "send" it to B* (simulat-

ing step 1.2)
3. let B* "send" its answers to S (the numbers s of step 1.3 and w, of step 1.5),

and check the congruences of steps 1.4 and 1.6;
if the congruences do not check, then halt the simulation;
otherwise, store B*’s answers in the auxiliary matrix T’ and repeat the following
two loops concurrently until success:

a. sampling the query space (without repetition):
i. restore configuration Co

ii. choose a new query S’ (1,..., k at random that has not
already been chosen (if there is one; if none exists, then halt
the sampling loop);
store S’ and "send" it to B*

iii. let B* "send" its answers to S’
iv. for each j k if B*’s answers for column j of the matrix

T satisfy the congruences of 1.4 (if j S’) or of 1.6 (if j S’),
then enter them in the auxiliary matrix T’;
if any of these new entries is an s for which T’ already contains

w or vice versa, then (as explained above) use s, w to compute
R(x) and set success :- TRUE

b. use any factoring algorithm F to factor N:
i. until (success or (F has successfully factored N) do the next

step of F
ii. use the prime factors of N to compute RESt(x) and R(x),

and set success :- TRUE
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4. restore configuration Co and "send" to B* the original query S
5. let B* "send" its answers and update its history tape (exactly as it did the first

time it received the query S)
Simulating step 2, M sets b := R(x) (as computed either in a or b of the last inner
loop) and "sends" b to B*, which performs its version of step 3 of the protocol. If B*
is following the instructions of step 3, then it is indeed "expecting" the computed
value of b, and the simulation continues with the next iteration.

We need to show that M’s expected running time is polynomial (in k, the length
of the input) and that its output ensemble is identical to B*’s view. To bound the
running time, it suffices to prove a polynomial bound on the expected time required
by each of the k iterations of M’s program. First observe that the outer loop of the
EXTRACTION procedure takes polynomial time. The same is true for any single execution
of the inner loop: queries may be stored in a lexicographically ordered tree (so that
choosing a new one costs O(k)); the rest of the sampling loop is polynomial-time,
and in each inner loop only one step of the factoring algorithm is performed. Therefore,
it is enough to show that, for any fixed configuration Co, the expected number of
repetitions of the inner loop is polynomial in k.

In fact, we show that this number is constant. In configuration Co, let p (0 -< p =< 2k)
be the number of queries that are satisfiable. When M performs the EXTRACTION

procedure, with probability 1-p/2k its first query S will not be satisfiable, in which
case the inner loop is not executed at all. If p--0, we have no other case to consider;
so assume p-> 1. With probability p/2k, S is satisfiable, and the inner loop is repeated
until success is set to TRtE (either in the sampling process or after factoring N). Each
sampling loop begins with the choice of a new random query. Of the 2k- possible
queries, at least the p-1 satisfiable queries (besides S) lead to success; that is, the
probability of a successful inner loop is at least (p-1)/(2k- 1). Hence if p> 1, the
expected number of attempts after choosing a satisfiable original query is at most
(2k--1)/(p--1); overall, the expected number of repetitions of the inner loop is at
most (p/2k) (2k- 1)/(p-1)=<2. We consider below the special case p= 1.

Next, we show that the sets VIEW.{(A, B*)[(N, z), hi} and M[(N, z), hi are
identical; following the Remark of 3.2, it suffices to show that this is so for any one
of the k iterations of the protocol. Consider, therefore, an iterationmeither of an actual
protocol execution by A and B* or of the simulation by Mmat the beginning of which
B* sends the matrix T, and let p (0 =< p-< 2k) be the number of satisfiable queries. With
probability l-pk a randomly chosen query is not satisfiable, causing either the
protocol execution or the simulation to halt; in this case, the actual history and the
virtual history are identical. If p 0, then this is the only case that occurs. Otherwise,
with probability p/2k, the original query S is satisfiable, and both the actual protocol
and the simulation continue with step 2. As long as p-> 2, there is at least one other
query that leads to success in the inner loop of M’s EXTRACTION procedure, enabling
M to "send" in its simulation of step 2 the correct value of b R(x), the same one
that A would send during an actual execution. The factoring algorithm may be faster
then the sampling process, in which case the correct value of b is computed directly.
Either way, the actual history and the virtual history are identical.

If p 1, then the probability that M’s original query is satisfiable is only 2-. In
this rare case, the sampling process in the inner loop of the EXTRACTION procedure
might never lead to success; the inner loop might not terminate until after N has been
factored. Since the cost of factoring N is less than O(2k), the total expected number
of repetitions of the inner loop when p is less than 2-g. 2k= 1. In this case, as
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before, the actual history and the virtual history are identical. This concludes the proof
that the protocol is perfectly minimum-knowledge.

In order to prove that the protocol is result-indistinguishable, we must specify the
computation of a probabilistic Turing machine M’, running in expected polynomial
time, that simulates the communications ensemble COM{(A, B)[N, z]}. (Recall that
M’ does not have access to any oracle.) M’ begins by flipping a coin to decide whether
to simulate the choice R(z)=0 or the choice R(z)= 1. Then in each iteration M’
simulates the specified computations of A and B, except for the following changes. In
(simulated) step 1.0, M chooses x := zr mod N with probability and x := yzr mod N
with probability 3. In (simulated) step 2, M’ outputs b R(z) if x zr and b 1 R(z)
if x=yzr2. (Here the simulation of step 2 is much simpler than in the minimum-
knowledge proof above, since M’ "knows" how each x was constructed.) In (simulated)
step 1.5, M’ outputs wi computed according to Table 3.

zs

yzs

TABLE 3

zr yzr

zrs, ) yzrsi x/yz(xti)

yzrsi x/yz(xti) yzrsi x/z(xti)

zrsi (x/-(-i) yzrsi x/y(xti)

yzrs x/y(xt yzrsi v/-((xti)

The numbers x output by M’ have the same distribution as the numbers x output
by B; the same is true of the si and the wi. Hence, as required, the set of outputs
M’[ N, z] is identical to the set COM{(A, B)[ N, z]}, so the protocol is perfectly result-
indistinguishable.

As presented, the protocol takes O(k) communication rounds during which O(k3)
bits are exchanged. However, all k iterations of the main loop can be performed in
parallel, taking O(1) rounds. The simulator M can perform in parallel all k iterations
of its main loop, and its expected running time is still polynomial in k. Similarly, M’
can operate in parallel. Thus the parallelized version of the protocol is also perfectly
minimum-knowledge and perfectly result-indistinguishable. This concludes the proof
of Theorem 2.

We note that there is another modification of the first version of our protocol that
also achieves result-indistinguishability. A can always respond in step 2 with the true
value of RESN(x) if B computes each x in step according to a random choice among
four varieties: to the types r2, yr, and zr2 mod N we add the fourth type yzr mod N.
If the protocol is to be minimum-knowledge as well, we can refine step as in the
third version of our protocol, adding an appropriate fourth column to the table used
to compute wi.

7. Cryptographic applications. In all our applications, we let N be the public key
of a user A who knows its factorization. Within the set N, it is most advantageous to
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A to choose N to be of the form N pq, with p and q of approximately the same
size. A can follow our confirming protocol in order to prove to any other user that
N BL and u(N) 2. For these applications, we assume that the residuosity problem
is intractable.

When A communicates with another user B, any element zZ*(+l) can serve
as an encoding of the bit RESN(z), as soon as A has used our protocol to prove to B
the value of this bit. According to need, z can be chosen by A or by both A and B
together (say, by flipping coins). Because of the result-indistinguishability of the
protocol, this encoding is cryptographically secure.

In contrast, the conventional approach to hiding knowledge from an eavesdropper
is to use encryption. (For example, given two different protocols, one for membership
in a language L and the other for nonmembership in L, one could "pad" the protocols
so that they both caused messages of the same length to be sent at each round of
communications, and then encrypt all messages.) However, in this approach,, proving
a theorem about the security of the protocol against eavesdroppers usually’requires
an assumption about the security of the encryption scheme used.

The result-indistinguishability of our protocol suggests two different ways that it
can be used in a public-key encryption scheme that is secure against chosen-ciphertext
attack.

(1) A sequence of random elements zl, z2,’’" can serve as a probabilistic
encryption [16] of the bit-sequence RESN(zl), RES(z2), which in turn
can be used as a one-time pad to encode a message sent either from A to B
or from B to A.

(2) Instead of using the zi directly to encrypt the bits RESu(zi), we can define a
much more efficient scheme for probabilistic encryption by using a short
bit-sequence RESu(z), RESu(z2), as the random seed for a cryptographi-
cally secure pseudorandom bit generator [5], [27], [6] whose security may be
based on the unknown factorization of N (e.g., [3], [4]). Sharing the seed, A
and B can efficiently generate polynomially many bits and use them as a (very
long) one-time pad with which to send messages back and forth. The pad bits
alone are secure against any polynomially bounded adversary; furthermore,
the adversary gains no computational advantage in guessing any pad bit when
he is given probabilistic encryptions of the bits of the seed, nor when he is
allowed to overhear the protocol interactions that define these encrypted bits.
Because our protocol is only used in order to initialize the system, this scheme
has low amortized cost.

Whether the bits RESN(zi) are used directly or to form the seed of a pseudorandom
bit generator, the resulting schemes have the minimum-knowledge property with respect
to B as well as with respect to an eavesdropper C. In particular, they are provably
secure against both chosen-message and chosen-ciphertext attack. For precise
definitions of levels of cryptographic security, and for further study of the power that
interaction seems to add to public-key cryptography, see [13], [10].

Another application of our protocol gives a new private unbiased coin-flip,
generated jointly by A and B. The two users simply choose z at random--for example,
choosing its bits by means of Blum’s coin-flip. Note that the bits of z are public; it is
RESts(z), the result of the coin-flip, which is private.

In certain applications we can omit the confirming proof that N is of the required
form. Suppose in fact that N has more than two prime factors. For any z Z*(+I),
A can carry out the deciding protocol as before. Now, however, if y and z--both
quadratic nonresidues in Z*(+ 1)--have different quadratic character modulo several
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of the prime factors of N, then A can distinguish numbers of the form r from numbers
of the form yr2 mod N and can distinguish each of these from numbers of the form
zr2 mod N. (This is not true if v(N)= 2; recall that for such N any nonresidue in
Z*(+I) is a nonresidue modulo both prime factors of N.) Thus A can, at will, use
our deciding protocol to "prove" to B either that z is a residue or that z is a nonresidue.
In either case, the interactively proved value of RESN(z)mwhether or not it is the
true valuemis cryptographically secure. This value gives B no knowledge whatever.
The "proof" only convinces B that A can distinguish between numbers with different
quadratic characters mod N, without releasing to B any information about the quadratic
character mod N of any particular number. (This can be formalized in terms of a
simulator M MB. for any given verifier B*. Note that at the beginning of the program
for M given in the proof of Theorem 2, we can replace the oracle query for RESN(z)
with a simple coin-flip; then exactly as in that proof, the two sets

VIEWB.{(A, B)[(N, z), h]}

and

M[(N,z),h]

are identical.) Thus, we may say that in this case, the protocol is result-indistinguishable
even with respect to B.

In this situation, when N has more than two prime factors, we can define the
following game: A picks a random nonresidue z with quadratic character different
from that of y. A then "proves" to user B1 that RESu(z)= bl, and "proves" to user

B2 that RESc(z)=b2. The "proven" value of RESN(z) in each execution of the
protocol is shared only by the prover A and the verifier B or B2. In fact, user B has
absolutely no computational advantage in deciding whether or not b b2, and neither
does user B2.

8. Conclusions. Approaching knowledge from the point of view of computational
complexity, we have studied the interactive transmission of computational results. The
protocol that we introduce gives a proof of the value, 0 or 1, of a number-theoretic
predicate, RESN(.). In a sense that we make precise (extending the definitions of
[17]), the verifier gains no more knowledge from an execution of the protocol than
this value; this is the "minimum-knowledge" property of the protocol. Furthermore,
we are able to analyze the difference between the knowledge gained by the active
verifier and that gained by a passive eavesdropper of equal computational powder; the
protocol is "result-indistinguishable," in that an eavesdropper gains no knowledge at
all by overhearing the messages passed during an execution.

Recent work on minimum-knowledge protocols has taken several different direc-
tions. Feige, Fiat, and Shamir adapted the result-indistinguishable protocol of this
paper (originally presented in [11]) and the protocols of [17] in order to give an
efficient minimum-knowledge (and therefore cryptographically secure) identification
scheme [9]. Their paper proposes a formalization, similar to that of Tompa and Woll
[26], of the notion that a protocol can supply a "proof" that the prover knows some
fact or possesses some computational ability, while completely hiding this piece of
knowledge. (For example, in case N has more than two prime factors, our deciding
proof-system for RESu(. may be regarded as demonstrating the prover’s ability to
distinguish between numbers with different quadratic characters mod N; see 7.)

Goldreich, Micali,-and Wigderson proved that, under the assumption that one-way
functions exist, every language in NP has a minimum-knowledge confirming interactive
proof-system; this result has important consequences for the design of cryptographic
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protocols [14]. Under the assumption that certain number-theoretic computations are
infeasible, a similar result was proved by Brassard and Crepeau, both for prover and
verifier as described in this paper [7], and for the dual situation in which a resource-
bounded prover interacts with a verifier of unlimited computational power [8]. (Our
formalization of the requirement that a two-party transfer protocol be minimum-
knowledge applies to protocols that depend on such "cryptographic assumptions;"
and under the appropriate assumption, the concatenation lemma of 3.2 holds in the
cryptographic setting.) Impagliazzo and Yung gave a construction for the direct
minimum-knowledge transfer of the result of any given computation (both for the
usual and for the dual model of the computational power of the prover and the verifier);
the dual protocol is implemented under the more general assumption that any of a
large class of one-way functions exist [20]. Their construction applies to probabilistic
as well as deterministic computations, and in particular it provides a minimum-
knowledge interactive proof-system for any language possessing a confirming inter-
active proof-system at all (i.e., for any language in the complexity class IP [1], [18]).

In a recent paper, instead of considering only protocols for transferring a computa-
tional result from one party to another, Yao studied a broad class of two-party protocols
for what may be called "crytographic computation," in which the (polynomially
bounded) users combine their private inputs in order to compute private outputs in a
minimum-knowledge fashion, preserving the privacy of these inputs and outputs and
hiding partial computational results as much as possible; it may also be required that
both users compute their final results simultaneously [28]. Under the asssumption that
factoring is hard, Yao showed how to design such a protocol for any given cryptographic
computation problem. Continuing this work, Goldreich, Micali, and Wigderson proved
similar results for multiparty protocols, assuming that one-way trapdoor functions
exist, and showed how such protocols could be made to tolerate faults [15]. Galil,
Haber, and Yung simplified and extended these constructions for cryptographic compu-
tation, giving new methods for the design of fault-tolerant multiparty cryptographic
protocols 12].

In summary, the complexity-theoretic approach to measuring and controlling the
knowledge transmitted in various distributed and cryptographic settings has proved
to be a useful tool in protocol design.

Acknowledgments. We would like to thank Silvio Micali and Charles Rackoff for
their helpful discussions, and Paul Beame, Gilles Brassard, Joan Feigenbaum, Shaft
Goldwasser, David Lichtenstein and Adi Shamir for their insightful remarks.

Note added in proof. The concatenation lemma of 3.2 was proved independently
in Y. Oren, On the cunning power of cheating verifiers: Some observations about zero-
knowledgeproofs, Proc. 28th Annual IEEE Symposium on the Foundations of Computer
Science, 1987, pp. 462-471, and in [26].

REFERENCES

[1] L. BABAI, Trading group theory for randomness, Proc. 17th Annual ACM Symposium on the Theory
of Computing, 1985, pp. 421-429.

[2] M. BLUM, Coin flipping by phone, Proc. IEEE COMPCON, 1982, pp. 132-137.
[3] L. BLUM, M. BLUM, AND M. SHUB, A simple unpredictable pseudo-random number generator, SIAM

J. Comput., 15 (1986), pp. 364-383.
[4] M. BLUM AND S. GOLDWASSER, An efficient probabilistic public-key encryption scheme which hides all

partial information, in Proc. Crypto ’84, Springer-Verlag, New York, Berlin, 1984, pp. 289-299.



MINIMUM-KNOWLEDGE INTERACTIVE DECISIONS 739

[5] M. BLUM AND S. MICALI, How to generate cryptographically strong sequences ofpseudo-random bits,
SIAM J. Comput., 13 (1984), pp. 850-864.

[6] R.B. BOPPANA AND R. HIRSCHFELI), Pseudorandom generators and complexity classes, in Advances
in Computer Research, Volume on Randomness and Computation, JAI Press, to appear.

[7] G. BRASSARD AND C. CREPEAU, Zero-knowledge simulation of Boolean circuits, Proc. Crypto ’86,
Springer-Verlag, New York, Berlin, 1987, pp. 223-233.

[8] , Non-transitive transfer of confidence: A perfect zero-knowledge interactive protocol for SAT and
beyond, in Proc. 27th Annual IEEE Symposium on the Foundations of Computer Science, 1986,
pp. 188-195.

[9] U. FEIGE, A. FIAT, AND A. SHAMIR, Zero knowledge proofs of identity, Proc. 19th Annual ACM
Symposium on the Theory of Computing, 1987, pp. 210-217.

10] Z. GALIL, S. HABER, AND M. YUNG, Symmetricpublic-key encryption, Proc. Crypto ’85, Springer-Verlag,
New York, Berlin, 1985, pp. 128-137.

11 ,A private interactive test ofa Boolean predicate and minimum-knowledge public-key cryptosystems,
Proc. 26th Annual IEEE Symposium on the Foundations of Computer Science, 1985, pp. 360-371.

12] , Cryptographic computation: Securefault-tolerant protocols and the public-key model, Proc. Crypto
’87, Springer-Verlag, New York, Berlin, 1988, pp. 135-155.

13] Symmetric public-key cryptosystems, 1989, submitted.

[14] O. GOLDREICH, S. MICALI, AND A. WIGDERSON, Proofs that yield nothing but their validity and a

methodology ofcryptographic protocol design, Proc. 27th Annual IEEE Symposium on Foundations
of Computer Science, pp. 174-187.

15] ,How to play any mental game, Proc. 19th Annual ACM Symposium on the Theory of Computing,
1987, pp. 218-229.

[16] S. GOLDWASSER AND S. MICALI, Probabilistic encryption, JCSS, 28 (1984), pp. 270-299.
17] S. GOLDWASSER, S. MICALI, AND C. RACKOFF, The knowledge complexity ofinteractive proofsystems,

Proc. 17th Annual ACM Symposium on the Theory of Computing, 1985, pp. 291-304; SIAM J.
Comput., 18 (1989), pp. 186-208.

[18] S. GOLDWASSER AND M. SIPSER, Private coins versus public coins in interactive proof systems, Proc.
18th Annual ACM Symposium on the Theory of Computing, 1986, pp. 59-68.

[19] G. H. HARDY AND E. M. WRIGHT, An Introduction to the Theory of Numbers, Oxford University
Press, London, 1954.

[20] R. IMPAGLIAZZO AND M. YUNG, Direct minimum-knowledge computations, Proc. Crypto ’87, Springer-
Verlag, New York, Berlin, 1988, pp. 40-51.

[21] E. KRANAKIS, Primality and Cryptography, John Wiley, New York, 1986.
[22] M. LUBY, S. MICALI, AND C. RACKOFF, How to simultaneously exchange a secret bit by flipping a

symmetrically-biased coin, Proc. 24th Annual IEEE Symposium on the Foundations of Computer
Science, 1983, pp. 11-22.

[23] I. NIVEN AND H. S. ZUCKERMAN, An Introduction to the Theory of Numbers, John Wiley, New York,
1972.

[24] C. H. PAPADIMITRIOU, Games against nature, Proc. 24th Annual IEEE Symposium on the Foundations
of Computer Science, pp. 446-450.

[25] A. RENYi, Foundations of Probability, Holden-Day, New York, 1970.
[26] M. TOMPA AND H. WOLL, Random self-reducibility and zero knowledge interactive proofs ofpossession

of information, Proc. 28th Annual IEEE Symposium on the Foundations of Computer Science,
1987, pp. 472-482.

[27] A. C. YAO, Theory and applications of trapdoorfunctions, Proc. 23rd Annual IEEE Symposium on the
Foundations of Computer Science, 1982, pp. 80-91.

[28] ., How to generate and exchange secrets, Proc. 27th Annual IEEE Symposium on the Foundations
of Computer Science, 1986, pp. 162-167.



SIAM J. COMPUT.
Vol. 18, No. 4, pp. 740-747, August 1989

(C) 1989 Society for Industrial and Applied Mathematics

0O7

AN OPTIMAL SYNCHRONIZER FOR THE HYPERCUBE*

DAVID PELEG AND JEFFREY D. ULLMAN$

Abstract. The synchronizer is a simulation methodology introduced by Awerbuch [J. Assoc. Comput.
Math., 32 (1985), pp. 804-823] for simulating a synchronous network by an asynchronous one, thus enabling
the execution of a synchronous algorithm on an asynchronous network. In this paper a novel technique for
constructing network synchronizers is presented. This technique is developed from some basic relationships
between synchronizers and the structure of a t-spanning subgraph over the network. As a special result, a

synchronizer for the hypercube with optimal time and communication complexities is obtained.

Key words, distributed computation, networks, synchronization, spanners

AMS(MOS) subject classifications. 68R10, 68M10

1. Introduction. Algorithms for synchronous networks are easier to design, debug,
and test than similar algorithms for asynchronous networks. Consequently, it is desir-
able to have a uniform methodology for transforming an algorithm for synchronous
networks into an algorithm for asynchronous networks. This tool will enable one to
design an algorithm for a synchronous network, test it and analyze it in that simpler
environment, and then use the standard methodology to transform the algorithm into
an asynchronous one, and use it in the asynchronous network.

This general approach for handling asynchrony was introduced by Awerbuch in
[A1], and referred to as a synchronizer. His paper proposes several specific methods
for implementing a simulation of this type, and studies their complexities. Later
Awerbuch [A2] demonstrated the surprising fact that despite the inevitable overheads
involved in such a simulation, asynchronous algorithms designed in this way are
sometimes more efficient than any previously known. This is mainly due to the inherent
difficulty in reasoning about an asynchronous network, which sometimes makes it hard
to reach an optimal solution for a problem directly in such an environment. This
phenomenon was demonstrated on several graph problems, such as breadth-first-search
and maximum flow [A2], for which algorithms obtained by combining a standard
synchronous algorithm with a synchronizer yield an asynchronous algorithm with
better performance (in terms of time and/or number of messages) than all previously
known ones.

It is clear that every synchronizer incurs some time and communication costs for
the synchronization of every round. Let us denote the time and communication
requirements added by a synchronizer , for each pulse (timestep) of the synchronous
algorithm by T(,) and C(,), respectively. Clearly, an efficient synchronizer should
keep these costs as low as possible. In [A1], Awerbuch presents three synchronizers,
c,/3, and y. These synchronizers demonstrate a certain trade-off between their communi-
cation and time requirements.
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The first two simple synchronizers represent the two endpoints of this trade-off.
Synchronizer c is time optimal, i.e., T(c)= O(1), but its communication complexity
is C(c)= O(IEI). On the other hand, synchronizer/3 achieves an optimal number of
messages (i.e., C(/3) O(IVI)), but its time requirement may be high, namely, T(fl)=
O(D). Here V, E, and D denote the set of vertices, the set of edges, and the diameter
of the network, respectively. (Note that these complexities are crucial since they
represent the overhead per pulse of the synchronous algorithm.) The third, more
involved synchronizer y is a combination of the two previous ones, which achieves
some reasonable middle points on this scale. In particular, it is possible to achieve
C(y) O(klVI) and T(y)= O(1Ogk [VI), where k is a parameter taken from the range
2_-<k<lVl

Awerbuch also proves some lower bounds which demonstrate that for some
networks, the best possible improvements are within constant factors from synchronizer
7’ [A1], [A3]. However, this lower bound is not global, and for various networks one
can do better. For example, note that for the class of bounded-degree networks,
synchronizer c is optimal in both time and messages, since IEI O(I VI). This covers
many common architectures proposed for parallel computing, such as meshes, butter-
flies and cube-connected cycles, rings, etc. The same holds also for the class of trees
and planar graphs in general. Likewise, for bounded-diameter networks, synchronizer
/3 is optimal. Thus the problem remains interesting only for graph classes that are in
between.

A notable example of a network for which the current solutions are not satisfactory
is the hypercube (cf. [P], [U]). It is possible to construct synchronizers of type c,
or y for the hypercube using the constructions of [A1], but the resulting complexities
are not optimal. Furthermore, in the sequel we note that the hypercube has an even
better synchronizer of type y, which can be obtained by direct construction (rather
than by using the algorithm of [A1]) and whose complexities are T O(log log V)
and C O(V), which is still not optimal. The main result of this paper is the construc-
tion of an optimal synchronizer (with T= O(1) and C O(] V])) for the hypercube.

On our way toward this goal, we introduce a novel general methodology for a
synchronizer (that we term , for purposes of consistency). This methodology is
developed by exploiting the close connection between synchronizers and the structure
of a t-spanner on a network. Given a network G=(V, E), a subgraph G’= (V, E’)
is a t-spanner of G if for every (u, v) E, the distance between u and v in G’ is at
most t.

In the sequel we derive the following basic connections between t-spanners and
synchronizers.

THEOREM 1. (1) If the network G has no t-spanner with at most m edges, then every
synchronizer for G requires either T(u) >- + 1 or C(,) >- m + 1.,

(2) If the network G has a t-spanner with m edges, then it has a synchronizer with
T(t5) O(t) and C(6)= O(tm). E]

In fact, the lower bounds of [A1], [A3] implicitly use part (1) of Theorem 1.
We then proceed to prove the existence of a 3-spanner with a linear (O(2"))

number of edges for the hypercube of dimension n (henceforth, the n-cube). This
yields the desired optimal synchronizer for the hypercube.

THEOREM 2. For every n >--O, the n-cube has a synchronizer of type with optimal
time and communication complexities T(6)= O(1) and C(6)= O(2n).

Spanners turn out to have other applications in the area of communication
networks, e.g., in designing memory-efficient routing strategies (cf. [PU]). Additional
results on the existence of spanners for various graph classes can be found in [PS].
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The rest of the paper is organized as follows. Section 2 contains the definitions
of the synchronous and asynchronous models, and 3 gives an overview of the basic
structure of a synchronizer. Finally, in 4 we discuss the relationships between
synchronizers and t-spanners and prove Theorem 1, and in 5 we construct an optimal
synchronizer of type 6 for the hypercube and thus prove Theorem 2.

2. The model. We consider the standard model of an asynchronous point-to-point
communication network (e.g., [A1], [GHS]). The network is described by an undirected
graph G V, E). The nodes of the graph represent the processors of the network and
the edges represent bidirectional communication channels between the processors.

All the processors have distinct identities. There is no common memory, and
algorithms are event-driven (i.e., processors cannot access a global clock in order to
decide on their action). Messages sent from a processor to its neighbor arrive within
some finite but unpredictable time. Each message contains a fixed number of bits, and
therefore carries only a bounded amount of information.

A synchronous network is a variation of the above model in which all link delays
are bounded. More precisely, each processor keeps a local clock, whose pulses must
satisfy the following property. A message sent from a processor v to its neighbor u at
pulse p of v must arrive at u before pulse p + 1 is generated by u.

Our complexity measures are defined as follows. The communication complexity
of an algorithm A, CA, is the worst-case total number of messages sent during the run
of the algorithm. The time complexity of an algorithm A, TA, is defined as follows. For
a synchronous algorithm, TA is the number of pulses generated during the run. For
an asynchronous algorithm, TA is the worst-case number of time units from the start
of the run to its completion, assuming that each message incurs a delay of at most one
time unit. This assumption is used only for performance evaluation, and does not
imply that there is a bound on delay in asynchronous networks.

Next, let us formally define the hypercube of dimension n, Hn (Vn, En). This
network is defined by V, {0, 1}" and

E, {(x, y)lx, y V,, x and y differ in exactly one bit}.
The network has]V,] 2" nodes, ]E,] n. 2"-1 edges, and diameter n.

Finally, let us define the Cartesian product of two graphs. Let G1 (V1, El) and
G2 g2, E2). The Cartesian product of G1 and G2, denoted G x G2, is defined as

G, x G-(Vlx V,E)
where

E {((u,, 1), (u, ))I (ul- and (1, :)e E) or (, and (u,, u:)e E)}.
Hence G x G is constructed by substituting a copy of G for each vertex in G and
drawing in edges between corresponding nodes of adjacent copies.

The H hypercube can be viewed as the Cartesian product graph H H_k x Hk,
for any 0 k . Later, we make use of this characterization of the cube.

3. gyehroizers. Th synchronizer is intended to enable any synchronous
algorithm to run on any asynchronous network. The goal of the simulation is to generate
a sequence of local clock pulses at each processor of the network, satisfying the
following property: pulse number p is generated by a processor only after it received
all the messages of the algorithm sent to it by its neighbors during their pulse
number p- 1.

This property is easy to guarantee as long as we restrict our attention to synchronous
algorithms with complete communication, i.e., algorithms that require every processor
to send messages to every neighbor at every time pulse. The obvious problem with
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partial communication algorithms is that in the case where processor v does not send
any message to its neighbor u at a certain pulse, u is obliged to wait forever for a
message, as link delays in the asynchronous network are unpredictable.

The conceptual solution proposed in [A1] consists of two additional phases of
communication. The first phase simply requires every processor receiving a message
from a neighbor to send back an acknowledgment. This way, every processor learns,
within finite time, that all the messages it sent during a particular pulse have arrived.
Such a processor is said to be safe with respect to that pulse. Note that introducing
this phase does not increase the message complexity or the time complexity of the
algorithm by more than a constant factor.

A processor may generate a new pulse whenever it learns that all its neighbors
are safe with respect to the current pulse. Thus the second and main phase of the
synchronizer involves delivering this "safety" information. This phase is thus respon-
sible for the additional time and message requirements, denoted earlier by C(,) and
T(u), for a synchronizer ,.

The complexities of a synchronous algorithm S are related to those of the asyn-
chronous algorithm A resulting from combining S with a synchronizer , by Ca
Cs + Ts" C(,) and TA Ts" T(,). (We ignore, for the purposes of the present dis-
cussion, any additional costs of an initialization phase that may be needed for setting
up the synchronizer.)

Let us demonstrate these ideas by giving a brief description of the three syn-
chronizers introduced in [A1]. Synchronizer a is the simplest. After the execution of
a certain pulse, when a processor learns that it is safe, it simply reports this fact directly
to all its neighbors. Thus the behavior and complexity of this synchronizer boil down
to those of an algorithm in which every processor sends messages to every neighbor
in every pulse, so C(c)= O([EI) and T(c)= O(1).

For synchronizer /3 we assume the existence of a rooted spanning tree in the
network. After the execution of a certain pulse, the safety information is collected
"bottom-up" on the tree, by means of a communication pattern termed convergecast;
whenever a processor learns that it and all its descendants in the tree are safe, it reports
this fact to its parent. Eventually the root learns that all the processors in the network
are safe, and then it broadcasts this fact along the tree, letting the processors start a
new pulse. Since the process is carried out on the tree, the complexities of synchronizer
/3 are C(/3)= O(] V]) and T(/3)= O(H), where H is the height of the tree. In the worst
case H O(I V]) too.

The last synchronizer, % ahieves a certain trade-off between the previous ones.
For synchronizer y we assume that the network is partitioned into clusters. The partition
is defined by a rooted spanning forest of the graph, where each tree in the forest defines
a cluster. Between any two neighboring clusters there is one designated preferred link
that serves for communication between them.

The safety information is handled by synchronizer 7 in three steps. In the first
step, each cluster separately applies the synchronizer/3. By the end of this step, every
processor knows that its cluster is safe (i.e., every processor in the cluster is safe). In
the second step, every processor incident to a preferred link sends a message to the
other cluster, saying that its cluster is safe. Finally, the third step is a repetition of the
first, except the convergecast performed in each cluster carries a different information:
whenever a processor learns that all the clusters neighboring it or any of its descendants
are safe, it reports this fact to its parent. Again, when the root learns that all the
neighboring clusters are safe, it broadcasts this fact along the tree, letting the processors
of the cluster start a new pulse.
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The complexities of synchronizer 3’ are C (y) O(Ep) and T(3/) O(Hp), where
Ep is the number of all tree links and all preferred links in a partition P, and Hp is
the maximum height of a tree in the forest of P. Thus our goal is to find partitions
with small values of Ep and Hp.

Let us now describe a simple partition for product graphs, and state the resulting
complexities of a synchronizer y based on this partition. Partition a product graph
G1 Ge by defining each copy of G2 as a cluster. Let De denote the diameter of
Then G2 has a spanning tree of depth De. This spanning tree can be used to define
the whole forest, as all the clusters have identical structure. Between every two clusters
there are IVel edges, but only one of them need be chosen as a preferred link. Thus
an overall of JEll preferred links are used. The number of edges used in the trees is
IVI(IVel-1). Thus, the time and communication complexities of the resulting syn-
chronizer of type 3’ are T O(De) and C O([Ell +IVl[ Vel), respectively. (Alterna-
tively, noting the symmetric role of G and G2 in the definition of the Cartesian product,
we may reverse our view of the two graphs and obtain another partition, yielding the
complexities T= O(D) and C= O([EeI+[VI. V2[).)

The construction described above immediately suggests a way to handle the
hypercube. For any chosen k, 0-< k-< n, view Hn as the product Hn H_k x Hk and
partition H, as described earlier. This yields a synchronizer of type 3’ for H with time
and communication complexities T O(k) and C O((n k)2"- + 2n), respectively.
In particular, selecting k= [log n], we get T=O(logloglV, l) and C=O(IV, I). This
complexity is already better than that of a synchronizer 3’ based on any partition
obtained by using the partitioning algorithm of [A1]. However, it is still not optimal.
To achieve an optimal synchronizer we need to develop a new technique, discussed
in the next section.

4. Synchronizers and t-spanners. In this section we prove the two parts of Theorem
1. This amounts to showing two complementary relationships between t-spanners and
synchronizers. On the one hand, the nonexistence of a t-spanner of a certain size
implies a lower bound on the complexities of any synchronizer for the network. On
the other hand, the existence of a t-spanner can be used for constructing a synchronizer
of a new type, 8.

THEOREM (Part (1)). If the network G has no t-spanner with at most m edges,
then every synchronizer , for G requires either T(,) >= + or C(,) >- m + 1.

Proof Let us assume that the network G (V, E) has no t-spanner of m edges,
and yet it has a synchronizer , with C(z,)=< m, i.e., using m or fewer messages per
pulse. The argument is similar to that ofthe lower bounds of [A1 ], [A2]. The requirement
from the synchronizer is to ensure that a processor does not produce a new pulse
before it gets all the messages sent to it in the previous pulse. Thus, between every
two consecutive pulses there must be some transfer of information between each pair
of neighbors in the network. Otherwise, the completely asynchronous nature of the
network will force these neighbors to wait forever for a message that may still be on
its way. Consider the set E’ of edges through which the messages of the synchronizer
were sent. The information flow between every pair of neighbors in G has to go through
the edges of E’. Since only m or fewer messages were sent, the number of these edges
is at most m. Therefore by hypothesis, the subgraph G’--(V, E’) is not a t-spanner.
This implies that there is an edge (u, v) E such that the distance between u and v
in (3’ is at least + 1. Thus, the information flow between u and v may require +
time units, so the time complexity of the synchronizer , is at least + 1. U]

THEOREM 1 (Part (2)). If the network G has a t-spanner with m edges, then it has
a synchronizer with T((3)= O(t) and C(6)= O(tm).
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Proof Assume that the network G= (V, E) has a t-spanner G’= (V, E’) of m
edges. The synchronizer 6 for G is constructed as follows. The safety information is
transmitted over the spanner in rounds which may be viewed as "subpulses." When
a processor v learns that it is safe, it sets a counter c to 0 and sends the message "safe"
to all its neighbors in the spanner. Then it waits to hear a similar message from all
these neighbors. Upon receiving a "safe" message from all neighbors (againmin the
spanner), it increases its counter and repeats the process (i.e., it sends the message
"safe" again, and then waits for similar messages and so on). This is done for rounds.
When c t, the processor v may generate its next pulse.

LEMMA 4.1. When v holds c i, every processor u at distance or less from v in G’
is safe.

Proof By induction on i. For i--0 the claim is immediate, as v reaches this stage
of the synchronizer only after it is safe itself. Now consider the time when v increases
c to i+ 1. This is done after v received i+ 1 "safe" messages from every neighbor in
G’. These neighbors each sent the (i+ 1)st message only after having c i. Thus, by
the inductive hypothesis, for every such neighbor u, every processor w at distance
or less from u in G’ is safe. Thus every processor w at distance i+ 1 or less from v in
G’ is safe too.

COROLLARY 4.2. When v holds c t, every neighbor of v in G is safe.
Proof By the lemma, when v holds c t, every processor u at distance from v

in G’ is safe. By the definition of t-spanners, every neighbor of v in G is at distance
or less from v in G’. Thus every such neighbor is safe.

It is clear that the time delay of synchronizer 6 is at most O(t), and the number
of additional messages is O(mt). Thus the proof is complete.

The synchronizers of [A1] do not use spanners explicitly, and their formulations
are quite different from our synchronizer 6. Nevertheless it is interesting to note that
their underlying structure is strongly related to the notion of spanners. For instance,
synchronizer a is based essentially on the fact that every graph is its own 1-spanner,
and the construction algorithm of [A1] for synchronizer y establishes the fact that
every graph has an O(logk [V[)-spanner with O(k[V[) edges, where 1< k<[V[ is a

parameter.

5. An optimal synchronizer 6 for the hypereube. In this section we show how to
construct a 3-spanner for the hypercube Hn with a linear [O(2n)] number of edges.
This in turn implies an optimal synchronizer 6 and thus proves our Theorem 2.

A dominating set for a graph G is a subset U of vertices with the property that
for every vertex v of G, U contains either v itself or some neighbor of v.

To construct dominating sets, we make use of the notion of a Hamming code, a
well-known idea from coding theory (cf. [H]). Since the Hamming code is so central
to what we do, we review its definition and properties. The reader familiar with
Hamming codes can skip directly to Lemma 5.1.

A string of O’s and l’s is a word. The product of two code words of the same length
is their bitwise logical "and;" their sum is their bitwise exclusive "or." For example,
the product of 0011 and 0101 is 0001, and their sum is 0110. The weight of a code
word is the number of l’s in the word.

For any integer r, the Hamming code HC(r) is defined by making reference to a
matrix of O’s and l’s with r rows and 2r- columns. The columns are all the binary
integers from up to 2r- 1. For example, here is the matrix used to define HC(3):

M3 0 0 0

0 0 0
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The code words in HC(r) are all those words of length 2r- whose product with
each of the rows of the defining matrix Mr has even weight. For example, 0000000
and 0101010 are code words of HC(3). Word 0000000 has a product with each row
of Mr that has weight 0, while 0101010 has products of weight 2, 2, and 0, respectively.

The distance between two words is the weight of their sum. Put another way, the
distance is the number of positions in which the two words differ. For example, each
pair of rows of Mr has distance 4.

An important and easily proved fact about Hamming codes is that the sum of two
code words is also a code word. As a consequence, the Hamming codes have minimum
distance 3; that is, no two code words have distance less than 3. In proof, let u and
v be code words, and let w be their sum, which is also a code word. If the weight of
w were 1, then since the product of w with every row of Mr has even weight, those
products would have to have weight 0; i.e., the one column in which w has a would
have all O’s in Mr. Since there is no such column, w cannot have weight 1. Similarly,
if w had weight 2, we could argue that two columns of Mr would have to be identical,
which is not the case.

Now, let the neighborhood of a code word be that word plus all words of distance
1. Then in HC(r), all neighborhoods have 2 members. No word can be in the
neighborhood of two code words, or else those code words would be of distance 2.

The last fact we need about Hamming codes is that HC(r) has exactly 22’--r

members. The argument is that the rows of Mr can be thought of as independent
vectors in the vector space of 2r- dimensions over the field of two elements. HC(r)
is thus the null space of the vector space (of dimension r) whose basis is the rows of
Mr, and therefore HC(r) is of dimension 2r- 1- r.

The number of words in the neighborhood of some code word of HC(r) is thus
2 22’-l-r, or 22’-1. This is exactly the number of binary words of length 2r- 1. Thus,
every binary word of length 2r- 1 is in the neighborhood of exactly one code word
of HC(r). Put another way, HC(r) is a dominating set for the hypercube

LEMMA 5.1. For every n >-- 1, the n-cube has a dominating set ofat most 2"+1/n nodes.
Proof Let us first consider the case of n 2r- for some r-> 1. Let U be the

Hamming code HC(r). As we have argued above, U is a dominating set for the n-cube,
andlUl=2"/(n+l)<=2"+l/n.

Now consider an arbitrary n -> 1. Let r be the integer satisfying 2 <_- n < 2 r+l

and let d =2r-1. Note that n/2<=d. Let Ud be a dominating set for the d-cube.
View the n-cube as the Cartesian product H. =H.__d xH, and let U=
{(x,y)]x V._,y U}, where V._ is the set of vertices of H._d. Clearly U is a
dominating set for the n-cube, and its size is

2d 2" 22"-dl udl z"-d-- . D
d+l d+l n

We finally construct a spanner for the n-cube. The cases n 1, 2 can easily be
verified directly, so assume n->_ 3. Our construction uses dominating sets for some of
the subcubes of our hypercube. Consider an n-cube H,, and let p= [n/2J and
q In ]. View H, as the Cartesian product H, x Hq. Let U and U2 be minimum-size
dominating sets for Hn and Hq, respectively.

We define the subgraph G’= (V,, E’) by choosing the following sets of edges:
(1) Every edge ((x, y), (x, y’)) subject to (y, y’) Eq and y’ U2.
(2) Every edge ((x, y), (x’, y)) subject to (x, x’) E, and x’ U.
(3) Every edge ((x, y), (x, y’)) subject to (y, y’) Eq and x U.
(4) Every edge ((x, y), (x’, y)) subject to (x, x’) En and y U2.
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LEMMA 5.2. G’ has fewer than 7.2 edges.
Proof By the previous lemma ]U1]--< 2e+l/p and ]U2] <- 2q+I/q. Therefore the num-

ber of edges (y, y’) Eq with y’ U2 is at most q] U2] <-2 q+, and so the number of
edges of the first type is at most 2e2q+- 2 n+. Similarly the number of edges of the
second type is at most 2 "+. For the third type we get the bound
(2P+/p).q 2q-<-(q/p) 2n, and similarly of the fourth type there are at most
]U2]" IEp]<-(p/q) 2 edges. (This simple counting ignores multiple occurrences of
certain edges in the various types, which in fact implies a slightly smaller bound.)
Since n _-> 3, pq + q/p < 3, so overall we get a bound of fewer than 7 2 edges (6 2
for even n).

LEMMA 5.3. G’ is a 3-spanner of the n-cube.
Proof Consider two neighboring vertices u, v in Hn. Let u (x, y) where x {0, 1}p.

Then either v (x, y’) for some neighbor y’ of y in Hq or v (x’, y) for some neighbor
x’ of x in He. Suppose the first case holds. If x U then G’ contains the edge (u, v)
itself (type 3). Otherwise, G’ contains the following edges:

(1) e=((x,y), (x’,y)) for some x’ U (type (2)).
(2) e2 ((x’, y), (x’, y’)) (type (3)).
(3) e3 ((x’, y’), (x, y’)) (type (2)).
These three edges constitute a path of length 3 in G’ connecting u and v. The

second case is handled similarly, using edges of types (1) and (4).
COROLLARY 5.4. For every n >= 0 the n-cube has a 3-spanner offewer than 7.2

edges. [-]

Finally, using Theorem together with the last corollary, we have Theorem 2,
which we restate below.

THEOREM 2. For every n >= O, the n-cube has a synchronizer of type 6 with optimal
time and communication complexities T(6)= O(1) and C(6)= O(2").

We note that the relatively large constant involved in the construction implies that
the new synchronizer improves on the simple synchronizer a only for large n. A more
careful analysis of Lemma 5.2 reveals improvements for some values of n beginning
around n >- 18.

Acknowledgments. We wish to thank Alex Sch/iffer for helpful discussions.
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SPACE-TIME TRADE-OFFS FOR ORTHOGONAL RANGE QUERIES*

PRAVIN M. VAIDYA?

Abstract. This paper investigates the question of (storage) space-(retrieval) time trade-off for orthogonal
range queries on a static data base. Each record in the data base consists of a key that is a d-tuple of
integers, and a data value that is an element in a commutative semigroup G. An orthogonal range query is
specified by a d-dimensional parallelepiped (box). Two types of response to such a query are considered:
one where the output is the semigroup sum of the data values whose keys are located in the query
parallelepiped, and the other where the output is a list of all the records whose keys lie in the query
parallelepiped. This paper studies two models, the arithmetic model and the tree model and obtains lower
bounds on the product of retrieval time and storage space in both models.

Key words, range queries, space-time trade-offs, lower bounds
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1. Introduction. Consider a data base that contains a collection of records, each
with a key and a number of data fields. Given a range query, which is specified by a
set of constraints on the keys, the data base system is expected to return the set of
records, or a function of the set of records whose keys satisfy all the constraints. If
the data base is static the collection of records may be preprocessed to achieve a
balance between the storage utilized and the time required to answer a query. There
is an extensive literature [1], [2], [4], [8], [9], [11], [12] on algorithms for range query,
and the space and time requirements have traditionally been used as performance
measures for such algorithms. In this paper, we investigate the question of (storage)
space-(retrieval) time trade-off for orthogonal range queries on a static data base.

Let (3 be a commutative semigroup with an addition operation +. Let d be a
fixed positive integer. Let N {1, 2, , n} and let Na denote the set of all d-tuples
of positive integers less than or equal to n. A record (k,f(k)) is a pair of key k Na

and datum f(k) e (3. The data base consists of n such records. Let k (kl, k2, ka ).
An orthogonal range query is specified by a 2d-tuple (x11, x12, x2, x22,""", xa, xa2)
of positive integers satisfying xil < xi2, _-<i-< d. Alternately, the query region for an
orthogonal range query is a parallelepiped (box) b, defined by the product [xl, x2)
[x2, x22)x... [xa,, xa2) of d-semiclosed intervals with positive integer endpoints.
A key k is said to be located in a box b [xl, X12 X Ix21 X22 )<" X [Xdl Xd2 if and
only if xi <= ki < xi2, 1 <_-iN d. We consider two types of response to such a query, one
where the output is the sum of the data f(k) whose keys k are located in the query
parallelepiped (box) b, and the other where the output is a list of all the records whose
keys lie in the query parallelepiped b.

Let Q(b) denote the input 2d-tuple corresponding to query boxb, and let K denote
the set of keys in the data base. As we shall be studying space-time requirements for
orthogonal range query only, we shall assume that the set of query regions is fixed to
be the set of boxes.

A space-time trade-off seeks to answer questions such as what is the minimum
amount of storage needed to ensure a certain query time ? The trade-off between space

Received by the editors August 18, 1986; accepted for publication (in revised form) November 6,
1988. This research was supported by a Shell Foundation fellowship. A preliminary version of this paper
appeared in the Proceedings of the 17th Annual ACM Symposium on Theory of Computing, May 1985 [10].
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and time is dependent on the model of data structure and the set of records in the
data base. We fix the data structure model and then try to obtain a set of records that
makes this trade-off as bad as possible. Thus the lower bounds on space-time products
are to be interpreted as worst-case bounds, i.e., there exists a set of n records whose
space-time product has the said bounds.

We study two models. In Model A, we work in the general framework defined by
Fredman [5]-[7], and consider only data structures and manipulation algorithms that
are independent of the choice of the semigroup G. So the set K of keys in the data
base together with the set of query regions completely specifies the problem. Given a
query box b, the query answering algorithm is expected to return the semigroup sum
of the data values whose keys are located in b. Model A is an arithmetic model with
unit cost for each arithmetic operation but no cost for memory retrieval. In this model,
we show that for orthogonal range query on a static database with n records, there is
a space-time trade-off (log T)a-lTS>=l(n(log n)a-), where 0= for d =2, and 0=2
for d-> 3. Space-time trade-offs for circular range query and interval query in this
model are studied by Yao in [13] and [14]. We note that for d 2 the results of Yao
14] are considerably stronger for this model; specifically he shows that for a restricted

type of range query T D,(log n/(log (S/n)+log log n)) for d 2. The complexity of
dynamic range queries in this model is discussed by Fredman in [5]-[7].

In Model B (tree model), we study a broad class of tree data structures. In this
model, a data structure is a rooted tree, and with each edge in the tree is associated
a condition. Given a query, the query answering algorithm starts with the root, and
visits a vertex v if and only if the given query satisfies the conjunction of the conditions
on the path from the root to v. The output corresponding to a given query is a function
of the data associated with the visited vertices. Several standard data structures, such
as linked lists, range trees, etc. [1], [2], [4], [8], [9], [11], [12], fit into this model. In
Model B, we investigate the orthogonal reporting problem where the response to a
query is a list of all the records in the data base whose keys are located in the query
box. Since the output size is query dependent, the time required to answer a query is
not the correct measure of the overhead involved in producing the desired response
to the query. So we define a scaled query time T’ that measures the overhead for
producing one unit of output. For the orthogonal reporting problem on a static data
base with n records, we show that there is a space-time trade-off (log T’+
log log n)d-lT’S>-_f(n(log n)d-), where 0= for d=2, and 0=2 for d_>-3.

The results in this paper for Model A (arithmetic model) have been significantly
strengthened by Chazelle using a different technique [3].

2. An overview.
2.1. Model A. Arithmetic model. In this model [5], [6], [7], a data structure is an

infinite array Z of variables Zo, zl, z2," ", that stores elements from the commutative
semigroup G. Given any input query, the query answering algorithm chooses a collec-
tion of at most T variables in the array and returns their semigroup sum as the response
to the query. Since only arithmetic operations are charged, the query time is T. The
data structure is assumed to be independent of the specific semigroup G and so the
mapping between elements in G and variables in Z is determined solely by the set K
of n keys in the data base. With each variable zi in Z is associated a subset hi of K,
and the data value Ykh, of(k) is stored in zi, where f(k) is the data value associated
with k. Let H

_
2K such that every set in H is associated with some variable in Z and

every variable in Z is associated with some set in H. Let R be the set of all possible
query boxes, and let P(K, H, T) be the property that for each b e R, b VI K is expressible
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as the disjoint union of at most T sets in H. (The lower bounds in this paper are valid
even if disjoint union is replaced by union in the definition of P(K, H, T).) The query
answering algorithm works correctly if and only if P(K, H, T) is satisfied. The storage
space S is defined by

S=max min ]H
K H satisfying P(K,H,T)

The following theorem summarizes the results in this model.
THEOREM 1. In Model A, for orthogonal range query on a static database with n

records, there is a space-time trade-off (log T)’t-TS>-_f(n(log n)a-), where O= for
d=2, and O=2 ford>=3.

The proof is based on Lemma given below. The lemma asserts that there exists
a set K of n keys and a large enough set B(T, n) of query parallelepipeds such that
the subsets of K induced by members of B( T, n) satisfy certain intersection conditions.
The proof of Lemma is given in 4.

LEMMA 1. There is a set K of n keys and a set B(T, n) of boxes satisfying the
following properties:

(1) (log T)a-’TIB(T, n)] =D,(n(log n)a-), where O= for d=2, and 0=2 for
d>-3.

(2) For distinct b,, b2, in B(T, n),
Using property (2) in Lemma 1, we show that for any H satisfying P(K, H, T),

we must have IHI>=IB(T, n)l. Then Theorem follows from the lower bound on
IB(T, n)l given by property (1) in Lemma 1. Let bl, b2, be distinct boxes in B(T, n).
As b 71K is expressible as the union of at most T sets in H, there exists hi H such
that Ih,I-> (1/T)lb (-] K and hi _c (b (3 K). Since I(b, K)(3 (bz(q K)I < (1/T)[bl (3 KI,
h cannot appear in the decomposition of b2 t"l K as the union of members of H. So
with each bi in B(T, n) we can associate a distinct hi in H.

2.2. Model B. Tree model. In the case of the reporting problem the output size
is dependent on the given query, and so the arithmetic model is not suitable for
investigating this problem. So we study the tree model for data structures. In this
model, the data structure is assumed to be a rooted tree. With each vertex v is associated
a set of data items and we let data(v) denote the set of data items associated with
vertex v. With each edge in the tree is associated a condition. Given an input query
in the form of a tuple of numbers, the query answering algorithm first visits the root.
A vertex v is visited if and only if it is a son of some vertex u that has already been
visited and the input tuple satisfies the condition associated with edge uv. We define
cond (v) to be the conjunction of all the conditions on the path from the root to vertex
v. Thus for any query box b, on being given the corresponding tuple Q(b) as input,
the query answering algorithm visits vertex v if and only if Q(b) satisfies cond (v). The
response to a query is a function of the data at the visited vertices.

In the tree model, we investigate the orthogonal reporting problem where the
response to a given luery is a list of all the records in the data base whose keys lie in
the query box. Let G be a semigroup consisting of a single element. We shall restrict
the universe of records so that the data in each record is the unique element from G.
We shall only consider sets of records which are such that no two records in a set
have the same key. Then the set K of keys completely specifies the set of records, and
the orthogonal reporting problem is to produce a list of all the keys in K that lie in
the given query box. Note that considering this special case does not cause any loss
of generality as the lower bounds obtained in the special case trivially extend to the
general case. Let r be a fixed constant. We restrict ourselves to trees where every vertex
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has degree at most r. The condition associated with each edge in the tree is restricted
to be a disjunction of at most r binary comparisons. Thus cond(v), the conjunction
of the conditions on the path from the root to v, is now a conjunction of disjunctions
of comparisons. For each vertex v, data(v) is a set of keys. Vertices may share storage,
so data(v) is effectively the set of records accessed via vertex v.

Consider a fixed set K of keys, and a fixed tree for K. For a query box b, let
U(b) be the set of all those vertices v such that Q(b) satisfies eond(v). Given a query
box b, the query answering algorithm visits all the vertices in U(b), and extracts the
set of keys t(b) data(v). The set of keys b K is then obtained by explicitly testing
for each key in vt:(b) data(v) whether the key is located in b. Thus filtering search
[2] is included in this model. Let T(b) be the time required to answer the query
corresponding to b. T(b) is lower bounded by [U(b)[+[t:(b)data(v)[. Since the
output size is query dependent, the time required to answer a query is not the correct
measure of the overhead involved in producing the desired response to the query. With
respect to a fixed set K of keys, and a fixed tree for K, we define a scaled query time
T’ as follows:

T(b)
max

llbKl-<----log2 ]b [q K]"

For a fixed set of keys, the storage S is defined to be the minimum number of
vertices a corresponding tree must have to ensure a scaled query time of T’.

At this point we remark that several common data structures, such as linked lists,
range trees, etc. 1], [2], [4], [8], [9], 11], 12], fit into the tree model. Also note that
the tree model restricts the manner in which data records are accessed; it does not
place a restriction on how the data is stored. As long as there is a fixed tree that defines
how the data in the data structure is accessed, and a node in this tree corresponds to
a distinct unit of storage in the data structure, the data structure would still fit into
the tree model; it would not matter that the data structure itself was not a tree.

THEOREM 2. In the tree model, for the orthogonal reporting problem on a static data
base with n records, there is a space-time trade-off (log T’+loglogn)d-T’S >-

l)(n(log n)d-), where O= for d=2, and O=2 for d>-3.
The proof of Theorem 2 is based on Lemma 2 below. A proof of Lemma 2 is

given in 4.
LEMMA 2. Let c and cz be constants dependent on the dimension d. There exists a

set of K of n keys that has a subset K’ satisfying the following properties:
(1) IK’[_-> c,n.
(2) With respect to a particular tree for K, let V(k) be the set of all those vertices

v that satisfy the conditions (i) key k data(v); and (ii) there is a box b such that Q(b)
satisfies cond (v) and <- [b K] <-_ (d, n), where (d, n) for d 2 and (d, n)
log:n for d>=3. Then for each tree for K, for each key kK’, IV(k)[->
(log2 n)d-1/c2(log2 T’+log2 log r/) d-l.

Let K be a set of n keys and K’ be a subset of K such that K and K’ satisfy the
conditions in Lemma 2. Consider a fixed tree for K. For a key k, let V(k) be as defined
in Lemma 2. We must have that

IV(k)l Idata(v)l.
k- K’ U, V(k)

For each vertex v in Uk K’ v(k), Idata(v)l<=<(d, n)T’, since v is visited by a query
corresponding to a box containing at most K(d, n) keys. Then from properties (1) and
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(2) in Lemma 2 it follows that

u V(k) >=
kK’

cln(log2 n) d-1

c2K(d, n)T’(log2 T’+log2 log n) d-l"

Thus the storage S for a set K of n keys satisfying the conditions in Lemma 2 must
obey the following constraint"

eln(log n) d-
S_>_

czK(d, n) T’(log2 T’+logz log2 n) d-l"

3. Canonical parallelepipeds and almost uniform distributions. We shall utilize a

special class of parallelepipeds (boxes) in obtaining the desired space-time trade-offs.
Let n be a power of 2 and let It {[j2+ 1, (j+l)2+l)’O<=j<(n/2)}. I! is the set of
intervals obtained by breaking up [1, n + 1) into n/2 semiclosed intervals of equal
size, each interval being closed on the left and open on the right. Let I=
Io U I1 U... U Ilog2n. Then I is defined to be the set of canonical intervals, and I d is
defined to be the set of canonical parallelepipeds, or equivalently canonical boxes.

For a box b, we use [ril(b), ri2(b)) to denote the interval that is the projection
of box b onto to the ith coordinate axis. Equivalently, for 1 <_-i_-< d, ri(b) and ri2(b)
denote the (2i-1)st and the (2i)th components of the 2d-tuple Q(b) corresponding
to box b. For a box b, dimensions(b) is defined to be the d-tuple ((rl2(b)- rll(b)),
(r2(b) rl(b))," ., (rd(b) rdl (b))). We note that since I contains intervals of
log n + distinct lengths, the total number of choices possible for the dimensions of
a canonical box is (log2 n+ 1) d. Let vol(b) denote the volume of a box b, and let
p(x)--2 [lg2x]. Let J be the canonical parallelepiped JoXJ x... X Jd_ where Ji
[2i(2p(d))-n+ 1, (2i+ 1)(2p(d))-ln+ 1), for O<-_i<-_d-1. The following lemmas list
the properties of canonical boxes that we shall require.

LEMMA 3. The number of canonical boxes of identical dimensions and of volume 2
is ridi.

LEMMA 4. Let 0 <= <-- (log2 n d2). Then the number ofpossibilitiesfor the dimensions
of a canonical box of volume 2in d- is f((log2 n/d2)d-), and at most (log2 n+d)d-1.

Proof The number of nonnegative integer solutions to

jl +j2 -t-. +jd + (d 1) logz n,

subjectto 0_-<j_-<log2n, <-l<-_d, i<-(logz n/d)

is at least (log2 n/d)d- for large enough n, and at most (log2 n + d)J- for any in
the desired range. That gives the required bound on the number of possibilities for
the dimensions of a canonical box of volume 2in d-1. [-]

LEMMA 5. Let b, bz, bp be canonical boxes ofvolume c such that

_
-1 be .

Then vol f"l f’ bi < p
i=1 a21 ,/,,i-,)

Proof For -< m _-< d, let

Lm {[rml(bj), rrz(bj))" -<j =< p}.

The intervals in Lr can be ordered by containment, and the ratio of the lengths of the
largest and the smallest intervals in Lm is 2 IL’’’l-l. Let IL*m] maxm ]Lml. By pigeonholing,
IL[ > pl/(d-,). Then

VOI( i=I b’) <= Oz21-1L’*’’l <= O:21-pl/’’’-’’"



SPACE-TIME TRADE-OFFS FOR ORTHOGONAL RANGE QUERIES 753

LEMMA 6. Let be a fixed canonical box ofvolume ce. Then the number ofcanonical
boxes b of volume ce which satisfy the condition vol(bfq)>-2-)vol() is at most

(2j+d+l) ’-’.
Proof Since vol(b Fi g) >- 2-*vol() and vol(b) vol(g), for each m, _-< m -<_ d,

either rrm, (b), rrm2(b)) contains rm, (/), rrm2(/)) or rrm, (g), rrm2(/)) contains
[rr,,,(b), rrm2(b)), and

77"rn2(b)-Trml(b)__2j.2-,i_<_ _<

Thus for =< m _-< d, there are at most (2j + 1) possibilities for the mth interval defining
box b, and as the volume of the boxes b is fixed to be a the total number of possibilities
for the boxes b is bounded by (2j + d + 1)-. [-1

Having described canonical boxes, we shall proceed to almost uniform distribu-
tions of n keys. The distributions are termed almost uniform because the number of
keys in a canonical box does not deviate too far from the volume of the box divided
by n a-. For d 2, we can explicitly construct such distributions, and thereby get
Theorem 3. For d >_-3, we have to resort to counting arguments and show that the
number of distributions of n keys, which do not satisfy the properties in Theorem 4,
is less than the total of nn possible distributions.

THeOReM 3. For d 2, there is a set K of n keys such that for each canonical
box b,

na- ]b FI K[-<_ ] n-
Proof It is adequate to obtain a set K of n keys such that each canonical box of

volume n contains exactly one key. We use an inductive construction. Let x and x2
denote the two attributes of a key. Let K,, denote a set of m keys satisfying the
conditions in Theorem 3. We shall obtain Kzm from K Let

K’m {(2x,- 1, x2): (x,, x2) E Km}
and

K",, {(2x, X -[" m): (x,, x2) E K,,}.

We let K2m K’m U K"m. A canonical box of volume 2m and x dimension equal to 1
contains exactly one key, as each key has a distinct value for x. Let b=
[Xll X12 X IX21 X22 be a canonical box of volume m corresponding to n m, and let
b [2x- 1, 2X2-- 1) X Ix21 X22 and b2= [2x- 1, 2X12-- 1) X Ix21 q- m, X22-[- m). Then
b and b are canonical boxes ofvolume 2m corresponding to n 2m. If (x, x2) e b f-] K,,
then (2x- 1, x2) e b K’m and (2x, x2+ m) e b2CI K"m, and b, b2 do not contain any
other key in K2m. Furthermore, all canonical boxes corresponding to n 2m, of volume
2m and x dimension at least 2, may be derived in this manner from canonical boxes
of volume m corresponding to n m. gl

THEOREM 4. Let crn an be the number of distinct sets K of n keys, each key in N,
that satisfy the three properties given below. Then r tends to 1 as n tends to oo and
o=(1-o(1/n)).

(1) Let a(n)= 2p(log2 n). For each canonical box b,

vol(b)
<[bfqKl<6a(n) n-a(n)na- a(n)

(2) Each canonical box of volume na- contains at most log2 n keys.
(3) [J fq K[ _-> (n/(4(Zp(d))Za))= n/4(c3)2.
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Proof The total number of possible key distributions (sets) K is n an. Let F, F2,
and F3, be the fraction of distributions that do not satisfy properties (1), (2), and (3),
in Theorem 4, respectively. We shall show that each of F, F2, and F3, is o(1/n).

To bound F note that, if there is a canonical box whose volume is not equal to

a(n)nd- and that violates property (1) above, then there is necessarily a canonical
box of volume a(n)na- that violates property (1) in the same manner. Let Fl be the
fraction of distributions K such that there is a canonical box of volume a(n)n a-1 that
does not contain a key in K, and let Fl2 be the fraction of distributions K such that
some canonical box of volume a(n)na- contains at least 6a(n) keys in K. Then

Fl----< F + Fl2. A bound on F may be obtained by noting that there are at most
n(log2 n+d)d- choices for a canonical box of volume a(n)na- and all the keys in
K must lie outside the chosen canonical box. Thus

FI =< n(log2 n + d)d- 1

<- O(n(log n)d- e-’)

An upper bound on F2 is obtained by observing that we may choose a canonical box
of volume a(n)na- in at most n(log2 n + d) a- ways, and we may choose 6a(n) keys
to lie in the chosen box and then let the remaining keys be located anywhere in
[1, n+ 1) a. Then

F2<n(log2n+d)a-’( n )(an)) 6’’)

6a(n)

_<- n(log n + d) d-1 (a(n))6an)
6a(n)!

_<--n(log2 n + d)d-l() 6a(n)

(using Stirling’s approximation)

Thus

F,_-< FI,+ F,2 o(1/n)+ o(1/n)= o(1/n).

A bound F2 is obtained as follows. A canonical box of volume nd- may be chosen
in at most n(log2 n + d) d- ways; then log2 n keys may be selected to lie in the chosen
box, and the remaining keys may lie anywhere in [1, n + 1)d. Thus,

F2_-< n(log2 n + d) d- n
log2 n

n(log2 n + d) d-

(log2 n)
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To bound F3, we choose (1-4-c2)n points to lie outside the canonical box J,
and let the remaining points be located anywhere in [1, n + 1) d. Furthermore, the
volume of J is rid/C3. Thus

(1 --4-c2)n

Using Stirling’s approximation for factorials and taking logarithms we get

n ( ( 4c3- 1)).-< + O(log n).logeF3 4c 1Oge(4C3)+(4c32 1)loge
4C--1

Then noting that 1Oge (1- X)<----X for 0< x =< 1, we get

n
log F3 4c] (lOge (4C3) + 1 4C3) -t- O(log n)

7n
<= 4el

-O(lgn) asc3_>--16.

Thus F3= o (1/ n [3

4. Proofs of lemmas. In this section we give proofs of Lemmas and 2 used to
prove Theorems and 2 in 2.1 and 2.2, respectively. For the purposes of this section
we shall let the set K of keys be fixed. For d =2 let K be a fixed set of n keys as
specified by Theorem 3, and for d >= 3 let K be a fixed set of n keys as specified by
Theorem 4. We assume that n is a power of 2. Let/3(c) denote the set of canonical
boxes of volume a, and let flj denote the set of those canonical boxes that are also
subboxes of J (for definition of J see 3).

Proof ofLemma 1. We shall give a proof for d >= 3, the proof for d 2 is similar.
Let x(T)=(64T(2p(d))2d). Let B(T, n) be the largest set of boxes satisfying the
following conditions:

(1) For all bB(T,n), b(x(T)a(n)nd-), and IbK[>-_6Ta(n).
(2) For any two boxes b and b2 in B(T, n), vol(bf’lb2)<=a(n)n a-.

By Theorem 4, the number of keys in K located in a canonical box of volume
x(T)a(n)n a-1 is at most 6x(T)a(n). It is then easily shown that the number of boxes
in ,8(x(T)a(n)n a-l) that have identical dimensions and that contain at least 6Ta(n)
keys is D.(n/(T log: n)). Then from Lemmas 4 and 6 in 3, we can conclude that
IB( T, n)l--f(n/T logz n(log n/log2 T)a-). The intersection of any two distinct boxes
bl, b2 in B(T, n) is a canonical box of volume at most (a(n)n d-) and so by Theorem
4, ]blf’lb2f’lgl<6a(n)<(1/T)min{lb, f’lgl, lb2flg]}. [3

In Model B, as we restrict ourselves to binary comparisons, the only possible
comparisons are those between two components of the input tuple, and those between
a component of the input tuple and a constant. We shall focus on canonical boxes
that are subboxes of the canonical box J. For each box b

_
J, the input tuple Q(b)=

(xl,x2, x2,x2," ,Xd,Xdz) is such that Xll <Xlz< x2 <x2<. "<Xdl <Xa2, and
so a comparison between two components of the input tuple has the same outcome
for each subbox b of J. Then, in Model B we need to analyze only comparisons between
a component of the input tuple and a constant. We note that, if the input tuple satisfies
a comparison between x., the (j)th component of the tuple, and a constant, when x.
takes on the value z as well as when x./ takes on the value z2, then the input tuple
satisfies the comparison whenever x./ takes on any value between z and z2. The
following lemma follows directly from these observations.
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LEMMA 7. Let bl and b2 be subboxes of J. Let C be a conjunction of binary
comparisons, and let both Q(bl) and Q(b2) satisfy C. Let b be a subbox of J such that
either 7rij(bl) <- ro(b) <- 7rij(b2) or ro(b2 <- 7ri(b) <- 7ri(bl), for 1 <- iN d, <-j <-_2. Then
the tuple Q(b) also satisfies C.

LEMMA 8. Let be an integer greater than 1, let y be an integer greater than O,
and let rn be an integer such that <= rn <= d. Let C 7(C v C v v Ct_), where each

of Ci, 1 <=i <- t-1, is a conjunction of comparisons. Let bl, b2,..., b,+ be distinct
canonical boxes satisfying the following conditions:

(1) For all i, 1<_-i<-t+1,
(2) Each of the tuples Q(b), Q(b2),""", Q(b,+l) satisfies condition C.
(3) For all i, l_-<i-<t+l, rm2(b)-rml(bi)= rm2(b)-rml(bl).
(4) For all i, <- i<-_ t, rml(bi+l)-rm2(b) >- y(r,2(bl)-rml(b)).

Then there are at least y boxes b in flj (3 fl(a) such that Q( b) satisfies condition C.
Proof Let A([y, yz), m, b) be the box obtained by replacing the ruth interval

defining box b by the interval [y, y2). Note that I is the set of canonical intervals.
For l_-<i-<t, let

Ai {A ({y, y), m, bi): {Yl, Y2)e I, Yz-Y, 7rm2(bl)- rm,(bl),

7rm2(bi) Yl <y2 <- 7rml(bi+l)}.

Then IAI => y, and each box in A is a subbox of J and a canonical box of volume a.

There exists an such that for each box b in A, Q(b) satisfies C. Suppose this is not
true. Then there exist boxes b e A,, f2 e ai2, <- i, < i2 < t, such that both Q(/i,) and
Q(b) satisfy CI, for some l, _-< l_-< t- 1. Then by Lemma 7 it follows that Q(bi) must
satisfy C! and thereby not satisfy C which is a contradiction.

Proof of Letntna 2. We shall give a proof for d _-> 3, the proof for d 2 may be
constructed along similar lines. Fix a tree for the set of keys K. For the purposes of
the proof we shall restrict ourselves to canonical boxes that are subboxes of J. Note
that as K satisfies the conditions in Theorem 4 in 3, a canonical box in (nd-)
contains at most log2 n keys in K, and so the query time T for such a box cannot
exceed T’ log2 n. We shall show that if the conditions in Lemma 2 do not hold then
there must be a canonical box be fl(n d-l) such that Q(b) satisfies cond(v) for more
than T’ log2 n vertices v. Then the query time for b would exceed T’ log2 n, and that
would be a contradiction.

Let ]J f3 K csn, by Theorem 4 we know that such a c5 exists. For each key
k e J K, there are at least C4(1og n)d-1 boxes in flj (3 fi(n d-) that contain k, for some
constant c4 dependent on d. Let 6 2d T’ log n + 1)d (log2 n + 1) d+, and let ( T’, n)

2rc,l(T’)zlog2 n+d)d+36 Let c6 be a large enough constant such that
(T log n)C’?’-’>=2d(4o(’T’, n)+6) d. The constants cl and ez in Lemma 2 are given
by c c/2 and c2 c6/c4.

For each key k e K, let

r(k) {b: be(j(nd-’)),ke(bf3K)},

and let

P(k)={v’kedata(v),Zlbe-(k) s.t. Q(b) satisfies cond(v)}.

We note that for each box be -(k) there exists a vertex ve (k) such that Q(b) satisfies
cond(v). For each k e J VI K, [-(k)[-> c4(log n) d-, and 9(k)

_
V(k), where V(k) is

the set of boxes defined in Lemma 2 in 2.2.
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Let K’ be the largest subset of J fl K such that

c4(log2 n) d-1

C6(1og2 T’+ log2 log2 n) d-l"

If IK’[ _-> c5n/2 then the conditions in Lemma 2 are satisfied. So assume that I(J V/K)
K’I_>-_ csn/2. With each key k in (J fl K)-K’ we can associate a distinguished vertex
x(k) and a distinguished set of canonical boxes A(k) satisfying the following condi-
tions"

(1) Ia(k)l>-c6(log2 T’+logzlog n) d-.
(2) A(k)

_
(3) /x(k) V(k).
(4) For all bA(k), Q(b) satisfies cond(tx(k)).

The query time for a box in [3(n d-) cannot exceed T’logz n, and hence for all
k ((J VI K)- K’), Idata(tx(k)) <= T’ log2 n. Then I{/x(k)" k ((J fl K)- K’)} =>
cn/2T’ log2 n. Let r/ be the set of all vertices u such that there are at least 6 vertices
in the set {/x(k)" k ((J VI K)- K’)} that are also present in the subtree rooted at v.
As the degree of each vertex in the tree is at most r (r a fixed constant),
cn/2r6T’ log2 n.

For a vertex u, let num (u) be the number of canonical boxes b such that b fi n d-)
and Q(b) satisfies cond(u). Suppose we can show that for each vertex u in
num(u) > O(T’, n). From the lower bound on the number of vertices in r/ it would
follow that , num(u)>=lrlltp(T’,n)> n(logz n+d)d+lT’.

Since I(nd-)l<=n(log2 n+d)d-, we could then conclude that there is a be fl(n d-)
such that Q(b) satisfies cond (u) for at least T’ logz n + vertices u in r/, and that would
be a contradiction.

Let u be an arbitrary vertex in r/ other than the root. We have to show that
num(u) >- 4’(T’, n). With u one can associate distinct keys kl, k, , ks in (J VI K)
K’, such that for each box b in U = A(ki), Q(b) satisfies cond (u). Let b(ki) CI bcA(ki b.
Then for _-< i<-6, b(ki) j, and b(ki) contains key ki. By Lemma 5, each of b(k)
has volume at most n"-l/(40(T’, n)+6)".

Among b(kl), b(k),..., b(k) we can find 2e(r’ log2 n+ 1)d(1og2 n+ 1) distinct
boxes of identical dimensions, say b, b,..., bl. This is possible since the number of
possibilities for the dimensions of a canonical box is at most (log n+ 1) d, and by
Theorem 4 each of b(k) can contain at most log2 n keys in K. Corresponding to
b,b,...,bl, for l_-<m_-<d, let

Lr {[,,(bi), rrr2(bi))" _-<j _-< 1}.

All the intervals in L are of the same length, and any two intervals in L do not
overlap. Let T’ log2 n. Suppose that for some m, _-< rn =< d, there exist + intervals
[r,,(b.,), rmz(b.,)), [rm,(b.2), rm2(bj)),’", [rml(bi,+,), rmz(bi,+,)), in L,, such that for
l<=q<=t, r,,l(bi,,+l)-Trm2(bi,,)>=tp(T’,n)(Trm(bi,)-Trm,(bh)). To each of these t+l
intervals [rml(bi,,),r(b,))there corre.sponds a distinct box /q. such that
[,,(/q), r,(bq))=[rm,(bi,,), rm(bj,)), bq([3jf3/3(nd-’)), and Q(bq) satisfies
cond(u). The pathlength from the root to u does not exceed t-l, and so we may
apply Lemma 8 to these + boxes and conclude that there are at least t)( T’, n) boxes
b in fi(n d-’) such that O(b) satisfies cond(u).
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We shall now show that there exists a required collection of T’ log2 n + intervals
in some set L,,. Assume that such a collection of intervals does not exist. Then for
each m, 1 _-< m =< d, all the intervals in the set L can be covered by T’ log2 n intervals,
each of length at most (2O(T’, n)+3)(Tr,,2(bl)-Tr,,(bl)). Each of the dT’ log2 n cover-
ing intervals is closed on the left and open on the right, and has integer end points in
the range 1 to n+l. It then follows that the boxes b, b2,’", bl, are them-
selves contained in the union of (T’log2n)d boxes, each of volume at most
(2d/(T’,n)+3)dvol(b). As each of b,bz,.. ",b contains a distinct key, and 1--
2d(T’ log2 n+ 1)d(log n+ 1), and vol(bl)<-(4d/(T’, n)+6)-dn d-l, it follows that there
is a box of volume at most nd- that contains at least 2d (log n + 1) keys in K. This
box of volume at most nd- can be covered by 2d canonical boxes of volume n a-.
Thus there must be a canonical box of volume nd- that contains at least logz n + 1
keys in K, and since K is a set of keys satisfying the conditions in Theorem 4 this is
not possible.

5. Conclusion. We have obtained space-time trade-offs for orthogonal range query
in two models, the arithmetic model and the tree model. Most data structures used in
practice are rooted trees and so it may be worth studying more problems in the context
of Model B. We conclude by raising questions related to the tree model.

(1) Drawing an analogy with decision trees, what happens when the conditions
associated with tree edges are allowed to be comparisons involving linear or higher
order polynomial functions of the input? Do the bounds weaken in such a situation?

(2) What kind of bounds can one obtain for queries other than orthogonal range
query, say circular range query or polyhedral query?

(3) Can the lower bounds in the tree model be extended to data structures that
are directed acyclic graphs?
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Abstract. This paper proves that computing the product of two n x n matrices over the binary field
requires at least 2.5 n2- o(n 2) multiplications.
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1. Introduction. Let x (x1, xn) T and y (Yl, Ym) r be column vectors
of indeterminates. A straight-line algorithm for computing a set of bilinear forms in x
and y is called quadratic (respectively, bilinear), if all its nonscalar multiplication are
of the shape l(x, y) l’(x, y), (respectively, l(x) l’(y)), where and I’ are linear forms
of the indeterminates.

In this paper we establish the new 2.5n2- o(n) lower bound on the multiplicative
complexity of quadratic algorithms for multiplying n x n matrices over the binary field

Za. Let My(n, m, k) and Mv(n, m, k) denote the number of multiplications required
to compute the product of n x m and m x k matrices by means of quadratic and bilinear
algorithms, respectively, over the field F. It is known from [18], [19], and [7] that the
complexity of quadratic algorithms for matrix multiplication is lower than that of
bilinear algorithms, namely, Mz2(n, 2,2)<=3n+2, whereas Mz2(n, 2, 2) >= 3.5n. It has
been proved in [1] that for any field F

My(n, n, n) >= 2n- 1,

and for the case of binary field, it has been shown in 11] that

Mz2(n, n, n)_>-2n2+ n -2.

Our bound on Mz2(n, n, n) is given by Theorem below.
THEOREM 1. We have

M,2(n, n, n) >- 2.5n2- 0.5n log n O(n).

Obviously, the above bound holds for the ring of integers as well.
The rest of the paper is organized as follows. In the next section we give some

basic definitions and preliminary results. The proof of Theorem is presented in 3.

2. Basic definitions and preliminary results. Let A= {A1,’’’, An} be a set of
matrices. A characteristic matrix of A is the matrix A(z)=_l Agzg where z=

(zl, , zp) r is a vector of indeterminates. Conversely, let A(z) P--1 ziAi be a matrix
whose entries are linear combinations of {z, , zn}. The set of matrices {A, , An}
will be denoted by A. We denote by xv(A(z)) or xv(A) the minimal number of nonscalar
multiplications required to compute xrAy, xrAey by a quadratic algorithm.
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It is known from [17] that over infinite fields we can restrict ourselves to quadratic algorithms without

increasing the multiplicative complexity of a set of quadratic forms. For the finite fields, quadratic algorithms
are optimal in the family of algorithms without division, (see [21]).
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The characteristic matrix of the bilinear forms defined by the product of the n x m
and m x k matrices

where

YtX]<:

Xl Xn+l X(m--1)n+l Yl Y2 Yk

X2 Xn+2 X(m-l)n+2 Yk+ Yk+2 Y2k

X2n Xmn Y(m-)+l Y(m-1)+2 Ymk

A.,m,(z) "..
0 .,(z

rn times,

Z1 Z2 Zk

Zk+l Zk+2 Z2k

Z(n-1)k+l Z(n-1)k+2 Znk

(see [2]).
In [9] Hopcroft and Munsinski showed that

My(n, m, k)= My(n, k, m)= My(m, n, k ).

Since Xnm Ymk (YrmxkXrxm) T we have

Mv(n, m, k)= My(k, m, n).

Below we assume that F Z2 and omit the subscript Z2.
Let n be an integer. A binary linear code of length n is a linear subspace C of Z.

If dim C k then C is called [n, k] code. For c C the weight of c, denoted by wt (c),
is the number of the nonzero components of c. The minimal weight of C in
min {wt (c)l c C-{0}}. We say that C is a binary [n, k, d] code if Co_ Z is a code of
dimension k and minimal weight d. Let N(k, d) be the smallest integer such that there
exist a binary [N(k, d), k, d] code. The connection between binary linear codes and
the complexity of quadratic forms over Z2 is given in the following lemma.

LEMMA 1. Let A= {A,..., At, be a set of binary matrices and let L(A) be the
linear space spanned by A. Let d minAC(A)rank A and k =dim L(A). Then

/zv(A) => N(k, d).

In [2] Brockett an’d Dobkin proved Lemma for bilinear algorithms. (See also
[15].) The same proof is true for quadratic algorithms. This lemma was used in [3]-[12],
and [14] to obtain lower bounds for some tensors rank.

Lemma 2 below gives a bound on N(k, d).
LEMMA 2 (Griesmer Bound [13, p. 59]). We have

N(k,d)>=
i=0

Another lower bound technique for quadratic algorithms is as follows.
LEMMA 3 ([21], [20], [10]). Let A(z)= A(Zl)+A2(zz), where z,and z2 are distinct

vectors of indeterminates of length dl and d2, respectively. Then

/zv(A(z)) => min/zv[A,(z,) + Az(Nz,)] + dim L(Az),
NJV"

where A/" is the set of all d2 x d, matrices
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For the polynomial p(h) h" + a._l A .-1 +... + ao Z2[A the companion matrix

Cp of p(h) is defined by

0 0 0 -ao
1 0 0

Cp= 0 1 0 -a2

0 0 1

We define the set of n x n matrices Ap by

n-1At’={C, C,,"’, Cp }.

If p(A) is an irreducible polynomial, then L(Ap) {f(Cp)lf Z2[h ], degf-< n 1},
every matrix in L(Ap) is of rank n, and dim L(Ap) n. Let p(h and q(h) be irreducible
polynomials over Z2 of degree n and m, respectively, where m _-> n. Let 0jk denote
the zero j x k matrix.

Consider the matrix

C(z) =

where Zo, Zl,1, Zk,k are distinct vectors of indeterminates Zo (Zo,1, Zo,m)

Ei,j(zi,j)- I
A’(zo) C-Zo,,, Aq(zo) E Co Zo,,,

i=1 i=1

Gi(Zk,i)

Zi,j,n, zi,j,n, Zk, i,m,1 Zk, i,m,

Let

C*(z) Iw (R)C(z)

0
z)

C(z)

w times

where Iw is the identity matrix of order w and (R) is the Kronecker product of matrices.
Then L(C*) L(A,k+m,w,,k+m) and therefore

(1) [d,F(Cg) M(nk + m, w, nk + m).

The characteristic matrix C*(z) can be written as

Cg(z) C,(z(1)) - E’(z2)) + G’(z(3)) + H’(z(4))

Iw Q (I(Z(1)) - _](Z(2)) -- I(Z(3)) -I I-I(z(4))),
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where

(z<l)) [ Ik (R) Ap o ]i--1
i=1 ZO, Cq

:(z<))
EI,I(Z,I) 0
w,(z,) v,(z,_)

Ek-l,1 (Zk-l,1) Ek-l,l(Zk-l,1)

0,lX?l
0,IXF

Ek_l,k_l(Zk_l,k_l)
OrllXll

Z(3))
Onxn

Gk,l(Zk,1)

0rlXm

Gk,k(Zk,k) Om

and

fi(Z(4)) [ Ik (Onxno o ]i--1
i=n+l Zo,iCq

By Lemma 3, we have

(2)
/J,F(C:) min/dF[Ct(z(1)) + E’( W1z(1)) + G’( W2z(1)) -- H’(Wz())+ dim L(E’) + dim L(G’) + dim L(H’),

where the minimum is over all the matrices W1, W2 and W3. We shall therefore estimate
all the terms appearing in the right-hand side of (2). We have

k-1 k2-k 2(3) dim L(E’)= dim L()= Y Y dim L(E,r)=n
s=l r=l 2

k

(4) dim L(G’)= dim L()= E dim L(Gk,r)-- kmn,
r=l

and

dim L(H’)= dim L(H)= m- n.

Let

D’(z<)) C’(z<1)) + E’( W’Iz(1) -" G’( W2z(1)) + H’(W3z(1)).

Every nonzero matrix in L(D’) is of the shape D’= Iw (R) D, where

f(Cp) O.x. 0.. 0...
El, f Cp On Onx
E2,1 E2,2 Onn Onm

Ek-1,1 Ek-1,2 f( Cp) 0,,
r--!O, G2 O f(Cq) + X,.:.+ 6Cq
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for some polynomial f(h) Z2[/ ] of degree less than n. Thus

r-1 0.det D’ (det D) (detf(Cp))kw det f(Cq) + Y, 6rC q
r=n+l

Therefore every matrix in L(D’) is of rank (kn + m)w. Since, obviously, dim L(D’)= n,
by Lemma 1, for any W1, W2 and W3 we have

txv[C’(zI)+ E’( WlZI))+G’( W2zI))+ H’( Waz))] >- S(n, (kn + re)w).

This in conjunction with (1)-(5) gives the following in equality.
LEMMA 4. We have

M(nk+m, w, nk+m)n +kmn+m-n+N(n,(kn+m)w).
2

Note that the only propey of the companion matrix of an irreducible polynomial
we use is that every nonsingular space spanned by {C,..., Cp-1} is of rank n.
Actually, every set A={Ao,... ,A,_I} of n independent matrices with the above
propey is available for our proof.

LEMMA 5 [2]. We have

M(n,m,k)M(n-j,m,k)+jmax(m,k), M(n,m,k)M(n-j,m,k)+jk.

LEMMA 6. If m n k, then for every 1 j k

M( n, m, k) (n k)m + [k/jJ 1)( k-O.Sj [k/jJ )j + (k-j [k/jJ + S(j, km).

If n k, then

M(n, m, k) (n k)k + [k/jJ 1)(k-0.Sj [k/jJ )j + k-j [k/jJ + N(j, km).

Proof By Lemma 5 with j n- k, we have

M(n, m, k) (n k)m + M(k, m, k).

Then substituting m, [k/jJ -1, j, and k-( [k/jJ -1)j for w, k, n and m, respectively,
in Lemma 4, we obtain

M k, m, k) ([k/jJ 1)(k- 0.Sj k/jJ )j + k-j [k/jJ + S(j, kin)

for any 1 j k. The bound on M(n, m, k) can be proved in the same manner.

3. Proof of the Theorem 1.
By Lemma 5 we have

M(n,n,n) -1 n
2

j j+ n-j +g(j,n).

Let be the minimal positive integer such that j divide n- t, then <j and

J
Therefore

M(n, n, n)>= (n-t-j)--’)+t+N(j, n)

n2 n

2
+ N(j, n 2) -j---j+

[n2 jn\
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where the last inequality follows from Lemma 2. Now for j [log n + 1 we obtain

M(n, n, n) >- 2.5n2-O.5n log n- O(n).

Other results concerning M(n, m, k) and M(n, m, k) are summarized in Theorem
below.

THEOREM 2. If n >-- k, then

nk + 2km k2 / k log km if km <-- 2k-l,
M(n,m,k)>= nk+2km-k2-(km/2k-l) ifkm>=2k-,

nk + 2km 0.5k2- 0.5k log rn O(k) O(10g2 rn) /f log m o(k).

If m >- n >- k, then

nm + km + k log km if km <- 2k-,
lffl(n,m,k)>-_ nm+km-(km/2k-l) ifkm>__2k-,

nm + km +0.5kE-0.Sk log m O(k) O(log2 m) if log m o(k).

Proof. The first two bounds on M are obtained if we put j k in Lemma 6 and
the last bound is obtained if we put j-[log m]. The bound on M(n, m, k) can be
shown in a similar manner.

The bounds compare favorably with the bound m(n + k)/(k-m)+ 1 established
in [2] and [6]. We must note, however, that the bound in [2] and [6] holds over any field.

Acknowledgments. I am grateful to Michael Kaminski for introducing me to the
subject and for many helpful discussions, to Ron M. Roth for checking the proofs, to
my brother Daoud Bshouty and Michael Kaminski for correcting my very poor English,
and to my wife Nadera Bshouty for encouraging me.
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TIME/SPACE TRADE-OFFS FOR REVERSIBLE COMPUTATION*

CHARLES H. BENNETT?

Abstract. A reversible Turing machine is one whose transition function is 1, so that no instantaneous
description (ID) has more than one predecessor. Using a pebbling argument, this paper shows that, for any
e > 0, ordinary multitape Turing machines using time T and space S can be simulated by reversible ones

using time O(T+) and space O(S log T) or in linear time and space O(ST). The former result implies
in particular that reversible machines can simulate ordinary ones in quadratic space. These results refer to

reversible machines that save their input, thereby insuring a global 1:1 relation between initial and final

Ds, even when the function being computed is many-to-one. Reversible machines that instead erase their
input can of course compute only 1:1 partial recursive functions and indeed provide a G6del numbering
of such functions. The time/space cost of computing a 1:1 function on such a machine is equal within a

small polynomial to the cost of computing the function and its inverse on an ordinary Turing machine.

Key words, reversibility, invertibility, time, space, Turing machine, TISP

AMS(MOS) subject classifications. 68Q05, 68Q15

1. Introduction. A deterministic computer is called reversible if it is also backwards
deterministic, having no more than one logical predecessor for each whole-machine
state. Reversible computers must avoid such common irreversible operations as assign-
ments and transfers of control that throw away information about the previous state
of the data or program. Reversible computers of various kinds (Turing machines,
cellular automata, combinational logic) have been considered [1], [11], [12], [13], [6],
[2], [14] especially in connection with the physical question of the thermodynamic
cost of computation; and it has been known for some time that they can simulate the
corresponding species of irreversible computers in linear time [1] (or linear circuit
complexity 13]), provided they are allowed to leave behind at the end of the computa-
tion a copy of the input (thereby rendering the mapping between initial and final states
1:1 even though the input-output mapping may be many-to-one).
The physical significance of reversible simulation stems from the fact [7], [1] that

many-to-one data operations have an irreducible thermodynamic cost, while one-to-one
operations do not. The ability to program any computation as a sequence of 1"1
operations therefore implies that, using appropriate hardware, an arbitrarily large
amount of "computational work" (in conventional units of time/space complexity)
can in principle be performed per unit of physical energy dissipated by the computer.
This result contradicted an earlier widely held belief 15] that any computer operating
at temperature T must dissipate at least kT In 2 (the heat equivalent to one bit of
entropy, approximately equal to the kinetic energy of a gas molecule at temperature
T) per elementary binary operation performed. Needless to say, most real computing
equipment, both electronic and biological, is very inefficient thermodynamically, dis-
sipating many orders of magnitude more than kT per step. However, a few thermo-
dynamically efficient data processing systems do exist, notably genetic enzymes such
as RNA polymerase, which, under appropriate reactant concentrations, can transcribe
information from DNA to RNA at a thermodynamic cost considerably less than kT
per step.

* Received by the editors January 27, 1988" accepted for publication October 18, 1988.
? IBM Thomas J. Watson Research Center, Room 21-125, Yorktown Heights, New York 10598.
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The old linear-time simulation [1] is not at all economical of space: in the worst
case, it uses exponentially more space than the irreversible computation being
simulated.

Here we review this old result and present some new results on more space-efficient
reversible computation using the formalism of multitape Turing machines. For sim-
plicity we consider (deterministic) machines whose input tape and output tape, like
the work tapes, are two-way, read-write, and included in the space accounting. As
usual we restrict ourselves to "well-formed" machines (a recursive subset of machines)
whose computations, if started in a standard initial ID will either fail to halt or will
halt in a standard final ID. A standard initial ID is one with the Turing machine’s
control unit in the designated start state, with the input in standard format (input head
scanning the blank square just left of a finite input string containing no embedded
blanks) and with work and output tapes blank. A standard final ID is one in which
the control unit is in a single designated terminal state, all work tapes are blank and
all heads have been restored to their original locations, and the output tape contains
a single string in standard format. Let {qi} be a G6del numbering of well-formed
machines, and let T(x) and Si(x) denote the time and space used by machine on
input x, the partial functions T and S having the same domain as q.

A machine qi is reversible if its quintuples have disjoint ranges, thereby rendering
the transition function 1 1. We define two special kinds of standard, reversible machine:

Input-saving machines whose input head is read-only, so that the input string
remains unchanged throughout the computation.

Input-erasing machines in which the input tape, like the work tapes, is required
to be blank at the end of any halting computation on standard input.

These requirements, like the well-formedness requirements for ordinary Turing
machines, can be enforced through recursive constraints on the quintuples, so that
the input-saving and input-erasing reversible machines can be G6del-numbered as
recursives subsets of {q}.

2. Input-saving reversible computations. As a preliminary to the new results we
restate the old, linear-time simulation of [1].

LEMMA 1. Each conventional multitape Turing machine running in time Tand space
S can be simulated by a reversible input-saving machine running in time O(T) and space
O(S + T). More precisely, there exists a constant c such that for each ordinary Turing
machine qi, an index j can be found effectively from i, such that % is reversible and
input-saving, % qi, and T < c + c. Ti, and S.i < c + c. (Si + Ti).

Proof As illustrated by Table below, the simulation proceeds by three stages.
The first stage uses an extra tape, initially blank, to record all the information that
would have been thrown away by the irreversible computation being simulated. This
history-taking renders the computation reversible, but also leaves a large amount of
unwanted data on the history tape (hence the epithet "untidy"). The second stage
copies the output produced by the first stag6 onto a separate output tape, an action
that is intrinsically reversible (without history-taking) if the output tape is initially
blank. The third stage exactly reverses the work of the first stage, thereby restoring the
whole machine, except for the now-written output tape, to its original condition. This
cleanup is possible precisely because the first stage was reversible and deterministic.
An apparent problem in constructing the cleanup stage, viz. that conventional
read/write/shift quintuples have inverses of a different form (shift/read/write), can
be avoided by expressing each read/write/shift of the untidy stage as a product of
nonshifting read/writes and oblivious shifts, then inverting these. For more details,
see the Appendix and [1].
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TABLE
Basic linear-time reversible simulation using an extra tape to record, temporarily, a

history of the irreversible computation being simulated underbars denote head positions).

Stage

Untidy

Copy
output

Cleanup

Input Work History Output
tape tape(s) tape tape

_INPUT
IN_PUT WO_RK HIST_
_INPUT _OUTPUT HISTORY_

_INPUT _OUTPUT HISTORY_
_INPUT 0UT_PUT HISTORY_ OU_
_INPUT OUTPUT_ HISTORY_ OUTPUT_

_INPUT _OUTPUT HISTORY._ _OUTPUT

INPUT OUTPUT HISTORY_ OUTPUT
IN_PUT WO_RK HIST_ _OUTPUT
_INPUT _OUTPUT

Note in passing that the operation of copying onto a blank tape serves in stage
2 as a substitute for ubiquitous assignment operation a := b, which is not permitted in
reversible programming. Similarly, the inverse of copying onto blank tape, which
reversibly erases one of two strings known to be identical, can take the place of the
more general but irreversible operation of erasure. If the natural number 0 is identified
with the empty string, reversible copying and erasure can be represented as incrementa-
tion and decrementation, with a := a + b having the same effect as a := b, if a =0
initially, and a := a- b having the same effect as a := 0, if a b initially.

The above scheme for reversible simulation runs in linear time but sometimes
uses as much as exponential space. The following theorem shows that by allowing
slightly more than linear time a much more space-efficient simulation can be obtained.

THEOREM 1. For any e > O, any multitape Turing machine running in time T and
space S can be simulated by a reversible input-saving machine using time O( T1+) and
space O(S. log T).

Proof This space-efficient simulation is obtained by breaking the original compu-
tation into segments of m steps, where m S, then doing and undoing these segments
in a hierarchical manner as shown in Table 2. This table shows that by hierarchically
iterating the simulation of 2 segments of original computation by 3 stages of reversible
computation, 2" segments of the original computation can be simulated in 3" stages
of reversible computation. More generally, for any fixed k > 1, k" segments of irrevers-
ible computation can be simulated by (2k- 1)" stages of reversible computation. Each
stage of reversible computation invokes the linear-time reversible simulation of Lemma

to create or destroy a checkpoint (a complete intermediate ID of the simulated
computation) from the preceding, m-steps earlier, checkpoint, using time and space
O(S). Taking n log Tm)/log (k), the number of intermediate checkpoints in storage
at any one time is at most n(k-1), which for fixed k is O(log T), and since each
checkpoint uses storage O(S), the space requirement is O(S. log T), while the time
requirement is O(S. (2k-1)")= O(T+/g k)). The simulation is applied to segments
of length m S rather than to single steps (m 1) to insure that the time O(S) of
copying or erasing a checkpoint does not dominate the time O(m) of computing it
from the previous checkpoint. The extra space O(m) required for the history tape in
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TABLE 2
Reversible simulation in time O( Tlg3/g 2) and space O(S. log T).

Stage

0

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Action

Start
Do segment
Do segment 2
Undo segment
Do segment 3
Do segment 4
Undo segment 3
Do segment
Undo segment 2
Undo segment
Do segment 5
Do segment 6
Undo segment 5
Do segment 7
Do segment 8
Undo segment 7
Do segment 5
Undo segment 6
Undo segment 5
Do segment
Do segment 2
Undo segment
Do segment 3
Undo segment 4
Undo segment 3
Do segment
Undo segment 2
Undo segment

Checkpoints in storage (0= initial ID,
checkpoint j (jm)th step ID)

0
0
0 2
0 2
0 2 3
0 2 3
0 2
0 2
0
0
0
0
0
0
0
0
0
0
0
0
0 2
0 2
0 2 3
0 2 3
0 2
0 2
0
0

the linear-time simulation between checkpoints does not increase the order of the
overall space bound O(S. log T).

To complete the proof, it remains to be shown how the reversible machine causes
the above operations to be performed in correct sequence, how it organizes the storage
of the checkpoints on tape, and finally how it arrives at satisfactory values for m and
n without knowing T and S beforehand. The hierarchical sequencing of operations is
conveniently performed by a recursive subroutine that, given rn and n, reversibly
calculates the m. knth successor of an arbitrary ID, using k-1 local variables (each
restricted to m squares of tape) at each lower level of recursion in n to store the
necessary intermediate checkpoints. At the n 0 level of recursion, the mth successor
is calculated by the method of Lemma 1. The search for the correct m and n values
is performed by a main procedure, which calls the recursive subroutine for successively
larger rn and n until the time m. k and space m allowances prove sufficient, meanwhile
keeping a history of the sequence of m and n values to preserve reversibility. When
the desired output has been obtained and copied onto the output tape, the search for
m and n is undone to dispose of the history of this search. (For more details, see the
Appendix.)

Remark. The reversible creation and annihilation of checkpoints illustrated in
Table 2 may be regarded as a case of reversible pebbling of a one-dimensional graph.
In ordinary pebbling, addition of a pebble to a node requires that all predecessors of
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the node already have pebbles, but removal of a pebble can be performed at any time.
In reversible pebbling, both the addition and the removal of a pebble require that the
predecessors have pebbles.

COROLLARY. Each ordinary Turing machine running in space S can be simulated
by a reversible, input-saving machine running in space 0($2).

Related results. Using the same construction, but with k increasing as a function
of T (and consequently having n increase less rapidly than log T), one can obtain
reversible simulations using less time and more space. For example, using fixed n, k
increases linearly with T and one obtains a reversible simulation in time O(T) and
space O(ST). Intermediate trade-offs can also be obtained, e.g., time O(T. 2"/-g)
and space O(S. 2 l’/g r)+oogog 7-)).

The usual linear tape-compression and time speedup theorems apply to reversible
machines; therefore, if T(x) and S(x) are total functions bounded below by 31x1+3
and Ixl + 2, respectively, then

TISP T, S)
_
RTISP T+, S log T),

where TISP T, S) denotes the class of languages accepted by ordinary Turing machines
in time T and space S, and RTISP (T, S) denotes the analogous class for input-saving
reversible machines. Similarly, the class TISP (T, S) is contained in

RTISP T, ST),

and in

RTISP T" 2’g r S" 2 ’g r )+O(loglog T))
It is interesting to compare the time/space trade-off in reversible simulation of

ordinary Turing machines with the analogous depth/width trade-off in reversible
simulation of ordinary combinatorial logic circuits. A depth-efficient construction due
to Fredkin and Toffoli [6], paralleling Lemma 1, simulates ordinary circuits of depth
d and width w, in an input-saving manner, by reversible circuits of depth O(d) and
width O(dw), composed of reversible gates with no more than three inputs and outputs.
A construction parallel to Theorem 1 above would yield a more width-efficient simula-
tion, by reversible circuits of depth O(d+) and width O(w. log d).

However, a still more width-efficient simulation is possible, based on Coppersmith
and Grossman’s result [5] that any even permutation on the space of n-bit strings can
be computed by a circuit of width n, and depth exponential in n, composed of the
reversible gates of <_-3 inputs and outputs. Width n is insufficient to realize odd
permutations, but these can be computed by circuits of width n + 1, using an extra
"garbage" bit whose initial value does not matter, and which is returned unmodified
in the output.

Accessing such garbage during a reversible computation might at first appear
useless, like renting space in a warehouse already full of someone else’s belongings,
but in fact it serves the purpose of allowing the odd permutation to be embedded in
an even permutation of higher order (any permutation on strings that is oblivious to
the values of one or more bits is perforce even) [3]. In particular, any m-bit function
of an n-bit argument, Fm(Xn), can be embedded in an even permutation of the form
(X 0m, g) (X,, F,(X,), g), where g is a garbage bit, and computed reversibly in
width n + m + 1. Cleve [4] has explored other aspects of the depth/width trade-off for
reversible circuits.

The extreme width-efficiency of the Coppersmith-Grossman circuits suggests the
possibility of more space-efficient reversible Turing machine simulations using, say,
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linear space rather than S. log T. However, this may not be possible, since a deep-but-
narrow logic circuit can perform a sequence of different transformations, while a Turing
machine is forced to apply the same transition function at each step.

3. Input-erasing reversible computations. The schemes described so far achieve
global reversibility by saving the input, in effect embedding an arbitrary partial recursive
function q(x) into the 1:1 partial recursive function (x, q(x)). We now consider
reversible machines that destroy their input, as well as clearing all working storage,
while producing the desired output. Because of unique terminal state of the finite
control, such machines cannot destroy or hide even a finite amount of the information
present in the input, and so can compute only 1:1 functions. We show that such
machines provide a G6del numbering of the 1"1 partial recursive functions and that
the time/space cost of computing a 1:1 function on such a machine is polynomially
related to the cost ofcomputing and inverting the function on ordinary Turing machines.

First we need a definition of the cost of inverting a function. Let T* and S* be
arbitrary partial recursive functions. A 1:1 partial recursive function f(x) will be said
to be invertible in time T*(x) and space S*(x) if and only if there exists an (in general
irreversible) multitape Turing machine for computing f- that, for all x in the domain
off, uses time -<_ T*(x) and space _<- S*(x) to compute x from f(x). The theorem below
extends an analogous but space-inefficient result [1], [2] on reversible computation of
1:1 functions.

THEOREM 2 (on input-erasing reversible computations). (a) A function is partial
recursive and 1:1 if and only if it is computed by an input-erasing reversible multitape
Turing machine. These machines thus provide a G6del-numbering of 1 partial reeursive

functions.
(b) Iff is a 1:1 partial recursive function computable in time T and space S, and

invertible in time T* and space S*, then f can be computed in time O( T+ T*) and space
O(max {S. T, S* T*}) on an input-erasing reversible machine.

(c) Iff is a 1:1 partial reeursive function computable in time T and space S, and
invertible in time T* and space S*, then fcan be computed in time O( T1+ + T.1+) and
space O(max {S log T, S* log T*}) on an input-erasing reversible machine.

(d) Iff is computable by an input-erasing reversible machine in time T and space
S, then f is computable by an ordinary machine in time T and space S, andf is invertible
by an ordinary machine in time O( T) and space S + 0(1).

Proof The "if" of part (a) above is immediate from the nature of an input-erasing
reversible machine. The "only if" of (a) and the time/space bounds (b) and (c) depend
on the construction below (Table 3), in which irreversible algorithms for f and f-1 are
combined to yield an input-erasing reversible algorithm for f The "only if" of part
(a) in addition depends on the fact noted by McCarthy [10] that, iff is 1:1, then an
algorithm for f-1 can be obtained effectively from an algorithm for f (Levin’s optimal
inverting algorithm [8], [9] is a refinement of this idea). Part (d) is immediate from
the fact that an input-saving reversible Turing machine is already a Turing machine,
and the fact that the inverse of a reversible machine (obtained by inverting its quintuples
as explained in the proof of Lemma 1) runs in the same space and linear time as the
original reversible machine.

Table 3 shows how two irreversible algorithms, for a partial recursive function

f and its inverse f-t, can be combined to perform an input-erasing reversible computa-
tion of f In the first half of the computation the irreversible algorithm for f is used
in the manner of Table 1 or Table 2 to construct a temporary bridge (history or
checkpoints) from x to f(x), thereby allowing a copy off(x) to be left on the output
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TABLE 3
Input-erasing reversible computation ofa 1:1 function f, given irreversible algorithms for

f and f-.

Action

Do then undo f, via
history or checkpoints,
to create f(x) reversibly
in presence of x

Do then undo f-, via
history or checkpoints,
to destroy x reversibly
in presence of f(x)

Input History Work Output
tape tape tapes tape

f-HISTORY f(x)
f-HISTORY f(x)

f--HISTORY x
f--HISTORY x

f(x)
f(x)

f(x)
f(x)
f(x)
f(x)

tape after the bridge is removed. In the last half of the computation the algorithm for

f- is used similarly to generate a bridge from f(x) back to x, but in this case the
bridge is used to delete the copy of x already present on the input tape before the
bridge was constructed. The time and space required are evidently as stated in (b) and
(c) above. [3

Remark. Theorem 2 implies Theorem 1, since for any function q computable in
time T and space S, the function f(x) x q (x), where is a distinctive punctuation,
is 1:1 and both computable and invertible in time O(T) and space O(S).

Appendix. Details of proofs. Here we give further details of the proofs of
Lemma and Theorem 1.

Lemma 1. Here we describe the construction of the reversible machine’s Untidy
Stage and Cleanup Stage quintuples corresponding to a typical quintuple

q, S- Sk, O’, qt

of the irreversible machine being simulated. The elements of the quintuple before the
arrow represent, respectively, the initial control state and scanned tape symbol(s);
those after the arrow represent the written tape symbol(s), shift, and final control state.
In the Untidy Stage, each execution of such a quintuple should leave a record on the
history tape sufficient to undo the operation in the subsequent Cleanup Stage. Since
a deterministic Turing machine’s quintuples have disjoint domains, it is sufficient to
write (i,j) on the history tape. This can be achieved by replacing the above quintuple
by the following quintuples:

(1) A nonshifting quintuple of the form

q, (Sj, b)- (Sk, b), (0, 0), qj,

which executes the original quintuple’s read/write operation while reading and writing
blank on the history tape (second element in parentheses), and remembering and j
in a special control state;

(2) A quintuple of the form

qo, X- X, (cr,.+), q"
for each scanned-symbol combination X. Together these quintuples implement an
oblivious shift, in which the history tape is right-shifted (+), while the other tapes
perform the shift o- called for by the simulated computation. The memory of and j
is passed on via another special control state.
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(3) A quintuple of the form

q, Y, b)-( Y, (i,j)), (0, 0), qt

for each scanned symbol combination Y on the nonhistory tapes. Together these
quintuples implement a nonshifting read/write on the history tape, in which a blank
is read and the information (i,j) representing the quintuple just executed is left in its
place. Since each of these quintuples of types (1)-(3) has an inverse of the same form
as itself, and since the history-taking and special starred control states guarantee
disjointness of the quintuples’ ranges, all operations of the Untidy Stage can be undone
in the Cleanup Stage.

Theorem 1. We describe in more detail how the reversible machine causes
operations to be performed in correct sequence, how it organizes the storage of the
checkpoints on tape, and finally how it arrives at the satisfactory values for m and n
without knowing T and S beforehand. We describe the case k- 2; generalization to
larger k is straightforward. For the moment assuming m and n to be given, the
hierarchical simulation is conveniently performed by a recursive routine such as
R$(z,x,n,m,d) below, whose effect is to cause argument z, representing an ID of
the simulated computation, to be incremented or decremented (according to whether
argument d is +1 or -1) by the (m 2n)th successor of argument x under the simulated
computation’s transition rule.

procedure RS z, x, n, m, d)
if (n=0)
LINSIM(z, x, m, d)

f+/- (n=0)
if (n>0)
R$ (y, x, n-i ,m, +i
R$(z,y,n-i,m,d)
R$(y,x,n-i ,m,-1)
fi (n>0)

It should be noted that in reversible programs, the paths entering a merge point,
like those leaving a branch point, must be labeled with mutually exclusive conditions.
For example, in RS, the statement fi (n=0) denotes a merge point in which control
may pass from the preceding block of code only if n=0. All assignments are done
reversibly, presuming a knowledge of the previous value of the variable (initially zero).

All the actual simulation in RS above is done by the procedure LINSIM(z, x,m, d)
below, which, according to the sign of d, increments or decrements argument z by the
mth successor of argument x, computed by the method of Lemma 1, i.e., by creating,
then clearing, an m-step history on a worktape reserved for that purpose.

procedure LINSIM(z, x, m,d)
if (x is terminal or Ixl > m-i)
z := z+d x

fi (x is terminal or Ixl > m-i)
if (x nonterminal and Ixl < m)
z := z+d [mth successor of x

fi (x nonterminal and

Note that LINSIM suspends forward computation, treating x as its own successor,
when the computation being simulated terminates, or when the size of argument x
exceeds the space bound m. This convention enables the main procedure, to be described
later, to find the right segment size m S and recursion depth n log (T/S).
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Start

x := x + input
m :- m / Ixl
n:=n+]ml
h:=h+2

RS(z,x,n,m,+l)

no

yes

no

h:=h-2

Stop

m:= m*(2-mod (h, 2))
n := n +2.rood (h, 2)-

h 2h / (Izl < m)

RS(z,x,n,

m := m + (2-mod (h, 2))
n := n-2*mod (h, 2) +

FIG. 1. MAIN procedure for space-efficient reversible computation using recursive subroutine "RS."
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Proceeding now to the organization of data on tape, it can be seen that the
procedure RS needs separate storage O(m) at each level of recursion, for its arguments
and for the local variable y. This storage can conveniently be organized as a sequence
of n blocks of size O(m) on a single "checkpoint" tape, demarcated by appropriate
punctuation. Each call to P,,.S would then involve reversibly passing arguments of size
O(m) back and forth between adjacent blocks, a job that can be done in time O(m) if
an extra blank tape is used as a buffer. The level of recursion would not have to be
passed as an explicit argument, since that information would already be encoded by
the head position on the checkpoint tape. At the 0 level of recursion, the linear time
computation of each checkpoint from its predecessor would proceed using all the tapes
of the original machine being simulated, plus an additional history tape.

We now go on to describe the main procedure, which tries successively larger m
and n until the correct values are found, writes the final output (if the computation
being simulated indeed terminates), and then reversibly disposes of all intermediate
data generated in the course of the simulation. This procedure can be represented by
a flow chart (Fig. 1). Here diamonds are used to represent both branch points and
merge points since, as remarked before, it is necessary in reversible programming to
label alternative paths into a merge point, like the paths out of a branch point, with
mutually exclusive conditions. Note that the whole bottom half of the flow chart is
devoted to undoing the work of the top half, so that all intermediate data are restored
to their initial states after the desired output has been obtained.

In more detail, the main procedure begins by initializing m, n, and x, as well as
a variable h, which will be used to encode the history of the search for correct ra and
n values. Each turn around the main loop in the upper half of the chart either increases
n by one (thereby doubling the time allowance if it was exceeded before the space
allowance), or doubles ra and decreases n by one (thereby doubling the space allowance
while keeping the time allowance fixed if the space allowance was exceeded first). In
the former case a 0 is pushed into the least significant bit of h (regarded as a binary
string); in the latter case a is pushed. Since LJlqTM simulates m steps of computation
between space tests, the final m value may be less than S, but lies between S/2 and
2S. The final n value is similarly equal to log (T/S) within a term of order unity. When
the final m and n are found, the ID z generated by R$ will be found to be terminal. It
is then copied onto the output tape, and the entire computation up to that point is
undone in the bottom half of the chart.

The space used by the algorithm is dominated by the O(mn) -< O(S log (T)) squares
used on the checkpoint tape, all other terms being O(S) or less. The time used in one
turn around the main loop depends on m and n as O(m. (2k- 1)n), from O((2k- 1)n)
recursive invocations of RS and O((2k-1)n) m-step linear-time simulations. Since n
may be decreased at some turns around the loop (recall that when the space bound
is exceeded, m is doubled and n is decreased by 1), the largest time cost is not necessarily
associated with the last turn. Nevertheless, the total time cost of all the turns is bounded
by a convergent geometric series

0 (2k-l)’s

Executing the bottom half of the flow chart of course only introduces a factor of order
unity, so the total time cost remains O(Tl+/(lgk)) as claimed. [3

Acknowledgments. I wish to thank Leonid Levin for urging and helping me to
strengthen a previous, much weaker version of Theorem 1 and Martin Tompa for
pointing out how to reduce the time exponent from 1.585 to 1 + e.
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Note added in proof. Robert Y. Levine and Alan T. Sherman, in a recent preprint, "A Note
on Bennett’s Time-Space Trade-off for Reversible Computation" (Department of Computer
Science, Tufts University, Medford, Massachusetts 02155), give tighter time and space bounds
for the reversible simulation as @(T+/S9 and O(S In(T/S)), respectively; and they point out that
the space bound contains a constant factor diverging with small e approximately as e2 /.
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ULTIMATE CHARACTERIZATIONS OF THE BURST RESPONSE
OF AN INTERVAL SEARCHING ALGORITHM:
A STUDY OF A FUNCTIONAL EQUATION*

PHILIPPE JACQUET AND WOJCIECH SZPANKOWSKI:

Abstract. The interval searching algorithm for broadcast communications of Gallager and Tsybakov
and Mikhailov is analyzed. Ultimate characterizations of the burst response of the algorithm, that is, when
the number of collided packets becomes large is presented. Three quantities are of interest: the conflict
resolution interval (CRI); the fraction of the resolved interval (RI); and the number of resolved packets (RP).
If n is the multiplicity of a conflict, then it is proved that the ruth moments of CRI, RI, and RP are O(log’" n),
O(n-’" ), and O(1), respectively. In addition, for the first two moments of these parameters precise asymptotic
approximations are presented. The methodology proposed in this paper is applicable to asymptotic analysis
of any problem that can be reduced to a solution of the functional equation f(x) 2L. f(x/2) a(x) + b(x),
where is an integer and a(x), b(x) are given functions.

Key words, interval searching algorithms, analysis of algorithms, digital trees and other data structures,
asymptotic analysis, functional equations, Mellin transform

AMS(MOS) subject classifications, primary 68Q25, 68M20; secondary 39B10

1. Introduction. In a broadcast packet-switching network a number of distributed
users share a common communication channel. Since the channel is the only means
of communication among the users, packet collisions are inevitable if a central coordina-
tion is not provided. The problem is to find an efficient distributed algorithm for
retransmitting conflicting packets. In recent years conflict resolution algorithms (CRA)
[1], [2], [5]-[7], [9], [14]-[16] have become increasingly popular, mainly due to a
nice stability property. The basic idea of CRA is to solve each conflict by splitting it
into smaller conflicts (divide-and-conquer algorithm). This is possible if each user
observes the channel and learns whether in the past it was idle, success, or collision
transmissions. The partition of a conflict can be made on the basis of a random vari-
able (flipping a coin) [2], [6], [7], [15] or on the basis of the time a user became
active [2], [5], [9], [14], [16]. The former algorithm is known as the Capetanakis-
Tsybakov-Mikhailov algorithm [2], [15] (the stack algorithm) while the latter as the
Gallager-Tsybakov-Mikhailov algorithm [5], 16] known also as an interval-searching
algorithm.

For interval searching algorithms, three parameters are of interest: the conflict
resolution interval (CRI), the fraction of the resolved interval (RI), and the number of
resolved packets (RP). For the initial multiplicity of a conflict n (i.e., n packets collide)
the mth moments ofthe above parameters are denoted as TT, W7 and C’n, respectively.
We prove that T O(log" n), W O(n-m), and C O(1) for large n. However,
for the first two moments, which are the most important from a practical viewpoint,
we offer precise estimations. In particular, we show that asymptotically Win
a/(n+l)+P(logn), C,,.a+P(logn), and T,,--logn+c+P(logn), where a and c
are constants that are determined in our Proposition, and P(log n) is a fluctuating
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function with a small amplitude. For the variance, we obtain varWn---a’/(n + 1) 2,
var Cn---a" and var Tn c’, respectively. Our results are useful in characterizing the
"burst response" of the algorithm. Indeed, it seems to be interesting to evaluate the
ability of a communication protocol to resolve an initial collision of large multiplicity
(e.g., a "bursty" access to the channel of several stations). It is known that the algorithm
does not completely resolve the initial collision in one session, and it needs several
sessions for successful transmissions of n initially collided packets. Our results
show (for more details see also Remark (ii) at the end of 2) that the algorithm
needs on the average n(log2 n-1)/a+ nc/a slots to resolve the initial collision of
size n.

To the best of the authors’ knowledge, previous research has been restricted only
to the first moments of CRI, RI, and RP, however, the exact asymptotic expansions
have not been achieved [14] (see also [9], [16]). The methodology presented in this
paper can be easily extended to analyze other interval searching algorithms as well as
some other data structures such as digital search trees 12]. Moreover, conflict resolution
algorithms find applications in typical computer science problems such as semaphore
conflicts and batch retrieval algorithms for databases [17], [18].

2. Problem statement and main results. Let us start with a short description of the
Gallager-Tsybakov-Mikhailov algorithm with ternary feedback [5], [16]. Assume a
channel is slotted and a slot duration is equal to a packet transmission time. The
algorithm defined below allows the transmission of the packets on the basis of their
generation times and we assume that packets are generated according to a Poisson
point process with rate A. Access to the channel is controlled by a window based on
the current age of packets. This window will be referred to as the enabled interval (EI).
Let si denote the starting point for the ith EI, and is the corresponding starting point
for the conflict resolution interval (CRI), where CRI represents the number of slots
needed to resolve a collision. Initially, the enabled interval is set to be [si, rain {s + % t}],
where z is a constant that will be further optimized. At each step of the algorithm, we
compute the endpoints of the EI based on the outcome of the channel. If at most one
packet falls in the initial EI, then the conflict resolution interval ends immediately,
and si+l si + min {% --Si}. Otherwise, the EI is split into two halves, and three cases
must be considered:

(i) All users whose current age of packets fall into the first (left) half are allowed
to transmit packets. If it causes next collision, all knowledge about the second half is
erased, and the first half is immediately split into two halves;

(ii) If enabling the first half causes an idle slot, the second half is immediately
split into two halves;

(iii) If the first half gives a success, the entire second half is enabled.
A CRI that begins with a collision, continues until enabling the second half of some
pairs gives a success.

Assume that an initial collision of a CRI is of multiplicity n, that is, n packets
collide in the first slot of a CRI. Then all packets whose generation times fall into an
interval (s, si+l) are successfully sent in the ith CRI. The interval (s, si+l) is called
the ith resolved interval (RI) and its length is at most z. The parameters of interest
are: the length of a CRI, T; the fraction of the resolved interval (i.e., the ratio of the
resolved interval and z), W; and the number of resolved packets (successfully transmit-
ted) in an enabled interval, C. Let also N denote the multiplicity of a conflict. Then
the rnth conditional moments of the above quantities are defined as T E{T"[N n},
W,m= E{W’]N n}, and C" E{C"]N n}, respectively. For m =0, we define TO,
W, C, 1. Then we have Theorem 1.
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THEOREM 1. (i) The mth conditional moment ofT satisfies thefollowing recurrence:

T’ T’ 1,

(2.1)
i=1

+ T + nT,m_l + T’,
j=2 i=1 j j= j

n_->2.

(ii) The recurrence for W is

(2.2)
W= W?=I,

n
(2"+" 2) W 1 + W. + n W.-1] + n Wn_1-1

t-- W,
j=l j=l

n_>2.

(iii) The recurrence for the mth conditional moment of C becomes

(2.3)
n_>2.

Proof Note that an n-conflict is resolved by splitting n into two groups, and
according to the algorithm description three basic cases must be considered: (1)
n (0, n); (2) n- (1, n-1); (3) n(j, n-j),j>-2. The probabilities of these cases are
equal to 2-", n2-", and (..)2-", respectively. For example,

C 2-"E{C’[N= n}+ n2"-’E{(I +C)",N= n-1}+2-" (n) E{C",N=j}.
j=2 j

After some algebraic manipulations, we prove the recurrences (2.1), (2.2), and
(2.3). [3

We now give a summary of the main results, delaying more complicated proofs
to the next two sections. Let Win(x), C,,(x), and T,,(x) represent the exponential
generating functions of W, C’, and T, respectively, e.g., T,,(x) =,__o Tx"/n!.
It turns out that to analyze recurrences (2.1)-(2.3), it is more convenient to deal with
modified generating functions defined as Wm (X) Wm (x) e -x, Cm (x) Cm (x) e -x, and
tin(X)= T,,(X)e-x-1. Recurrences (2.1)-(2.3) can be transformed into functional
equations for w,(x), Cm(X), and tin(X). For example, from Theorem 1 we can easily
prove that the generating functions w(x), c(x), and t(x) satisfy the following
functional equations:

w,(x) 2-1[1 +(1 + x/Z) e-X/Z]wl(x/2),
c,(x) [1 + (1 + x/Z) e-X/2]Cl(X),

tl(X) + (1 + x/2) e-X/2]t(x/2) + (1 + 3x/2) e + 0.5x e -x/2.

Note the generic form for these functional equations is

(2.4) f(x) 2y(x/2)a(x) + b(x),

where s is an integer, a(x) 1/2[1 +(1 +x/2) e-X/Z], and the nonhomogeneous term b(x)
depends on the particular recurrence (see 3 and 4). The general solution for (2.4)
is given in the next lemma.

LEMMA 1. (i) Functional equation (2.4) possesses the following solution:

(2.5) f(x)=f*(x)+ 2 2"b(x2-") I-I a(x2-k),
=0 k =0
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where
n--1

(2.6) f*(x) lim 2snf(x2-") 1-I a(x2-k)
k=0

assuming f*(x) exists and the series in (2.5) is convergent.

(ii) Let w(x)= 1-l=o a(x2-) exist and f(O)=f’(0) fs-) 0, f((0) # 0.
Then

0 s<0,
(2.7) f*(x)

xS w(x)f)(O)/ s s >= O,
where j(O) denotes the sth derivative off(x) at x O.

(iii) If a(O) < 2 and b(x) O(x"+1) for x--> O, then the series in (2.5) is convergent.
Proof Part (i) follows immediately from formal iteration of (2.4). For (ii) assume

first s >-0. Let u x2-n; then

f(u)
(2.8) f*(x) x*w(x) lim.

u-,O U

Applying l’Hopital rule s-times, we prove (2.7). The case s < 0 is easy and left to the
reader. For part (iii), we use D’Alembert’s criterion, that is, to prove that n_->0 n is
convergent, it is sufficient to show that limn_, an+i/an < 1. In our case, assuming
u x2-n,

an+, b(u/2) a(O)
lim a (0)2 lim < 1,

an uO b(u) 2

where the last equality follows from the assumption b(x)= O(x+) for x-*0.
Direct use of Lemma leads to very complicated formulas. Nevertheless, based

on the lemma and using the Mellin transform, we can reduce these formulas to very
simple asymptotics, as summarized in the following proposition.

PROPOSITION. For x --> oo the following hold.
(i) The first two modified generating functions for the resolved interval are

a a
(2.9) w(x)--.-+- P(log x),

X X

a(2+ b) a

X
2(2.10) w2(x) + P(log x)’5

where P(log x) is a fluctuating function with a very small amplitude, and

(2.11) a=exp[c/log2+log2/2]=2.505, b =/3/log 2= 1.692,

where

(2.12) c
1+(1 +x) e

dx 1.496, /3
1+(1 ---) e-/2

dx 1.17.

(ii) The modified generating functions for the number of resolved packets become

(2.13) cl(x) xw(x)--, a + aP(log x),
(2.14) c2(x) a(1 + b)+ aP(log x).

(iii) The first two modified generating functions for the conflict resolution interval
satisfy

(2.15) tl(x) "--log2 x + c + aP(log x),

(2.16) tz(X) log x + 2c log x + d + aP(log x),
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where

tza 5 a,
+3(c- 1)-c2-(2.17) c =2-(log 2)2 4.149, d

6 (log 2)2
17.169,

and

(2.18) /x fl(x) lg x. dx -0.41 ,-- f2(x) log2 x dx 1.484,
x 2

where the functionsfl(x) and f2(x) depend on a(x), b(x), and wl(x); they are given in
the next sections.

The next stage consists of translating the expansions of T,,(x), Wm(x), and Cm(x)
for x-oo into information about the asymptotics of their coefficients. That is, if
F(x) =f(x) e is the exponential generating function and f(x) nofnXn/n! e -x, then
by the Cauchy formula [8] the coefficient fn is given by

(2.19) fn =27ri f(x) eX
xn-I-l’

where the integration is done on the circle with center 0 and radius n. It should be
stressed that f(x).-, g(x) does not necessarily imply fn gn. Note, however, that the
leading factor in the asymptotics for the generating functions of the quantities of
interest is of the form xP(log x) q for some p and q. The next lemma establishes
conditions under which this factor can be transformed into information on the
coefficients (see als0 11]).

LEMMA 2. Let f(x) F(x) e and So be a cone So {x: larg xl < 0, 0< 0 < 7r/2}.
Iffor x in the cone, that is, for x

(2.20) f(x)--- xP(log x) q

for some p and q, and for x outside the cone So
(2.21) IF(x)l<Bell

for some B and 0 < a < 1, then for large n the coefficientfn ofF(x) asymptotically satisfies

{ (1)} nP(log n)q + O(nP-1/21ogq-l n).(2.22) f=f(n). 1+O logn
Proof The cOefficient fn is computed by Cauchy formula (2.19), where the integra-

tion is done along the circle Ixl n. Two cases are considered" x So and x outside
the cone So. In the latter case, using (2.21) and Stirling’s formula [7] we find that f
defined in (2.19) can be upper bounded as Ifl < B e-(1-"n, that is, for large n the
contribution of the integral outside the cone So is negligible.

Now assume that x So. Using substitution x n e in (2.19) and applying again
Stirling’s formula, one finds fn In[1 + O(n-)]+O(e-(-""), where

f(n e iv) e neiv e -inv dr.

The last integral can be further simplified by developing ei and the change of variable
y v/-v. Then

0
n,., ,,

| f(n e iyeZ) e e-(2.24) In
-0

ay.
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But the following is easy to establish" f(n eiy)/fn- 1, and ene’’’’ e-i’/--e-Y2/2
n-> . Then, by the Lebesgue Dominated Convergence theorem we show that

as

f n - e--y2/2 =1.

Finally, we note that a refinement in the evaluation of the order of convergence in the
latter derivation leads to fn/f(n) + O(n -I/2 log-1 n). This readily gives (2.22).

Now we are prepared to state our second main result. Direct application of
Lemma 2 to Proposition leads to Theorem 2.

THEOREM 2. For large n the following hold:
(i) The fraction of the resolved interval becomes

a
(2.25) Win=+P(log n)+ O(n -3/2) 2.505

n+l n+l n+l’

(2.26)

a(2+b) a2 1
var Wn (n + 1)(n + 2)-(n + 1)--------- + (n + 1)

Pl(log n)+ O(n -3/2)

a(2+b)-a
(n+l)

1 2.97

(n+ 1) 2
Pl(log n)+J,n-3/2)

(n+l)2’

(2.27) w:’= O(n-n).

(ii) The number of resolved packets satisfies

(2.28) Cln a + P(log n)+ O(n -1/2) 2.505,

(2.29) var C a + ab a + Pz(log n) + O( n -1/) 0.47,

(2.30) C 0(1).

(iii) The conflict resolution interval can be represented as

(2.31) Tin log2 n + c+ P(log n)+ O(n -1/) log2 n +4.144,

(2.32)
5

var T --+ 3(c- 1)- c2-
ap

(log 2)
+ P3(log n) + O(n -1/2) 4.7,

(2.33) T7 O(log m).

Remarks. (i) Maximum throughput for the algorithm. Let x--hz, where h is the
input rate from the Poisson arrival process, and z is the algorithm parameter defined
in 2. The maximum throughput, hmax, is defined as the maximum rate of successful
transmissions that assures that the average packet delay is finite. In other words, for
h < hmax the algorithm is stable. But, the throughput is also the ratio of the average
number of successful transmissions to the average conflict resolution length, hence
(see [1], [16])

(2.34)
C,(x) xW,(x)

/max’-- SUPx TI(x) sup TI(x)

It is easy to compute ’m, numerically for some values of x, and taking the first eight
or nine values of Tin and Win reveals /max 0.48771 for x 1.26. This comes from the
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fact that the maximum in (2.34) occurs for small values of x. Thus, from the numerical
point of view, there is nothing to add. From the mathematical viewpoint, however,
there is some interest in finding an analytical solution for ’max, e.g., to show whether
some maximizing x is a global or a local maximum. Using the Proposition, we
immediately see that for large x

a
.max’ sup

log2 X+ C

and max is a decreasing function of x. Thus, Xop 1.26 is a global one.
(ii) Average number of slots needed to resolve the initial collision. Let us assume

that one injects n packets into the system. How long does it take on the average to
resolve completely this initial collision? It is well known that the Gallager-Tsybakov-
Mikhail0v algorithm does not solve the entire collision in one session. By Theorem
2(ii) we know that for large initial multiplicity n of a collision, only a packets are
transmitted on the average in a conflict resolution session. Thus, n/a sessions
are necessary to resolve the contention. According to Theorem 2(iii) each
session with initial multiplicity n requires log2 n + e slots. Therefore, on the average
the algorithm with the initial multiplicity n needs c+log2 n + e+log2 (n-a)
+ c+log2 (rt-2a)+... slots to resolve the conflict. This is roughly equal to n/a x
(log2 n-1)+ ne/a slots. This can be compared with c.n slots required to solve
initial conflict for stack algorithms [2], [7], where c is a parameter of the system.

(iii) Non-Poisson arrival processes and limiting distribution. The reason why the
asymptotic behavior of T, and W1, is not essential for the algorithm follows from the
fact that the probability of more than four packets collide is less than 0.01 if x is near
the optimal value. This, however, holds only for the Poisson assumption model. If this
assumption is dropped and the input process is more biased (e.g., multimodal or the
peak of the distribution is for large values), then the asymptotic behavior, i.e., burst
response, becomes more important. Although in general our recurrences (2.1)-(2.3)
do not work for non-Poisson models, we can slightly change the algorithm (this change,
anyhow, is required in practice) to assure that the recurrences are valid. Namely, in
a non-Poisson model we spread randomly over a window all packets that fall into the
window. Then, for such a randomized algorithm our recurrences hold since the binomial
distribution of packets in each half of a window is preserved. Moreover, note that for
such a randomized non-Poisson model limiting distributions for Tin play a role. From
our analysis (Theorem 2(iii)) we know that Tn is not normally distributed, since
T1, O(log n) and var T, O(1) (see 11 ]). At last, the burst response becomes increas-
ingly important for extreme behaviors of the algorithm (even within the Poisson model)
since in such situations the Poisson assumption is no longer true. In other words, the
average behavior is well described by the throughput and the delay of the algorithm,
but for dynamic behavior we need to study burst response.

(iv) Other applications of our analysis. Finally, we note that the interval searching
algorithm motivated our study of a general functional equation of the form f(x)=
2"f(x/2) a(x)+ b(x) (see Eq. (2.4)). In particular, we have investigated the asymptotic
behavior of the coefficient f, of the Taylor expansion of f(x) (see (2.19)). Such a
general approach has its own advantage in the fact that a class of problems can be
solved in a unified manner. For example, noting that the conflict resolution session T,
can be represented as a path in an appropriate digital tree [16] we can easily apply
our analysis to study some other properties of digital search trees. Note also that our
methodology enables us to compute the asymptotics without exact solution of the
recurrences (2.1)-(2.3). For example, the following recurrence is often met in the
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analysis of digital search trees (radix trees, Patricia trees, etc. [12], [13]):

where x, is the numerical value of a given property of the tree, an is the amount of
the property possessed by the root, and lk, rk are weights of the left and right subtrees.
For instance, if l r 1, then (2.35) models (for appropriate an) the successful search
time (all moments) of radix tries and Patricia tries [13]; if l r 1- n,k, where
is the Kronecker delta, then (2.35) represents the unsuccessful search in a Patricia tree.
For the Gallager algorithm we have to assume l 1/2 and r 1/2(1 + 23n_,). Introduction
of the general (additive) term an in (2.35) enables to study a class of properties instead
of a particular one. For example, another version of Gallager’s algorithm, namely
Berger’s protocol [2], is analyzed in exactly the same manner except that for Tin the
additive term is equal to an 2 + n2-n- 2 instead of an 1- 2-n.

3. Analysis of the first moments. In this section we concentrate on derivations of
the asymptotics for Win, C n, and Tn. From the methodological viewpoint, we mention
here the crucial role of the generating function W(x) of Wn. This is a consequence
of the fact that w(x)= W(x) e satisfies homogeneous functional equation of type
(2.4), that is, b(x)m 0 in (2.4). We shall see that all other generating functions, which
satisfy nonhomogeneous functional equation (2.4), can be expressed in terms of w(x).
In the derivations we extensively use the Mellin transform. A good reference for
properties of the Mellin transform is [4] and [3]. Some details of the derivations can
also be found in [10].

3.1. The fraction of the resolved interval. The first moment of the fraction of
resolved interval Win satisfies recurrence (2.2) with m 1. Let W(x) be the exponential
generating function of Wn, ,and define w(x)= W(x)e-. Multiplying both sides of
(2.2) by xn/n! and summing, we find

(3.1) w(x) :1/2[1 +(1 +x/2) e-X/Z]wl(x/2).
This functional equation falls into (2.4) with b(x)=-O (homogeneous equation) and
a(x) 1/2[1 + (1 + x/2) e-’/2]. Let us also define a(x)= a(2x). Then, by Lemma and
w(0) the solution of (3.1) is

(3.2) wl(x)= 1-I a(x2-k) I-I a(x2-).
k=l k=0

Let l(x)= log w(x) and gl(x)= log a(x). Then (3.2) becomes

(3.3) l(x)-- 2 gl(X2-/c)
k=l

Equation (3.3) is used to derive asymptotics for l(x) for x oo. At this stage, we
start plunging into complex analysis, that is, into the Mellin transform. First we give
an overview of the methodology. We use the following facts about Mellin transform
[4], [3].

PROPERTY 1. Iff(x) is piecewise continuous on [0, oo], and

(3.4a) f(x) O(x’), x--> O, f(x) O(xt), x-

then the Mellin transform off(x) defined as [4], [3]

Io(3.4b) f*(s) f(x)x’- dx
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exists in the fundamental strip

-c < Re s < -/3.

PROPERTY 2. A harmonic sum of the form

(3.5a) F(x)= 2 f(txkx)

has a simple Mellin transform"

(3.5b) F*(s)=f*(s) 2 tx-.
k=0

PROPERTY 3. The following holds for x-* .
(3.6a) f(x) Y Res {f*(s)x-S; s sk}+ O(x-M)

-/3 Re (sty)< M

where s are the singularities off*(s) lying in the strip -/3 < Re (s) < M, and M is an
arbitrary large number, and Res {f(s); 6 s} is the residue off(s) at s s.

PROPERTY 4. If for x -* ee the function f(x) satisfies f(x)-- dx, then

d
(3.6b) f*( s s --> -.s+/’

The plan for dealing with a sum such as (3.3) follows: Noting that (3.3) falls into
the harmonic sum (3.5a) in Property 2, we first compute the Mellin l*(s) transform
of l(x) as suggested in (3.5b). The fundamental strip of l*(s) is defined in Property
1. Then, by Property 4 we find the asymptotic expansion for l*(s), and by the inversion
formula (3.6a) in Property 3 we determine asymptotics for l(x).

Note that (3.3) is of the form (3.5a), and hence for Re s < 0 the Mellin transform
of (3.3) is

(3.7) l*(s) "2’ g* (s).

But g(x)= O(x2) for x-->0 and g(x)=-log 2 for x--> oc. Hence, g*l(S) exists in the
strip -2 < Re s < 0. Note also that by (3.6b) g*l(S) has a pole at s =0 and g*(s) log 2/s.
But, the first factor in (3.7), that is, 2s/(1-2s), has poles at A’ =2rik/log2, k=0,
+/-1,. .. The singularity at k 0, i.e., X0 0 is the most difficult to treat, since it is a
double pole, and it determines the leading component of the asymptotics [4], [12].
Let us first consider k 0. Note that

2 1 ,1 1
-O(s),(3.8a)

1-2" log 2 s 2

(3.8b) g*(s)
log 2

++O(s).
S

To determine the constant a we integrate g*l(S) by parts, and hence

fo lfo Xe-x(3.9) gl*(S) log [1 +(1 +x) e-’]x-’ dx=-
s l+(l+x) e

Using x" + s log x + O(s2), we immediately find

xe-xlogx
dx(3.10) c=

l+(l+x) e_

xS dx.
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or in another form

(3.11)

As a side effect, we also prove that

xe
log 2.(3.12)

l+(l+x) e

The rest is easy. Multiplying (3.8a) and (3.8b) and taking into account additional
simple poles at s -/’k 27rik/log 2, k O, we obtain

1 (a log2,,,)1+ _g*__(s__)_O(1)"(3.13) l*(s)= -s-5- log 2
+

2 " k---S--gk
k0

Property 3 applied to (3.13) implies [4], [7]

a .log2
(3.14) l(x)=-logx+ log2-t- j+P(logx)+O(xTM)

where M is a large positive constant, and

1 ,[2ik [ 2riku](3.15) P(u)-
log 2 k-_-oo gl \log 2] exp l-g _1"

kO

The series in (3.15) converges since g*(iy)=O(yTM) for y-o. Note also that the
fluctuating function P(log x) can be safely ignored in practice, since it has a very small
amplitude. Indeed, this follows from the fact that g*l(S) can be developed as a
factorization of F(s) and F(2zri/log 2)-- 10-6. Finally, (3.14) implies

(3.16) w,(x) exp[/(x)]
a a

----+- P(log x),
X X

where a exp a/log 2 + log 2/2].
This proves (2.9) of Proposition (i). To estimate coefficient W1, of Wl(X), we

apply Lemma 2, and for this we must prove that W(x)l < e"lzl holds for a (0, 1)
outside the cone So. Since W(x)-1/2(eX/E+l+(x/2))Wl(X/2), hence [Wl(X)[<
elXl/2[W(x/2)[. This implies W(x)=(l+O(xE))ex, and for xSo [W(x)]=
(lq-O(x2))e’lxl, where a=cos0. Thus, [Wl(X)[<e(a+)lzl and condition (2.21) in
Lemma 2 holds. Thus, with (3.16) and (2.22) this proves (2.25) in Theorem 2(i).

3.2. The number of resolved packets. The first moment of the number of resolved
packets, C 1., satisfies recurrence (2.3) with m 1. Then, after simple algebra, we check
that the modified generating function q(x) Cl(X) e satisfies the functional equation

(3.17) cl(x) [1 +(1 +x/2) e-X/2]c(x/2)=2a(x)c(x/2).
Let c(x)= xF(x) for some function F(x). Then (3.17) is transformed into Fl(X)=
a(x)F(x/2), which is exactly the same as the functional equation for w(x) (see
(3.17)). Thus, c(x)= XWl(X) and C, nW_. Proposition (ii), (2.13), and (2.28) of
Theorem 2(ii) follow immediately.
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3.3. The conflict resolution interval. The recurrence for T1, is given in (2.1) with
m 1. Let T(x) be the exponential generating function for T,, and define q(x)=
T(x) e-x- 1. Then t(x) satisfies recurrence

(3.18)

t,(x)= 1+ 1+ e-x/2 t,+l- l+x e-X+e
X+b(x)=2a(x)t
2

where a(x) 1/2[ 1 + (1 + x/2) e-x/2] and

3 ) x -x/2(3.19) b(x) l +-_ x e +- e
2 2

The recurrence (3.18) falls into (2.4) and by Lemma 1 it has solution (2.5). Note that
our definition of t(x) implies that tl(0) =0; thus the solution of (3.18) is

n--1

(3.20) tl(x)= 2 2"b(x2-") H a(x2-’)
=0 k =0

The series is convergent since b(x) O(x-) for x 0, as required in Lemma 1 (iii). Define

(3.21) wl(x) H a(x2-’),
k=0

which falls into our solution of the homogeneous equation (3.2) on the fraction of the
resolved interval. Noting that I-Ik=o a(x2-k) Wl(X)/Wl(x2-) we transform (3.21) into

(3.22)
t,(x) b(x2-")
wl(x)- E 2"

.=o w(x2-")

Finally, defining

t,(x) b(x)
(3.23) Ql(X) ql(x)

XWl(X) XWl(X

we obtain from (3.22)

(3.24) QI(x) 2 ql(x2-’).

This falls into our general harmonic sum discussed in Property 2, and by (3.5), the
Mellin transform of (3.24) is

(3.25) Q* (s) -q*l (s)
1-2

for -1 < Re s < 0. Unfortunately, straightforward application of the same trick as in
3.1 does not work here, since the appropriate integrals do not exist. This follows

from the fact that wl(x) involved in the definition of ql(x) has infinity many poles for
Re s 0. To avoid this problem, we define a new function:

(3.26) () b(x) 2b(x/2)a(x)
fi(x) ql(x)- q

xwl(x)
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Note now that fl(X)=O(e-’) forx and the Mellin transform f*(s) exists in the
strip -1 < Re s <. For, f*(s) ql(s)/(1-2s), (3.25) becomes

f*l(S)
(3.27) Q*l(S)

(1 2s)---"
But f*(s) is analytical at s=0, and hence f*(0) =fl* and (d/ds)f*(s)l=o=tX exist.
Trivial computations show

(3.28) fl* f(x)
dx log x--, l f,(x) dx.
X X

The second integral must be evaluated numerically, while the first reduces to

(3.29)
f*=fo[ q(x)x q(x/2)

dx lim
ql(x)- ql(x/2)

dx
X ko d 0 X

log2
lim

q(x)
dx-

k- .12 X a

where the last equality follows from (3.14) and (3.23), noting that lim,_ ql(x)= 1/a.
The rest is really simple and standard. Using the following expansions:

1

(1 2)2 s2(log 2) 2 s log 2
+0(1),

f* (s)
log2 +sz+O(s),
a

we obtain:

L ](3.30) Q* (s)- alog2"s s -(log2)2 +O(1)"

Taking additional poles of (1-2) at Xk 2rik/log 2, k O, and translating (3.30)
into Ql(X) through Property 3, we find for x- oo that

Ql(X
logx (1- + P (log x).
alog 2 a log 2

Finally, definition (3.23) of Q(x) and estimation (3.14) for w(x) imply that for x- oo

(3.31) T(x) e-)C---log2x+2-(log2)2+aP(logx
which proves formula (2.15) of Proposition (iii). Application of Lemma 2 (in the same
manner as for w(x)) to (3.31) establishes (2.31) in Theorem 2(iii).

4. Analysis of variances and higher moments. In the previous section, we have
established methodology for studying nonhomogeneous functional equations of type
(2.4). It consists of two parts: first the solution to a homogeneous equation is found,
then using it and properties of the Mellin transform, we obtain .asymptotics for the
nonhomogeneous one as was done, for example, in 3.3. Finally, we appeal to Lemma
2 to establish asymptotics for the coefficients of the generating function. The same
plan is adopted in this section, however, this time we present only sketches of proofs.
For more details see 10].
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4.1. The fraction of the resolved interval. Let us compute first the second moment

W of the fraction of the resolved interval, that is, we deal now with recurrence (2.3)
for m 2. It is easy to see that the modified generating function w2(x) satisfies

(4.1) w2(x) 2-a(x)w2(x/2)+ b(x),

where a(x) is defined as before (see (3.1)), and

(4.2) b(x) Wl(X)-sw(x/2)

with w(x) defined in (3.1). The functional equation (4.1) falls into (2.4) with s=-I
and a(0) 5. Since b(x) O(1) for x - 0 the recurrence (4.1) has the solution of form
(2.5). Define

xw(x) xb(x)
(4.3) Qz(x) qz(x)

WI(X WI(X

then the Mellin transform of (4.3) is

Q.z (S)
q*z (s)
1-2

for -1 < Re s < 0, and after simple algebra we show that

(4.4) Q*z(S)
21og2+/3 1+ )+O(1),q*z(S

log2 s =-os-x
kO

where/3 is defined in (2.12). Alternatively,/3 can be computed as

/3=2 E (-1)"
k!

,=o k=0 (n + 1)k+"

Formula (4.4) can be translated into

(4.5a)
1 a

w2(x) a(2 + b) --+- P(log x),
X-X-

where b fl/log 2, and

(2rik] [ 2riku](4.5b) P(u)-
log 2 k___ooq*\log2] exp ig J"

k0

This proves (2.10) in Proposition (i), and by Lemma 2 it also establishes (2.26) of
Theorem 2.

To obtain ultimate asymptotic analysis for Wn, we need only to prove (2.27) for
the ruth moment of the fraction of the resolved interval. Using (2.2) for general m, we
show that the modified generating function w,(x) satisfies

1Mm(X 2-"+’a(x)w,,,(x/2)+ b(x),

where b(x)= O(e-x) for x--> oe. Then, generalizing (4.3), we define

xm--lWm(X) x’-’b(x)
Q(x) q(x)

w,(x) w,(x)

then Q*(s)=q*(s)/(1-2s). But q*(s)=O(1) for s-->0, hence Q*(s)=O(s-), and
finally by (4.12), WIn(X)= O(X-"). Using Lemma 2, we prove (2.27).



790 P. JACQUET AND W. SZPANKOWSKI

4.2. The number of resolved packets. The corresponding functional equation for
the modified generating function c2(x) satisfies

(4.6)
X

c2(x) 2a(x)c2 -+ b(x),

where

X X
b(x) x e-’/2c

_
=n2 e-X/Zwl x2

and the last equality follows from c(x)= xw(x) proved in 3.2. Then by Lemma 1,
the functional equation (4.6) possesses the solution c2(x)= c’2(x)+ c(x), where by
(2.7) of Lemma 1, c’2(x) xw(x). The second term c(x) has the infinite series solution
of form (2.5). Therefore, the same derivation as in 4.1 leads finally to (2.14) of
Proposition (ii). The proof of (2.30) of Theorem 2(ii) follows the same arguments as
in the end of 4.1 and is left to the reader.

4.3. The conflict resolution interval. The analysis of T2, is much more intricate.
Define tz(X)-- Tz(X) e-x- 1; then the modified generating function tz(X) satisfies

X
(4.7) t2(x) 2a(x)t2 -+ b(x)

where

x x -x/2 5 e-X-+-e --x -1.b(x) 2t(x) + x e-’/zt
2 2 2

We split b(x) into two functions, b(x) b(x) + b2(x), where bl(X) is given by (3.19) and

X
(4.8) b2(x) 2tl(X) 2 + x e-’/zt -- x e-x.

Then, t2(x)= t(x)+ t(x), where fi(x) is evaluated in 3.3, and t’(x) satisfies our
general functional equation (2.4) with the solution given by (2.5). Therefore, our general
approach from the previous sections can be used. Define Q4(x)= t(x)/xw(x) and
q4(x) bz(x)/xw(x); then the Mellin transform is Q*4(s)= q*4(s)/(1-2s), and it exists
only for -1 < Re s < -e. As in the case of t(x), the transform Q*4(s) needs a special
treatment to find an asymptotic expansion. We follow the approach from 3.3 and
define a new function

X b2(x 2b2(x/Z)a(x)
(4.9) f2(x) q4(x)- q4= xw(x)

for which the Mellin transform f(s) exists for -1 < Re s < 0. The function f*2(s) has
pole at s =0; hencef2*(s) -2/(sa)+f*2 + s,+ O(s2), where f2* and u can be computed
in the same manner as before and are given by

(4.10) f* f(x) log x dx, , -- f(x) log x dx.

Using the same arguments as in the derivation of (3.29), we can prove that

(4.11) f, =2 (c- 1) log 2
lg----2

a a
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Finally, the Mellin transform of Q4(x) can be expressed as

a log 2 -5+ llog 2 a log 2
(4.12)

115+f2" t, ]- 12 log2 +O(1)

so (2.16) of Proposition (iii) is proved. By Lemma 2, the following also holds:

5 a
(4.13) T=logn+2clogn++3(c-1)-log22+P(logn)+O(n-/)
and (2.32) of Theorem 2(iii) follows from varT, T-(T,)2. The rest is simple and
is left to the reader (see also [10]).
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AN OPTIMAL-TIME ALGORITHM FOR SLOPE SELECTION*
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Abstract. Given n points in the plane and an integer k, the problem of selecting that pair of points
that determines the line with the kth smallest or largest slope is considered. In the restricted case, where k
is O(n), line sweeping gives an optimal, O(n log n)-time algorithm. For general k the parametric search
technique of Megiddo is used to describe an O(n(log n)2)-time algorithm. This is modified to produce a

new, optimal O(n log n)-time selection algorithm by incorporating an approximation idea.

Key words, computational geometry, selection, slopes

AMS(MOS) subject classifications. 68Q25, 68H05

1. Introduction. Given n distinct points in the plane, (xl, Yl),"" ", (xn, yn), write
N () and consider the N (not necessarily distinct) lines they.determine, y aijx + bij,
1 <=i<j<= n, one for each pair of points. In [41, Chazelle mentions the problem of
selecting one of these lines according to the rank of its slope: given 1 -<_ k -<_ N we seek
the kth smallest element of S {a0, 1 <= <j <- n}.

When k N/2, the median slope is the Theil estimator [13] of the slope of the
regression line through the data. In [12], Shamos enquires about the complexity of
computing the Theil estimator and wonders whether it might be o(N). Chazelle [4]
studies several interesting geometric selection problems but does not give any results
for the selection of slopes. In this paper, we describe some facts relating to the problem
that may not be widely known and give a new, optimal-time algorithm for the slope
selection task. The algorithm is applicable to other geometric selection problems [10]
and may also have wider interest.

If we were to just present S, the fast selection algorithm of Blum et al. [3] would
use O(N) comparison steps for any rank, k. However, if we exploit the geometric
information embodied by the n points, we may be able to (i) avoid computing all N
slopes and consequently (ii) find the rank k line in o(N) steps. From now on we take
a step to mean any arithmetic operation, comparison, pointer manipulation, or read
to/write from memory.

The paper is organized as follows. In 2, the shallow selection problem is studied.
In shallow selection, k is nearly 1 or N. In 3, an O(n(log n)2)-time algorithm is
presented for the general selection problem. This algorithm is improved in 4 to yield
an optimal O(n log n)-time algorithm. Section 5 contains general remarks and a

summary of the results.

2. Shallow selection. In the slope selection problem, we are given n points,
(Xl, Y!),"" ", (xn, y). Throughout the paper, assume that the points are in general
position. In this context, general position means that no three points are collinear and
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that no two of the induced lines have the same slope; this assumption simplifies the
arguments without affecting the asymptotic complexity of the algorithms.

Consider the selection problem when k 1. It is easy to show that f(n log n) time
is a lower bound for this problem in the algebraic decision tree model of computation.
It is known that O(n log n) time is needed to determine if a set of n numbers are
distinct in the algebraic decision tree model [8]. This problem is known as ELEMENT
UNIQUENESS. In linear time, we can transform an instance of the ELEMENT
UNIQUENESS problem to the problem of selecting the smallest slope. Given as input
a set of n numbers H, map each number hi in H to point (hi, i) in the plane. If the
smallest slope is finite, then input points are distinct; otherwise, some pair hi and h
have the same value.

In fact, O(n log n) steps are sufficient to find either the smallest or the largest
slope (the extreme slopes). Sort the input points (xl, yl)," , (xn, yn) by x-coordinate.
It is easy to see that the extreme slopes are determined by a line incident to points
having adjacent x-coordinates. By computing the relevant n- slopes and finding the
minimum, we see that extremal selection can be done in O(n log n) steps. The idea is
easily adapted to cover optimal shallow selection.

LEMMA 1. If k O(log n), the rank k slope may be found in O(n log n) steps.
Proof. Let p (x, y) and P2 (x2, Y2), x -< x2, be the pair of points determining

line l, whose slope has rank k. We claim that there are at most k- other points whose
x-coordinates lie between xl and x2. Each intervening point bears witness to the
presence of an additional line with slope smaller than /. For any point p between
and x2 lying below l, the line incident to p and p has slope less than that of/. For
any point p between x and x2 lying above l, the line incident to P2 and p has slope
smaller than that of/. Since no three points are collinear, these are the only possibilities.

The algorithm to select slope k would sort the input points by x-coordinate,
consider pairs of points that are separated by at most k-1 other points, and use the
linear time selection algorithm to find the kth smallest slope. Since k O(log n), this
algorithm uses O(n log n) steps.

It is easy to see that Lemma can also be used to select slopes with rank N- k + 1,
where k O(log n).

To make more progress in designing selection algorithms, we transform the slope
selection problem into a more convenient form using a point-line duality. This is
defined by a mapping T that takes the point p (a, b) to the line Tp given by y ax + b
and the line given by y= ex+ d to the point T/= (-c, d). It is well known that T
preserves incidence. That is, if points p and P2 are incident with line l, T/is the point
of intersection of the lines Tpl and Tp2; similarly, if 11 and 2 intersect at point p, Tp
is the line incident with the points T/1 and T/2.

Under T, the n given points map to lines l,. ., I, whose points of intersection,
li fq l (uo, vo), correspond to the lines incident with the ith and jth original points.
Furthermore, -u0 is the slope of this line. Thus, the dual of the problem of selecting
slope k is the following, equivalent selection problem: Given distinct lines I,..-,
find the intersection point whose x-coordinate is the N-k + lth smallest element of the
set TS={uo, l<=i<j<=n}. We will consider the general problem of selecting elements
in TS in the remainder of the paper.

For ease of exposition, we will abuse notation by blurring the distinction between
intersection points and their x-coordinates. This is justified because the y-coordinates
provide no information for the selection problem. We write t <... < tN for the ()
elements of TS is sorted order. Note that the ti’s are distinct because the input points
are in general position. Given k, we seek tk.
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In this dual problem, optimal shallow selection (k O(n)) can be effected by the
line sweep technique of Bentley and Ottmann [2]. The sweep starts at x a, a <
Let 7r be the permutation that sorts the slopes in ascending order. Thus mr, <" < m....
where we write y mix + bi as the equation of li. If a < fi, the vertical line x a meets
l,’’’, In at yl(a),""" ,yn(a) and y,(a)>...>y,,(a). For each adjacent pair of
lines, find the x-coordinate zi (b=,+,- b=,)/(mr, m=,+,) of their intersection point and
place these n- 1 numbers in a (min) heap. Clearly t =min (zi). It has been obtained
in time O(n log n).

Suppose Zp is the smallest zi. It is currently at the top of the heap. We sweep just
beyond t zp. When a > t, y,,(a)< y,,+,(a) because lines l,, and Iv,,+, have crossed
at tl. We compute the two new intersection points z’= (b=,,+,-b=,,_,)/(m=,,_,-m=,,+)
and z"=(b=,,+2-b=,,)/(m, m=,,+2) (ifp n- 1, only compute z’; ifp 1, only compute
z"). Delete zp from the heap, insert z’ and z", and exchange 7rp with 7rp+l. We may
now obtain t2=min(zi) having expended O(logn) steps. The two new z’s were
computed in constant time, and the deletion and two insertions took O(log n.) time.
Continuing in the same fashion by sweeping through to tk, we have Lemma 2.

LEMMA 2. Given n lines 1,..., In and an integer k, the cost of sweeping to the
intersection point li f-) lj with the kth smallest x-coordinate is O( n log n + k log n).

When k O(n), the total effort would be O(n log n), and this is optimal. In the
primal problem we achieve optimal selection for slopes of rank k N- O(n)+ 1. By
symmetry, we can select slopes with k O(n) in optimal time as well.

When k O(n), a more powerful technique is required for efficient slope selection.
In the next section we give an O(n(log n)2) time algorithm for selecting elements in TS.

3. The general selection algorithm. Write 7r(a) for the permutation that orders the
intercepts of 11,"" ", In in descending order at x a. Thus, under obvious notation,
y=,a)(a) >" > y=,,a)(a). Renumber ll,. ., In so that for a < t, 7r(a) is the identity.
At the intersection points ti, we disambiguate 7r by defining 7r(ti)= 7r(ti + e), where
O<e<min(t./-t). The permutation 7r(q) has one inversion (exactly one pair of
lines crossed at t), 7r(t2) has two, etc. In fact the function

I 7r(x inversions in 7r(x

is a monotone step function in x with unit jumps at the ti’s. I(Tr(x))=j if and only
if t./= max (ti:ti <--x). For a given k, the problem of finding tk may be viewed as an
unusual sorting problem to which we apply Megiddo’s ingenious technique [7],
improved by Cole [5], of building sequential algorithms from parallel ones. An implicit
binary search over the ti’s is performed, each step taking O(n log n) time. This will
give an O(n(log n)Z)-time algorithm.

In seeking tk, we will attempt to sort y(a*),. ., y,(a*) at a* tk + e. We know
that this sort may be achieved in O(n log n) "comparisons," each answering a question
Q!i of the form "yi(a*)--< y.i(a*)?". The O(n log n) answers yield the permutation
that sorts these intercepts: y=(a*)>... > y=.,,(a*). Once 7r* has been found,

t max [u

the kth inversion must have just reversed a pair of adjacent intercepts in the permutation
(_,).

The control structure for the sort will come from the O(log n)-depth sorting
network of Ajtai, Koml6s, and Szemer4di [1]. At each level, n/2 of the questions
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Qij: "yi(a*)<-yj(a*)? are answered. The network is just a guide for blocking these
comparisons into groups of size n/2; the comparisons are actually performed in
series. The sort is complete once the O(n log n) answers are obtained and we have
determined r*.

Even though we do not know a*, we can answer the question "y(a*)<=y.(a*)?
in time O(n log n) by ranking. We find u, the x-coordinate of l f) l, <j, in constant
time and then obtain its rank among the ti’s as follows. Sort the n intercepts at ui in
decreasing order to get r(u,.-j). The rank of uj is the number of inversions in r(u!j),
l(r(uo)). If I(r(uo))> k we know that u!j> tk SO the answer is "no;" lines and j
have not yet crossed at tk. Similarly if I(r(uo) < k, uo < tk and the answer is "yes."
If I(r(u)) k, tk ui. ! may be computed in time O(n log n) as explained in Knuth
[6]: if r(uo) (rl, , rn), we use merge-sort to sort the slopes mr,, , mr,, and count
the inversions that were performed.

If we actually answered all n/2 questions Q’’’ i" "’ Q/2/2 on a level of the
network by counting inversions, the complexity would be Oi’nS"log n) for that level
and O((n log n)2) overall. The trick is to resolve the n/2 questions on a level by actually
counting inversions only O(log n) times.

As mentioned, each question Q!i determines an intersection point of a distinct
pair of lines, and the answer to Qj is obtained by comparing the rank of that intersection
point with k. On a given level of the sequentialized version of the parallel sorting
network, denote the x-coordinates of these points by z,,..., z,,/2. We can compute
the median of these intersection points, Zmed, in time O(n). It costs time O(n log n)
to rank Zmed, and this answer resolves half the questions. For example, if Zmed
then z; < tk for all the z _-< Zmed. Continuing with the n/4 unresolved questions on this
level, we again find the median z and rank it in time O(n log n), etc. After O(log n)
inversions counts, all n/2 questions on this level are resolved. Since each inversion
count takes O(n log n) steps and there are O(log n) levels, the algorithm has time
complexity O(n(log n)3).

In [5], Cole shows how this result may be improved by a factor of log n. Each
question in the network has two inputs. On level 1, all inputs are prescribed. The inputs
to each question on level j > depend on the answers to some pair of questions from
level j-1. A question is "active" if both its inputs have been determined but it is not
yet answered. The idea is to resolve questions as they become active. A weight of
1/4-I is assigned to active questions on level j. At each "stage" the weighted median,
Zwmed, of intersection points of active questions is determined in linear time [9] and
resolved in time O(n log n) by ranking Zwmed. AS before, this resolves either all questions
for which z =< Zwmd or all questions for which z _>-Zwmed. Once resolved, questions are
no longer active. Cole shows that the weight of the active questions is reduced by a
factor of at least 1/4 after ranking Zwmed. In total, O(log n) inversion counts are sufficient
to resolve all the questions asked by the network. This argument proves the following
assertion:

THEOREM 3. Given n lines 11, , In and an integer k, the intersection point
with the kth smallest x-coordinate may be found in time O(n(log n)2).

4. Improvement with approximate ranking. The previous sections showed that for
any given k, the worst-case time complexity to select the intersection point with the
kth smallest x-coordinate is in the interval (cn log n, dn(log n)2). In this section we
show that the lower bound is sharp or equivalently:

THEOREM 4. Given n lines ll, In and an integer k, the complexity offinding the
intersection point l (’l l with the kth smallest x-coordinate is O( n log n).
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The proof will describe an explicit algorithm, argue its correctness, and demon-
strate the time complexity assertion. The algorithm is superimposed on the one used
in Theorem 3, and it is presented in five sections. Section 4.1 presents the general
strategy, 4.2-4.4 describe the three essential procedures in the algorithm, and 4.5
completes the analysis and proves Theorem 4.

4.1. The approximation algorithm. The new idea is to use an approximate rank
for each point chosen by the sorting network. Let sign (x) be +1 if x is positive, 0 if
x is zero, and -1 if x is negative. The algorithm discussed in 3 expended time
O(n log n) to find rank (Zwmed) for each of the O(log n) weighted median points given
by the network. This rank determined sign (Zwmed-- tk) and we could resolve all the zi
for which sign (zi- Zwmed --sign (Zwmed--tk). In the improved algorithm, we will use
O(n) (amortized) time to develop an approximation pz to the rank of z. Let ez denote
the error of the approximation:

ez [rank (z) Pz[.
If the error is small enough, pz can tell us the relative ordering of z and tk. By definition,
rank (z) must lie inside the closed interval [pz ez, pz + ez]. If k lies outside the interval
[pz ez, pz + ez], then sign (z t) sign (rank (z) k) sign (p k); in this case, the
relative ordering of z and t can be deduced from pz and k, and we may resolve
the relevant z’s. On the other hand, if k lies inside the interval [p- ez, pz + ez], the
approximation will not be accurate enough to distinguish the relative positions of z
and t, so we cannot use z resolve any other questions. To account for this, we will
do some extra comparisons to refine pz and reduce ez until k lies outside the interval
[pz- ez, pz + ez]. It turns out that at most O(n log n) extra work will be done to refine
rank approximations throughout the entire course of the algorithm.

The key structure used in the approximation is the following. Suppose we have
a "reference" intersection point at x r and we know sign (r- t). Also suppose that
we have partitioned the n lines into ’= In groups G,..., G of size T (maybe
G, is smaller) with the property that if iGi, i2Gj, and i<j, then y,(r)>=yi2(r),
where T is an integer to be specified later. Thus, G refers to the lines with the T
largest intercepts at x =r, G2 the lines with the next T largest intercepts, etc. The
groups are therefore sorted, but within any particular group, we have no ordering
information. Such a structure is called a partition ofsize T at r. We maintain partitions
of size T at the current "reference" points as an invariant. The occasional refinements
will divide T by 2 and restore the invariant in time O(n) per refinement, O(n log n)
overall.

A partition of size T at r is represented by a permutation p(r, T)=
(pl(r,T),’’’,P,(r,T)), where p(r,T),...,pr(r,T) are the lines in G1,
pr+(r, T), , p2T(r, T) the lines in G2, etc. Partition p(r, T) is thus an approximation
to zr(r), the permutation that correctly orders the intercepts y(r). We define the
approximate rank P(r.r to be the number of inversions in p(r, T):
(1) p(r,T) I(p(r, T)).
Because p(r, T) represents the partition, it can differ from zr(r) only with respect to
inversions between pairs of lines within the same group. Since there are at most (’)
such inversions in a group, P(r,r) differs from rank (r) by less than nT/2. Therefore,
for any given value of T,
(2) er<nT/2.
If the value of T is clear from the context, we will remove the parameter T from
p(r, T) and O(r,T).
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To prove the correctness and derive the time complexity of the approximation
algorithm, we will choose T to be a power of 2 for which

(3)

(4) IP(r.r/2)- kl > nT/2.

Because (2) implies that D(r,T/2)-- nT/4 < rank (r) < D(r,T/2) qt_ nT/4 and (4) implies that
k lies outside the open interval (p(r,r/2)-nT/2, p(,r/2)+ nT/2), sign (pr,r/)-k)=
sign (rank (r)-k)=sign (r-tk). From condition (4), we are able to determine the
relative position of r and tk, so our approximation correctly reveals whether the current
point r lies on the left or right of t. If (3) and (4) should fail for the current value of
T, we would halve T and create the partition for the new smaller groups. The impact
of (3) and (4) is indicated in the following lemma.

LEMMA 5. Let p(r, T) be a partition of size T at r, and assume that (3) and (4)
hotd forp(r, T). Then nT/4<lrank (r)-kl<3nT/2.

Proof By (2), Irank(r)-p,r)l<nT/2, and by (3), Ip,)-kl<=nT. Therefore,
Irank(r)-kl<3nT/2. By (4), [p,r/)-kl>nT/2, and by (2), rank(r)-pr,r/2)l<
nT/4. Therefore, Irank (r) k

We now describe the flow of control in the approximation algorithm. The algorithm
maintains two reference points" rt <= tk and rR >-tk. We maintain orderings p(rL) and
p(rR) and calibrated partition sizes TL and T for both reference points. The reference
point with the smaller value of T is "active." (From this point in the paper until 4.5,
we will abbreviate p(r, T) by p(r) because the value of T will be clear from the context.)
When the network gives a new query point x--q, if q (r, r), the relative position
of q with respect to t may be deduced by transitivity. We can immediately resolve
this point and the relevant zi’s (of which q was the weighted median). Otherwise, we
construct the partition at x--q. If q < t, the partition of size T at q is a modification
of the partition of size T at rL. If q > t, the partition of size T at q is a modification
of the partition of size T at r. Since we do not know the relative ordering of q and
t, an attempt is made to modify the partition at r, the active reference point. The
attempt will be aborted if Irank (r) rank (q)[ is "large;" in this case, the other reference
point r’ then becomes active and the partition at r’ is modified to give the partition at
q. Position q then replaces the appropriate reference point (on the same side of t as
q) and the reference point with the smallest value of T becomes the new active reference
point.

Figure contains a description of the selection algorithm. To initialize the
algorithm, we find any r < tl and r > tN in O(n log n) steps by the shallow selection
technique and use p(rc)=(1,..., n) and p(rR)=(n, 1) regardless of the initial
values of Tc and TR. To calibrate T/, we know k--p(r,,T)--k-p(,,,r/ k, and from
(3) and (4), k/n <- TL <2k/n. Therefore, T 2re(k/3; similarly, TR 2 rg((N-)/".
In the algorithm, the variable SIDE indicates which reference point is active" SIDE -1
means rc is active and SIDE 1, that r is.

We shall briefly explain the above steps and analyze them in detail in subsequent
sections. The lines (0)-(3) initialize the active reference point. The algorithm will
continue to make approximations until T is within a constant. When T is less than or
equal to 10, the error bound and the properties of the partition imply that the maximum
number of intervening vertices between q and t is less than 5n, so the sweepline
algorithm used in Lemma 2 can be slightly modified to find t in O(n log n) additional
steps. At line (5), the next vertex to be compared with t is delivered; this vertex has
x-coordinate q. If q is outside the interval from rc to r, it may be resolved immediately
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C0) IF TL=< Tt THEN
(1) TT; SIDE-I; r*--rt; p,.-0;p(r)=(1,2,...,n)
(2) ELSE
(3) T-T;SIDEl;r,-r;p,,n(n-1)/2;p(r)=(n,n-1,...,1)
<4) WHILE T> 10
(5) get next q from network
(6) IF q (r,,, r THEN
(7) RESOLVE q
(8> ELSE
(9) PARTITION (0, T, p(r), p’(q), TOOFAR)

(10) IF TOOFAR 0 THEN
ill) COUNT (pq, p,., p’(q), p(r), SIDE, TOOFAR)
(12) WHILE (3) and (4) do not hold AND TOOFAR=0 AND sign (p,.-k)= sign (pq-k) DO
(13) T- T/2; HALVE(p’(q),pq)
(14) END WHILE
(15) p(q)-p’(q)
(16) END IF
(17) IF TOOFAR OR Sign (p,.- k) # Sign (pq- k) THEN
(18) CHANGESIDES (SIDE, r, T, p(r)); PARTITION (0, T, p(r), p’(q), TOOFAR)
(19) COUNT (pq, p,., p’(q), p(r), SIDE, TOOFAR)
(20) WHILE (3) and (4) do not hold DO
(21) T T/2; HALVE (p’(q), pq)
(22) END WHILE
(23) p(q)-p’(q)
(24) END IF
(25) RESOLVE q; FIXREFS
(26) END IF
(27) END WHILE
(28) SWEEP TO tt.

FIG. 1. Algorithm description.

by transitivity. Therefore, RESOLVE q in line (7) should be interpreted to mean
"answer q and all zi (of which q is the weighted median) for which sign (zi-q)=
sign (q tk)."

If q is inside the interval from rL to re, more work must be done. As stated earlier,
if q < tk, the partition of size T at q must be obtained by modifying the partition of
size TL at re. If q > t, the partition of size T at q must be obtained by modifying the
partition of size Te at re. (The rationale for this restriction will be explained in 4.2.)
The important procedures are PARTITION, COUNT, and HALVE.

The procedure PARTITION is the heart of the algorithm and will be described
in detail in 4.2. For now, it is enough to take the following statements on faith: (i)
whenever ]rank (r)-rank (q)l<3nT/2, it will use p(r) to construct a partition of size
T at q, p’(q), in linear time. (ii) If 3nT/2 <-]rank (r)-rank (q)], PARTITION will halt
in linear time either with TOOFAR or with a partition of size T at q, p’(q).

If TOOFAR= in line (10), then Irank (q)-rank (r)[>=3nT/2. By Lemma 5, this
implies that q and r are on opposite sides of 6,, so control proceeds to line (17).

The procedure COUNT computes p, the number of inversions in p’(q), given
Pr, P’(q), p(r), and SIDE. (The reader should observe that p; never appears in Fig.
since pq is always updated on the fly. We introduce p; so that the action of procedure
COUNT is clear.) In linear time COUNT either returns the correct value of pq or the
message that ]pr--p’q] >- 3nT/2. In the latter case, it will set TOOFAR to since it is
known that q and r cannot be on the same side of t. (This claim will be justified in

4.4.) If TOOFAR is set to in line (11), then control proceeds to line (17), as above.
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If TOOFAR= 0 at the time line (12) is executed, p’(q) defines a partition of size
T at q. If the condition in line (12) is true, then (3) and (4) do not hold. The procedure
HALVE converts the partition of size T into one of size T/2 and corrects pq. The
WHILE loop can end in one of two ways. Either T has been correctly calibrated and
p(q) has been formed, or sign (pq k) sign (pr- k). In the latter case, this will indicate
that r and q are on opposite sides of tk. (This claim will be justified in 4.5.)

At line (17), the algorithm has either succeeded in computing a new partition at
q, the flag TOOFAR has been set to 1, or sign (pq- k)# sign (pr-k). The test in line
(17) decides whether q is on the same side of tk as r. If the test is false, q is on the
same side of t as r and the partition has already been computed. If the test in line
(17) is true, q is on the opposite side of t as r, so q is on the same side of t as the
other reference point r’. In this case, the partition of size T at q is computed with
respect to r’ in lines (18)-(23). Procedure CHANGESIDES in line (18) changes the
value of variable SIGN, switches the reference point, and resets T to the value
corresponding to the new reference point.

Since the relative position of q with respect to t is known when line (25) is
executed, RESOLVE q can be performed. Actually, the partition of size T at q may
not be accurate enough to determine the relative positions of q and tk; as is stated in
(4), it is the next smaller size of T that permits the resolution of q. To set up the
variables for the next iteration, a procedure called FIXREFS sets rL -q, p(rL)-p(q),
and TL- T if SIDE=-I or rRq, p(rR)-p(q), and T T otherwise. It then sets
T - min (TL, T) and makes the reference point with the smaller value of T the active
reference point.

4.2. The proeelure PARTITION. At reference point x r (r is either r or r),
the permutation p(r) defines a partition of the n lines into " In T] groups G1 >--" ->-
G of size T (] G] may be < T). Recall that the inequalities mean that if e Gi, d Gj,
and <j, then yc(r) >- yj(r). We wish to construct a new partition of size T’ at q, p(q),
where T’= T/2 for some s _-> 0. Procedure PARTITION performs the first step in this
process. With respect to the active reference point, procedure PARTITION will, in
linear time, either construct a partition of size T at q, p’(q), or deduce that ]rank (r)-
rank (q)] >=3nT/2. In the former case, procedure HALVE will, if necessary, form p(q)
by refining p’(q) until (3) and (4) are reestablished. In the latter case, Lemma 5 implies
that r and q are on opposite sides of t.

To make the selection algorithm correct, constraints must be placed on the
partitions p’(q) and p(q). First, we require that the partition p(q) is derived from the
partition at the reference point r that satisfies sign (q- t)= sign (r-t). Second, we
insist that when r < q:

(5) Lines appearing in any particular group in p(q) or p’(q) are in the same order
as they were in p(r).

There are two reasons to constrain the partition in the manner described above.
First, the constraints simplify the maintenance of invariants (3) and (4). Specifically,
a partition of size T at r may be in error by at most n T/2. At reference line r,
]p- k] =< nT. To ensure that T cannot increase during the course of the algorithm, we

is theinsist that ]p’ -k]=<]pr-kl < nT if q and r are on the same side of t. Here, p
number of inversions present in p’(q). We will prove this result in Lemma 12.

The second motivation for (5) is to simplify the design of the counting pro.cedures
COUNT and HALVE. Suppose that a new partition p’(q) is constructed by procedure
PARTITION. Procedure COUNT will compute the number of inversions p’ in p’(q)
by comparing the partition p(r) with p’(q). If the approximation p’ is not sufficiently
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accurate, procedure HALVE will be run. If no constraints are imposed within groups
of the partition p’(q), it is possible that PARTITION might invert a pair of lines
between x r and x q and then HALVE reverses this inversion. The problem is that
our COUNT and HALVE procedures will account twice for an inversion that does
not appear in p(q).

In the description of the algorithm, the groups in partition p’(q) are denoted by
G->...=> G’,. When convenient, p’(q) will be referred to as as {GI}. The groups in
p(r) are denoted by G1->’" -> G, and will sometimes be referred to as {Gi}. Various
intermediate groups are created during the construction of p’(q); these groups are
designated by {G,J.} and are distinguished by the superscript j.

PARTITION begins by blocking intercepts at x q. That is, PARTITION puts the
first 20 groups G1," "’, G2o into block 1, the next 20 into block 2, etc. The lines in
each block are regrouped according to their intercepts y.(q) at q. Thus G9_oi-9 contains
the T largest intercepts at q among the block lines, G0-18 the next T largest intercepts
at q among the block lines.

LEMMA 6. Let {Gi} be apartition ofsize Tat r. The cost offorming {Gi} is O(l{Gi}l).
Proof In each block we find the Tth largest Yi(q), the (2T)th largest, and so on

up to the (19T)th largest, each in time O(T). Once these 19 group dividers are
determined, each element in the block may be placed into the correct group in constant
time, and since there are O(n/T) blocks, the linear time bound holds. [3

Furthermore, since lines are blocked in the order in which they appear in p(r),
lines in the same group at x =q satisfy (5). With each line j, we will maintain y(j),
its index at x r (i.e., line j is the y(j)th line in descending order in p(r)).

Here is a quick overview of how PARTITION will continue after blocking. Within
each block, the groups {G} are correctly ordered at q. This is a good start in constructing

andp’(q). Call a pair of groups Gi G out of order if G is above G at r (i.e., every
line in G is above every line in G)), but G) is above G at q. The idea is that not
too many pairs of groups from different blocks can be out of order, unless q is far

and G!from r. If groups G were in the same block at r, their images at q should"
differ by less than one block; that is, few groups should be out of order according to
the definition above. If the group images differ by more than one block, then many
groups are out of order and Irank (r)-rank (q)t would have to be large. Thus we may
(A) extract a large subset {G} of the groups {G} which are already properly ordered
at q. The remaining elements, comprising at most 3n/5 lines, may be (B) reblocked
and treated in the same manner, recursively, until they are all in groups {G,3-} which
are properly ordered at q. Then we (C) merge these two collections of ordered groups
of size T into one collection {G4} of ordered groups of size at most 2 T, all in linear
time. Finally, using another O(n) steps, we can (D) reorganize the groups in {G4} to
form p’(q). We now give the details.

(A) The procedure EXTRACT ({ GI}, T) takes ordered groups of size T which are
blocked at x =q and, in linear time, extracts a collection {G2} of groups of size T
which are ordered at q. If less than two-fifths of the groups {G} are extracted,
Irank (r)-rank (q)l must be at least 3nT/2 and TOOFAR is set to 1.

The procedure EXTRACT will first construct two lists. One list contains the lines
in the odd-numbered blocks, and the other list contains the lines in the even-numbered
blocks. The lists are formed by stack operations. Each partially formed list has the
property that the groups appearing in it are correctly ordered at x q. Consider the
list corresponding to the odd-numbered blocks; the even-numbered blocks are handled
similarly. The groups in the odd-numbered blocks are examined from the lowest-
numbered group to the highest-numbered group. The group on the top of the stack
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has the highest index and corresponds to the lines currently in the stack with the T
smallest intercepts at q. The group on the bottom has the lowest index and corresponds
to the T lines with the largest intercepts For each group G i, compute

bi min (ys(q),s G), i max (ys(q),s

This takes linear time because in each of " In T] groups, we are selecting from T
elements.

Starting with blocks 1 and 3, push block 1 onto the stack. We compare the current
top of the stack, group Go, to G41. If 420_-> 41, not only are these groups correctly
ordered at q, but all pairs of groups in these two blocks are correctly ordered as well.
We push block 3 onto the stack and move on to block 5. Otherwise, these groups may
not be correctly ordered. We pop the group on the top of the stack, discard group
GI, and next compare group G I9 with group G,2. This process continues until we
either find a pair of groups in correct order or the stack is emptied. In the former case,
we push the remainder of the block onto the stack, so we now have a stack of (at most
40) undeleted groups which are correctly ordered at x =q and can process block 5.
In the latter case, block 5 is pushed on the stack and block 7 is considered

G4oi+lWe process the next odd block, say 2i+ comparing group (the first group
of block 2i+ 1) with the group G! <on the top of the stack. If 40i+1 bj, block 2i + 1
is pushed on the top of the stack and we move on to the next odd block, 2i+3.
Otherwise these groups may not be correctly ordered at q. We pop G: from the stack,
discard Goi+l from the block, and compare the group on the current top of the stack
with the next group in block 2i + 1. Whenever the line in the group on the top of the
stack with minimum intercept crosses the line in the current group in block 2i + with
maximum intercept, the stack is popped and the current group is block 2i + is deleted.
If a pair is found to be correctly ordered, that group and the rest of its block are
pushed on the stack and we move to the lowest-indexed group in the next odd block.
If the last group in block 2i + is deleted, we move on to block 2i + 3. If the stack is
ever emptied, either the remainder of the current odd block or the entire next odd
block is pushed on the stack, whichever is appropriate.

The "odd" stack forms a collection of groups, { G’}, which were not deleted from
odd blocks and which are properly ordered with respect to each other at q, and the
"even" stack forms a collection, {G,j}, of groups which were not deleted from even
blocks and which are properly ordered with respect to each other at q. The time taken
to form these two lists is clearly O(n). If we started with 20 groups or fewer, no
deletion would have been necessary. Block is { G,’.’} and the groups in block 2 comprise
{G -e} In the second phase of EXTRACT, these two lists are merged into one list whose
groups are properly ordered at q.

LEMMA 7. {G/} and {G..} can be merged into a collection {G’} of groups in time

O(IG’}I+I{G..}I), where each group in {GT} has size at most 2T, and ifc G’ d G .m
and <j, then y,.(q)>= Ya(q). Furthermore, {G} satisfies invariant (5).

Proof A procedure MERGE({G’},{G}) combines {G’} and {G.} into one
collection {G’} of ordered groups of size at most 2T. Comparing G with G there
are three cases, (i) the groups do not overlap, (ii) one group is "inside" the other, and
(iii) they partly overlap. In case (i) suppose max (y.(q), s G) <=min (y.(q), s G.).
Then G.I is taken next into the merge and j -j+ 1. If GI’ is above Gj’, G’ is taken
next into the merge and + 1.

In case (ii), G is "inside" G’ if max(y.,.(q),sG’)>max(y.(q),sG.) and
min (y.(q) s G’)<min (y.(q) s G.) We take next G and all those s G/ for
which y.(q)->min (y.,.(q), s G) as the group which will be added to the merge.
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To satisfy (5), lines must appear in G in the order in which they appear in p(r).
Therefore we form G by merging the lines in G with those that were selected from
G’ according to the index y at x r. Line u G is taken into G before v G’ only
if y(u) < y(v). It takes O(T) steps to form G and add it to the merge. We now remove
the elements that were selected from G’, set j,--j + 1 and continue merging. The case
where G’ is inside G is similar. In both instances, the group G added to the merge
is of size at most 2 T. Also, at least a full-sized group or the remainder of a full-sized
group must be added to the merge at each step, so the number of merge steps is
bounded by the number of groups.

Finally, for case (iii) suppose that G’ has both a larger max (Ys(q)) and a larger
min (ys(q)) than G. Then we take next into the merge G’ and all those s G.e.J for
which y.(q) > min (y.(q) s GT), modify G accordingly, and set 0- + 1 Once again
the group G taken next into the merge has lines ordered by the group indices at x r.
If G is partly above GT, the processing is similar. As in case (ii), the number of merge
steps is bounded by the number of groups involved in case (iii) merges. In both cases
the set taken into the merge has size at most 2T. The merge compared O(n/T) groups,
each in time O(T), so it took linear time in all.

At this point we have a collection {G} of groups of size at most 2 T which are
ordered at x q and which maintain the invariant in (5). Within each group, precedes
j only if y(i) < y(j). The final phase of EXTRACT is to form {G2} from { GT’}, where
the groups in {G2} all have size T. Some care is required to adjust these groups in
linear time to form the ordered groups {G,2.}, principally because of the invariant in
(5). The procedure SIZET(T, {GT’}) performs this task. Its action is described by the
following lemma.

LEMMA 8. {Gn} may be reorganized into { G2} in time O(1{ GT’}I), where each group
in {G,2.} has size exactly T, {G,2.} satisfies invariant (5), and if c GZi, d G. and i<j,
then y.(q) >-_ Yd(q).

Proof Procedure SIZET forms groups of size T in the following way. In general,
the ith group in {G}, G2, is formed from the s lines in Gm_ with the smallest y(q),
in order, a whole group G’ of size s’, and the T-s-s’ lines from G" with largest
y(q), in order. To preserve (5) for G, we use order in p(r) to decide how to organize
the lines in Gm_, G, and G.i’I. Since only three adjacent groups in (G} need to be
examined to form each new group in {G} and each group in {G} has size at most
2T, SIZET runs in time O(I

To see that only three groups are sufficient, we show that every pair of adjacent
groups G.., and Gjm+l in {G} satisfies IG’l+lGj"l/>= T. Recall that the algorithm
MERGE compares group fragments Gu with G;u. (The u in the subscript indicates
that these fragments are involved in the uth step of MERGE.) We first claim that one
of G and Gu must have been a full-sized group.

When the merge begins, both GI and G;1 are full-sized groups. Suppose that at
the time of the uth merging step, at least one of G, and G;u is a full-sized group. In
the (u + 1)th step of the merge, either all of Gu will be taken or all of G,, will be
taken, and the other group may be fragmented. Without loss of generality, suppose
G is taken; then G(u+) is a full-sized group, justifying the claim.

If a full-sized group is taken next into the merge, G.. I_-> T, so IGj"I+IG.j+ll>" T.
If a full-sized group G’ is not taken into the merge, then G’ may be fragmented. On
the next step, either the remains of G’ are taken or a full-sized group is taken. In either
case, IG. .ml/ IGj/,I > T.

An important property of EXTRACT is that at least 2n/5 lines are represented in
the collection G} of groups, correctly orderd at q, unless the ranks of r and q differ
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by at least 3nT/2. Let nj be the number of groups that were deleted from block j,
is deleted only if a line in G crosses a line in a group Gj at0_-< nJ =< 20. A group G

least 2 blocks away (i.e., separated by at least one block). Suppose that both G and
G are not the top or bottom groups of their blocks, where we assume that the top
group has the largest intercepts at q and the bottom group has the smallest intercepts.

be separated from the bottom of its block by sub-block A and letFor example, let G
G) be separated from the top of its block by sub-block B. Then all the 20T lines in
the intervening block between G] and G) must either cross all of the lines in A, all
of the lines in B, or both. This implies that if n is 3, we may account for 10T inversions;

andwe have divided 20 by 2 because it pertains to the two groups, G G. Therefore
the total number of inversions between p(r) and p’(q) must be at least

n/(2OT)

I= 2 (nj- 2)5 T2;
j--1

here we have divided 10 by 2 to adjust for double counting of inversions with lines in
the intervening block. If at least 3n/(5T) groups {G]} were deleted, I >-_ 5nT/2. Since
p(r) and p’(q) are in error by less than’nT2 each, this implies that Irank (r) rank (q
3nT/2. It is useful to make a slightly more general statement.

LEMMA 9. Let be a positive integer between 0 and ]log n TJ. Suppose hi lines,
ordered according to p(r), are reblocked into a partition {/-/} of size 2T with respect
to ordering at q by the procedure described in Lemma 6. In time O(h),
EXTRACT ({Hi}, 2iT) will determine groups {H*} of size 2T that are ordered at x= q
and eliminate h+ lines. Furthermore, if ]rank (r)-rank (q)] <3nT/2, then

n hi
hi+ 1%

10

Proof The time bound to construct {H*} was justified in the description of the
"odd" and "even" stacks along with Lemmas 7 and 8. If Irank (r)-rank (q)l <3nT/2,
then [Pr--P’q < 5 n T/2. As before, n denotes the number of groups deleted from block
j. The number of inversions I between p(r) and p’(q) is bounded so that

hi/(20(ZiT))
I= , (n-Z)5(2;T)2<=]pr-p’q[<5nT/2.

j=l

However,
hi/(20(2iT)) JI 5(2;T) (2T) , n lOh(ZT)2/(ZO(2iT))

j=l

5(2’T)h,+l- h,(2’T)/2 < 5nT/2.

This inequality can be simplified to give

n hi
hi+1% _--7-.+ -t []

2"" 10

If procedure PARTITION is called on a list of size h; but h;+ does not satisfy
the inequality, TOOFAR is set to 1 because Irank (r)-rank (q)l>=3nT/2.

(B) So far EXTRACT has organized at least 2n/5 of the lines into groups {G;2}
of size T, ordered at x q, or set TOOFAR 1. In the latter case PARTITION halts
(see Fig. 2), but in the former, we use PARTITION recursively.

For i= 1,. ., " let G denote those lines in G; in the original order in p(r) that
have been deleted; clearly 0-<IG;aI<-_ T. This collection is easily obtained by marking
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PARTITION (s, T, {G,}, {G’i}, TOOFAR)
(1)
(2) {GI}+-BLOCK-REGROUP at q
(3) {G} EXTRACT ({GI}, T)
(4} IF h,.- G}l->- n/2’+’ + h./10 THEN
(5) TOOFAR
<6> ELSE
(7) G} -lines deleted from GI}, partitioned at
(8) T’ 2 T
(9) PARTITION (s+ 1, T’, {G/J}, {()?}, TOOFAR)

(10) IF TOOFAR# THEN
<11> {G} HALVE ({(})
<12> {G4} MERGE ({G,2.}, {G})
<13> G’,} SIZE T(T, {G4})
14> END IF

<15) END IF

FIG. 2. The Procedure PARTITION.

deleted items in the EXTRACT process and removing unmarked lines from permutation
p(r). If i=0 and ho= n in Lemma 9, then

3n
h, E IG I

i--1 5

We can reorganize these lines into h/(2 T) groups of size 2 T that are properly ordered
according to p(r). These reorganized groups, denoted by {G}, form a partition of
deleted lines of size 2T at r. We invoke PARTITION (s+ 2T, {G}, { -3G }, TOOFAR).
Parameter s + indicates that the recursion is one level deeper. The groups in {}
form a partition of size 2 T at q of the lines not included in { G}, or else TOOFAR 1.
In the latter case Irank(q)-rank(r)l>-3nT/2 and PARTITION is aborted. In the
former case, procedure HALVE is applied to {(,3.} to form {G}, a partition of the
lines that were deleted from {G} of the original size T, at x q. (In this case, the
number of inversions counted by HALVE is ignored. The number of inversions induced
by PARTITION will be counted entirely by procedure COUNT.)

(C) Merging {G2} and {G,3.} gives a collection {G4} consisting of groups of size
at most 2T, correctly ordered at q. As with the merge of {GT} and {G}, the current
one is simplified by the structure of the sets involved. The MERGE procedure described
earlier may be used here as well.

(D) The final step of the procedure PARTITION is to reorganize {G} into
{GI} p’(q). This task can be done by procedure SIZET(T, {G,4.}) in O(n) time.

A simplified description of this algorithm is presented in Fig. 2. The only portion
of procedure PARTITION that still needs to be described is procedure HALVE.

4.3. The procedure HALVE. The procedure HALVE converts the partition p’(q)
of size T at q into a partition p"(q) of size T/2 at q and computes the number
of additional inversions in p"(q). For each group GI in p’(q), we find /x=
median (y,(q), s GI) and then assign each line to the correct subgroup depending on
whether y.,(q) is less or greater than/x, using the following strategy. Let il,’’ ", iT be
the T lines in GI in the order in which they appear in p’(q). The elements in group
G’i will be redistributed into two groups in p"(q). These groups will be denoted by A
and B; group A will have index 2i-1 in p"(q), and group B will have index 2i. If
yi,(q) is greater than/x, it is placed in position j (initially 1), the first available position
in the upper half, A, and j is increased by 1. Otherwise Yh(q) is placed in position j2
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(initially 1), the first available position in the lower half, B, and j is increased by 1,
etc., until all T lines have been placed into the correct half. The group GI has
now been replaced by groups A and B of size T/2 each, and they are correctly
ordered at q.

While modifying p’(q) in this way, the count of the number of inversions at q is
updated to reflect these changes. Specifically, if line i is assigned to position j in the
lower half, it can only be involved in inversions with lines in G’ that were below it
but which will now be assigned to the upper half-group A. There are exactly T/2-j + 1
such lines, so we change pq by

(T/Z-j+ 1)/2.
Similarly, line i. that is assigned to position j in the upper half can only be involved
in inversions with lines in GI that were orginally above it but which have just been
assigned to the lower half-group, B. As there are exactly j2-1 such lines, we change
pq by

(j2 1 )/2.
The change is an increase when SIDE =-1 and a decrease otherwise. Division by 2
reflects the double counting of each inversion. For each group, the cost of finding the
median, partitioning, and adjusting pq is O(T), or O(n) overall.

This proves the following lemmas.
LEMMA 10. A partition p’(q) of size T at q can be converted into a partition p"(q)

of size T/2 at q in linear time. Furthermore, the number of additional inversions between
p’(q) and p"(q) can be computed in linear time.

LEMMA 11. Let r be an active reference point, let p( r) be a partition of size T at r,
and let q be the query point. If ]rank (r)-rank (q)l<3nT/2, procedure PARTITION
will construct p’(q), a partition of size T at q, in linear time. If ]rank (r)-rank (q)]=
3nT/2, procedure PARTITION will halt in linear time with either p’(q) or TOOFAR
set to 1.

Proof The correctness of the algorithm follows from Lemmas 6-10. To apply
Lemma 9, note that whenever PARTITION (s, T’, {G}, {GI}, TOOFAR) is invoked,
T’= 2"T, T being the size of the partition in the original call. This is clear when s 0,
and inductively it is true because the partition size is doubled before each recursive call.

For the time complexity, suppose that Irank (r)-rank (q)] <3nT/2. Each state-
ment in PARTITION has been shown to have cost O(h) (Lemmas 6-10), where h is
the current size of the list. Initially, PARTITION is called for a list of size ho n. By
Lemma 9, the size of the list in the (i+ 1)th recursive call statistics

n hi
hi+ < .___m.10

As a result, the total cost of the algorithm is bounded by H--c i--o hi < 20cn/9.
If Irank (r)-rank (q)l>=3nT/2, procedure PARTITION will either construct a

partition of size T at q, or it will set TOOFAR to be 1. TOOFAR is set to 1 as soon
as the recurrence relation in Lemma 9 is not satisfied for the first time. Consequently,
PARTITION will have made at most a linear number of steps when TOOFAR is set
to 1, and it will make no more recursive calls. If TOOFAR is not set to 1, the algorithm
successfully constructs a partition of size T at q in linear time. [3

4.4. The procedure COUNT. The purpose of procedure COUNT is to count p
the number of inversions in p’(q). It will do this by computing A= IP’-P] if ]p-p] <
3nT/2. In this section, we assume that r r; analogous lemmas and algorithms can
be devised when r r.
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LEMMA 12. (i) Every inversion in p(rL) also occurs in both p(q) and p’(q); and (ii)
inversions present in either p (q) or p’(q) actually occur between the corresponding ys (q).
Furthermore, (iii) if rank (q) < k, IP’q- kl <- nT.

Proof When p(rt)= (1, 2, n), property (5) implies that (i) and (ii) are true
for the first p(q) and p’(q). Assume that (i) and (ii) are true at p(r), and let a < b be
two lines in p(r). By (5), if a and b appear in the same group of p(q), they are in the
same order as in p(r). Therefore, (i) and (ii) must still hold for a and b at p(q). If
a and b appear in different groups of p(q), there are two possibilities. First, a and b
may be in the same relative order in p(q) as in p(r). In this case, an inversion was
neither created nor destroyed, so (i) and (ii) are maintained. In the second case, a
and b have inverted between p(r) and p(q). Properties (i) and (ii) at p(r) imply that
a and b invert in p(q) for the first time. Claim (ii) holds for p(q) because the ordering
information given by the partition implies that a and b must have crossed. In fact,
since properties (i) and (ii) are true at p(r), a similar argument shows that (i) and (ii)
also hold for p’(q) as well.

Since p’(q) contains all of the inversions in p(r), p’q>= Pr. If both p and Pr are
less than k, then IP’q- kl <- Ipr- kl <- nT. If p exceeds k, then (2) implies that p cannot
exceed k by more than nT/2 if rank (q) < k. Therefore,

By Lemma 12, if SIDE =-1, then pq--Pr q- A since every inversion in p(r) also
occurs in p’(q).

LEMMA 13. If IP q Prl > 3 nT/2 then q and r must be on opposite sides of tk.
Proof Lemma 12 implies that jOq--jOr, SO Oq--Or > 3nT/2. By (3), [pr-kl < nr, so

’-k>3nr/2+pr-k>nr/2. By (2) Irank(q)-p’ql<nr/2 so rank(q)-k>0 andq

sign (r- t) sign (q- t).
Lemma 12 shows that the invariant (5) simplifies the counting procedure by

allowing us to calculate the number of inversions in p’(q) by computing A. Let s(i)
be the index of the group in p’(q) containing line i. The value of s(i) was found by
procedure PARTITION. By the invariant (5), an inversion involving and j between
p(r) and p’(q) can occur only if s(i) s(j).

Procedure COUNT will examine the lines in p(r) in descending order, and it can
be separated into four stages. First, COUNT uses a data structure that must be (A)
initialized. This data structure contains a collection of "bins" of size of at least T but
less than T; each individual bin is ordered according to p(r), but different bins are
ordered according to q. For each line p(r), we (B) find its correct location in the data
structure and place it into the appropriate bin. When a bin reaches capacity T, we
(C) split the bin into two new bins, each with size at least T. After all lines are processed,
we (D) finish by redistributing the elements in the bins to form p’(q). Inversions are
counted in steps (B), (C), and (D).

(A) As stated in the previous paragraph, COUNT will use a data structure. This
data structure u(q) is called the binned partition at q, and it consists of a series of
bins U, U, etc. A bin can either be empty or contain at least T but less than T
lines ordered according to p(r). As with partitions, if c Ui and d , i<.j, then
Y(q) > Yd(q). if there are k nonempty bins, they must have index 1, 2, , k.

Each bin in u(q) has three parameters associated with it. The size of a bin is the
number of elements it contains. Variable rain contains the smallest s(i) in the bin (the
only possible exception is min (U), which is always defined to be 1). For each
the closed interval from min () to min (/)-1 is called the range (if Uk is the
highest numbered bin, its range extends from min () to -). Finally, each bin
contains a pointer nextbin to _. The binned partition u(q) is simply a linked list
which is entered at the highest-numbered nonempty bin.
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In addition to the three parameters associated with each bin, a variable Au is
associated with u(q). Intuitively, A, contains the current number of inversions induced
by forming u(q) from p(r). Throughout the procedure COUNT, two invariants will
hold: (a) the ranges in the nonempty bins are disjoint and the union of the ranges is
1 to ’; and (b) lines in a particular bin are positioned according to order in p(r).

To initialize u(q), the elements in G1 in p(r) are placed into U1, the size of U
is set to T, min is set to and u is set to 0. The initialization clearly takes O(T) time.

(B) Let be the next line examined by the procedure COUNT. At the time line
is examined, all the lines preceding in p(r) have been placed into u(q), and no bin

has size 3 T. Let u(q)= U U2’’" Uk. If ((i) is in the range of Uk, then line is placed
at the bottom of U. Otherwise, s(k) is less than min (U), and Uk_ is examined. If
U_ is examined, line must have crossed every line in U, so Au is incremented by
size (U). If :(i) lies in the range of U_, then line is placed at the bottom of U_.
Otherwise, Au is incremented by size (Uk_l) and U_a is examined. In general, s(i) is
compared with the range of U. If s(i) is inside the range of U, then it is placed at
the bottom of U and the find routine halts. If s(i) is less than min (U), then A, is
incremented by size (U) and U_l is examined. It is important to note that at least T
inversions are counted each time :(i) is outside the range of

Once line is placed into bin U, the size condition may be violated because
size (U)= 3 T. In this case, the split routine is performed.

(C) The split routine is intended to separate a bin of size 3T into two bins of
size at least T. It is very similar to the procedure HALVE. An element can be used
to split bin U into two bins, U and 2. U contains the lines v in U for which
(v) < ((1), and they appear in their order at p(r). Uj2 contains the remaining lines in
their order at p(r). Since there are 3 T lines in U, must contain at least 3 distinct
values of sc.

The partitioning element is chosen in the following manner. Once size (U)= 3 T,
the median line /x in U with respect to the ordering at q is computed. U will be
partitioned by one .of two lines, l or 12. Line l is the line in U with smallest index
in p(r) satisfying (11)= :(/z), and line 12 is the line in U with largest index in p(r)
satisfying :(12)= (/x). Since at most T lines in U can be in group ((/x), at least one
of l and 12 splits into two bins of size at least T. The number of inversions induced
by split is counted in the same way as the inversions detected in HALVE. Note that
the split routine did not separate any lines in U with the same value of :, so the
invariants are maintained.

(D) After all lines have been placed in u(q), the binned partition has the following
form. Each bin U contains at least T but less than 3 T lines. By invariant (a), lines
with the same value of : must appear in the same bin. Consequently, size (U) must
be a multiple of T, so U contains either T or 2 T lines. In the former case, the number
of inversions with respect to lines in U has already been computed in steps (B) and
(C). In the latter case, U must be split and inversions counted in the same manner
as part (C). This routine takes at most O(T) time per bin, and O(n) time overall.

LEMMA 14. If ]Pr Ptq] ( 3?1T/2, the COUNT procedure correctly computes the
number of inversions between p(r) and p’(q) in linear time.

Proof By the invariants (a) and (b), correctness follows from a straightforward
induction on the number of applications of find and split. The time complexity requires
a bit more care.

Parts (A) and (D) have already been shown to take O(n) time. For part (B), the
cost of each examination of U is O(1) because u(q) is implemented as a linked list.
Call such an examination a find operation. Suppose that the find operation is performed
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times for line i. All but the first find operation guarantees T inversions, so.

Therefore,

3nT
(ni-1)T<.

i:=1 2

5n

i=1 2

The total time spent on the find operations is O(n).
For part (C), each split operation takes O(T) time and increases the number of

nonempty bins by one. Since each bin must have size T, there are at most n/T nonempty
bins. At most n/T split operations can be done, so the total time for the splits is
O(n).

4.5. The proof of Theorem 4. We first show that the algorithm presented in Fig.
correctly finds tk. If the test at (6) fails, procedure PARTITION is applied. At the

active reference point r, say rL (similar arguments can be made if r rR),

]P(r,T)-- k] <- nT, IP(r,T/2)-- kl > nT/2.

If the new query point q is on the same side of tk as r, then Lemma 11 implies that
PARTITION will succeed in finding p’(q). By Lemma 14, COUNT will determine the
number of inversions in p’(q) p(q, T), pq,-. Lemma 12(iii) implies that ]pq,-)- k] _-<

nT, so (3) is satisfied. Procedure HALVE will be run to see if (4) is satisfied as well.
If (4) is satisfied, then p(q)=p(q, T) and q can be resolved. If (4) is not satisfied,
then ]Pr,T/2)--k <-_ nT/2. HALVE will be executed until some T satisfies both (3) and
(4). Note that unless ]rank(q)-k] < n/2, some T will satisfy (4) since there is some
separation between q and t. Therefore, if r and q are on the same side of t, p(q)
will be determined in line (15).

The new query point q can be on the opposite side of tk from r. There are several
ways that this can be detected. First, Lemma 11 implies that PARTITION may detect
that ]rank (r)-rank (q)] is large and set TOOFAR= 1. Lemma 14 shows that COUNT
will either succeed in determining the number of inversions in p(q, T), or it will halt
if there are at least 3nT/2 inversions between p(r, T) and p(q, T). By Lemma 13,
3nT/2 inversions implies that r and q are on opposite sides of t. If both PARTITION
and COUNT succeed in constructing and counting p(q, T), then we will determine
the relative order of q and tk by the approximation.

Since we are assuming that the partition p’(q) was computed by modifying the
partition at rL, invariant (5) implies that the number of inversions present in each
refinement cannot decrease as T decreases. That is, P(q,T/2) P(q,T). This implies that
once there are more than k inversions present in an approximation, q and rL must be
on opposite sides of t. The number of executions of HALVE to detect that pq,T/2)> k
cannot be greater than the number of executions of HALVE to satisfy (3) and (4).
This explains the third condition in line (12) as a stopping condition for the calibration
loop.

If r and q are on the same side of t, p(q) is determined in line (15). If r and q
are not on the same side of t, then the test in (17) is true, and p(q) is determined in
line (23). In conclusion, the algorithm correctly computes the partition p(q) and uses
(4) to answer the question delivered by the network.

The procedures PARTITION, HALVE, and COUNT all took linear time. By the
construction of the algorithm, PARTITION and COUNT are invoked at most twice
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for any given q. Therefore, the total amount of work done by PARTITION and COUNT
over the entire algorithm is O(n log n) steps. HALVE is invoked immediately after
PARTITION to evaluate invariant (4). However, the procedure HALVE may be run
many more times for any particular q. Suppose that rL is the active reference point
and that HALVE is called s > 0 times in line (13) of the algorithm in Fig. 1. If q and

rL are on the same side of tk, then the new value of TL is Tc/2. In the remainder of
the algorithm, Lemma 12(iii) implies that TL can never be increased because the upper
bound in (3) is satisfied. If q and rc are on opposite sides of tk, then the partition
p(q) is computed with respect to rR. Since the number of executions of HALVE to
establish (3) and (4) is greater than or equal to the number of executions of HALVE
actually used to determine the relative positions of q and t, consider the value of Tc
when Ip(q,7)/)-kl> nTis and Ip(q,r)-kl<=nTl. From the latter equation, we can
deduce that Irank (q) kl < 3nTlJ2.

The new value of TR must satisfy both (3) and (4). Lemma 5 implies that properly
calibrated values of TR must satisfy Irank (q) kl > nTR/4. Therefore, nTR/4 < 3nT/2,
so TR < 6 T. Recall that TR >- TL since r is the active reference point. For invariants
(3) and (4) to be established, HALVE must be run at least s-2 times until TR < 6TI.

This shows that if line (13) is executed s times and r and q are on opposite sides
of tk, then line (21) will be executed at least s-2 times. Either T/ or TR is reduced

s--2by a factor of at least 2 implying that the number of calls to procedure HALVE is
at most O(log n). This proves the asserted O(n log n) time bound and Theorem 4.

5. General remarks. This paper presented an optimal-time algorithm to compute
the kth largest or smallest slope determined by a set of points in the plane. The control
structure of the algorithm is based on the parametric search technique devised by
Megiddo. To obtain the optimal-time algorithm, however, an approximation idea was
incorporated. This general paradigm may be useful for other problems to which
Megiddo’s technique is amenable.

The ideas behind the algorithm described have also been applied successfully to
other selection problems [10]. In particular, the kth smallest interdistance between n
points in d-space, using the Loo metric, may be found in time O(n(log n)a) [11].
Unfortunately nontrivial lower bounds are not known for this problem.
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FULLY DYNAMIC POINT LOCATION IN A MONOTONE SUBDIVISION*

FRANCO P. PREPARATA AND ROBERTO TAMASSIA$

Abstract. In this paper a dynamic technique for locating a point in a monotone planar subdivision,
whose current number of vertices is n, is presented. The (complete set of) update operations are insertion
of a point on an edge and of a chain of edges between two vertices, and their reverse operations. The data
structure uses space O(n). The query time is O(log n), the time for insertion/deletion of a point is O(log n),
and the time for insertion/deletion of a chain with k edges is O(log n + k), all worst-case. The technique
is conceptually a special case of the chain method of Lee and Preparata and uses the same query algorithm.
The emergence of full dynamic capabilities is afforded by a subtle choice of the chain set (separators),
which induces a total order on the set of regions of the planar subdivision.

Key words, point location, planar subdivision, monotone polygon, dynamic data structures, on-line
algorithm, computational geometry, analysis of algorithms
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1. Introduction. A fundamental and classical problem in computational geometry,
planar point location, is an instrument in a wide variety of applications. In a geometric
context, it is naturally viewed as the extension to two dimensions of its one-dimensional
analogue: search in a total ordering. It is formulated as follows. Given a planar
subdivision P with n vertices (a planar graph embedded in the plane with straight-line
edges), determine to which region of P a query point q belongs. The repetitive use of
P and the on-line requirement on the answers call for a preprocessing of P that may
ease the query operation, just as sorting and binary search intervene in one-dimensional
search. The history of planar point location research spans more than a decade and
is dense in results; the reader is referred to the extensive literature on this subject:
[DL], [EKA], [EGS], [Ki], [LP], [LT], [P1], [P2], [PSI, and [ST].

Most of the past research on the topic has focused on the static case of planar
point location, where the planar subdivision P is fixed. For this instance of the problem,
several practical techniques are available today (e.g., [EKA], lEGS], [LP], [P1 ], [ST]),
some of which are provably optimal in the asymptotic sense lEGS], [ST]. The analogy
with one-dimensional search, for which both static and dynamic optimal techniques
have long been known, naturally motivates the desire to develop techniques for dynamic
planar point location, where the planar subdivision can be modified by insertions and
deletions of points and segments. In this setting, the three traditional measures of
complexity for the static problemmpreprocessing time, space for the data structure,
and query timemare supplemented by measures of pertinent update times, and prepro-
cessing time is no longer relevant if the data structure is dynamically built.

Work on dynamic point location is a rather recent undertaking. Overmars [O]
proposed a technique for the case where the n vertices of P are given, the boundary
of each region has a bounded number of edges, and only edges can be easily inserted
or deleted. The basic entities used in Overmars’s method are the edges themselves;
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each edge currently in P is stored in a segment tree defined on the fixed set of vertex
abscissae, and the edge fragments assigned to a given node of the segment tree form
a totally ordered set and are therefore efficiently searchable. This approach yields
O(n log n) space, and O(log2 n) query and update times (worst-case). Note that these
measures are unrelated to the current number of edges in P. This technique can be
extended to support insertions and deletions of vertices in O(log2 n) amortized time,
at the expense of deploying a rather complicated and not very practical data structure.

Another interesting dynamic point location technique, allowing both edge and
vertex updates, is presented by Fries, Mehlhorn, and Naeher [F], [FMN], [M]. Their
approach achieves O(n) space, O(log n) query time, and O(log4 n) amortized update
time. If only insertions are considered, the update time is reduced to O(log n)
(amortized) [M, pp. 135-143]. This technique is suited for general subdivisions, and
is based on the static point location algorithm of Lee and Preparata [LP].

In a recent paper [ST], Sarnak and Tarjan indicated as one of the most challenging
problems in computational geometry the development of a fully dynamic point location
data structure whose space and query time performance are of the same order as that
of the best known static techniques for this problem. In this paper we make significant
progress toward this goal, as expressed by the following theorem, which represents
the central result of this paper.

THEOREM A. Let P be a monotone planar subdivision with n vertices. There exists
a dynamic point location data structure with O(n) space requirement and O(log2 n) query
time that allowsfor insertion/deletion ofa vertex in time O(log n) and insertion/deletion
of a chain of k edges in time O(log n + k), all time bounds being worst-case.

It must be underscored that our method allows for arbitrary insertions and deletions
of vertices and edges, the only condition being that monotonicity of the subdivision
be preserved. The restriction to monotone subdivisions prevents the achievement of a
more general goal. However, the class of monotone subdivisions is very important in
applications, since it includes convex subdivisions, triangulations, and rectangular
dissections. Moreover, from a methodological standpoint, the presented dynamic
technique does not use bizarre data structures and is based on the same geometric
objects, the separating chains, that yielded the first practical, albeit suboptimal, point
location technique of Lee and Preparata [LP], and later the practical and optimal
algorithm of Edelsbrunner, Guibas, and Stolfi [EGS].

The paper is organized as follows. In 2 we review the technical background and
precisely formulate the problem. We recall the static point location technique of Lee
and Preparata that consists essentially of performing binary search on a set of monotone
chains, called separators, sorted from left to right. Also, we introduce a complete
repertory of update operations.

In 3 we define a total ordering < on the set of regions of P and define a subclass
of monotone subdivisions, called regular subdivisions, for which the ordering < is
induced by the left-to-right adjacency of the regions. We show that the separators of
a regular subdivision have a simple structure that allows for an efficient dynamic
maintenance. We then transform an arbitrary subdivision P into a regular subdivision
P* by (virtually) duplicating the edges along some monotone chains, called "channels."
The regions of P*, called "clusters," are sets of regions of P (consecutive in the order
<) connected by channels. The formal underpinning of the order < can be found in
the theory of planar st-graphs [LEC], [TP] and planar lattices [KR].

In 4, we present the dynamic technique. The data structure is based on organizing
the separators of P* into a balanced tree, called "separator tree." We show that the
insertion/deletion of a chain causes the ordering < of the regions of P to be modified
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in a simple way. Namely, the transformation consists of partitioning the sorted sequence
of regions into four subsequences and swapping the two middle ones. Regarding P*,
we show that only O(1) channels are affected by the update. These properties are the
basis of the algorithms for the insertion/deletion of chains. At the end of the section
we describe the simpler algorithms for the insertion/deletion of vertices.

Finally, 5 concludes the paper with some open problems.

2. Preliminaries. The geometric objects to be defined below are readily motivated
if we view a point of the plane as the central projection of a point of a hemisphere to
whose pole this plane is tangent.

A vertex v in the plane is either a finite point or a point at infinity (the latter is
the projection of a point on the hemisphere equator). An edge e- (u, v) is the portion
of the straight line between u and v, with the only restriction that u and v be not
points at infinity associated with the same direction. Thus e is either a segment or a
straight-line ray, but not a whole straight-line. When both u and v are at infinity, then
e is an edge at infinity, i.e., a portion of the line at infinity (the projection of an arc
of the equator). A (polygonal) chain y is a sequence (ei: ei (v, vi+l), i= 1,. ., p- 1)
of edges; it is simple if nonself-intersecting; it is monotone if any line parallel to the
x-axis intersects y in at most a point or a segment. The notions of "left" and "right"
are referred to a bottom-up orientation of the involved entity (a chain, or, later on, a
separator, an edge, etc.). A simple polygon r is a region of the plane delimited by a
simple chain with Vp--vl, called the boundary of r. Note that r could be unbounded;
in this case the boundary of r contains one or more edges belonging to the line at
infinity. A polygon r is monotone if its boundary is partitionable into two monotone
chains yl and Y2, called the left chain and right chain of r, respectively (see Fig. 1).
Chains yl and /2 share two vertices referred to as HIGH(r) and LOW(r), respectively,
with y(HIGH(r)) > y(LOW(r)). In other words, HIGH(r) and LOW(r) are, respec-
tively, points of maximum and minimum ordinates in polygon r; each is unique unless
it is the extreme of either a horizontal edge or an edge at infinity, in which case the
selection between the two edge extremes is arbitrary.

A monotone subdivision P is a partition of the plane into monotone polygons
called the regions of P (see Fig. 2(a)). It is easily realized (see also lEGS]) that a
monotone subdivision of P is determined by a planar graph G embedded in the plane
whose edges are either segments or rays of straight lines (referred to as a "planar

HIGH (r)

LOW (r)
FIG. 1. Nomenclature for a monotone polygon. Left chain: Yl; right chain:
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FIG. 2. (a) A monotone subdivision P. line at infinity;
P* obtained from P by forming all maximal clusters.

separator. (b) The regular subdivision

straight-line graph" in [LP]): edges, vertices, and chains of G are referred to as edges,
vertices, and chains of P. The vertices of P are both the finite ones and those at infinity.
This ensures the validity of the well-known Euler’s formula and its corollaries:

IEI o(I vl), IRI o(I vl),

where V, E, and R, respectively, are the set of vertices, edges, and regions of P.
Given a monotone subdivision P, a separator cr of P is a monotone chain

(Vl," ", vp) of P with the property that Vl and vp are points at infinity (hence, each
horizontal line intersects a separator either in a point or in a segment). A separator of
P is illustrated with bold line segments in Fig. 2(a). Given separators Ol and 0"2 of P,
we say that rl is to the left ofor2, denoted or1 < o’2, if, for any horizontal line intersecting
o- and o2 in distinct points, intersects r to the left of r2. A partial subdivision is
the portion of a monotone subdivision contained between two distinct separators
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and 0"2, with O"i <02. A complete family of separators for P is a sequence
(o-1, O-2,""", O-,) with O"1 < O"2 <’’" < O’t, such that every edge of P is contained in at
least one separator of . Notice that from Euler’s formula O(n). As shown in [LP],
every monotone subdivision admits a complete family of separators.

Given a complete family of separators E for P, it is well known [LP] how to use
E to perform planar point location in P. If n is the number of vertices of P, then in
time O(log n) we can decide on which side of a separator the query point q lies;
applying this operation as a primitive, a bisection search on determines, in time
O(log t. log n), two consecutive separators between which lies q. This process can be
adapted or supplemented to determine the actual region r to which q belongs.

Since is used in a binary search fashion, each separator is assigned to a node
of a binary search tree, called the separator tree T. With a minor abuse of language,
we call "node O-" the node of T to which O- has been assigned. An edge e of P belongs,
in general, to a nonempty interval (o"i, O"i+1, ", O"j) of separators. Let node O"k, _--< k _-<j
be the least common ancestor of nodes O"i, O"i+1, ", O"j; then e is called a proper edge
of O"k and is stored only once at node O"k. We denote by proper(o"k) the set of proper
edges of O"k, i.e., the edges of O"k stored at node O"k. This yields O(n) storage space
while guaranteeing the correctness of the technique (see [EGS], [LP]). Note that edges
whose extremes are both at infinity need not be stored.

We now illustrate that a planar subdivision P can be constructed by an appropriate
sequence of the following operations.

INSERTPOINT (v, e; el, e2):
Split the edge e=(u, w) into two edges el=(u, v) and e2=(v, w) by inserting
vertex v.

REMOVEPOINT (v; e):
Let v be a vertex of degree 2 whose incident edges, el (u, v) and e2 --(v, W), are
on the same straight line. Remove v and replace el and e2 with edge e (u, w).

INSERTCHAIN (3, vl, v2, r; rl, r2):
Add the monotone chain 3,=(vl, wl,’", w,_, v2), with y(vl) < y(V2), inside
region r, which is decomposed into regions rl and r2, with rl and r2, respectively,
to the left and to the right of 3,, directed from vl to v2.

REMOVECHAIN (y; r):
Let 3’ be a monotone chain whose nonextreme vertices have degree 2. Remove 3’
and merge the regions rl and r2 formerly on the two sides of 3’ into region r. (The
operation is allowed only if the subdivision P’ so obtained is monotone.)

With the above repertory of operations, we claim that a monotone subdivision P can
always be transformed into a monotone subdivision P’ having either fewer vertices or
fewer edges. Then by O(n) such transformations, we obtain the trivial subdivision
whose only region is the entire plane (bounded by the line at infinity).

Indeed, let O" be a separator of P, and imagine traversing O" from -oo to +oo. Let
deg-(v) and deg+ (v) denote the numbers of edges incident on v and lying in the
halfplanes y<y(v) and y> y(v), respectively. (For simplicity, we assume here that
no edge is horizontal. In the general case, a horizontal edge is conventionally directed
from left to right.) Let (v,..., vv) be the sequence of finite vertices of O" with
deg+ (v) + deg- (v)-> 3, as encountered in the traversal of O". If this sequence is empty,
the entire chain can be trivially removed. Therefore, assume p => 1. If there are two
consecutive vertices v and v+l such that deg+ (vi)->2 and deg--(v+1)==_2, then the
chain 3’ (of degree-2 vertices) between v and v+l can be deleted by REMOVECHAIN
while preserving monotonicity. Suppose that there are no two such vertices. If



816 F. P. PREPARATA AND R. TAMASSIA

deg- (vl) => 2, then the portion of 0- from - to v can be deleted. Otherwise, deg- (vl)
1, and the preceding conditions give rise to the following chain of implications:

(deg- (v)= 1)=(deg+ (v)- 2)=(deg+ v2) _>- 2) =:> .==>(deg+ (Vp)_->_ 2);

the latter shows that the portion of 0- from vp to +c can be deleted. This establishes
our claim.

When all finite vertices have disappeared, the resulting subdivision consists of a
closed chain of edges whose union is the line at infinity. Removal of the vertices at
infinity completes the transformation. Since all of the above operations are reversible,
this shows that any monotone subdivision P with n vertices can be constructed by
O(n) operations of the above repertory.

THEOREM 1. An arbitrary planar subdivision P with n vertices can be assembled
startingfrom the empty subdivision by a sequence of0(n) INSERTPOINTand INSERT-
CHAINoperations, and can be disassembled to obtain the empty subdivision by a sequence
of O( n REMOVEPOINT and REMOVECHAIN operations.

Although the above operations are sufficient to assemble and disassemble any
monotone subdivision, the following operation is also profitably included in the
repertory.

MOVEPOINT v; x, y):
Translate a degree-2 vertex v from its present location to point (x, y). (The
operation is allowed only if the subdivision P’ so obtained is monotone and
topologically equivalent to P.)
3. Ordering the regions of a monotone subdivision. Let P be a monotone sub-

division, and assume for simplicity that none of its finite edges is horizontal. Given
two regions r and r2 of P, we say that r is left-adjacent to r2, denoted rl<< r2, if rl
and r2 share an edge e, and any separator of P containing e leaves r to its left and r
to its right. Note that relation << is trivially antisymmetric. But we can also show
Lemma 1.

LEMMA 1. Relation << on the regions of P is acyclic.
Proof Assume rl << r2 << << rk << r. Let Z be a complete family of separators and

let {0-, , 0-k-1}- E be such that 0-i separates ri and r+, so that o 0"2 " o"k--1
If 0"E leaves rk to its left and r to its right, we have 0"k-1<0" and 0"<0"1, a
contradiction since the separators are ordered. 0

Thus, the transitive closure of << is a partial order, referred to as "to the left of,"
and denoted by . Specifically, r- r2 if there is a path from r to rz in the directed
graph of the relation << on the set of regions. Correspondingly, given two regions r
and r of P, we say that r is below rz, denoted r]’ r2, if there is a monotone chain
from HIGH(r) to LOW(r2). Obviously, ]’ is a partial order on the set of regions. The
following lemma shows that these two partial orders are complementary, and it is the
geometric counterpart of a topological property of p!anar lattices [B, ex. 7(c), p. 32],
{Ka], KR].

LEMMA 2. Let r and r2 be two regions of a monotone subdivision P. Then one and
only one of the following holds:

r -> r r2 - r, r r2, r2 r

Proof Let 0-/ be the leftmost separator that contains the left chain of the boundary
of rl and, analogously, let 0-R be the rightmost separator containing the right chain of
the boundary of r. These separators partition P into five portions, each a partial
subdivision: one of them is rl itself, and the others are denoted L, R, B, and T (see
Fig. 3). Now, we consider four mutually exclusive cases for rz, one of which must occur:
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FIG. 3. P partitioned into five portions, each a partial subdivision or the proof of Lemma 2).

(1) r2 L. Consider any sequence of regions (rl, , r.) such that r2 rl, ri
for i-- 1,..., s- 1, and the right chain of r’s has a nonempty intersection with o-c. If
the right chain of rl has an edge that is also on the left boundary of rl, then r2

of regions suchOtherwise, by the definition of crc, there is a sequence rs+l, ., rp
rl Thus in all cases, r2 rlthat r!.1 - rj’+ for j s,. , p- 1, and re

(2) r2 R. Arguing as in (1), we establish r- r2.
(3) r2 B. Since LOW(r) is the highest ordinate vertex in B, there is a monotone

chain from any vertex in B to LOW(rl), and, in particular, from HIGH(r2) to LOW(r1).
Thus r2 ]’

(4) r2 T. Arguing as in (3), we establish rl’ r2.
We say that rl precedes r2, denoted rl < r2, if either rl -> r2 or rl r2.
THEOREM 2. The relation < on the regions of P is a total order.
As an example, the region subscripts in Fig. 2(a) reflect the order <.
DEFINITION 1. A regular subdivision is a monotone subdivision having no pair

(r, r2) of regions such that r ’ r2.
For example, in Fig. 2(a) we have r9 rio which shows that the illustrated monotone

subdivision is not regular. An example of regular subdivision is given in Fig. 4(a).
The significance of regular subdivisions is expressed by Theorem 3 below. It is

easily realized that there is a unique complete family Z (oh,’’ ", or,) of separators
for a regular subdivision P. By the definition of separator, all regions to the left of
precede all those to its right in the order <. Let T be a separator tree for the above
family E. Recalling the rule for storing the edges of separator cr in T, as reviewed in

2, we have Theorem 3.
THEOREM 3. In a regular subdivision P, the edges ofproper(tr) in T form a single

chain (see Fig. 4(b)).
Proof Assume for a contradiction that tr contains a chain 3’ that is the bottom-to-

top concatenation of three nonempty chains Yl, 72, and 3’3, where 71 and 3’3 consist
of proper edges of r, and 3’2 contains no such edge. Let vl and v2 be the bottom and
top vertices, respectively, of 3’2, and let e’ y and e" 3/2 be the edges of cr incident
on v. Since e" proper(or), we must have e" proper(or’), where node tr’ is an ancestor
of node o- in T. We claim there is a region rl such that Vl HIGH(rl). Otherwise,
each separator containing e"and so cr’also contains e’, contrary to the hypothesis
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FIG. 4. (a) A regular subdivision. (b) Its chains {proper(o): r E}.

that node r is closest to the root among the nodes whose separator contains e’.
Analogously, we show that there is a region r for which v2 LOW(r2). Since 3’2 is a
monotone chain from HIGH(r) to LOW(r2) then r ]’ r2, whence a contradiction.

This theorem shows that a regular subdivision has a particularly simple separator
tree. In the next section we shall show that the property expressed by Theorem 3 is
crucial for the efficient dynamization of the chain method for point location. We now
slightly generalize the notion of region in a way that will enable us to show that any
monotone subdivision embeds a unique regular subdivision. We say that two regions
rl and r2 consecutive in < with rlr are vertically consecutive. We then have
Lemma 3.

LEMMA 3. Ifr and r are two vertically consecutive regions ofa monotone subdivision
P, then the monotone chain from HIGH(r) to LOW(r2) is unique.

Proof The lemma holds trivially if HIGH(r)=LOW(r2). Thus, assume the
contrary. Since rr2, there is a monotone chain 3’ from HIGH(r) to LOW (r2).



DYNAMIC POINT LOCATION 819

Suppose now, for a contradiction, that there is a monotone chain y’ from HIGH (rl)
to LOW (r2) distinct from y. Then y U 3" defines the boundary of a partial subdivision
that contains at least one region of P. For any region r inside this partial subdivision,
there are (possibly empty) chains from HIGH(r1) to LOW(r) and from HIGH(r) to
LOW(r2) SO that r r r2, contrary to the hypothesis that r and r2 are consecutive
in <.

DEFINITION 2. Given two vertically consecutive regions, rl and r2, in P, with

rl ’ r2, the unique monotone chain from HIGH(r1) to LOW(r2) is called a channel.
LEMMA 4. All channels are pairwise vertex-disjoint.
Proof Assume, for a contradiction, that there are two channels 71 and T2 that are

not vertex-disjoint, where 71 connects regions rl and r2, T2 connects regions r3 and
r4, and rl < r2 < r3 < r4 (see Fig. 5). Since 71 and T2 share a vertex x, there is a chain
from HIGH(r3) to LOW(r2) consisting of the portion of ]/2 from HIGH(r3) to x, and
the portion of 71 from x to LOW(r2). Hence, we have r3 < r2, a contradiction.

FIG. 5. Two channels ")/1 and 72 that are not vertex-disjoint, where y connects regions r and r2, ’)/2

connects regions and r4, and r < < < (for the proof of Lemma 4).

Given two vertically consecutive regions rl and r2, with rl q’ r2, we imagine duplicat-
ing the channel from r to r2 and view the measure-zero region delimited by the two
replicas as a degenerate polygon joining rl and r2 and merging them into a new region
r LJ r2 (see Fig. 6). Clearly, we can merge in this fashion any sequence of vertically
consecutive pairs. This is formulated in the following definition.

DEFINITION 3. Clusters are recursively defined as follows:
(1) An individual region r is a cluster;
(2) Given two vertically consecutive clusters X1 and X2, with X ’X2, their union

is a cluster X, denoted X-X2 (the horizontal bar denotes the channel).
A maximal cluster X is one that is not properly contained in any other cluster.

The unique subdivision resulting by forming all maximal clusters of P is denoted
P*. Figure 2(b) illustrates the regular subdivision P* corresponding to the subdivision
P of Fig. 2(a). Note the clusters r2-r3, r6-r7, and r9-rlo-rll.

The above definition leads us to a convenient string notation for the order <, as
well as for the cluster structure where appropriate. Normally, we shall use lowercase
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FIG. 6. Creation of a channel between two vertically consecutive regions.

roman letters for individual regions, lowercase Greek letters for clusters, and uppercase
roman letters otherwise (i.e., for collections of consecutive regions not forming a single
cluster). Specifically, we have:

(1) A cluster (possibly, a region) is a string.
(2) Given two strings A and B, such that the rightmost cluster of A and the

leftmost cluster of B are consecutive (contiguity), then AB is a string.
A subdivision may be represented by means of its structural decomposition. For
example, the subdivision of Fig. 2(b) is described by the following string:

rlx1 r4rsx2r8x3r12r13r14r5

where X r2-r3, X2 r6-r7, and X3 r9-ro-rl.
Later we will find it convenient to explicitly indicate that two consecutive regions

r and r may or may not form a cluster. We shall denote this with the string notation
r--r2, where "--" means "potential channel."

We conclude this section with the following straightforward observation.
THEOREM 4. The subdivision P* obtained by forming all maximal clusters of a

monotone subdivision P is regular.
Note that in the transformation ofP to P* only the edges of channels are duplicated.

By Lemma 4, each edge is duplicated at most once, thereby ensuring that the number
of edges remains O(n).

4. Dynamic point location in a monotone subdivision.
4.1. Data structure. In the following description, we assume that all sorted lists

are stored as red-black trees [GS], [T]. We recall the following properties of red-black
trees that are important in the subsequent time complexity analyses.

(1) Only O(1) rotations are needed to rebalance the tree after an insertion/dele-
tion.

(2) The data structure can be used to implement concatenable queues. Operations
SPLICE and SPLIT of concatenable queues take O(log n) time and need O(log n)
rotations each for rebalancing.

The search data structure consists of a main component, called the augmented
separator tree, and an auxiliary component, called the dictionary. The augmented
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separator tree T has a primary and secondary structure. The primary structure is a
separator tree for P*, i.e., each of its leaves is associated with a region of P* (a maximal
cluster of P), and each of its internal nodes is associated with a separator of P*. (The
left-to-right order of the leaves of the primary structure of T corresponds to the order
< on the regions of P*.) The secondary structure is a collection of lists, each realized
as a search tree. Specifically, node o- points to the list proper(r) sorted from bottom
to top, and the leaf associated with cluster X (briefly called "leaf X") points to the list
regions(x) of the regions that form cluster X, also sorted from bottom to top.

Given two regions r and r2 consecutive in <, the separator o- between r and r2
is associated with the least common ancestor of the leaves associated with the respective
clusters of r and r in T. By the definition of separator tree, the edges of cr are stored
in the secondary structures of nodes along the path from node r to the root of T; by
Theorem 3, in a regular subdivision each extreme vertex of proper(r) splits proper(r’),
for some ancestor node r’ of node o-, into two chains. More precisely, the following
simple lemma, stated without proof, makes explicit the allocation of the edges of o-

to the nodes of T.
LEMMA 5. Let o" be a separator of P*, and 0"1, O"h be the sequence of nodes of

T on the path from the root (=r) to r. Then

o (a,, az, ah, proper(or), t,, h-1 ,’’’, 1),

where ci and fli are (possibly empty) subchains ofproper(o’i) 1, h.
To dynamically maintain the channels, it is convenient to keep two representatives

e’ and e" of each edge e that are created when e is inserted into P. If e does not belong
to a channel, e’ and e" are joined into a double edge and belong to the same proper(or).
If instead e is part of a channel, then e’ and e" are single edges and belong to distinct
proper(or’) and proper(o"). In the latter case e’ and e" are on the boundary of the same
cluster X so that nodes o-’ and tr" are on the path from leaf X to the root of T. Therefore
we represent proper(r) by means of two lists: strandl(tr) and strand 2( tr). List
strand 1(o’), called primary strand, stores a representative for each edge of proper(tr)
in bottom-to-top order. List strand2(r), called secondary strand, stores a representative
for each double edge of proper(or) in bottom-to-top order.

Moreover, associated with each chain proper(o’) there are two boolean indicators
t(tr) and b(tr), corresponding, respectively, to the topmost and bottommost vertices
of proper(or). Specifically, let tr’ be the ancestor of tr such that the topmost vertex of
proper(or) is an internal vertex of the chain proper(o") (for the special case where the
topmost vertex of o- is at infinity, we let tr’ be the father of r). We define t(r)= left
if cr is to the left of r’, and t(tr)= right if tr is to the right of r’. Parameter b(r) is
analogously defined.

The dictionary contains the sorted lists of the vertices, edges, and regions of P,
each sorted according to the alphabetic order of their names. With each vertex v we
store pointers to the representatives of v in the (at most two) chains proper(tr) and
proper(or’) of which v is a nonextreme vertex. With each edge e we store pointers to
the two representatives of e in the data structure. Finally, with each region r we store
the vertices HIGH(r) and LOW(r), and a pointer to the representative of r in the list
regions(x) such that X is the maximal cluster containing r. The dynamic maintenance
of the dictionary in the various operations can be trivially performed in O(log n) time,
and will not be explicitly mentioned in the following.

To analyze the storage used by the data structure, we note the following: the
primary structure of T has O(n) nodes, since there are O(n) regions (by Euler’s
formula) and therefore O(n) separators; the secondary structure of T also has size
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O(n), since there are O(n) edges in {proper(o.):o.T} and O(n) regions in
{regions(x): X T} (again, by Euler’s formula); the auxiliary component has one record
of bounded size per vertex, edge, and region. Therefore, we conclude with the following
theorem.

THEOREM 5. The data structure for dynamic point location has storage space O( n ).
Note that the above data structure is essentially identical with the one originally

proposed for the static version of the technique [LP]. What is remarkable is that the
single-chain structure of the proper edges of any given separator, due to our specific
choice of the separator family, is the key for the emergence of full .dynamic capabilities.

We now show that the property expressed by Theorem 3 allows us to establish
an important dynamic feature of the data structure. According to standard terminology,
a rotation at node tx of a binary search tree is the restructuring of the subtree rooted
at /x so that one of the children of/x becomes the root thereof. A rotation is either

left or right depending on whether the right or left child of/x becomes the new root,
respectively. We then have Lemma 6.

LEMMA 6. A rotation at a node of T can be performed in O(10g n) time.

Proof Without loss of generality, we consider a left rotation as illustrated in Fig.
7. Clearly, the separators stored at nodes outside the subtree rooted at o. in Fig. 7(a)
are not affected by the rotation, nor are those in the subtrees rooted at o-1, o-3, and
o-5. Hence, the only alterations involve separators o-2 and o-4. If 0-471 proper(o.2)= ,
then the modification is trivial. Suppose then that o-4 (’1 proper(o-2) . In this case the
set o-4 f-i proper(o.2) forms either the initial or the final segment of the chain proper(o.2),
or both, for otherwise, regular subdivision P* would contain vertically consecutive
regions. Thus the update is accomplished by: (1) splitting proper(o-2) into 72
o-4 [’) proper(o-2) and its relative complement y: (2) splicing ’)/2 with proper(o-4) to form
the updated proper(o-4); and (3) setting the updated proper(o-2) equal to Yl. Note that
the extreme vertices of proper(o-4) are obtained in time O(1), and the splitting vertices
of proper(o-2) are determined in time O(log n). Since data structures for proper(o-2)
and proper(o-4), (i.e., the red-black trees associated with lists strandl and strand2) are
also concatenable queues, the splitting and splicing operations are executed in time
O(log n) as well. The parameters t(o-) and b(o-) for the resulting separators are updated
in O(1) time by means of straightforward rules. V]

Hereafter, the red-black tree T is assumed to be balanced. The rest of this section
is devoted to the discussion of the algorithms to perform searches, insertions, and
deletions.

4.2. Query. To perform point location search for a query point q, we use essentially
the same method as in [LP]. The search consists of tracing a path from the root to a
leaf X of T. At each internal node o- we discriminate q against separator o-. Three cases
may occur:

(1) q 6 o.: we return the edge of o- that contains q and stop;
(2) q is to the left of o-: we proceed to the left child of o-;
(3) q is to the right of o-: we proceed to the right child of o-.

Once we reach a leaf X, we know that q belongs to a region of X. Since the regions of

X are sorted from bottom to top, such region is determined by searching in the list
regions(x). The above technique can be viewed as a "horizontal" binary search in the
set of separators of P*, followed by a "vertical" binary search in the set of regions of
the leaf X.

Let e be the edge of o- whose vertical span contains y(q). When e proper(o-),
the discrimination of q against o- is a conventional search in strand l(o-). When
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(a)

(b)

FiG. 7. Illustration of a (left) rotation. Shaded regions are nodes involved in the update. (a) Separator
tree. (b) Chains ofproper edges.

e proper(or) then we use the pair (t(cr), b(r)): for example, when e is above proper(r),
if t(cr)--left, then q is discriminated to the right of or, and to its left otherwise. (This
is a minor variant of the criterion adopted in [LP].) The case when e is below proper(or)
is treated analogously. This simple analysis confirms that the time spent at each node
is O(log n). We have Theorem 6 [LP].

THEOREM 6. The time complexity of the query operation is O(log n).

4.3. Insertion. We shall first show that the effect of operation INSERT-
CHAIN(y, v, v2, r; r, r2) on the order < of the regions of P can be expressed as a

syntactical transformation between the strings expressing the order before and after
the update. The situation is illustrated in Fig. 8.

On the boundary of r there are two distinguished vertices: HIGH(r) and LOW(r).
Note that HIGH(r)= HIGH(r) if v2 is on the right chain of the boundary of r (and
similarly LOW(rz)= LOW(r) if v is on the left chain). Thus, in general, HIGH(r)
is on the left chain of the boundary of r, and LOW(rz) is on the right chain. Using
the string notation introduced in 3, let L and R be the strings corresponding to the
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(a) (b)

FIG. 8. (a) Canonical partition ofsubdi13ision P* with reference to region and 13ertices 13 and 132. (b) The
restructured subdivision after the insertion of chain y between v and 132.

regions that, respectively, precede and follow r in <. Thus, the subdivision P* is
described by the string LrR.

Let el be the edge of P* on the left boundary of r incident on HIGH(rl) from
below, and let X be the maximal cluster on the left of e. In general, this cluster consists
of two portions, X and X2 (such that//1-X2), where/’2 consists exactly of the regions
q’ of X for which y(LOW(q’))>= y(HIGH(r)). Thus, we have L= L’xL". We now
distinguish three cases and define substrings A, Az, L1, and L as follows.

(1) X2 # . Let A1 X, A2 X2, L L’, L2 L", so that L L1A-A2L2.
(2) X2 . Let q be the region preceding r (note q could form a cluster with r).

We further distinguish:
(2.1) y(LOW(q))>=y(HIGH(rl)). In this case we let L=LIA2L2, where A

is the maximal cluster immediately following X.
(2.2) y(LOW(q))<y(HIGH(r)). In this case we let L= LA1--, where A is

the rightmost maximal cluster of L (but not necessarily a maximal cluster
in P*).

The three cases are conveniently encompassed by the notation

L= L1A--A2L2

Note that some of the symbols may denote empty strings.
Analogously, string R can be reformulated as

R R Pl "’p2R2

with straightforward meanings of the symbols.
Thus, in general, for any given region r and choice of v and /)2 on its boundary,

we have the following canonical string decomposition of P*:

LA I--A LzrR pl--p2 R2.
The corresponding partition of the subdivision is illustrated in Fig. 8(a). Examples of
configur.ations corresponding to cases (2.1) and (2.2) are shown in Fig. 9. Namely,
Fig. 9(a) shows case (2.1) for L and case (1) for R, Fig. 9(b) shows case (2.2) for L
and R, and Fig. 9(c) shows case (2.2) for L and case (1) for R.
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L1

P2
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(a)

(b)

(c)
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L1 rl r2 R2

FIG. 9. Special cases of the structuralpartition of Fig. 8. (a) Case (2.1) Jbr L and case (1) for R. (b) Case
(2.2) for both L and R. (c) Case (2.2) for L and case (1) for R.

We now investigate the rearrangement of this order caused by the insertion of
chain y into r. Referring to Fig. 8(b), it is immediately observed that the order after
the update is as follows:

L1 < A1 < rl < R1 < p < A2 < L2 < r2 </9 < R2.
To obtain the string description of the updated subdivision we must determine whether
any new channel has been created. Any such channel can only arise in correspondence
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with a new adjacency caused by the update, specifically for the following pairs: (A1, rl),
(pl,A2), and (r2,pz). The channel from )t to r exists only if y(HIGH(A))<=
y(LOW(r) ), and analogously for the channel from r: to /92. Instead, since
y(HIGH(pl))<y(LOW(Ae)), the cluster P-’2 always exists. Therefore, the order
caused by the insertion of 3’ is represented by the string

LA--rR p-AeLerz--p2Re.

(In purely syntactic terms, this transformation corresponds to rewriting r as re- rl and
then exchanging substrings riRp and A2Lere.) This is summarized as follows.

THEOREM 7. Let LA--ALzrRp--pzR2 be the string description of the order

of P*, where LI r, and Rz are nonempty. After operation INSERT-
CHAIN(% v, re, r; r, rz) the new order is described by LiA--rRp-AeLere--peRe.

The algorithm for the INSERTCHAIN(y, v, v2, r; r, r2) operation implements
the syntactical transformation of the string description by decomposing the subdivision
P into its components L, 1, ,e, Le, r, R, p, p, and Re, which are subsequently
reassembled according to the new order given by Theorem 7.

To formally describe the algorithm, we denote by P(S) the partial subdivision
associated with a string S of consecutive regions of P. We can represent P(S) with
essentially the same data structure described in 4.1, and we denote with T(S) the
augmented separator tree for S. Note that T(S) does not store the edges which form
the boundary of S (in the same way as T does not store the edges at infinity). Partial
subdivisions can be cut and merged with the same rules as for the decomposition and
concatenation of the corresponding strings.

Let P(S), P(Sz), and P(S) be partial subdivisions such that S= S$2. We show
in the following how to merge T(S) and T(S2) into T(S), and how to cut T(S) to
produce T(S1) and T(S2). The merge operation needs also the separator r forming the
common boundary between the two (open) partial subdivisions P(S) and P(S2); o- is
represented by its primary and secondary strands. The cut operation returns the
separator o-. These operations can be implemented by means of the following six
primitives.

PROCEDtRE MERGEI(S, or, Se; S). (It merges partial subdivisions P(S) and
P(S), with S1- S; cr is the separator between P(S) and P(S2).)

(1) Construct a separator tree T(S) for P(S), by placing cr at the root, and making
T(S) and T(S2) the left and right subtrees of or, respectively.
(T(S) is a legal separator tree for P(S), but might be unbalanced.)

(2) Rebalance T(S) by means of rotations.

PROCEDtRE MERGE2(x, or, X; X). (It merges partial subdivisions P(X) and
P(X2) such that X ’X2 into P(X), where X X-X, and c is the channel between
and X.)

(1) Separate the two strands of c, and make the secondary strand become a new
primary strand.

(2) Splice regions(x) and regions(xe) to form regions(x).

LEMMA 7. Operations MERGEI(S1, o-, Sz; S) and MERGE2(x1, c, Xz; X) have
time complexity O(log n) and O(log n), respectively.

Proof The time bound for operation MERGE2 follows immediately from the
properties of concatenable queues. With regard to MERGE1, Step (1) consists of
forming T(S) by joining the primary structures of T(S) and T(Sz) through node r,
which takes O(1) time. Since we use red-black trees, we can rebalance T(S) with
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O(log n) rotations [GS], [T, pp. 52-53]. By Lemma 6, each such rotation takes O(log n)
time, so that the total time complexity is O(log n).

PROCEDURE CUTI(S, X, X2; S, or, S2). (It cuts partial subdivision P(S) into
P(S) with rightmost cluster X and P(S2) with leftmost cluster X2, such that X - :,and also returns the separator cr between P(S) and P(S:).)

(1) Find the node cr ofT(S) that is the least common ancestor of leaves X and
(2) Perform a sequence of rotations to bring cr to the root of T(S), where after

each rotation we rebalance the subtree of r involved in the rotation, namely,
the left subtree for a left rotation and the right subtree for a right rotatioh
(see Fig. 10).

(3) Set T(S) as the left subtree of cr and T(S2) as the right subtree of o-. Return
the chain proper(o).

PROCEDURE CUT2(x; X, c, X:). (It cuts partial subdivision P(X) into P(X) and
P(X), where X X-X2 and c is the channel between X and X:.)

2

/ \

FIG. 10. Example for step (2) of Procedure CUT1.
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(1) Join the two previously separated strands of c, so that the rightmost one
becomes the secondary strand of the other.

(2) Split regions(x) into regions(x1) and regions(x2).

LEMMA 8. Operations CUT1 S, Al, ,,’2; S1, o", $2) and CUT2(x; X Y, X2) have time

complexity O(log n) and O(log n), respectively.
Proof The time bound for operation CUT2 is immediate. With regard to operation

CUT1, step (1) takes O(height(T(S)))=O(log n) time. In step (2), we perform no
more than height(T(S)) rotations to bring to the root. After each such rotation, we
have to rebalance a subtree T’, whose left and right subtrees are already balanced, so
that the number of rotations required for rebalancing is proportional to the difference
of height of the subtrees of T’. Such differences form a sequence whose sum is
proportional to height(T(S)) [GS], [T, p. 53]. By Lemma 6, each such rotation takes
O(log n) time, so that the total time complexity is O(log2 n).

PROCEDURE FINDLF_.FT(e; X). (It finds the cluster A to the left of edge e. If e
is part of a channel, then A is the cluster that contains such channel.)

(1) Perform a point location search for (any point of) edge e. The search will
stop at a node o- of T that stores (a representative of) e.

(2) If e is a double edge of r (i.e., e does not belong to a channel), resume the
point location search in the left subtree of r and return the leaf A where the
search terminates. (This corresponds to searching for a point p- immediately
to the left of edge e.)

(3) Otherwise (i.e., e is a single edge of r and belongs to a channel) resume the
point location search in both subtrees of or. (This corresponds to searching
for points p- and p+ immediately to the left and right of edge e, respectively.)
One of the two searches, say the left one, will terminate in a leaf, while the
other search, say the right one, will stop at a node o-’ that stores the other
representative of e. (Recall that the two nodes storing e are on the path from
leaf A to the root of T.) We resume the search in the left subtree of r’ and
return the leaf A where the search terminates. (The case where the right search
out of r terminates in a leaf is analogous.)

PROCEDURE FINDRIGHT(e; X). (It finds the cluster A to the right of edge e. If
e is part of a channel, then , is the cluster that contains such channel.)

(Analogous to FINDLtFT.)

LEMMA 9. Operations FINDLEFT(e; X) and FINDRIGHT(e; X) have each time

complexity O(log n).
Proof Since each edge has two representatives, there are at most two nodes of T

where we proceed to both children. Hence, we visit a total of O(log n) nodes, spending
O(log n) time at each node. [3

The complete algorithm for operation INSE.RTCHAIN(T, v, v2, r; r, r) is as
follows.

ALGORITHM INSERTCHAIN(T, Vl, v2, r; r, r2).
(1) Find regions q and s immediately preceding and following r, respectively;

also, find clusters XL and XR by means of FINDLEFT(el; XL) and FIND-
RIGHT(e2; XR). From these obtain A1, A2, Pl, and /92.

(2) Perform a sequence of CUT1 and CUT2 operations to decompose P=
P(LIA--ALzrRp--p2R2) into P(L), P(A), P(A2), P(L2), P(r), P(R), P(p),
P(p), and P(R2). The primary and secondary strands returned by each such
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operation, which form the boundaries of the above partial subdivisions, are
collected into a list L.

(3) Construct the primary and secondary strands of chain y and add them to L.
(4) Destroy P(r) and create P(r) and P(r2).
(5) Test for channels A-r and r2-p2, and perform a sequence of MERGE and

MERGE2 operations to construct the updated subdivision P(L,--rRp-
A2Lzrz--p2R2). The separators and channels needed to perform each such
merge are obtained by splitting and splicing the appropriate strands of L.

THEOREM 8. The time complexity ofoperation INSERTCHAIN( y, v, v2, r; r, r2),
where 7 consists of k edges, is O(log n + k).

Proof In step (1), finding q and s takes O(log n) time. In fact, q is either in the
cluster of r or in the cluster immediately preceding the one of r, and analogously for
s. By Lemma 9, finding XL and XR takes O(log n) time. The remaining computation
of &, ,z, p, and p2 can be done in O(log n) time. By Lemma 8, step (2) takes
O(log n) time. Note that the list L has O(1) elements. Step (3) can be clearly performed
in time O(k). Step (4) takes O(1) time since r, r, and r are single-region structures.
In step (5), testing for channels ,--r and r2--p2 takes O(1) time. Since the list L has
O(1) elements, we can construct in O(log n) time the separators and channels needed
for each merge operation of step (5). By Lemma 7 the total time for such merges is
O(log n). FI

With regard to the INSERTPOINT operation, we locate the edge e in the
dictionary, and replace each of the two representatives of e in the data structure with
the chain (e, v, e2). This corresponds to performing two insertions into sorted lists,
so that we have Theorem 9.

THEOREM 9. The time complexity of operation INSERTPOINT(v, e; e, e) is

O(log n).
A similar argument shows Theorem 10.
THEOREM 10. The time complexity ofoperation MOVEPOINT(v; x, y) is O(log n).

4.4. Deletion. The transformations involved in a REMOVECHAIN operation are
exactly the reverse of the ones for the INSERTCHAIN operation. We observe that
all the updates performed in the latter case are totally reversible, which establishes
Theorem 11.

THEOREM 11. The time complexity of operation REMOVECHAIN(y; r), where y
consists of k edges, is O(log2 n + k).

The same situation arises with respect to the INSERTPOINT and REMOVE-
POINT operations, so that we have Theorem 12.

THEOREM 12. The time complexity ofoperation REMOVEPOINT(v; e) is O(log n).
Theorem A stated in results from the combination of the above Theorems 5,

6, 8, 9, 11, and 12.

5. Conclusion and open problems. The above technique represents a reasonably
efficient solution of the dynamic point location problem. It requires no new sophisti-
cated or bizarre data structures, and it appears eminently practical.

It remains an open problem whether O(log n) optimal performance is achievable
for query/update times; in particular, whether the technique of fractional cascading,
which achieved optimality for its suboptimal static predecessor [EGS], can also be
successfully applied to the presented technique.

Another challenging open question is to extend our technique to general planar
subdivisions.
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Abstract. The limit sets of cellular automata, defined by Wolfram, play an important role in
applications of cellular automata to complex systems. A number of results on limit sets are proved,
considering both finite and infinite configurations of cellular automata. The main concern of this
paper is with testing membership and (essential) emptiness of limit sets for linear and two-dimensional
cellular automata.
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1. Introduction. Recently, cellular automata (CA) have been intensively stud-
ied as models of complex systems, especially systems containing a large number of
simple components with local interactions [11], [12], [13]. An important role in these
models is played by the limit sets of CA. The limit set of a CA consists of those config-
urations that might occur after arbitrarily many computation steps of the automaton.
They correspond to the concept of attractors in the chaos theory in physics.

Many problems concerning CA limit sets are open [6], [11], [13]. In this paper,
we study several versions of the "emptiness problem" for CA limit sets. We show
that for k _> 2 it is undecidable whether the limit set of a given k-dimensional cellular
automaton consists of the quiescent configuration only. We also show that for all k _> 1
it is undecidable whether the limit set of a given k-dimensional cellular automaton
contains a finite configuration. The first problem for k 1 is still open. However,
we show that if the limit set of a given cellular automaton contains the quiescent
configuration only, then all the configurations map to the quiescent configuration in
a bounded number of steps. The methodology of this work is of interest. Besides
automata theoretical techniques we also use, as Hurd did [6], the product topology
on the space of configurations; we use the fact that this topological space is compact.

In 2 we define cellular automata and their limit sets. in 3 we endow the set
of states of a CA cell with the discrete topology and observe that the space of all
the configurations of the CA with the product topology is compact by Tychonoff’s
theorem. We then use compactness to prove several properties of the limit sets,
including nonemptiness. We also use Baire’s category theorem to derive a classification
of cellular automata.

In the following section we prove two results about the relationship between the
limit sets and the limit languages of linear (one-dimensional) automata.

In 5 we use the undecidability of the tiling problem to prove that for k _> 2 it
is undecidable whether the limit set of a given k-dimensional cellular automaton is a
singleton.
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A configuration of a CA is called finite if all but finite (nonzero) number of cells
are quiescent. In 6 we study the limit sets of finite configurations, i.e., the intersection
of the limit set with the set of finite configurations. Our main result here is that it
is undecidable whether the limit set of finite configurations is empty even for linear
CA. The set of all finite subwords of the configurations in a limit set is called a limit
language. We show that the membership problem for CA limit languages, i.e., whether
a given string is in the limit language of a given linear CA, is undecidable. Using the
existence of a universal CA [1], we prove that there exists a CA whose limit language
is not recursive. Similar results were proved by Hurd [6]. In 6 it is explained how
our results relate to those in [6].

There are simple regular languages that are not CA limit languages. On the other
hand, since the complement of any CA limit language is recursively enumerable,
a limit language is recursive if and only if it is recursively enumerable. Thus the
result mentioned above implies that not all limit languages are recursively enumerable
[6]. Moreover, there is no obvious effective translation between the description of a
recursive limit set by its CA and the description by a Turing machine. For more
detailed proofs of the results in 4-6 see [4].

2. Cellular automata: Basic definitions. Let Z be the set of integers, and
Zk the set of k-tuples of integers. A cellular automaton, abbreviated CA (or, more
specifically, a k-dimensional cellular automaton, kD CA), is an infinite array, indexed
by Zk, of cells. Each cell is identified by its location I E Z.

At any time, each cell has a state, which belongs to a finite set S. The dynamic
behavior of the CA is determined by a rule that describes the state of each cell at
time t + 1 as a function of the states of some neighboring cells at time t. The rule is
invariant with respect to translations (shifts) of Zk.

Formally, a cellular automaton is a quadruple A (k,S,N, f), where k _> 1 is
the dimension, S is the finite set of states, N is the neighborhood, and f is the local
function of A. The dimension k is an integer, k >_ 1. The (relative) neighborhood
N is a sequence (I1, I2,..., Ih) of relative locations Ij Zk, 1 <_ j <_ h. The local
function is a total function f" Sh S.

A configuration c of the CA is a function c" Zk S, which assigns a state in S
to each cell of the CA. The set of configurations is denoted Szk The local function

f is extended to the global function

GI SZk --* SZ

of the set of configurations into itself. By definition, for cl, c2 6 Sz

](c)

if and only if

c2(I) :(c(I + I1), Cl(I + i2), Cl(I -+- Ih))

for all I Zk.
The function G] describes the dynamic behavior of the CA: The CA moves from

the configuration c at time t to the configuration Gf(c) at time t + 1. The state of
the cell I at time t + 1 depends only on the states of the cells in the neighborhood
(I + I,I + I2,...,I + Ih) at time t. Notice that besides being locally defined, the
global function Gf is total and translation invariant.
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Example 1. Let A (1, S, N, f) be a one-dimensional CA, where S {0, 1},
N (-2,-1, 0, 1, 2), and

1
f(xl,X2,x3, x4,x5) 0

if X + X2 + x3 -- x4 -- X5 4;
otherwise.

If c is a configuration consisting of all 1’
O’s, then Gi(c c’.

s and c is a configuration consisting of all

For c C Szk the sequence (c, Gf(c), G/2(c), G/3(c),
Frequently, a state with the property

..) is called the orbit of c.

is distinguished and called the quiescent state. In a CA, there may be more than
one state with the above property, but at most one of them is distinguished as the
quiescent state. The configuration with all cells in the quiescent state is called the
quiescent configuration, denoted by (.

Let A (k, S,N, f) be a CA. Define

(o) SZk and

2(i) Gf((i-) for i_> l

Then

gt ’) ft (i)

i=0

is called the limit set of A.
Define

={ es

(this is the set of "fixed points" of GI). Obviously (I) C_ ft.

3. The product topology on configurations. The configuration space Sz is
a product of infinitely many finite sets S. When S is endowed with the discrete
topology, the product topology on Sz is compact by Tychonoff’s theorem [7, Thm.
5.13]. A subbasis of open sets for the product topology consists of all sets of the form

(1) { c e SZ [c(i)=a},

where E Zk and a E S. A subset ofSzis open if and only if it is a union of
finite intersections of sets of the form (1). It is easy to show that the global function
Gf defined in the previous section is continuous from Szk to Sz (Thus the pair

(Sz Gf) is a classical dynamical system, in the sense of [3].)
THEOREM 3.1. For every Gf the limit set 2 is nonempty.
Proof. Since GI is continuous, each 2(i), _> 0 is a continuous image of the

compact space Sz Hence ft (i) are nonempty compact subsets of Sz and ft() _D
f(1) _D ft(2) _D Therefore the intersection Ft ["]i=0 gt(i) is nonempty. V1

The theorem has also an easy nontopological proof.
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An alternative proof. Let c" Zk S be a constant function (i.e., there is a E S
such that c(I) a for all I E Zk). In the orbit (c, cl, c2,." ’) of c, each cj is a constant
function. Since the set S is finite, there are only finitely many constant functions
from Z to S, and thus there exists m such that Cm cj for infinitely many j. Hence
Cm (i) for all 0, and

For some CA, the limit set f contains only one configuration. In particular, for a
CA with a special quiescent state , it is possible that the limit set contains only the

?

quiescent configuration Q. It was open whether the problem t -+- {(} is decidable
for k-dimensional CA for k _> 1. It is still open for k 1.

Now we are going to use Baire’s category theorem to classify cellular automata
by the limit behavior of their orbits. A subset of a topological space is called a (;5 set
if it is the intersection of a countable family of open sets.

THEOREM 3.2. Let C be a closed translation-invariant subset o] Sz Exactly
one of these two conditions is true:

(i) There exists an integer :> 0 such that Gfi(SZ C_ C.
(ii) There exists a dense G5 set D C_ SZ such that

CNUGfi(D)=O.
i--0

Proof. For 0, 1, 2,..., let

v, { e s e c }.
The sets Fi are closed and translation invariant. Let

D Sz U Fi
i=0

Thus D is a 155 set in SZ and

C n U G:(D) .
i=0

If D is dense in Sz, then condition (ii) holds.
(:X)If D is not dense, then Ui=0 Fi contains a nonempty open subset E of SZ

The set E is locally compact; therefore, by Baire’s theorem [7, Thm. 6.34], there
exists such that Fi contains a nonempty open subset of E, which is an open subset
of SZ Since Fi is translation invariant, it follows that Fi contains a nonempty
open translation-invariant subset of Sz However, every nonempty open translation-
invariant subset of SZ is dense in Sz Since Fi is closed, it follows that Fi Sz
and therefore (i) holds.

In the notation of 2, ft (i) Gfi(Sz ). The set {0} (the singleton set contain-
ing only the quiescent configuration) and the limit set gt are closed and translation
invariant. Thus we obtain Corollaries 1 and 2.

COROLLARY 3.3. If 2 7 {)}, then there exists a configuration whose orbit does
not contain

Proof. If there exists such that f(i) C_ {0}, then ft {)}. Therefore, by
Theorem 3.2, if ft {(}, then condition (ii) holds with C {)}. If c e D, then the
orbit of c does not meet {Q}.

COROLLARY 3.4. For each CA, exactly one of these two conditions is true:



LIMIT SETS OF CELLULAR AUTOMATA 835

(i) There exists an integer >_ 0 such that t(i) Ft.
(ii) There exists a dense G5 set D c_ SZk such that

UGIi(D) =0.
i=0

It is easy to find CA satisfying condition (i) in Corollary 3.4. For instance, (i)
holds whenever Gj is surjective (because in that case t () SZk for every i).
On the other hand, the CA in the following example does not satisfy (i) (and therefore
it satisfies (ii)).

Example 2. Let A (1, S, N, f) be a one-dimensional CA such that S {0, 1},
N (-1, 0, 1), and

1 ifa_l=ao=al-1;f(a-l,ao,a)= 0 otherwise.

In this example,

t={l}u{01n0ln=0,1,2,-..}.

However,

Gfi(012i+012i+0) 0102i+10

and therefore gt (i) gt for every i, which means that condition (i) in Corollary 3.4
does not hold.

Now we prove that condition (ii) in Corollary 3.4 never holds when t {(}.
THEOREM 3.5. {(} if and only if there exists an integer >_ 0 such that

Proof. The if part is trivially true. To prove the only if part, assume that
gt {(}. Choose one cell Io E Zk, and define

c={ es  (I0) # 4}.

Then C is a closed set and

By compactness, (i) A C 0 for some i. Since t(i) is translation invariant,

r() n { c Sz‘ e(I) 4:0 } 0

for every I Zk. Hence gt (i) {(}. [:1

Theorem 3.5 yields a semi-procedure for demonstrating that t contains only the
quiescent configuration. To define the semi-procedure, we extend the global function

Gf to operate on partial configurations. If W C_ Zk, define

N-I(W)={IZkII+IjW for l<_j<_h}

and for a function c W S define

G(c) =c,
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where c2 "N-I(W) S is such that

c2(I) f(cl(I + I),c(I + I2),...,Cl(I + In))

for all I E N-(W).
For r _> 0, define the k-dimensional interval Wr to be the product of one-

dimensional intervals [-r, r]; that is,

Wr { (i,i2,’’’,ik) E Zk --r <_ij <_r for j=l,2,...,k}.

Denote by I0 the origin in Zk, i.e., the k-tuple of zeros.
COROLLARY 3.6. Let r >_ 0 be such that N C_ Wr. Then ft {)} if and only

if there exists an integer >_ 0 such that for every function c" Wit S the function
ayi(c) maps Io to (1.

Proof. The corollary follows from the theorem and from this observation, which
can be proved by induction in i" If c" Wi S and c" Zk --, S agree on Wi, then
Gii(c) and Gyi(c’) agree at I0. rl

The following semi-procedure determines that gt {Q}: Let A (k, S,N, I) be
the given CA. Find r such that N C_ W. For 1,2,..., generate all functions
c Wi --* S, and for each such c compute the value of Gli(c) at I0. Stop when,
for some i, all the values are 0. This is only a semi-procedure, because it never halts
when ft {}.

?
We conjecture that the problem ft {O} is decidable for linear (i.e., one-

dimensional) CA. In 5 we show that the problem is undecidable for two-dimensional
CA, and therefore also for k-dimensional CA when k _> 2. In the remainder of this
section, we show that the same problem for (I, (the set of fixed points of GI, defined
at the end of 2) is decidable for linear CA, although (as will be proved in Theorem
5.3) it is undecidable for dimensions k >_ 2.

A configuration c" Z S is called periodic if there is rn > 0 (called a period of
c) such that c(j + m) c(j) for every j e Z.

LEMMA 3.7. For a linear CA (1, S, N, f let r > 0 be such that N C_ [-r, r], and
let n be the cardinality of S. If {0} then there exists a periodic configuration
c , c Q, with period at most n2r+l.

Proof. Choose any c’ G (I) {}. Find the smallest j > 0 such that for some jo
the restrictions of c’ to the intervals [jo, j0 + 2r] and [j0 + j, jo + j + 2r] are identical
(modulo a shift) and c’(jl) for some j in [j0,j0 + j]. Since there are n2r+

different partial configurations d’[-r, r] S, it follows that j _< n2r+1. Define c to
be the (unique) configuration that is equal to c’ on the interval [jo, j0 + j + 2r] and
periodical with period j. [:]

THEOREM 3.8. The problem ? {)} is decidable for k 1.

Proof. In view of Lemma 3.7, the following algorithm decides whether {}"
Generate all partial configurations c" I-r, n2+ + r] S, and for each such c check
whether there exists an integer m, 0 < rn < n2+1, such that Gy(c)(j) c(j) for
0 < j <_ nr+, c(j) c(j + m) for -r < j _< r, and c(0) 7 . If there is at least one
c for which the test is positive, then - {0}. Otherwise, {0}. U

4. The limit languages of linear cellular automata. In this section we as-
sume that A (1, S, N, f); that is, A is a linear CA.

We treat a configuration of A as a bi-infinite word over the alphabet S. With
every set of configurations we associate a set of finite words (strings) over S’, as follows:
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For a bi-infinite word c E Sz, define (as in [61)

L[c] { w e S* w is a finite subword of c},

and, for C C_ SZ, define

cEC

L[C] is called the language of C. If f is the limit set of the CA A, then we call L[f]
the limit language of A.

The next theorem gives an alternative definition of the limit language LIFt].
THEOREM 4 1 LIFt] i=o LIft(i)]
Proof. Since f C_ t(i) for every i, it follows that L[2] C_ i L[f(i)] To prove the

opposite inclusion, choose any w i Lift(i)] Let j be the length of w. Define

C { c e SZ c(1)c(2)...c(j) w }.

Then C is a closed set and C N ft (i) : O for every i, by the choice of w and the
translation invariance of ft (i). By compactness,

i=0

which means that w is a subword of some c G f, hence w L[ft]. []

Wolfram [12] shows that the set Lift()] is regular for each _> 0. This result
can be proved using the fact that regular sets are closed under general sequential
machine (GSM) mappings [5]. Indeed for each local function f it is easy to construct
the GSM T$ that maps each word w in L[f()] with Iwl >_ r, where r is the span of
the neighborhood, into the successor string of length Iwl- r in L[2(i+l)]. The set
L[a()]- S* is r gul  , therefore for each > 0, L[a(i+1)] Ty(L[a(i)]) is regular as
well. We omit the details of this proof.

A natural extension of finite automata (FA) to bi-infinite words (ww-words), called
ww-FA, is described in [4]. The set of bi-infinite words recognized by an ww-FA is
called an ww-regular set.

In [4] we prove that
(i) the sets f(i) are ww-regular;
(ii) the set t is ww-regular if and only if the language L[a] is regular.

Hurd [6] shows that L[a] need not be regular.
As a corollary of the next theorem, we shall give a characterization of f in terms

of Lift].
THEOREM 4.2. if C c_ SZ is translation invariant, then the set { c Sz L[c] C_

L[C] } is the closure of C in the product topology.
Proof. Let D { c e SZ In[c] c_ L[C] }. The complement of D in Sz is open.

Indeed, if c’ D then c’(i)...c’(j) f L[C] for some i,j Z,i <_ j. In that case the
set

{ e sz (i)... c(j) c’(i).., c’(j) },

which is a neighborhood of c in the product topology, does not intersect D.
Since D is closed and C c_ D, it follows that the closure ’ of C is a subset

of D. To prove that D C_ C, choose any d D. Then for everyj > 0 the word
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d(-j).., d(j) is a subword of some cj E C. Since C is translation invariant, we can
choose cj so that d(-j)...d(j) cj(-j)...cj(j). But then d is the limit of the
sequence (cj j 0, 1,...) in the product topology, which proves that d E C. [:]

COROLLARY 4.3. A configuration c SZ belongs to the limit set t’l if and only if
L[c] C_

Proof. By Theorem 4.2, { c e SZ In[c] c_ L[t2] }. [:]

5. The limit sets of two-dimensional cellular automata. In contrast to
the conjecture we made for linear CA in 3, we are now going to show that it is
undecidable, whether or not the limit set of a given two-dimensional CA consists of
the quiescent configuration only. Consequently, the same problem for k-dimensional
CA limit sets is undecidable for any k _> 2. The proof is based on a well-known deep
result, the undecidability of the tiling problem. The tiling problem was raised by
Wang [10], and proved to be undecidable five years later by Berger [2]. Robinson gave
a more readable proof in [9].

THEOREM 5.1. It is recursively undecidable whether or not the limit set t’l of a
given two-dimensional CA consists of ( only.

Proof. We show that the tiling problem can be transformed into our problem.
We are given a set of tiles

T { (l,ri, ui, di) ll <_ <_ n },

where li, ri, ui, and di denote the colors of the left, right, upper, and lower edges,
respectively. In the following, we use l(t), r(t), u(t), and d(t) to denote the colors
of the four edges of a tile t; that is, t (/(t), r(t),u(t),d(t)). We construct a CA
A (2, Q, N, f), where

N ((0, 0), (-1, 0), (1, 0), (0, 1), (0,-1));
and

to ifl(to) r(tl),r(to) =/(tr),
f(to, tl, tr, tu, td) U(to) d(t,), and d(to) u(td);

otherwise.

Now we show that there is a valid tiling of the plane if and only if the limit set of
A is not {}, where ( denotes the quiescent configuration. If the plane can be tiled
with the given tiles, then all the valid tilings are configurations in the limit set of A.
If the plane cannot be tiled with the given tiles, then there is an integer _> 1 uch
that the square of size cannot be tiled (this follows from KSnig’s infinity lemma [8,
pp. 381-383]). By the definition of f, Gf(c) = ( for all c SZ2. This implies that
t (i) {(}, and the limit set is equal to {(}.

Since the tiling problem is tndecidable, the problem Ft ? {(} for two-dimensional
CA is also undecidable. D

COROLLARY 5.2. It i8 recursively undecidable, whether or not the limit set of a
given k-dimensional CA consists of the quiescent configuration only, for any k >_ 2.

Proof. Define the local function such that only two dimensions are actually
effective. A cell remains in the same nonquiescent state if its four neighbors in two
specific dimensions satisfy the rule of tiling.

The same technique does not work. for linear CA because the tiling problem in
one dimension is trivially decidable.
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Observe that, for the given set of tiles and the cellular automaton constructed
in the proof of Theorem 5.1, there is a valid tiling of the plane if and only if the set

C_ Sz (defined at the end of 2) contains some configuration different from the
quiescent configuration Q. Thus the proof of Theorem 5.1 also proves the following
result.

THEOREM 5.3. For k >_ 2 it is recursively undecidable whether (I) {(}.
6. Limit sets of finite configurations. A configuration is finite if the num-

ber of nonquiescent cells is finite but not zero. Let $" denote the set of all finite
configurations of a CA A. We define the limit set of finite configurations of A as

In this section, we show that, given an arbitrary CA, it is undecidable whether
gtF is empty. The difficulty in transforming the Turing machine halting problem into
this problem is that CA do not distinguish input symbols from working symbols. Note
also that the limit set of finite configurations may be nonempty, even if every finite
configuration eventually becomes quiescent. This is shown by Example 3.

Example 3. Let A (1, S, N, f) be the linear CA defined in Example 2. That is,
S {0, 1}, N (-1,0, 1), and

1
f(a-l,ao, al) 0

if a-1 a0 al 1;
otherwise.

In this example, either "0" or "1" can be distinguished as the quiescent state. If
"0" is the quiescent state, then the limit set of finite configurations is the set of all
configurations that have exactly one substring of the form "011 10". If "1" is the
quiescent state, then the limit set of finite configurations is empty.

Now, we show that given a CA it is undecidable whether gtF is empty. To prove
this is much harder than it appears at first. One might think that since a CA can
easily simulate a Turing machine (TM), we can reduce the TM halting problem to
this problem using a rather standard approach. However, this does not work since the
CA we are considering do not distinguish input symbols from work symbols (i.e., tape
symbols for a TM). Assume that a CA A simulates a TM M. Then every configuration
of M may appear as an initial string of A including the halting configurations which
may never be reached by M. Two distinctive technique are used in the following
proof. One is the repeated initialization of the simulation of a TM on a blank tape.
The other is the continuous decreasing, rather than increasing, of the size of the
simulation.

THEOREM 6.1. Given a CA, it is undecidable whether ’F .
Proof, In this proof we consider linear CA only. The result can be easily

extended to multidimensional CA.
Given a Turing machine M operating on a one-way infinite tape, we construct

a CA A as follows. Besides the quiescent state, the state set of A consists of a left
boundary state, l; a right boundary state, r; the left- and right-moving signals sl and
st; a yellow state, y; a destroyer, d; and a set of blue states, B {bl,b2,... ,bt}.
The blue states are used to encode the computation of M. Before describing how
A operates, we first introduce the notion of valid segments. A segment is the finite,
consecutive, nonquiescent part of a configuration, that is surrounded by quiescent
cells. A segment is valid if
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(i) its left and right boundaries are and r, respectively;
(ii) it has a signal symbol s E {st, st} between and r

(iii) every cell between and s is in a blue state;
(iv) all cells between s and r are in the yellow state.
A segment is invalid otherwise. The validity of a segment can be checked locally in
one step. If a configuration contains an invalid segment, the destroyer d is generated
and spreads. It is not ditficult to prove that every finite configuration that contains
an invalid segment is not in the limit set. This statement is even true for infinite
configurations. A valid segment evolves as follows. See Fig. 1. The left boundary

81 1"

blue ?

bh

FIG. 1. A computation oj’ CA A.

stays unchanged. The right boundary moves to the left at half speed (one cell each
two steps). The signal st moves left at full speed (one cell each step) until it meets 1.
Then it changes to sr and moves right. The signal s changes back to st when it meets
r. And this repeats. Each time st meets l, a simulation of M starts. Each simulation
is restricted to a triangle-shaped region labeled blue in the time-space diagram in Fig.
1. The simulation may repeatedly start and terminate until and r meet. If a halting
configuration of M is simulated, the destroyer d is generated and spreads. Then the
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simulation is aborted by the spreading destroyers.
Now, we show that M starting with the blank tape halts if and only if the limit

set of A does not contain a finite configuration.
If M never halts, then we can have arbitrarily large blue triangles. The configu-

ration

Co ."q q q r q q q ...,
where q is the quiescent state, has an infinite history, i.e., for any integer _> 0, there
exists a configuration of A such that it maps to co in exactly steps. Therefore, co is
in the limit set of A.

If M halts in n steps, then no blue triangle that allows the simulation of M
to operate for more than n steps exists. Only the first blue triangle which has a
missing upper corner can be an exception. So, it is not difficult to show that no

configuration with a valid segment is in the limit set. Since, as we mentioned, no
other finite configurations are possible in the limit set, the limit set of A contains no
finite configurations.

The following theorem was proved by Hurd [6, Thm. 4].
THEOREM 6.2. Given a CA A (1, S, N, ]) and a string w E S*, it is undecidable

whether w is in the limit language of A.
Proof. For the cellular automaton A constructed in the proof of Theorem 6.1, the

string Ir is in the limit language if and only if F .
Our next result (Corollary 6.3) has been stated in [6] as a direct consequence of a

theorem equivalent to our Theorem 6.2. However, we feel that Corollary 6.3 does not
immediately follow from Theorem 6.2. In order to find a nonrecursive limit language,
one must show that for one particular CA A it is undecidable whether a given string
is in the limit language of A.

COROLLARY 6.3. There exists a linear cellular automaton such that its limit
language is not recursive.

Proof. The corollary follows from Theorem 6.2 with the help of a universal CA. A
universal CA is given in [1], where any CA is simulated by encoding its local function
in the states of the universal CA. Given a CA A and a string w of A, there is a string
w of the universal CA such that w encodes both A and w. Now, the problem of
whether w is in the limit language of A is transformed to the problem of whether
w (the encoding of A and w) is in the limit language of the universal CA. Since the
former is undecidable, the latter is undecidable, too.

REFERENCES

[1] J. ALBERT AND K. CULIK II, A simple universal cellular automaton and its one-way and
totalistic version, Complex Systems, 1 (1987), pp. 1-16.

[2] R. BERGER, The undecidability of the domino problem, Mem. Amer. Math. Soc., 66 (1966),
pp. 1-72.

[3] J. R. BROWN, Ergodic Theory and Topological Dynamics, Academic Press, New York,
(1976).

[4] K. CULIK II, J. PACHL, AND S. YU, On the limit sets of cellular automata, Res. Report
CS-87-47, Dept. of Computer Science, Univ. of Waterloo, 1987.

[5] J. E. HOPCROFT AND J. D. ULLMAN, Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley, Reading, MA, 1979.

[6] L. P. HURD, Formal language characterizations of cellular automaton limit sets, Complex
Systems, 1 (1987), pp. 69-80.

[7] J. L. KELLEY, General Topology, Van Nostrand, New York, 1955.



842 K. CULIK II, J. PACHL, AND S. YU

[8] D. E. KNUTH, The Art of Computer Programming, Vol. I, second edition, Addison-Wesley,
Reading, MA, 1973.

[9] R. M. ROBINSON, Undecidability and nonperiodicity for tiling of the plane, Invent. Math.,
12 (1971), pp. 177-209.

[10] H. WANG, Proving theorems by pattern recognition II, Bell System Tech. J., 40 (1961), pp.
1-41.

[11] S. WOLFRAM, Universality and complexity in cellular automata, Physica, 10D (1984), pp.
1-35.

[12] Computation theory of cellular automata, Commun. Math. Phys., 96 (1984), pp.

15-57.
[13] Twenty problems in the theory of cellular automata, Physic Script, T9 (1985), pp.

170-183.



SIAM J. COMPUT.
Vol. 18, No. 4, pp. 843-857, August 1989

()1989 Society for Industrial and Applied Mathematics
015

EFFICIENT MESSAGE ROUTING IN PLANAR NETWORKS *
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Abstract. The problem of routing messages along near-shortest paths in a distributed network
without using complete routing tables is considered. It is assumed that the nodes of the network
can be assigned suitable short names at the time the network is established. Two space-efficient
near-shortest-path routing schemes are given for the class of planar networks. Both schemes use
the separator property of planar networks in assigning the node names and performing the routings.
For an n-node network, the first scheme uses O(logn)-bit names and a total of O(n4/3) items of
routing information, each O(logn) bits long, to generate routings that are only three times longer
than corresponding shortest routings in worst case1. For any constant e, 0 < < 1/3, the second
scheme achieves the better space bound of O(n+) items, each O((1/e) log n) bits long, but at the
expense of O((1/e) log n)-bit node names and a worst-case bound of 7 on the routings.

Key words, distributed network, graph theory, planar graph, routing, separator, shortest paths
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1. Introduction. One of the primary functions in a distributed network is the
routing of messages between pairs of nodes. Assuming that a nonnegative cost, or

distance, is associated with each edge, it is desirable to route along shortest paths.
While this can be accomplished using a complete routing table at each of the n nodes
in the network, such tables are expensive for large networks, storing a total of O(n2)
items of routing information, where each item is a node name. Thus, recent research
has focused on identifying classes of network topologies for which the shortest paths
information at each node can be stored succinctly. It is assumed that the nodes can be
assigned suitable short names at the time the network is established. The idea behind
naming nodes is to encode useful information about the network into the node names
and then to make use of this information when performing the routing. Shortest-
path routing schemes that use O(logn)-bit node names and a total of (9(n) items
of routing information have been given for networks such as trees, unit-cost rings
[12],[13], unit-cost complete networks, unit-cost grids [14], and networks at the lower
end of a hierarchy identified in [5] (the simplest of which are the outerplanar networks
[7]). Unfortunately, the approach in the research cited above becomes expensive even
for very simply defined classes of networks such as, for instance, the series-parallel
networks [3]. However, by shifting our focus to consider schemes that route along
near-shortest paths, we have been able to design space-efficient routing schemes for
much broader classes of network topologies.

The issue of saving space in routing tables by settling for near-shortest path
routings was first raised in [8]. (Indeed, this is the first reported work on the problem
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of space-efficient routing.) Networks of general topology were studied in [8], and a
clustering approach was proposed for naming the nodes. Unfortunately, no indication
was given of how to do the clustering. Furthermore, the routings produced depended
crucially on certain strong assumptions about the structure of the clusters, and, in
worst case, could be O(n) times longer than shortest routings. In this paper, and
in related work [6], we consider various classes of networks that exhibit a certain
separator property and show how to take advantage of this property to design space-
efficient near-shortest routing schemes. All our schemes achieve routings that are, in
worst case, only a small constant times longer than corresponding shortest routings.
More recently, general networks with unit-cost edges have been considered in [11],
and a trade-off has been established between the space used and the quality of the
routings generated. Both upper and lower bounds are given for this trade-off.

In this paper we present near-shortest-path routing schemes for planar networks.
A planar network is a network that can be embedded in the plane such that edges do
not cross [7]. We measure the quality of the routings achieved by our schemes on a
network by the performance bound, defined as the maximum ratio t(u, v)/p(u, v) taken
over all pairs of nodes u, v in the network, where p(u, v) is the length of a shortest
path from u to v and t(u, v) is the length of the routing from u to v. We give a routing
scheme that for any constant , 0 < < 1/3, can be set up to use O((1/)logn)-bit
names and O(nTM) items of routing information, each O((1/e) log n) bits long, and
achieve a performance bound of 7. Our approach makes use of separator strategies
[9],[10] to decompose the network hierarchically and generate names for the nodes.
However, using only the Lipton-Tarjan separator algorithm [9], the best we are able
to achieve is a scheme that uses O(n4/3) items, each O(logn) bits long, although
with a better performance bound of 3. To reduce the storage to O(nTM) items, we
employ a combination of very sparse routing tables and interval routing [5] to route in
succession to a number of intermediate destinations carefully placed at higher levels
of the decomposition. We show how Miller’s algorithm [10] can be applied to generate
the structured separators necessary for encoding the interval routing information.

In [6], we give a near-shortest-path routing scheme for any class of c-decomposable
networks, i.e., networks that can be decomposed recursively by separators of size at
most a constant c, where c >_ 2. Examples of such networks are the series-parallel
networks [3], for which c 2, and the k-outerplanar networks [1], for k > 1 a con-
stant, for which c 2k. A basic scheme is given which uses O(cn log n) items of
routing information, each O(log n) bits long, and O(log n)-bit names, generated from
a separator-based hierarchical decomposition of the network, to achieve a performance
bound of 3. We then show how to generate improved routings by including in the
node names O(c log c log n) additional bits of information about relative distances in
the network. The resulting scheme has a performance bound of (2/c) + 1, where a,
1 < a _< 2, is the root of the equation ar(c+)/2] a 2 0. Thus, the performance
bound is 2 for c _< 3 and ranges up to strictly less than 3 for increasing values of c.

The decomposition technique used in [6] for c-decomposable networks does not
yield a space-efficient solution for planar networks, since the latter have separators
of size O(v). Instead, we take advantage of a different approach for planar graph
decomposition, which is presented in [4]. This result is reviewed briefly in 2.1. The
remainder of 2 describes the O(n4/3)-space scheme, called Scheme I, while 3 dis-
cusses the O(n+)-space scheme, called Scheme II.

2. A basic routing scheme: Scheme I.
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2.1. Multilevel division and naming in Scheme I. Throughout the paper
we model our network by an undirected planar graph G. (For graph-theoretic terms
not defined here, see [2],[7].) For the purposes of assigning the node names and
setting up the routing information, we perform a multilevel division of G into regions.
A division of a planar graph is a grouping of its nodes into subsets called regions.
A region contains two types of nodes, namely, interior nodes and boundary nodes.
An interior node is contained in exactly one region and is adjacent only to nodes
contained in the region, whereas a boundary node is contained in two or more regions.

For any parameter f(n) < n, an f(n)-division of a planar graph is a division of
the graph into O(n/f(n)) regions with a total of O(n/v/f(n) boundary nodes, where
each region contains no more than f(n) nodes and O(v/f(n)) boundary nodes. An
f(n)-division of a planar graph exists for any f(n) < n. An algorithm for performing
an f(n)-division of a planar graph, based on the planar separator algorithm of [9], is
given in [4]. Briefly, the f(n)-division algorithm involves careful, repeated application
of the planar separator algorithm to G until no region has more than f(n) nodes. We
take the boundary nodes of the regions to be the separator nodes generated by the
separator algorithm. The division has the property that any path between boundary
nodes that are interior to different regions must contain a boundary node of each of
these regions. We will make use of this property to do the routing. The reader is
referred to [4] for more details of the f(n)-division algorithm. We note that although
the algorithm in [4] is based on the planar separator algorithm of Lipton and Tarjan
[9], it can easily be adapted to use the separator algorithm of Miller [10] as well.

The regions at various levels in the multilevel division are defined inductively as
follows. The level 0 region R1 consists of the nodes of G, with all nodes interior. In
general, the name of a region is of the form RT, where 7 is a sequence of positive
integers. Let f(n) < n be a parameter to be specified later. For _> 1, let R7 be a
level 1 region with n nodes. If R7 has a nonzero number of interior nodes, then
the f(n’)-division algorithm of [4], based on the separator algorithm of [9], is applied
to it to generate the level regions R71, R72,... RTr for some positive integer r > 1.

While performing the division of RT, we treat the boundary nodes of R7 as
boundary nodes of the resulting level regions also. From the arguments in [4] it can
be shown that, for the choice of f(.) to be made, the division is still an f(.)-division.
A node v that is interior to R7 and first becomes a boundary node during its division
is a level node. Any other level node generated by the division of R7 is a sibling of
v. A boundary node u of a level j region, j < i, to which v is interior is an ancestor of
v for level j. We call v a descendant of u. Two nodes are related if one is an ancestor
of the other or if they are siblings. Otherwise, they are unrelated.

Each level node resulting from the division of R7 is assigned the name "y, with
an integer distinguisher appended to make the names distinct. This naming has the
property that for unrelated nodes v and u, the length of the longest common prefix
of the distinguisher-free portions of their names is the smallest integer for which the
nodes are in different level regions. We call level the separating level for v and u.

For the purposes of doing the routing, additional information is encoded into the
name of a level node v, identifying the closest ancestor of v for each level j < i.
An integer, called a level j designator, is associated with each boundary node of the
level j regions that result from the division of the level j- 1 region to which v is
interior. The level j designator of the closest ancestor of v for level j is recorded in
v’s name, in the jth field following the distinguisher.

The length of the names depends on the parameter f(.). We will show in 2.2
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RI$

FIG. 1. Illustration of the first level in the multilevel division and naming of a planar graph.

that, for the choice of f(.) to be made, the names are O(log n) bits long.
We illustrate the decomposition and naming using Fig. 1. The given graph,

constituting the level 0 region R1, is divided into three level 1 regions: RI, R2, and
R3. The level 1 nodes, which are the boundary nodes resulting from the division,
are shown filled in. The names assigned to these nodes are also shown. The "#"
symbol is a delimiter and the integer following it is the distinguisher. No designators
are encoded into the names of the level 1 nodes, as they do not have any ancestors.

2.2. Routing information stored at the nodes in Scheme I. Once the
nodes have been assigned suitable names, based on their position in the decomposition,
appropriate information is stored at them to do the routing. We first give an overview
of the routing strategy in order to motivate the routing information stored. Let s be
any source and d any destination. The strategy for routing from s to d depends on
whether or not s and d are related. As we will see, it is not too expensive, in terms of
total storage used in the network, to store a routing table at s to route to all related
nodes d. However, this approach is expensive for routing between unrelated nodes,
as the total number of pairs of unrelated nodes is large. Instead, the routing from
s to an unrelated node d is done in three stages, as follows. Let be the separating
level for s and d; let 8 be the closest ancestor of s for level l; and let be the closest
ancestor of d for level 1. In the first stage, the message is routed from s to 8, in the
second stage from 8 to , and in the third stage from to d. Note that since the
source and destination for each stage are related nodes, routing information for each
stage is available in the routing tables stored. For this approach to work, s must
have available the name 8, and 8 must have available the name d. The former is
accomplished by storing at s the name of its closest ancestor for each level. The latter
is accomplished by storing at 8 a table mapping the designators of certain nodes to
their names. The name d is determined by 8 by indexing into this table using the
designator of the closest ancestor of d for level l, which has been encoded in d’s name.

One problem that can arise in the routing strategy described is the following.
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FIG. 2. Illustration of the next milestone, al, and the final milestone, a2, for u at v.

Consider the routing from some node v to a related node u during some phase in the
routing from s to d, where v and u are possibly s and d, respectively. Let w be the
node to which v must send the message, as determined by v from its routing table.
Now, if w and u are unrelated, then w will not be able to continue the routing to u.
The problem is overcome by having v make available to w, in the message header, the
names al and a2 of a pair of related nodes on a shortest (v, u)-path through w, where
a is an ancestor of w and a2 an ancestor of u. The routing from w to u proceeds
through a and a2, in that order. The nodes a and a2, called the next milestone for
u at v and the final milestone for u at v, respectively, are defined as follows. Let R be
the region such that w and u are both in R but are in different regions R and R" that
result from the division of R. Then a and a2 are, respectively, the first boundary
nodes of R and R" on a shortest (v, u)-path through w.

Figure 2 illustrates schematically a two-level division of a planar graph. A shortest
(v, u)-path is shown in bold, where the neighbor w of v on this path and node u are
unrelated. Both w and u are in region RI, but in different regions, R3 and RI,
which result from the division of RI. Nodes a and a2 are the first boundary nodes
of R3 and RI, respectively, on the shortest (v, u)-path.

We can now describe the routing information stored at any node v in the net-
work. A routing table is maintained at v, giving for each related node u the name
next_nodev(u) of the next node on a shortest (v, u)-path in G. To route to u, v sends
the message to next_nodev(U) w over edge {v, w}. In addition, v also has two tables
containing the next and final milestone information. If w and u are unrelated, then
the names of the next milestone for u at v and the final milestone for u at v are stored
at v in next_milestonev(u) and final_milestonev(u), respectively.

The following information is stored at v to enable it to route to unrelated nodes.
Let v be a level node. Then, for each level j < i, the name of the closest ancestor of v
for level j is stored at v in a table. Furthermore, consider the division of the level i- 1
region to which v is interior into level regions. A table is stored at v, mapping the
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level designator of each boundary node of the level regions to its name.
The amount of routing information in the network depends on f(.). As the

following theorem shows, the appropriate choice for f(n) is n2/a.
THEOREM 2.1. For any n-node planar graph, Scheme I uses a total of O(n4/3)

items of routing information, where each item is O(log n) bits long.
Proof. Each item of routing information held at a node is a node name. As will

be seen in Theorem 2.2, each node name in Scheme I is O(log n) bits long.
We bound the number of items of routing information as follows. We first bound

the total number of items of routing information held by all level 1 nodes for the
other nodes, as well as the number of items of routing information held by all the
other nodes for the level 1 nodes. We then use this to develop a recurrence that gives
the total number of items of routing information held by all the nodes in the network.

Since there are O(n/v/f(n)) level 1 nodes, the level 1 nodes together maintain

a total of O((n/v/f(n} )2) items of shortest paths information for siblings. As there
are O(n/f(n)) level 1 regions, each containing O(f(n)) nodes and O(v/f(n)) bound-
ary nodes, the level 1 nodes store a total of O(v/f(n)f(n)n/f(n)), i.e., O(nv/f(n))
itens of shortest paths information for descendants. The descendants of the level 1
nodes store O(v/f(n)f(n)n/f(n)), i.e., O(nv/f(n)) items of shortest paths informa-
tion overall for the level 1 nodes (ancestors for level 1). Thus the number of items
of routing information stored by level 1 nodes for related nodes and vice versa is

O((n/v/f(n )2 + nV/f(n ). The number of items of milestone information held by
the level 1 nodes for the other nodes and vice versa is of this same order.

The size.of the table of designators of a level 1 node is O(n/v/f(n ), so that the

space used by the designator tables of all level i nodes is O( (n/ V/f(n) )2). Finally, the
descendants of the level 1 nodes store O(f(n)n/f(n)), i.e., O(n) items of information
identifying nearest level 1 nodes.

Let S(n) be the total number of items of information stored in an n-node network.
Then, for positive constants a, b, and c, we have S(n) <_ an2/f(n) + bnv/f(n +
c(n/f(n))S(f(n)), where the last term accounts for the information stored at lower
levels in the decomposition. We choose f(n) n2/a to make the opposing terms
anVil(n) and bnv/f(n equal to within a constant factor. Thus S(n) <_ dn4/a +
cn/3S(n2/3) for some positive constant d. We choose the range of n, for which the
above recurrence holds, as n _> (2c) 9. Thus we have,

S(n) <_ dn4/3 + cnl/3S(n2/3), for n _> (2c)9.

For some positive constant e, we may write the basis cases as

S(n) <_e, for l_<n< (2c) 9.

Then we claim that S(n) <_ gn4/a, where g max{e, 2d}. The claim can be
shown by induction on n. The claim clearly holds for the basis. For the induction
step, for which n _> (2c) 9, we require dn4/3 +cnl/3gns/9 <_ gn4/3, i.e., d+cgn-/9 <_ g,
i.e., d + g/2 <_ g, which is true. The theorem follows.

Note that our choice of the threshold for n as (2c)9 was arbitrary. A threshold of
((1 + 6)c)9 for any 5 > 0 will do. Correspondingly, g max {e, (1 + 1/5)d}.

We next show that for the above choice of f(n) n/a the node names are only
O(logn) bits long. With Scheme II in mind, we prove a more general result. We
show that for f(n) nl-e, where e is any constant, 0 < e < 1, the node names are
O((1/e) logn) bits long.
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THEOREM 2.2. Consider the naming of the nodes of an n-node planar graph from
a multilevel division, performed with respect to a parameter f(n) n1-, where e is
any constant, 0 < < 1. The node names are O((1/e)log n) bits long.

Proof. At level 0 in the decomposition there is just one region of size n and no
boundary nodes. It is easy to show by induction that the division of a level j-
1 region into level j regions, j >_ 1, results in O(n(1-)- ) level j regions and

O(n(1-)j-1(1+)/9) boundary nodes of these level j regions. Furthermore, the high-
est level number L in the decomposition is at most 1 + logl/(1_) log n, which is
1 + loglog n/log(l/(1 -e)). This can be seen as follows. Since a level j region has
at most n(1-)j nodes, the level number at which all regions have at most two nodes
is at most logl/(l_)logn. At most one node of each region with two nodes can be
an interior node. Thus at most one additional level is needed to get regions with no
interior nodes, at which point the decomposition terminates.

For >_ 1, the name of a level node v consists of 2i fields: integers that constitute
the name of the level i- 1 region to which v is interior; an integer distinguisher; and

1 integers, each a level j designator, 0 _< j _< i- 1. These fields are separated by
2i- 1 delimiters. The delimiter and the bits 0 and 1 used in the binary representation
of the fields can be encoded using two bits each.

The number of bits needed to encode the region name is at most

i-1

2(1 + E([log n(-e)-I
j=l

O(1)))
i-1

O(i + Elgn(1-e)-le)
j=l

o(i + -(1
O(i+logn).

The number of bits needed for the distinguisher is at most

2[logn(1-)’-1(1+)/2] + O(1) O(logn(1-)’-’(+)/2)
O((1 e)i-1((1 + e)/2)log n)
O(logn), sincee<l.

The number of bits needed to encode all the designators is at most

i-1

O(i + Elogn(1-e)-(l+e)/2)
j=l

o(i + (((1 + (1
O(i + (1/e)logn).

i-1

2 E(Flogn(1-)-1(+e)/2] + O(1))
j=l

Finally, the delimiters can be encoded using 2(2i- 1), i.e., O(i) bits in all.
Summing these and simplifying, the total number of bits needed to encode the

name of v is

O(i + (1 + (l/e))logn) O(i+(1/e)logn), sinceO<e<limplies(1/e)>e
O((1/e)logn+loglogn/log(1/(1-e))), sincei<_L

O((1/e) logn), noting that log(1/(1 e)) > e.

This proves the theorem.
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2.3. The routing strategy in Scheme I. A message is routed from a source
s to a destination d as follows. The message header contains separate fields for
the next milestone, final milestone, and the destination, all initially set to d. The
next and final milestone fields alone are reset, as necessary, during the routing. Let
d and d’, respectively, denote the current names in the next milestone and final
milestone fields. Each node v participating in the routing performs a routing action
as follows. It sets w next_nodev(), and resets d" to final.milestone(d’), and
d to next_milestonev() if these entries for d are stored at v. It then sends the
message to w.

The routing begins with s searching its routing table for , which is initially d.
If found, then s and d are related, and s performs a routing action. Otherwise, let
be the separating level for s and d (1 can be determined from the names s and d), and
let be the closest ancestor of s for level I. Then s resets d and d" to and performs
a routing action.

Let v be any node that the message arrives at subsequently. If v -7(: d, then v
performs a routing action.

If v d - d’, then v sets d to d" and performs a routing action.
Suppose that v d d" d. If v and d are related, then v sets d and d" to d

and performs a routing action. Otherwise, v must be , and must be a level node
(Lemma 2.3 below). Using its table of level designators and the/th field designator
in d’s name, v determines the closest ancestor
to and performs a routing action.

If v d d" d, then the routing terminates.
LEMMA 2.3. Let be the separating level for source s and destination d, and let

be the closest ancestor of s for level 1. In the routing from s to d, let v be any final
milestone different from d. If v and d are unrelated, then v must be , and must be
a level node.

Proof. Clearly, if s and d are related, then so are v and d. Thus, assume that
s and d are unrelated. We first show that for each v, v and d are related, except
possibly when v is .

In the routing from s to , v is always , since is an ancestor of every node in
the routing. If and d are related, the routing is from to d. Thus every v in this
routing is an ancestor of d. However, if and d are unrelated, then the routing is
from to . Every v in this phase is an ancestor of , and hence an ancestor of d.
The message eventually reaches a final milestone that is either
Thus, in the routing from this node to d, every v is an ancestor of d. Every v in this
routing is an ancestor of d.

Thus, if v and d are unrelated, then v must be . Suppose that is a level j <
node. Thus is a boundary node of the level 1- 1 region to which s is interior. But,
since s and d are interior to the same level 1- 1 region, must be an ancestor of d, a
contradiction. Thus must be a level node.

We now establish an upper bound on the length of the routings generated by
Scheme I. First, we obtain in the following lemma a lower bound on the distance
between nodes s and d in the case that they are unrelated.

LEMMA 2.4. Let s and d be unrelated nodes in the multilevel division of a planar
graph. Let be the closest ancestor for s, and let be the closest ancestor of d for
the separating level of s and d. Then p(s, d) >_ p(s, ) + p(d, ).

Proof. Let s and d be the ancestors of s and d, respectively, on a shortest (s, d)-
path. Thus p(s, d) >_ p(s, s’) + p(d, d’). But p(s, s’) >_ p(s, ) and p(d, d) >_ p(d, ), by
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our choice of and a. The lemma follows.
THEOREM 2.5. For any planar graph, the performance bound of Scheme I is 3.
Proof. Let s be any source and d any destination. If s and d are related, then the

routing is along a shortest (s, d)-path. This is because every node participating in the
routing performs a routing action with respect to d, which is always on a shortest
(s, d)-path. Otherwise, s routes to ancestor , and if and d are related, then routes
to d. As both routings are along shortest paths, we have

(,d) p(,)+(,d)
< p(, ) + p(, s) + p(, d)
_< 3p(s, d), as p(s, ) <_ p(s, d) by Lemma 2.4.

If and d are unrelated, then routes to a, where a is a sibling or an ancestor.
Consider the first occasion that a final milestone a’ is reached, where a’ is either a, or
an ancestor of a, and hence an ancestor of and d. The message is routed from a to
d. The routings from to a and from to d are both along shortest paths. Thus,

/(s, d) p(s, ) + p(, ’) + p(’, d)
< + d)

p(s, )+ p(, ) + p(, d), since a’ is on a shortest (, a)-path
<_ p(s, ) + p(, s)+ p(s, d)+ p(d, ) + p(a, d)
_< 3p(s, d), as p(s, ) + p(, d) <_ p(s, d) by Lemma 2.4.

Thus (s, d)/p(s, d) _< 3 for any nodes s and d, and the theorem follows. [:]

3. Improving the space bound: Scheme II.

3.1. Multi-level division and naming in Scheme II. We now give Scheme II,
in which the storage is reduced to O(nTM) items, where is any constant, 0 < e < 1/3.
The scheme uses O((1/e)logn)-bit names and has a performance bound of 7. To re-
duce the storage, we maintain at each node a routing table for only certain closest
ancestors and descendants. However, the previous routing strategy will not work now,
since the routing tables are very sparse. To overcome this problem, we introduce an
additional phase in the routing, in which the message is routed to a pair of intermedi-
ate destinations carefully placed at a higher level in the decomposition. We show how
to choose a good, though not necessarily optimal, path for this phase, for which the
multi-interval labeling scheme from [5] can be used to encode succinctly the routing
information in interval form.

The network is decomposed essentially as in Scheme I. However, in order to set
up the multi-interval routing information, the boundary nodes of each region must lie
o.n one or more cycles. For a triangulated planar graph, Miller’s algorithm [10] yields
an O(v/’)-separator that is a simple cycle. The desired regions can be generated by
using this, instead of the Lipton-Tarjan separator algorithm [9], in the f(.)-division
algorithm. The graphs induced on the regions at each level are first triangulated.
The cost of the triangulating edges is chosen large enough (for instance, greater than
the sum of the costs of all edges in G) so that shortest paths are unaffected. (We
remark that the triangulation is done only so that Miller’s algorithm can be applied.
These edges will not be used in the routing itself, and they do not have to be added
physically to the network.) The faces of each graph are then assigned zero weight
(as Miller’s.algorithm requires that faces be weighted), and the f(.)-algorithm is then



852 GREG N. FREDERICKSON AND RAVI JANARDAN

applied to generate the regions at the next level. As in Scheme I, the boundary nodes
of each region are considered to be boundary nodes of the regions resulting from its
division. The nodes are named as in Scheme I. As seen later, in Scheme II we choose
f(n) n1-, where is any constant, 0 < < 1/3. Thus Theorem 2.2 applies and
the node names are O((1/) log n) bits long.

3.2. Routing information in Scheme II. Let v be a level j node, j _> 1. For
each level _> j, shortest paths information is maintained at v for only those of its
descendants for which it is the closest ancestor for level i. Let T be a tree of shortest
paths from v to these descendants. Starting at v, depth-first numbers are assigned
to the nodes of T, and at each node, the edge joining it to a child is labeled by a
subinterval of depth-first numbers, representing all nodes in the subtree rooted at the
child. A table is stored at v, mapping node names to depth-first numbers. A shortest
routing from v to any node u in T is performed by having each node on the path
use the depth-first number of u, recorded in the message header by v, to choose the
appropriate edge over which to route.

For each level < j, the closest ancestor of v for level is identified, and the
name of the parent of v in the tree rooted at that ancestor is stored at v. Thus v can
perform a shortest routing to this ancestor.

For any level _> j, let R be a level region for which v is a boundary node.
Let R be the level i- 1 region containing R; let B be the set of boundary nodes
associated with the division of RI. The following information maintained at v enables
it to route to the nodes in B.

A table of designators is stored at v, mapping the level designator of each node
u in B to its name.

For each u, a level number is maintained at v, where _< is the largest integer for
which there is a shortest (v, u)-path in G wholly in the level i- 1 region R containing
R.

Furthermore, consider each u for which there is at least one (v, u)-path in G wholly
in R, and let P be a least-cost such path. The name next_milestonev(u) of the first
node from B on P (in the direction from v to u) is stored at v. The routing from v to
u is performed along P. Path P consists of segments, each of which is wholly in some
level region resulting from the division of R, and whose endpoints are boundary
nodes of the level region. Furthermore, each segment is a shortest such segment.
For instance, the first segment has endpoints v and next_milestonev(u), and, without
loss of generality, lies wholly in region R. Each intermediate node on this segment
routes to next_milestonev(U). The routing information for this segment can be set
up using the multi-interval labeling scheme from [5], as follows.

In the decomposition, the boundary nodes of each region lie on cycles. Let region
R have t boundary nodes lying on p _> 1 cycles. Associate an integer between 1 and
t, called an interval name, with each boundary node by proceeding around each cycle
in turn, as described in [5].

The following lemma shows that the routing information for the boundary nodes
of R can be encoded succinctly at each node of R as subintervals of interval names

labeling each incident edge.
LEMMA 3.1. At any node w of R, the ends of all the edges incident with w can be

labeled with at most 3p + degree(w)- 2 subintervals of [1, t] such that the following is
true. Let z be any boundary node of R reachable from w by a path in G that is wholly
contained in R. Then, the first edge on a shortest such (w, z)-path is the one whose
label at w contains the interval name of z.
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FIG. 3. Multi-interval routing from v to u in Scheme II.

Proof. Consider the graph G defined by the nodes and edges of R. A shortest
(w, z)-path in G that is wholly contained in R is a shortest (w, z)-path in GR. The
lemma then follows from Corollary 5.1 in [5], since all the boundary nodes z lie on at
most p faces in GR.

The edges incident with each node of R are labeled with subintervals of interval
names. At boundary node v, a table mapping the names of the other boundary nodes
of R to their respective interval names with respect to R, is stored. The routing
from v to next_milestones(u) is performed by having each participating node use the
interval name of next_milestones(u), recorded in the message header by v, to choose
the appropriate edge over which to route.

The multi-interval routing is illustrated schematically in Fig. 3, which shows four
regions, Rill, Rl2, Rl13, and R4, resulting from the division of level 1 region R.
(For clarity, the figure is not drawn to scale and not all regions and region names are
shown. Also, all interior nodes have been omitted.) The boundary nodes resulting
from the division are shown filled in. For boundary nodes v and u, a least cost (v, u)-
path P contained wholly in R is shown bold. The routing over P consists of four
phases of multi-interval routing, as follows: from v to Vl next_milestones(u); from
vl to v2 next_milestonevl(U); from v2 to va next-milestonev2(u); and finally,
from V3 to u.

The following theorem bounds the number of items of routing information used
by Scheme II.

THEOREM 3.2. For any n-node planar graph, Scheme II can be set up to use

O(nTM) items of routing information, where is any constant, 0 < < 1/3. Each

Proof. Each item of routing information stored at a node in Scheme II is one of
the following: a node name, a level number, a depth-first number, or an interval name.
From Theorem 2.2, the length of a node name is O((1/e) log n) bits. Each depth-first
number and interval name is an integer in the range 1 to n, and so O(log n) bits suffice
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for these. Each level number is an integer of magnitude O(loglogn/log(1/(1-
i.e., O((1/e)logl.ogn). Thus, O(log((1/e)loglogn)), i.e., O(log(1/e)+ log log log n)
bits are needed for a level number. It follows that an item is O((1/e) logn + log(l/e))
bits long, which is O((1/) log n), since (l/e) > log(l/e).

We count the number of items of routing information by levels. The level 1 nodes
claim, in the role of closest ancestors for level 1, disjoint subsets of the level j
1 nodes. Thus the tables at the level 1 nodes, which map node names to depth-
first search numbers, use a total of O(n) space. Furthermore, the total number of
subintervals of depth-first search numbers maintained for level 1 is proportional to
the number of edges of G, which is O(n).

Each level j > 1 node maintains a constant number of items for its closest ancestor
for level 1. Thus the level j nodes maintain a total of O(n) items about nearest
ancestors for level 1.

Each boundary node of a level 1 region maintains a constant number of items
(a level 1 designator, a level number, and next_milestone(.)) for each of the other
boundary nodes. Since there are O(n/v/f(n)) boundary nodes of level 1 regions,
total of O((n/v/f(n )2), i.e., O(n2/f(n)) items is stored.

The storage used by the multi-interval routing scheme for level 1 is as follows.
Each boundary node of a level 1 region maintains, for each of the other boundary
nodes of the region, an entry in the table that maps node names to interval names.
Since there are O(v/f(n)) boundary nodes per level 1 region, a total of O((/f(n) )2),
i.e., O(f(n)) items are stored per level 1 region. Thus, as there are O(n/f(n)) level 1
regions, a total of O(f(n)n/f(n)), i.e, O(n) items are stored for all level 1 regions.
By Lemma 3.3 below, O(n) intervals are used to encode the multi-interval routing
information.

Thus the total number of items of routing information associated with level 1 is
O(n2/f(n) + n), i.e., O(n2/f(n)), since f(n) < n. Let S(n) be the total number of
items stored in an n-node network. Then, for positive c(nstants c and d we have
S(n) <_ dn2/f(n) + c(n/f(n))S(f(n)). We choose f(n)
0 < e < 1/3, and the range of n for which the above recurrence holds as n _> (2c) 1/2.
Thus,

S(n) <_ dn+ + cnS(n-), fo.r n _> (2c) /e2.

For e a positive constant, we may write the basis cases as

S(n)<_e, forl<:n<:(2c) /e2.

We claim that S(n) <_ gn1+, where g max{e, 2d}. The proof is by induction
and is similar to that in Theorem 2.1. Remarks analogous to those in Theorem 2.1
apply here as well, for the choice of the threshold for n.

The multi-interval routing scheme at level 1 enables routing between the boundary
nodes of the various level 1 regions that result from the division of the level 0 region,
which has n nodes. We show in the following lemma that this scheme uses a total
of O(n) intervals. (In general, for any level _> 1, there are a number of multi-
interval routing schemes. Each scheme is associated with a level i- 1 region and
enables routing between certain boundary nodes of the level regions resulting from
the division of the level i- 1 region. The number of intervals used for each scheme is
proportional to .the size of the corresponding level i--- 1 region.)

LEMMA 3.3. The multi-interval labeling scheme at level 1 uses a total of O(n)
intervals.
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Proof. We first derive an upper bound on the number of cycles on the boundaries
of the level 1 regions, counting separately each occurrence of a cycle on a level 1 region
boundary. In worst case the cycles are all vertex-disjoint, so that the number of cycles
is one less than the number of level 1 regions, which is O(n/f(n)). Since each cycle
is on the boundary of two level 1 regions, the desired upper bound is O(n/f(n)).

Let R be any level 1 region. Let PR be the number of cycles on the boundary of
R, and let w be any node of R. From Lemma 3.1 it follows that the total number of
intervals maintained for R by all nodes w of R is less than

(3pR + degree(w)) <_ 3pRcf(n) + 2(3cf(n) 6),
wER

since R has at most cf(n) nodes for some constant c, and the induced subgraph of G
on R is planar. Thus the total number of intervals for all level 1 regions R is less than

all R all R all R

which is O(n), since, from the first part of the lemma, ll PR is O(n/f(n)), and
since there are O(n/f(n)) level 1 regions. D

3.3. The routing strategy in Scheme II. The routing from s to d is as follows.
Irrespective of whether or not s and d are related, the routing is always performed
via the closest ancestor of s and the closest ancestor d of d for level l, where
is the length of the longest common prefix of the distinguisher-free portions of the
names of s and d. The routing from s to is along a shortest-path tree rooted at .
Using its table of designators and the/th field designator in d’s name, determines
d. Unfortunately, unlike Scheme I, it is now not possible to perform shortest paths
routing from to d, since, in ^general, this information will not be available at .
Instead, the routing from to d is performed along a near-shortest path as follows.

Let [ < be the level number maintained at for d. Thus there is a shortest
(, d)-path in G that is wholly contained in the enveloping level [- 1 region. Let
and d be the closest ancestors of and d, respectively, for level [. If [ l, then we

take and d to be just and d, respectively. The routing from to d is performed in
three stages, as follows. Node records [ and d in the message header and routes to
along a shortest (, )-path. Using its table of designators and the [th field designator

in d’s name, determines d. It then uses interval routing information to route to

d along a path P of least cost from among those that are wholly contained in the
level [- 1 region. Note that at least one such path exists, namely, the one consisting

of the shortest paths from to g, from to d, and from d to d. Node d then routes

to d along a shortest (d, d)-path. Finally, the message is routed from d to d along a
shortest (d, d)-path.

An example of a routing from s to d is shown schematically in Fig. 4. (Again, the
figure is not drawn to scale, and not all regions and region names are shown.) Since
s and d are in different level 4 regions, Rl1111 and Rl112, but in the same level 3
region, R, is 4. As level 1 region Rll is the first enveloping region to completely
contain a shortest (g, d)-path in G, shown dashed, [ is 2. The message path is shown
in bold.

The following theorem establishes the performance bo’und of the routing.
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FIG. 4. An example of a routing from s to d in Scheme II. The message path is shown bold.

THEOREM 3.4. For any planar graph, the performance bound of Scheme II is 7.

Proof. Let s be any source and d any destination. If l, then and d are just
and d, respectively, and it follows that P is a shortest (, d)-path in G. Thus

p(, ) + p(, d) + p(, d)
_< (, )+ (, )+ p(, d)+ (d, )+ (, d)
< 3p(s, d), as p(s, ) + p(d, ) < p(s, d) by Lemma 2.4.

Otherwise, [ < is the highest-numbered level for which a shortest (, d)-path in
G is not contained in the enveloping level [ region, but is contained in the enveloping
level [- 1 region. The path thus leaves the level [ region for the first time and
reenters it for the last time via two of its boundary nodes, bl and be, respectively.

Thus p(,d) > p(,bl)+ p(d, b2) _> p(, )+ p(d, ), by our choice of and d as the
closest ancestors of and d for level [, respectively. Let P be the length of P. Then

IF ]_< p(., ) + p(., d)+ p(d, ) _< 2p(., d). The length of the routing from to is

then p(, )+ P +p(, ) _< 3p(, d). Thus

_< ,(, ) + 3t,(, d) + (d, d)
_< ,(, )+ 3(,(, )+ ,(, d) + ,(d, d))+ t,(d, d)

4(p(s, g)+ p(d, d))+ 3p(s, d)
< 7p(s,d), by Lemma 2.4.

Thus (s, d)/p(s, d) <_ 7 for any nodes s and d, and the theorem follows.
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POLYNOMIAL TIME ALGORITHMS FOR FINDING INTEGER RELATIONS
AMONG REAL NUMBERS*

J. HASTAD?, B. JUST:., J. C. LAGARIAS, AND C. P. SCHNORR$

Abstract. This paper considers variants and generalizations of the following computational problem.
Given a real input x e ", find a small integer relation m for x that is a nonzero vector m e Z" orthogonal
to x, or prove that no integer relation m exists with I[m[[ 2/’. An algorithm is presented that solves this

problem in O(n3(k+ n)) arithmetic operations over real numbers. The algorithm is a variation of the
multidimensional Euclidean algorithm proposed by Ferguson and Forcade Bull. Amer. Math. Soc., (1979),
pp. 912-914] and Bergman Notes on Ferguson and Forcade’s Generalized Euclidean Algorithm, University
of California, Berkeley, CA, 1980]. A connection between such multidimensional Euclidean algorithms and
the Lattice Basis Reduction Algorithm of Lenstra, Lenstra Jr., and Lovsz [Math. Ann., 21 (1982), pp.
515-534] is shown. Polynomial time solutions are also established for finding linearly independent sets of
small integer relations and for finding small simultaneous integer relations, for several real vectors, using
real input vectors and counting arithmetic operations over real numbers at unit cost. For integer input
vectors x a different algorithm is given for finding integer relations (that always exist) that uses at most

O(n log ]lxl]) arithmetic operations on O(n + log I[xll) bit integers.

Key words, multidimensional continued fraction algorithm, lattice basis reduction, integer relations,
diophantine approximation, generalized Euclidean algorithms

AMS(MOS) subject classifications. 11J71, 11Y16, 68Q25

1. Introduction. Given a real vector x (x,..., xn) [n, an integer relation for
xis a nonzero vector m (m, , mn)Z" such that (m, x) i= mixi=O. This paper
studies the following computational problem. Given a real vector x ’, either find a
small integer relation m for x or prove that no small integer relation exists.

The problem of finding integer relations for two numbers (x, x2) can be solved
by applying the Euclidean algorithm to x, x2, or, equivalently, by computing the
ordinary continued fraction expansion of the real number x/x2. The problem of
finding good algorithms for n_->3 has been studied under the names generalized
Euclidean algorithm and multidimensional continued fraction algorithm. Quite a few of
these algorithms have been proposed, many of which are surveyed in Brentjes (1981)
and Bernstein (1971).

In geometric terms the task is to approximate a line x[ [", consisting of scalar
multiples of x, by a sequence of integer lattice bases of 7. The convergence of a
sequence of lattice bases bv), b v) for v 1, 2,... to the line x[ has the following
consequences. The (n- 1)-vector (bl)/bl), ., bl)/bl)) associated with bl)=

,,) h! ’)(bl ,’’ is a good simultaneous Diophantine approximation to the vector
(u)(Xz/X, , x,/x) associated with x (x, , xn). The lattice basis e]) e, that

is dual to b]), ...,b consists of the row vectors of the inverse of the matrix

Received by the editors June 2, 1986; accepted for publication (in revised form) December 5, 1988.
A preliminary version of this paper was presented at the 1986 Symposium of Theoretical Aspects of Computer
Science in Paris, France.

Royal Institute of Technology, Stockholm, Sweden. This research was performed while the first author
visited AT&T Bell Laboratories, Murray Hill, New Jersey, 07974, and Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139. This author was supported by an IBM fellowship.

$ Universitit Frankfurt, Fachbereich Mathematik und Informatik, 6000 Frankfurt, Federal Republic of
Germany.

AT&T Bell Laboratories, Murray Hill, New Jersey 07974.
The maiden name of B. Just is B. Helfrich.

859



860 HASTAD, JUST, LAGARIAS, AND SCHNORR

[b"), ,b")] with column vectors b] Cn
[b(l"), b(U)]-In If the basis b]"), b). converges (in various ways) to xE then
the vectors c ") for i n converge to (xE) x. If in particular c) is orthogonal to x
then c) is an integer relation for x; if such a vector -") occurs it is said that an integer
relation has been detected.

Jacobi (1868) proposed a continued fraction algorithm for n 3 and Perron (1907)
extended it to general n. The Jacobi-Perron algorithm generates a sequence of integer
lattice bases b]), b") of Z" that weakly converges to xE, i.e., the angles between
b" and x converge to 0, which means lim, (b)/]]b-x/x)=0 for lin.
Ferguson and Forcade (1979) presented the first continued fraction algorithm for
arbitrary n that is guaranteed to detect integer relations when they exist. If no integer
relations exist this algorithm is strongly convergent, i.e., the distances of b) to xE
converge to 0, which means lim (b")[[x[[-xb))=0 for 1 i n. Ferguson and
Forcade’s algorithm is inductive. The n-dimensional version of the algorithm repeatedly
uses lower-dimensional versions of the algorithm as a subroutine (see Ferguson and
Forcade (1982), Ferguson (1986).) A noninductive algorithm that incorporates the
basic Ferguson-Forcade ideas but which is different in detail was developed by Bergman
(1980). Ferguson (1987) presents a similar noninductive algorithm and proves an
exponential running time bound for it. Bergman’s algorithm is surprisingly similar to
the Lovsz algorithm for lattice basis reduction. Both algorithms perform the same
type of basis transformations, reduction in size and exchange steps according to similar
but slightly different exchange rules.

This paper studies the problem of finding integer relations via generalized
Euclidean algorithms. It considers the following computational problem, the integer
relation problem. Given a real vector x E" and a bound 2, either find an integer
relation m for x with Ilmll 2+" or prove there is no integer relation m with [[m[ < 2k.
A gap between the upper bounds 2"+k and 2 is unavoidable because efficient lattice
basis reduction algorithms only find a nearly shortest lattice vector. We distinguish
two versions of this problem" one in which the input vector x consists of arbitary real
numbers, and the other in which the input vector is an integer vector. The algorithms
for the real input version use the following arithmetic operations on real numbers at
unit cost: addition, subtraction, multiplication, division, comparison of two numbers
(<), and the nearest integer function (J). On the other hand, the algorithms for the
integer input version are studied using, the bit complexity model in which we count
bit operations. We present algorithms for both the real and the integer versions of the
problem, and we prove running time bounds that are polynomial in n, k, and the bit
length of the integer inputs. The algorithms for the real input version of the problem
are similar to the algorithms of Bergman (1980) and Ferguson (1987). For the integer
input version of the problem we present an algorithm that is close to the Lovsz basis
reduction algorithm.

The problem dual to the integer relation problem is the problem of finding good
simultaneous Diophantine approximations. Algorithms for the integer relation problem
do not necessarily find good Diophantine approximations. Just (1987) has established
a class of continued fraction algorithms that use both the Bergman and Lovsz exchange
rule and that find reasonably good simultaneous Diophantine approximations .in all
dimensions.

Now we describe the contents of the paper in more detail. Section 2 presents a
version of the generalized Euclidean algorithm of Bergman (1980) and Ferguson (1987)
and the Lovsz Lattice Basis Reduction Algorithm of Lenstra, Lenstra, Jr., and Lovsz



FINDING INTEGER RELATIONS IN POLYNOMIAL TIME 861

(1982). These algorithms are presented in a form that illustrates their striking similarity;
this was not apparent in the original papers. We call our version of the "Bergman,
Ferguson, Forcade-type" algorithm the Basic Integer Relation Algorithm. This algorithm
exhibits the main features of the polynomial time algorithms to solve the real input
version of various integer relation problems presented in 3-5. The Basic Integer
Relation Algorithm and the Lovisz Lattice Basis Reduction Algorithm use different
rules for exchanging basis vectors. This difference is crucial to obtaining a polynomial
running time bound for the real input version of the Basic Integer Relation Algorithm.
The Lovisz exchange rule does not find integer relations among real numbers in
polynomial time.

Section 3 presents the Small Integer Relation Algorithm that is derived from the
Basic Relation Algorithm by adding a suitable termination test. The Small Integer
Relation Algorithm takes as input a real vector x= (xl,"" ", xn)0 and a positive
integer k. We prove it has the following properties.

(1) It either finds an integer relation m for x with IIm[lZ=< 2"-2 min {A (x)2, 22k} or
proves A(x)_>-2k, where A(x) is the length of the shortest, nonzero integer
relation for x.

(2) It halts after at most O(n3(k+ n)) arithmetic operations on real numbers.
The arithmetic model of computation on real numbers, with the operations

addition, subtraction, multiplication, division, comparison (<), and the nearest integer
function ([J) at unit cost, is not compatible with the usual Turing machine model
since it allows infinite precision arithmetic at each step. In the Turing machine model
we cannot prove the existence of integer relations for real numbers since this would
require infinite precision arithmetic. However in the Turing machine model we can
prove, by computations on rational numbers, the nonexistence of small integer relations
for given real numbers xl,’", xn. For this we apply the Small Integer Relation
Algorithm to a rational vector that is sufficiently close to x (xl, , x,). We cannot
say beforehand how close has to be to x but Theorem 3.5 defines the term "sufficiently
close" a posteriori.

Section 4 describes an algorithm used to find several small linearly independent
integer relations if they exist. The resulting algorithm, the Several Relations Algorithm,
takes as input a vector x 0 in [", and positive integers k and r satisfying r =< n 1.
Its output is either a set of r linearly independent integer relations {mi: 1 -< =< r} with
all IIm <_- 2 n+k or a proof that there do not exist r linearly independent integer relations
with all IIm, ll_-<2. Its running time is O(n3(k+ n)) arithmetic operations. Let
be the lattice of integer relations for x. The Several Relations Algorithm can be used
to approximate the successive minima of L,,. It can also be used to find a basis of a
sublattice L of the lattice L,, that contains all shortest vectors in Lx.

Section 5 presents an algorithm that finds simultaneous integer relations for linearly
independent vectors x,..., Xq E [no The Simultaneous Relations Algorithm incorpor-
ates all the previous algorithms as special cases. When given as input x,..., Xq
and r, kN this algorithm halts after at most O(n3(k+ n)) arithmetic operations with
real numbers and either finds r independent simultaneous integer relations m for
x,... ,Xq or proves there does not exist such a set of relations m with Ilmll < 2 ", This
algorithm can be used to find r independent integer dependencies among a set of real
vectors yl, , y,

Section 6 studies integer relation algorithms in the bit complexity model of
computation. In this case the input is a vector x in Z ", and integer relations always
exist. We describe an algorithm based on ideas from the Lattice Basis Reduction
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Algorithm. This algorithm finds a basis for the (n 1)-dimensional lattice Lx of integer
relations for x. It essentially applies the Lovfisz algorithm to the linearly dependent
vectors h0 x, hi, , b,, where hi, , bn is the standard basis of 7". This algorithm
finds short basis vectors for the lattice Lx, and it terminates after at most O(n log
arithmetic steps using O(n + log [Ixll)-bit integers. The performance of this algorithm
should be compared with that of the efficient reduction algorithms by Sch6nhage (1984)
and Schnorr (1986, 1988).

The results of this paper were obtained independently by Hastad and Lagarias
and by Just and Schnorr. Just and Schnorr rediscovered the Basic Integer Relation
Algorithm independently of Bergman, Ferguson, and Forcade as a modification of the
Lovfisz algorithm.

2. The Basic Integer Relation Algorithm and the Lovfisz Lattice Basis Reduction

Algorithm. We will use the following notation throughout the paper. Let " be the
n-dimensional real vector space, n > with inner product (,) and let Ily[[- (y, y)1/2 be
the length of the vector y ". All vectors are column vectors unless otherwise specified.
For a linear subspace E " we let E - c [n be the orthogonal complement of E, i.e.,
the subspace consisting of all vectors that are orthogonal to E. For bl, br " let
(b,..., br) be the additive closure of b,..., hr, i.e., the set of all vectors Yi:l mibi
with mi7/. The nr matrix with column vectors b,...,br[" is denoted
[bl,...,br]. Let span(b,...,br) be the linear space generated by the vectors
bl,""", br. The transpose of matrix A is A-.

A lattice L c " is a discrete, additive subgroup of ". Every lattice is the additive
closure of a set h, , b of linearly independent vectors in ", i.e., L (b, , br).
The vectors b,..., b are called a basis of L, and r is the rank of the lattice L. The
determinant of L is the volume of the r-dimensional parallelepiped generated by the
basis b,..., b. The rank and the determinant do not depend on the choice of basis.
The ith successive minimum Ai(L) of lattice L is the smallest radius of a ball with center
0 that contains linearly independent lattice vectors.

All algorithms of this paper that take real numbers for input will use the following
arithmetic operations on real numbers at unit cost: addition, subtraction, multiplication,
division, comparison (<), and the nearest integer function ([]). We call this the
arithmetic model of computation. (It differs from the arithmetic model of computa-
tion used in Frank and Tard6s (1985) because it includes [J as a basic arithmetic
operation.)

An integer relation m Z" for x is a nonzero vector m 7/ satisfying (x, m) 0.
We associate with a nonzero vector x the lattice Lx 7/" of all integer relations
for x together with 0, i.e.,

Lx {m 7/": (x, m) 0}.
For general real vectors x the lattice Lx may have rank from 0 to n-1, while for
rational vectors its rank is always n- 1. For real vectors x the rank of Lx cannot be
computed in the arithmetic model of computation. Babai, Just, and Meyer auf der
Heide (1988) have shown that it cannot even be decided in the arithmetic model of
computation whether there exists an integer relation for x, i.e., whether rank (Lx)=> 1.
Let A(x)= Al(x)=< A_(x)=<... =< A(x), with r rank (Lx), be the successive minima of
the lattice Lx. Then A (x) is the length of the shortest integer relation for x provided
that some integer relation exists. If there is no integer relation for x we let A (x)= .

With a sequence of vectors b,...,b,z" and the fixed vector bo=xZ", we
associate the orthogonal system bo*,’’ ", b* where b/* is the component of b that is
orthogonal to b,..., bi_l and bo. The vectors bo*,""" ", b* can be computed by the
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process of Gram-Schmidt orthogonalization using O(n 3) arithmetic operations"

bo* =x,

b b /z ,.i b n,
=0

where ti,.j (bi b)l[b.*l] -2 if b 0, and ,j 0 if b 0 This process gives the usual
Gram-Schmidt orthogonalization for b,..., b, when bo=X=0. We denote by
the integer nearest to r , with [r] r- if r is a half-integer.

Both the Basic Integer Relation Algorithm and the Lovsz Lattice Basis Reduction
Algorithm perform a sequence of elementary basis exchange operations on a current
ordered basis b,..., b, of a given lattice. These consist of two types of steps:

(1) Exchange steps. Interchange b and b+ for some i.

(2) Size-reduction step. Replace b with b- lbi where l Z for some and j with
lj<i.

Both types of steps produce a new basis matrix B with B"w= BU for some
matrix U GL (n,Z), where B Ibm,. , bn].

The purpose of a size-reduction step is to make the Gram-Schmidt quantity .w
in the new basis satisfy ,j I= This uniquely determines the integer in the
size-reduction step by o,

,j j. A basis b,..., bn of a lattice is size-reduced if all
[,j] in its Gram-Schmidt orthogonalization. Given any basis we can obtain a
size-reduced basis having the same Gram-Schmidt orthogonal system b,..., b by
applying a sequence of n(n- 1)/2 size-reduction steps. These steps have to be applied
in a suitable order that does not change the ,.] produced in previous steps.

The Basic Integer Relation Algorithm is a variant of the algorithms of Bergman
(1980) and Ferguson (1987), which are themselves based on ideas of the Ferguson-
Forcade Algorithm (1979), (1982).

BAsIc INTEGER RELATION ALGORITHM. (On input x n this algorithm produces
infinite sequences M’), PC’) of matrices in GL(n,Z). The column vectors
b] ’), b ’). of PC’) form a basis of Z" and these bases approach span (x) as

increases. The row vectors of M’) (P’))- are the dual basis, and these
converge to span (x).)

1. Initiation. For the vectors bo x and standard basis b,..., b of Z" compute
the Gram-Schmidt quantities ,. and {bl]: for 0j, i n. Set iteration count
t:=0.

2. Exchange step. t:= + 1. Choose for 1 n that that maximizes 2]]b]] 2.
Size-reduce b+ with respect to b by setting b+ := b+- [+,J b. Exchange
b and b+. Now update the Gram-Schmidt data ]]b], ,j, j, for r i, i+ 1
and 1j n. Output PC’)= [b,..., b,] and M’)= [b,,.., bn]-. Go to 2.

For completeness we include formulae for updating the Gram-Schmidt numbers
,j, ]bll 2. For the transformation b+, := +,-[+,,]b we obtain the new +,j by
setting

+,. := +,,.- [+,J ,j forj 1,..., i,

and the other Gram-Schmidt quantities do not change. Explicit formulae for updating
an exchange step b b+ with ]b, [b+[] 0 are given by Lenstra, Lenstra Jr., and
Lovsz (1982). We extend their formulae to include the case []b+]] =0.

Updating ]]b]], ,., , for i, i+ 1 and j 1,..., n in ease of an exchange
bi bi+.

:= +,
:= 2 +  211  112;
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if IIbll. 0 then (I b*/,[[ 2:- IIbllllb/,ll/llbllL. /, := llbll/llbllL)
ese (11 b */, IIZ’. b * /,, := O)
lib,* 112 z- b* z,,w;

/zi+ ,j \ /zi,

forj= i+2,..., n.

We remark that this algorithm keeps bo x fixed throughout; all the operations
are on the remaining n n matrix of basis vectors b,..., bn. Theorem 3.2 below
proves that this algorithm eventually detects an integer relation if one exists. If no
integer relation exists the algorithm does not stop and the sequence of output bases
[b"), b(,f] converges strongly to x, i.e., lim, (bl")llx[[-xllbl")[[) =0 for 1,..., n.
The strong convergence has been proved by Ferguson and Forcade (1979). It follows
from lim ][bl)*ll =0 for i= 1,..., n.

The Basic Integer Relation Algorithm coincides essentially with the algorithms of
Bergman (1980) and Ferguson (1987). The particular exchange rule used in the Basic
Integer Relation Algorithm was proposed by Bergman (1980), so we call it the Bergman
exchange rule. We have however used a somewhat different language than Ferguson
(1987) to describe the algorithm, and our algorithm also differs from his in that in the
exchange step it only size-reduces/xi+.i and not/zi+l., ,/z+._. The size-reduction
of/zi+l,l, ,/x+,_ is not necessary for finding integer relations in the real number
model of computation. This size-reduction keeps the entries in the matrix M’) small,
which is important in the bit complexity model.

It is interesting to compare the Basic Integer Relation Algorithm with the Lovisz
Lattice Basis Reduction Algorithm that appears in Lentra, Lenstra Jr., and Lovisz
(1982). We outline a variant of the latter algorithm that takes for input an arbitrary
sequence bl,. ., b. of vectors in R", possibly linearly dependent. In this description
b*,... ,b,* is the ordinary Gram-Schmidt orthogonalization system arising when
bo=x=O.

BASIC LovAsz ALGORITHM.
1. Initiation. Input b,..., b, in R" and compute the Gram-Schmidt quantities

/x,.j and IIb*ll for l=<j, iN n.
2. Termination condition. If [[b/*[[ <= 211b*+,112 for =< -< n 1, then size-reduce the

basis, output it, and halt.
3. Exchange step. Choose the smallest i< n with 11b*[12> 211b*+,[[ 2. Size reduce bi+,

with respect to bi, setting b+ b+- [/x+,J bi. Exchange b and bi+. Update
the Gram-Schmidt quantities. Go to 2.

This algorithm differs from the usual Lattice Basis Reduction Algorithm by omitting
extra size-reduction steps used to keep integers small, which are not relevant in the
real-number model of computation. It also differs in that we have replaced in the
Lovfisz algorithm the reduction condition llb*ll2< IIb/*+l[[2q-/j,2+,[[b*[[ by the essen-
tially equivalent Siegel reduction condition IIb,*ll==<211b,*/,ll 2. If the input vectors are
linearly independent, then this algorithm eventually halts and produces a basis reduced
in the Lovfisz sense. (The arguments in Lenstra, Lenstra Jr., and Lovfisz (1982) are
easily adapted to prove this.) If the input vectors are linearly dependent the algorithm
may never halt.

A great similarity in the form of the Basic Integer Relation Algorithm and the
Basic LovS.sz Algorithm is apparent. Both algorithms have an exchange rule that
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exchanges b, and b,+, where lib,* > 211b*/, " the Lovftsz algorithm chooses the smallest
such while the Basic Integer Relation Algorithm chooses an that maximizes ]lb*ll2 .
The subtle difference in the form of the Bergman exchange rule relative to the Lovfisz
exchange rule is critical in obtaining a polynomial running time bound for the Basic
Integer Relation Algorithm. If the Lovfisz exchange rule is inserted in the Basic Integer
Relation Algorithm, the resulting algorithm can be proved to detect an integer relation
if one exists, but in the real number model the number of steps it takes to find a
relation of size less than or equal to 2k cannot be bounded in terms of n and k alone.

We can also use the Lovfisz algorithm to eliminate integer dependencies from a
generator system bl,’’’, bn of a lattice L=(b,..., bn). Because L is discrete all
sufficiently small vectors in L must be 0. We have the following theorem.

THEOREM 2.1. Suppose b,..., b. is a set of generators for the lattice L=
(b,. , b.,,) ofrank r. Then the Lovdsz Algorithm transforms the input vectors bl, , b
into vectors b,... ,b. such that b b_r =0 and b-r+,’’’ ,bform a basis of
the lattice L. This basis has the properties

IIb ll  211b,*+,ll fors-r+l<-i<-s-1,

I/x,,j] <- 1/2 fors-r+l<=j<i<-_s.

For integer input vectors with B=maxi I111 this algorithm terminates after at most

O(n4 log B) arithmetic steps on O(n log B)-integers.
The proof is a straightforward extension of the analysis of the Lovfisz algorithm

(see Lenstra, Lenstra, Jr., and Lovfisz (1982)) and is left to the reader. Theorem 2.1
asserts that the Lovfisz algorithm finds integer dependencies between the generators
of a lattice whenever an integer dependency exists. On the other hand, if the input
vectors b,. , b, do not generate a lattice then the LovS,sz algorithm may fail to find
integer dependencies. This occurs, e.g., if bz ab for some irrational a and b b3.
Then the Lovfisz algorithm successively reduces and exchanges b, b an infinite number
of times, so that the vector bl converges to 0 but it does not achieve b =0. It never

detects the integer dependency b b3. We present an algorithm to find integer depen-
dencies in 5.

3. Finding integer relations. The Basic Integer Relation Algorithm can be adapted
to detect small integer relations and also to rule out the existence of small integer
relations by adding a suitable termination test to the algorithm. We call the resulting
algorithm the Small Integer Relation Algorithm.

SMALL INTEGER RELATION ALGORITHM. (On input x [R" and k N this algorithm
either finds an integer relation c for x satisfying IIc. <-- 2"-2A (x)2 or it proves A (x) _-> 2k.)

1. Initiation. For the vectors b0 x and standard basis bl," , b, of 7/n compute
the Gram-Schmidt quantities ,.. and IIb,*ll 2 for 0_-< i, j_-< n.

2. Termination test. If IIb,*ll 0 then an integer relation is found. Compute the
matrix [el," , c,]n-= [hi," ", b,] -1, output the integer relation c,, and stop.
If Ilb*[I <-- 2- for 1 _-< <_- n, then no small integer relation exists. Output " (x) ->_

2 k’’ and stop.
3. Exchange step. Choose for _-<iN n that that maximizes 2illb,*ll 2. Size-reduce

hi+ with respect to bi by setting b+ := bi+l- [t-ti+l,iJbi. Exchange bi and hi+
Now update IIb,*ll 2, /xv,./,/x/,v. for u i, i+ and =<j < n. Go to 2.

Instead of computing, on termination, the inverse matrix [Cl,’" ",cn]-r=
[b, , b,]-, we can compute it incrementally. Initially [c cn] is the unit matrix.
A reduction step b+:=bi+-[/X+l,Jb changes the vectors cl,...,c, as c:
c+ [/xg+,iJci+. For an exchange b bi+l we have to exchange ci and C+l.
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In analyzing this algorithm, we first prove that the termination test gives a correct
answer when it applies. (We defer until later a proof that the termination condition
will eventually hold for any input.)

PROPOSiTiON 3.1 (Correctness of Small Integer Relation Algorithm).
(1) The output e, in step 2 is an integer relation for x.

(2) A(x)-> 1/maxi IIb/*ll holds for every basis b,. ., b. of the lattice Z".
(3) The output c, satisfies Ilenll22"-2 min {A(x)2, 22k}.

Proof In the proof ranges over =<i<_ n only.
(1) Let b,* S0; then b/* =0 holds for some < n. The vectors b,. ., bi are linearly

independent but linearly dependent mod (x), and thus xspan (b,..., b). Since

(bj, ek)= 0 holds for k >j this implies (x, ek)= 0 for k > and in particular (x, e,)= 0.
The vector e, is integral since it is part of the inverse of the unimodular matrix
[b,,’’’, b,].

(2) Let m be any integer relation for x. Since in 6 (x[R)-= span (b*, ., b*) there
exists with (m, b*) # 0. For the smallest such we have (m, b*) (m, bi) G 7/, and hence
[(m, b /*)l > , and thus Ilm[[_-> [[b*[[ -’ This shows that the Small Integer Relation
Algorithms correctly claims "A (x)=>" in step 2.

(3) The integer relation c, found by the algorithm is determined by

[c,""", c.]-r [b, ,b.]-
where b, , bn is the terminal basis of lattice 7: ". Since both b,* and c, are orthogonal
to x, b,..., bn_ we have span (b,*)=span (c,), and it follows from (b,, c,)= that

(3.1)

Let ,..., , be the basis of lattice Z" before the last exchange b, <--> b,_. (If there
is no such exchange then
11 .*_ 1122 which implies

[[/, [[2 _<_ 2,-/- ii-, 2n-i-1 2b.-,ll IIb,*ll for i= 1,..., n- 1.

From this we conclude that

IIc, l]2: [[b*l]-2<= 2"-/max [[ll 2.

From (2) and since the algorithm did not terminate previously we see

1/max 11/*]]2 =< min {/ (X)2, 22t}.

Thus the claim follows from the two latter inequalities. [3

This proposition reveals the underlying motivation for Bergman’s exchange rule:
it is designed to prove there is no short integer relation as quickly as possible. Since
we have A(x)->l/max [[b*[[ it is reasonable to minimize max I[b*ll. Bergman’s

2exchange rule strives to minimize max/ IIb*[I 2, where the extra powers of two are
included so that we can make a profitable exchange.

Now we prove a running time bound for the Small Integer Relation Algorithm.
THEOREM 3.2. The Small Integer Relation Algorithm halts after at most O(rt3(k-+-

n)) arithmetic steps on real numbers. It eitherfinds an integer relation c for x satisfying

IIc. 2 --< 2"-2 min A (x)2, 22/ } or else it proves A (x) _-> 2 k.
Proof We measure the progress of the algorithm using the quantity

n-1

D I-I (b/*) n-i where c(b/*) max {llb/*l122 ", 2-2}.
i=l
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LEMMA 3.3. Every exchange step of the Small Integer Relation Algorithm achieves

Dne --< Dold.

The lemma extends the time analysis of the Lovfisz algorithm to the Small Integer
Relation Algorithm. It holds for arbitrary positive numbers k. Lemma 3.3 holds for
Bergman’s exchange rule, but does not hold if, in the algorithm, the Lovfisz exchange
rule is used instead. However in the particular case k=c, i.e., a(b/*)--Ilb*l122, the
lemma does hold for the Lovfisz exchange rule. The Lovfisz exchange rule performs
well provided that the numbers IIb/*ll cannot become arbitrarily small and nonzero, as
is the case for reduction of a generator system of a lattice (Theorem 2.1). The lemma
shows that Bergman’s exchange rule performs well in some sense even if some of the
numbers IIb/*ll become arbitrarily small and nonzero during the computation. There is
a subtle interplay between the termination condition maxi_-l,...,n_l IIb,*ll_-<2- and
Bergman’s exchange rule. Bergman’s exchange rule strives to make this termination
condition valid as soon as possible.

Proof. Since has been chosen to maximize the number 2illb,*llL we have

iold* 2 hold* 2

From this and I,/,,I =< we see

(3.2) beW* ii IIo’d* - hO,d hold* 2
,,,/1 + ,/1,11, =--< I1,

h.old* 2-k.Since the algorithm did not previously terminate in step 2 some j satisfies
Since has been chosen to maximize 2illb*l: we have

hold* 2 2 hold* 2 hold* 2 2-2k+j 2-2k+1(3.3) 21[--i II--> I1-, =-> I1- -> -->
hold* new*We conclude from [[.. II--> I1/1 that

Knew*h(3.4) o(bld*) e a(i+ 1.

We are going to prove the inequality

(inew*
(3.5)

O (baew*) O\i+1 < 1,(b,d*)o*\i+1

ola* > 2-g If a [hnew* -2kIf o(bew*) 2-2k, then (3.5) follows from (3.4) and a,,+l = ,i+1 )= 2
[lold* 2-2k lew*)the inequality (3.5) follows from a,,+l )_>- and X(b < ce (b’kl*), which follows

new* /lnew*$ lnew* 22nfrom (3.2). if a(bew*) lib/ I1 and a,,i+l .-I1i+1 the inequality (3.5) holds
by virtue of

IlbeW*ll II’nw* ho’O* o,*
i+1 II- [I--i ]]b i+l II.

From the inequality (3.5) we finally conclude

Dnew (bew*) n-iOflnew*\i+l )n-i-1
lNold, n_i_Do,d

(3.5)
(b?ew. (bld.)

(3.3)
b?ew*) hold* -2 (3.2)3.3) 3=< a )/a 2-"a( II-,

To complete the proof of Theorem 3.2, it suffices to observe that the algorithm
starts with D _-< 23, and D > 2-": holds on termination. Thus by Lemma 3.3 there can
be at most O(n2(k+ n)) exchange steps. Each exchange step uses at most O(n)
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arithmetic steps; this includes the steps to update [ui,j, [di+l,jl,j,i, [dj,i+ for j 1," ", n
and [[b,*ll =, [Ib*+,ll z. The initial computation of the numbers ].Zi,j, [[b*[I 2 for 1 <j < i<_ n
can be done using O(n3) arithmetic operations. This shows that the algorithm halts
after at most O(n3(k+ n)) arithmetic operations on real numbers.

The second part of the theorem follows immediately from Proposition 3.1.
Theorem 3.2 implies that the Basic Integer Relation Algorithm always detects an

integer relation in O(rl log A (x) + n) arithmetic operations if one exists; simply apply
the Small Integer Relation Algorithm with k 2 for j 1, 2,..., until an integer
relation is found.

An interesting feature of the integer relation problem is that it contains a gap
between the largest size 2"+k of an integer relation found and the size 2k of an integer
relation proved not to exist. Some sort of gap like this seems necessary in order to
obtain polynomial time algorithms. It is unreasonable to expect that there exists a fast
algorithm to answer the question: "Does there exist an integer relation m for x with

Ilmll--< 2? This problem contains the shortest vector problem for integer lattices, i.e.,
the problem to decide for a given lattice basis whether there exists a lattice vector y
with Ilyll-<-2. This problem is believed to be hard and is known to be NP-complete
for the version in which the Euclidean norm Ilyll is replaced by the sup-norm
(see Van Emde Boas (1981)).

The Small Integer Relation Algorithm can also be applied starting with a basis
bl,"" ", b, e R" of an arbitrary lattice M (b,,..., b,) of rank n, possibly distinct
from 7/". In this case the row vectors cl,. ., c, of the matrix

[Cl,’’’,c.]-r-’[bl, "’’,b"] -I

form a basis of the dual (or reciprocal, or polar) lattice M*, defined as

M* {y span (bl," ", b,)l (bi, y) E 7/for 1,. ., n }.

(In the case M 7/" we have M 7/"= M*.) In this case we consider the lattice

Lx,, {y M* I<y, x> 0}

of relations y for x that are in M*. Let A4(x) be the length of the shortest, nonzero
relation in Lx,4. Proposition 3.1 holds for arbitrary lattices M c R" of rank n provided
that relations for x are in M’and A(x) is replaced by A4(x). The time analysis of
Lemma 3.3 remains valid, too. This observation proves the following result.

THEOrEM 3.4. Suppose the Small Integer Relation Algorithm is run with input x
and starting with a basis b,. b, of lattice M ". Then the Small Integer Relation
Algorithm halts after at most O(n3(k+ n)) arithmetic steps. It either finds a relation
c, M* for x satisfying IIc.ll=-< 2"-= man {AM(X)2, 22k} or it proves AM(X) => 2k.

The arithmetic complexity model describes computations with real numbers
although on actual computers we can only approximate computations with real num-
bers. In particular, it is an undecidable problem to test the equality of two computable
real numbers specified by computer programs that compute them to arbitrary accuracy.
In consequence on an actual computer (Turing machine) we cannot prove the existence
of an integer relation for a set of real numbers. However we can prove the nonexistence
of a small integer relation using only computations on rational numbers. We can prove
A ()=> 2k for a given real vector by applying the Small Integer Relation Algorithm
to a sufficiently close rational approximation x to . We cannot say beforehand how
close x has to be to , but the term "sufficiently close" can be defined a posteriori.
We can certify that a given x is "sufficiently close" to by the following theorem.
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THEOREM 3.5. Suppose that the Small Integer Relation Algorithm claims "A (x)>_--
2k. Then
2-k min {llxll, IIll where bl,’", bn is the basis on termination.

Proof Let b.* (b* respectively) be the component of bi that is orthogonal tot,x i,

bl," "’, bi-1, X (to bl,’’" bi_l, ’, respectively), and let rx, r be the orthogonal
projection to (x)q-, (X)-. It is sufficient to prove IIb,*,[[-<-2-k+’ for i= 1," , n, which
implies A ()_-> 2-1 by Proposition 3.1. Below we show the inequality

(3.6) rx(b)- r(b)11 _-< Ilbll ]Ix-l] for all b, x, satisfying [Ix[l,

This implies for all vectors x,

]]b* -b*-II < lib IIx-ll/min {[[xll [[[[} <2-i,X i,X

by the assumptions on x, , and bi. Since on termination the Small Integer Relation
Algorithm has IIb,*,xll--<2-k for i= 1, n the inequality above yields [[b.*-II,,x =<2-+l
for i= 1,..., n, which proves the theorem.

Proof of equation (3.6). We prove this in three cases.

llxll II ll 1 and b span (x, ). Without loss of generality let x, , b [2,
and x=(x,x), =(1, 0), b=(b, b2). Then we have

rx(b)- r(b)l] 2= []<x, b>x-<, b>ll
((Xlb q- xb)x,- b,) + (Xlb + xb)x

b-2bx(Xbl +xb)+(Xlb +xb) (sincex+x=l)

b2 2622 2X22,+x2 -x,b,= [Ibl[ -< [[b[ IIx- 
Case [Ixll- I[ll => 1. Let b be the component of b in span (x, ). Then

follows from the previous case.
General Case. We assume without loss of generality that II ll--> xll->- a. Application

of the previous case to =[x[[/llll gives [[r(b)-(b)ll-II(b)-(b)ll--<
llbll Ilx-

4. Finding linearly independent integer relations. There is a natural adaptation of
the Small Integer Relation Algorithm to find several small linearly independent integer
relations. We modify the exchange rule and the termination test accordingly. The
following algorithm either finds r small linearly independent integer relations or proves
they do not exist.

SEVERAL RELATIONS ALGORITHM. (On input x[" and r, k this algorithm
either finds r linearly independent integer relations C,-r+l,"" ", C, for x or it proves
that Ar(X) ----> 2.)

1. Initiation. For bo =x and the standard basis b,...,b, of 7/" compute the
Gram-Schmidt numbers/zi,.j, II ,*ll 1_-< i, j _-< n. Find the unique s <_-n such
that b 0.

2. Termination test. If s _-< n-r then r linearly independent integer relations are
found; size-reduce b,,...,b, set [c,,...,c,,]T’.:[b,.’’’,b,,]-’, output
c_+, , c,, and stop. If /b/*[[ _-<2- for < i=< n- r+lthen r small indepen-
dent relations do not exist, output "at(X)=> 2’’ and stop.

3. Exchange step. Choose that with < s that maximizes b*ll22 . Size-reduce
bi+l with respect to b by setting b+ := b+- [/zi+,Jbi. Exchange bi and b+.
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Update the Gram-Schmidt quantities Ilb*ll =, ,J, m, for v i, + 1 and 1 =<j < n.
If b/* 0 then set s := i. Go to 2.

There are two features that distinguish this algorithm from the Small Integer
Relation Algorithm. First, the exchange rule only allows exchanges bi bi+l such
that is smaller than that s for which b* 0. This exchange rule strives to minimize

maxj=l,...,, IIb 11=2 where s >- n r holds throughout the algorithm. This rule is justified
by fact (4.1) proved below that 1/max=l,...,n_r+l I111 is a lower bound for At(x). The
termination condition is modified accordingly so that the algorithm stops if

maxi=l,...,n-r/l I1/* II-<- 2-, Second, in the termination step before computing the inverse
matrix [cl,...,c]n-= [bl,’’’, b,]-, the basis bl,’’’, b, is size-reduced. This size-
reduction makes the output relations c-r+l, ", c, small as is proved in Theorem 4.2
below. The resulting basis b,..., b, has the same b/* as before and ]/xi,[ =< 1/2 holds for
all <=j<i<-n.

TIaEOREM 4.1. When given for input a vector x and r, k N then the Several
Relations Algorithm either finds r linearly independent integer relations C,-r+l,""", Cn
for x or proves At(x)->2 k. It halts after at most O(n3(k+ n)) arithmetic operations on
real numbers.

Proof Correctness. The algorithm has two possibilities for termination. First, if
b* =0 occurs with s =< n r then x e span (bl, , bn-r). Since c,-r+, , c, are
orthogonal to span (hi," ", b,_r) they are r linearly independent integer relations for
x. Second, we must show that Ilb/*ll_-<2-" for i=1,...,n-r+l implies At(x)=>2k.
This follows from the claim that

(4.1) Ar(X)>---- 1/ max IIb,*ll.
li<=n--r+l

To prove this inequality let ml," ", mr Lx be linearly independent vectors such that

Ilmi ,(x) for 1,. ., r. Then there exists -< n r + and j -< r such that (mJ, hi)
0. For fixed j let be minimal with (mj, bi) 0. This yields

I(m, b,>l I<m, b*>l--> 1.

Hence IImll -> /llb,*ll, which proves (4.1).
Running time bound. We use the quantity D=IIi=l max {llb/*ll2,2 "- used

in the proof of Theorem 3.2. We claim that at each exchange step we have

(4.2) Dnew --< Dod

This follows by the argument of Lemma 3.3, with two modifications to reflect the new
exchange rule. The new algorithm exchanges b and b+ where 2illb*ll 2 is maximized
over -_< _-< s- 1, and b 0. Thus

old* )ld*lib,+, =< 1/2 lb.
still holds. Since the algorithm did not previously halt there is some j with =<j -< s 1,
[[bj’*l > 2-, and the inequality

hgd*ll2 > 2-2/+J __> 2-2+1(3.3) 2 bld* 112 2ill bld* 112 _>_ 2.j II-,
still holds.

The O(n3(n + k)) arithmetic operation bound now follows from (4.2) exactly as
in Theorem 3.2.

TrOaM 4.2. If the Several Relations Algorithm finds r integer relations
Cn_r+l,""" C for X then these satisfy IIc_i/,ll_-< 1.52i-22n-lAi(X) for i= 1,’’ ", r.
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Proof If the initiation step finds s with s-< n r then we have c,-i+ e,_+ for
i= 1,..., r and the claim holds. Now assume that initially we have s> n-r. Let
b,. ., b, be the basis of lattice ig" on termination of the Several Relations Algorithm.
Since we have found r integer relations we have b*. 0 with s n-r and

holds for the matrix W [wi,j]l=i,j=, with entries

(bi, x>llxl1-2 j: s,
wi,.j

/xi, j, j s.

We have wi, for # s and, by the size-reduction in step 2, [wi,j[--< 1/2 for -<j < <_- n
with j s. The matrix W is lower triangular for all except the sth column, i.e., w, 0
for i<j s. From the definition of el,’",e, and since the vectors x, bl*,’’’, b,* are
orthogonal we conclude

[c,,..., c,] ([b,,..., b,]-l) -r

[bt*, ,b* *s-, x, bs+, b.*]

Let the matrix V:= W-1 have entries v,. Since V is lower triangular for the last r
columns we have

-2(4.3) IIc.-,+,ll 2-- ,,,-,+,llbll for i= 1,...,.r.
j>=n--i+l

We prove below the inequalities

(4.4) Iv,l--< 1.5- for s <j =< i_-< n,

(4.5) Ilbn-i+lll* -2 <_-A(x)22"-i-’ for i= l,

The desired bounds follow from (4.3), (4.4), and (4.5)"

,r.

IIc"-’/’ll (4.3)4.4) .52(i_j) --2IIb*-:+lll
j=l

(4.5)
--< E 1.52(-J)2"--lAj(x)2

j=l

<
A (X)22n-2,

[ Ai(x)21.52i-22"- ,r.

It remains to prove the inequalities (4.4), (4.5). The inequality (4.4) follows from
w,l =< 1/2 for s <j < =< n, w, 1 for > s, .together with the fact that the matrix W is
lower triangular for the last r columns. We prove the inequality (4.4) by induction on
q i-j. If q =0 we have i=j and vi, 1 holds for i= s+ 1,..., n since the matrix
V-1= W is lower triangular, for the last n-s columns, and has ones in the diagonal.
For the induction step q- 1 q consider the equation

/x,,v,, 0 for s <j < i,.
t=j
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which follows from V W-. We see that

j+q--1

Vi,j---- ]’Li, tVt,
t=j

and the induction hypothesis implies

2

To prove (4.5) consider the basis b,...,b, of 7/" before the last exchange
bn_r bn--r+l. The maximum of IIgTIl for j-<_ n r is at j n r, and b-r+l-* =0.
Thus we have forj 1,..., n-r+ 1"

IIgTIl=__< II*_rl122"-r-J I[b,*_r/,l122 "-r-j.

Hence

At(x) 1/ max I1*11
This proves (4.5) for r. The inequality (4.5) for < r follows in the same way from
the basis of Z" before the last exchange

The Several Relations Algorithm can also be modified to find a basis of a lattice
L of integer relations for x that contains all shortest vectors in L.

The Shortest Relations Algorithm, which takes as input x ", is just the Several
Integer Relations Algorithm with a new termination test.

New termination test. If s < n and IIbll < IIbll holds for Nj N s- then size-
reduce b, b,, compute [c,... ,c,]v: Ibm, ,b,] -1, output c,+1,’’" ,c,, and
stop.

The algorithm will not halt unless x has at least one integer relation. We show
that if L {0} then the algorithm halts in time polynomial in n and log A (x) and finds
a lattice containing all shortest integer relations.

TzozM 4.3. en given for input a vector x with L {}, the Shortest Relations
Algorithm finds integer relations c.,+,..., c, for x such that"

(1) The lattice (+1,""", c,) contains all shortest integer relations for x,
(2) Ilcil] 3"a (x) for i= s + 1,..., n.

e Shortest Relations Algorithm halts after at most o(na+n31ogA(x)) arithmetic
operations on real numbers.

Proof Let b,..., b, be the basis of lattice Z" on termination of the Several
Relations Algorithm. On termination we have b =0 and thus xspan (b,..., b.).
Therefore the vectors C+,""", c, are integer relations for x.

Next we show that the lattice

L=(C,+I,"""

contains all w L satisfying ]lw] N A (x). If w is not in the span of c.+, ., c, there
exists an integer N s such that (w, b) 0 and consequently the smallest such satisfies

Since the new termination condition holds we have

I111 IIbll-> [[bll -l= llci (x).

If however w is in the span of c.+,. .,c, then w must be in L since c,. .,c, is a
basis of the lattice Z".
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We next establish property (2). Let bl,’’’,b, be the basis of lattice 7/" on
termination of the Shortest Relations Algorithm. We have

Icill- v IIb-*ll - fori=s+l nj,i,,
j:i

where I,l l’5J-i" Therefore the inequality (2) follows from

(4.6) IIb.*ll -< A(x)22"+j-3 forj s + ,.
Proof of equation (4.6). The inequality holds for b,* since the output vector

c--+/-b,*llb.*ll - o the Shortest Relations Algorithms, by Proposition 3.1(3), satisfies

lib*11-2-- IIc 2<- 2"-2A (x) 2. To prove the inequality for b.*.; with s + -<_j < n, we consider
the basis bl,..., b, before the last exchange step b/_ <->bj of the Shortest Relations

b. b* and the exchange achieves ,,j_ =0 and b. .;_.Algorithm We have -* new* b.w* .,
Before this exchange there exists i<j satisfying I1,*11 [1.*11 IIb.*ll. since the termina-
tion condition does not yet hold. From this and max/<./ 1]/*[[2i= IIG*._[[2j- we conclude

This implies

IIb.*ll G.* > 2’-+’ 22i-J+’.,-, IIG/*II > lib.*

b.? - Ilb* 11-2.-i-’ A (x)2"-2.j-’,

which finishes the proof of (4.6).
Running time bound. We use the quantity

D H max {llb*ll2 ", 2-’A (x)-}
i=l

It is the quantity of Lemma 3.3 except that 2 is replaced by 2"/:A (x). We adjust the
proof of Lemma 3.3 to show that each exchange step bi bi+ achieves

Dnew Ood.

It is sucient to show that the inequality (3.3) holds with 2 replaced by 2"/2A (x), i.e.,
hoM* Athat 2 [[_i 112.2 (x) -2 holds for each exchange b

old*We first show that there exists j < s such that Ib 2-’/2A(x)- If s < n this
holds because b is the vector b, on termination; since the algorithm did not previously

< < he* b*halt there exists j with =j s- such that II- > lie.]l-’ 2-"/A(x)-’,
where the latter inequality holds by Proposition 3.1(3). If s n we see from Proposition

old*3 1(2) that there existsj n such that ]{_ A (x)- and we havej < n since IIb’*]] 0.
hd* 22iSince with is-1 was chosen such that ]]-i is maximal for i< s we

have for the above j that

o,* l]b* 2 o,* "A -2211-, 11=2 II- 112"2
From this we prove D.ew zDoa exactly as in the proof of Lemma 3.3 with 2 replac’
by 2/2A (x).

Using the relation Dne Doa the claimed time bound is straightforward. Initiall
we have for the Shortest Relations Algorithm that D 2 and D 2-23A (x)-2 holds
on termination. Therefore the Shortest Relations Algorithm performs at most O(n3+
n log A(x)) exchange steps. Since each exchange step uses at most O(n) arithmetic
operations the total number of arithmetic steps of the Shortest Relations Algorithm is
at most O(n4+ n log A (x)).
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Remarks. (i) If on termination of the Shortest Relations Algorithm we have
s n 1, then the output e, is a shortest integer relation for x. If dim (Lx) 1, then
the terminal value of s must be n- 1, and thus the Shortest Relations Algorithm proves
that the output e, is a shortest vector in Lx. In case dim (L)= 1, the Basic Integer
Relation Algorithm also finds a shortest integer relation for x but it does not prove
that en is shortest since dim (L) may be unknown.

(ii) The Shortest Relations Algorithm reduces the problem of finding a shortest
(short, respectively) integer relation for x to the problem of finding a shortest (short,
respectively) vector in the lattice L (c.+1, ", c,) where c.+, ., cn are the output
vectors of the Shortest Relations Algorithm. We have shown that these vectors are
already reasonably short. By applying Lovfisz basis reduction to the vectors e,+l, , c,
we obtain an integer relation m for x satisfying Ilmll2<_-2n-’-lA (x)2. A shortest integer
relation for x can be found by Kannan’s Algorithm Shortest that performs Korkine-
Zolotaref reduction, see Kannan (1983). An improved version of Kannan’s Algorithm
and a hierarchy of polynomial time lattice basis reduction algorithms stretching from
LLL-reduction toward Korkine-Zolotareft reduction has been given by Schnorr (1987).

5. Finding simultaneous integer relations. We describe an algorithm used to find
simultaneous integer relations for real vectors x, , x N", i.e., we search for linearly
independent nonzero vectors me 7/" such that (xg, m)= 0 for i= 1,..., 1. The Simul-
taneous Relations Algorithm resembles the Small Integer Relation Algorithm, but uses
a more general exchange rule and a corresponding termination test. The Simultaneous
Relations Algorithm includes the Small Integer Relation Algorithm and the Several
Relations Algorithm as special cases.

Let the vectors x X! be fixed, and for a basis b b, of lattice Z" let b.*
be the component of b that is orthogonal to x,..., x, b,..., b_. The number of
integers i, such that b* 0, is the rank of the matrix [x, , x]. The general exchange
rule is as follows.

GENERAL EXCHANGE RULE. Choose with l<=i<=s that maximizes 2,11b7112
where ’g # {j: =<j < i, b 0} and s max {i[ b* 0}.

It includes the previous exchange rules, including the Bergman exchange rule, as
special cases.

Let L(x,..., x) denote the lattice of simultaneous integer relations in 7/" for
x," ", xt, i.e., L(Xl, ]KI) {m (ml,. ., m,) Z ](m, xi) 0 for =< i_-< I}. This
lattice has rank t(x,..., xt) where may take any value in the range from 0 to
n-rank[x,...,x]. Let Ai(Xl,’’" ,xt) denote the ith successive minimum of the
lattice (x, , xt) for -< and set A(x, , x) oe for + 1 -< =< n.

SIMULTANEOUS RELATIONS ALGORITHM. (On input the real vectors x,..., xl
and k, r N this algorithm either finds r independent simultaneous integer relations

Cn-r+l, C, for Xl, , xl or it proves &r(x, , x) _--> 2.)
1. Initiation. For the standard basis b, , b, of ;" compute the Gram-Schmidt

quantities [[b,*ll 2, ,,--<bi, by’>llbl1-2 for 1 -<_ i,j <-_ n, where b* is the component
of bg that is orthogonal to x,...,x, b,..., bg_l. Set s:=max {i" b* =0}.

2. Termination test. If s < n r + then r simultaneous integer relations are found.
Size-reduce the basis b,- , b,. Compute [Cl, , cn]T := [b, , bn]-, out-
put ln_r+l,’’" ln, and stop. If, Ilb*ll <2-k for <- iN n-r+ 1, then output
"hr(X, ", X/) _--> 2 k’’ and stop.

3. Exchange step. Choose with _-< ins-1 that maximizes 2",[[b/*[[ 2 where -g
#{jll<-j<i,b*.#O} Size-reduce b+l with respect to bg by setting bi+’-
bg+-[-/xi+,g]bg. Exchange lag and bi+l. Update the Gram-Schmidt quantities
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Ilb*ll , m,, 1., for v--i, i+1 and j= 1, n. If i--s-1 and --hnew*i 0, set
s:= s-1. Go to 2.

We prove the following result.
THEOREM 5.1. When given vectors Xl," ", xt 6 En and k, r as input, the Simul-

taneous Relations Algorithm either finds r independent simultaneous integer relations
Cn+r+l, ", C, for Xl, , Xl, with

IIc, --< 2"-a+’a l(Xl ,’’’, x/)2,

where d rank Ix1,""", Xl], or else it proves At(x1,..., x) 2k. It halts after at most

O(n3(k + n)) arithmetic operations on real numbers.
In addition to the upper bound on IIc ll = we can extend the results of Theorem

4.2. Using the proof of Theorem 4.2 the reader can verify that the following holds.
If the Simultaneous Relations Algorithm finds integer relations C,-r+,’’’,

then we have Ile_i+lll2 1.52i-22n-d+lai(Xl, ,X/) for i= 1,..., r.

Proof Correctness. Suppose first that the algorithm gives output c,_+,...,
We prove that (x,C,_r+a)=0 for i= 1,..., and j= 1,..., r. Since b_+#0 for
1j r we have dim (span (x,...,x/, b,..., b_))= n-r and this implies that
x, , Xl span (b, , b,-r). The row vectors C,-r+, ", C, of the inverse matrix

[c,,’’’, c,]r [b,, ,bn] -1

satisfy (bi, Cn-r+j} 0 for n r and j 1, , r, which yields the desired result
that the vectors c._+ are simultaneous integer relations.

To prove the claim that

(5.1) [le, 2"-d+’A I(Xl ,’" ", X,)2

we use the special case r of the inequality

(5.2) h(x,’’., x,) 1/ max Ilbll for r n- 1,
lin--r+l

which is proved by exactly the same argument that proves (4.1). Now the vector c, is
given by the inverse of the matrix [bl," ", bn] that occurs just after the last exchange
b_ <---> bn. This exchange produces b* 30, and the vectors b,_ and b, are never
exchanged after that point and hence the last row c, of the inverse matrix is never
changed subsequently. Let b,..., b, be the basis of :gn before the last exchange
b <---> b,_. We have

(5.3) c +b* ,11 * -b._,tt IIcll Ilbng-ltl-l"

The exchange rule says that the numbers [Ib/’1122 "i have a maximum at i--n- 1, and
we have r_-ri=<n-rank[xl,...,x]+l=n-d+l for i--1,...,n-1. This
implies

and thus

[[b_,ll -=2"-a+’l] b/*[[-2.
Therefore the claim (5.1) follows from

a(x,, x,)? 1/ max IIb/*ll
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The correctness of the part of the termination test asserting "Ar(Xl,""", Kl) 2k’’

follows immediately from (5.2).
Running time bound. We measure the progress of the algorithm using the quantity

O lI max {llb*l122 ", 2-2k}n-’.
i=1

We claim that at any exchange step we have

(5.4) Dnew ZDold

This has been proved in the case ri for all n 1, by Lemma 3.3. We prove (5.4)
analogously to Lemma 3.3 with the change a(b*)= max {llb[=2", 2-2k}. If the Simul-
taneous Relation Algorithm exchanges b and b+, then IIb ll + + and
ryew Z for all j. Since has been chosen to maximize the number IIbll2, for
1 <j < s we have ’* o,. =,+ =k[l-, II, and thus the inequality

(3.2) lib, ll=llb
still holds. Since the algorithm did not previously terminate in step 2 we have
2-k for some j < s so that the inequality

hOd 2+i o,d* 2+I hd* -2++_ 2-k+

still holds. Now the claim (5.4) follows by imitating the rest of the proof of Lemma 3.3.
Since we have D < 2" at the start of the algorithm, while D 2-k’ always holds,

it follows that the number of exchange steps is at most O(n(k + n)), hence O(n3(k + n))
arithmetic operations are used.

Remarks. (i) A particular instance of the simultaneous relation problem is the
problem of finding the minimal polynomial of an algebraic number. Let a

(Re (a), Im (a)) C be an algebraic number with degree at most n. Then every simul-
taneous relation m (too,. ", m,) for x, (Re (a), ., Re (a’)), x
(Im (a), Im (a’)) yields a multiple p(x)= -o mx of the minimal polynomial
for a. The minimal polynomial can be found by rpeating this process with smaller
values of n. The degree of the minimial polynomial is the smallest n for which a
simultaneous relation exists. Algorithms which determine the minimial polynomial of
an algebraic number have been proposed by Sch6nhage (1984) and Kannan, Lenstra,
and Lovasz (1984, 1988).

(ii) Another instance of the simultaneous relation problem is to find an integer
dependency m (m, , m,) for the real vectors Yl, ",Y, ’, i.e., a nonzero
integer vector m satisfying = my =0. An integer dependency for y,..., y. is a
simultaneous relation for the row vectors x, , x, of the matrix with column vectors
y,,. ., y., i.e., Ix,,. ., x,] [y,,. ., y.].

6. Finding short integer relations among integers. The problem to find short integer
relations for an integer vector x " is particularly interesting since it is closely related
to the Knapsack problem, which is known to be NP-complete. The Knapsack problem
is to decide for given integers a,..., a,, b whether the equation i= aim b has a
{0, l}-solution (m,,..., m,,) {0, I}’. This means to decide whether there is a {0, l}-
relation m {0, I}"+ for the integer vector x (a,.. , a,, -b) ’+ satisfying m,+
I. Polynomial time algorithms for integer programming with a fixed number of variables
have been given by Lenstra (1983) and Kannan (1983), (1987).

While we cannot expect to find a {0, l}-relation in polynomial time, it is shown
that we can find a basis of the lattice L of integer relations in polynomial time. The
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following algorithm when given x as input finds a basis of short vectors of L,, within
O(n log [Ix]]) arithmetic operations in O(n + log ]]x]])-bit integers. It essentially applies
the original Lovfisz algorithm to the set of linearly dependent vectors bo, b,...,
where bo is the primitive vector x/gcd (x,...,xn) and b,...,bn is the standard
basis of 7. It uses the Lovfisz exchange rule, which exchanges bi and bi+ for the
smallest such that ]]b*][2> 2]]b*+,]] 2. Here the vector b* is the component of bi that
is orthogonal to bo,’’’, bi_. Now the LovS.sz exchange rule is efficient since the
numbers lib,*]] cannot become arbitrarily small and nonzero. We analyze this algorithm
in the bit complexity model. This analysis would not work when using Bergman’s
exchange rule. Because of its great similarity to the original Lovfisz algorithm we call
this algorithm the Lovsz Integer Relation Algorithm.

LovAsz INTEGER RELATION ALGORITHM. (On input x7/" this algorithm
finds a basis c2,’",cn of lattice Lx such that ll_,+,ll2_-<l.5Z-z2-’A(x) for
i=l,...,n-1.)

1. Initiation. bo := x/gcd (xl," ’, x,).
For the standard basis b,. ., b, of Z" compute the Gram-Schmidt numbers
I1  *112, ,j for o= n, i:= (i is the stage).

2. Termination test. If i= n then
([c,. ., e,]-:= [bo, b2," ", b,] -1, output (c2," ",c,) and stop).

3. Reduction in size. For j down to 0 do
(bi+, := bi+,- [pti+,,jJbj, for ,=0, ,j do
If [Ib*llZ-<Zllb/*+ll then (i:= i+ 1, goto 2).

4. Exchange step. Exchange bi and bi+l. Update lib,*I] 2 and/x.,j for , i, i+ and
j=0,...,i.
Ifi>l then i:=i-1.
Goto 3.

Note that this algorithm leaves the vector bo fixed throughout and that it performs
a complete size-reduction after each exchange step, which seems necessary to obtain
good running time bounds in the bit complexity model.

THEOREM 6.1. When given an integer vector x Z, the Lov6sz Integer Relations
Algorithmfinds a basis c2,""", c, ofthe lattice Lx satisfying < =
for i= 1,’’’, n- 1. Here A l(x),’’’, A,_(x) are the successive minima of the lattice Lx
of integer relations for x. It terminates after at most O(n log ]]xl]) arithmetic operations
on O(n / log Ilxl[) bit integers.

Proof We show that the output vectors c2,’", cn form a basis of lattice L.
Throughout the computation the vectors bo, hi,..., b, generate the lattice Z. The
vector bo is never exchanged. On termination we have l]u*ll_<-2[[b*+,ll for i=
1, , n 1. This implies b* -0 and thus b span (bo). Since bo is a primitive vector
we see that the vectors bo, b2,’", b,, on termination, form a basis of lattice 7/n.
Therefore the output vectors e2," , e, that are the row vectors of the inverse matrix
[c,. ., c,]T= [bo, b2," ", b,]- form a basis of the lattice Lx.

The inequalities ]]Cn_i+l[]2 1.52i-22n-lAi(X)2 for i= 1,. ., n 1 have been shown
in Theorem 4.2. This proof is still valid since the equalities (4.3) and the inequalities
(4.4), (4.5) hold for r n 1, s 1 and for the output vectors b2, , b, of the Lovfisz
Integer Relation Algorithm. While this is obvious for (4.3) and (4.4) we remark that
the inequalities

(4.5) Ilb*_i+lll-2 Ai(x)22n-i-’ for i= 1,..., n-
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follow from

A,(x) <> 1/ max
j= l,...,n--i+

and

llb[[=21 b<+lll forj- 1,..., n 1.

Running time bound. We measure the progress of the algorithm using the quantity

D:= (1 Ilb*ll’-<’ where’(i)=#{jll<=j<=i, bfO}.
i=l,U.0

We first show that every exchange b b+ achieves

hnew*(6.1) Dnew Doa if_ 0,

(6.2) Dnew Dold if hnew*

new* hnew ]llbld* hnew new*=Ifb , then (6.1) follows from (3.2)I1 2<- If =, then bi i+1

bd* and we have Dnew Dod. Obviously there is for each at most one exchange
bi bi+l such that bnew*=.i

Upon entry of the algorithm the number D is at most 1, and now we bound from
below the number D on termination. We know that b holds on termination and thus

D= IIbll2-+.
i=2

Since the vectors bo, b2,"" ", b, generate the lattice Z" we have

i=2

It can easily be seen that the inequalities ]lbll a for i= 2,,,,, n hold throughout
the computation. This implies

IIbll 2= Ilbol1-2 Ilbl1-2 Ilbol1-2 lxl1-2.
i=2 i=j+l

Thus, on termination we have

O IIblle Ilboll-+e Ilxl1-2.2.
j=2 i=2

These bounds and the inequalities (6.1), (6.2) show that the number of exchange steps
is at most

n + (2n- 2)log4/3 Ilxll O(n log Ilxll).

Each exchange step costs O(n2) arithmetic operations, the reduction in size of b+
included. From this we see that the total number of arithmetic steps is at most
O(n log Ilxll), which also covers the steps for the initial computation of the Gram-
Schmidt numbers ,j, IIbll 2,

The size of the integers involved. For j=l, n let 4==o IIbt[ 2=
det [(b, b)]o=,= where and only range over integers satisfying b, b. The
integer d is the square of the determinant of the lattice (bo, , b). It is known from
Lenstra, Lenstra Jr., and Lovfisz (1982, formulae (1.28), (1.29)) that the vector bd_
and the numbers ,d are integral. Therefore all numbers involved with the Lovfisz
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Integer Relations Algorithm are rational with denominator not larger than max dr. We
have max dj _-< Ilxll 2 since Ilbo*ll--< Ilxll and IIb/*ll--< for i= 1,. ., n.

Next we show that the following inequalities always hold upon entry of stage i:

(6.3) [Ibol]--< Ilxll,/Ib*ll =< for k 1,..., n,

(6.4) IIbl12= Ilxl[=/ n for k 1,..., n,

(6.5) I,1--< Ilxll / n for 0_-<j _-< k and _-< k _-< n.

Proof of equation (6.3). Throughout the computation we have bo=
x/gcd (x,..., x,) and max [l*ll--< 1. This is because an exchange b <--> bi+l does
not increase the maximum of IIb*ll,’’’,

Proof of equation (6.4). Initially IIbll <-- 1 holds for k 1,..., n. During the
computation we only permute the vectors b,..., b, and on stage we reduce the
vector bi+l in size. After the reduction of b+ we have

i_lz (6.3) (llxll=+/+ 1)
Ilbi+l -< /Z+l,r [Ib

r:o 4

Proof of equation (6.5). We have

(6.4)
_-< (llxll=/ n)’/2(d._,/dj)

1/2 1/2 < "}" n.-< (llxll/ n) ._,-Ilxll
We next prove bounds for the other integers occurring with the algorithm. During

the reduction of the vector bi+ at stage the numbers/xi+,! are transformed as

/Xi+l,! :=/xi+l,- [/xi+l,jJ xj, for 0, ,j-

for j= down to 0. Since I/xj, l[=<1/2 these steps at most double the number M:=
max, I,/,,I for each j. From (6.5) we know that M = Ilxll2/ n, when the reduction of
bi+ starts, and thus M_-<2n(llxll=/ n) hods throughout the reduction of b,+. So far
we see that the numerators and denominators of the rational numbers dr,/Xi,r, IIbll
are at most 2(11x112/ n)llxll in absolute value.

The cost of the final matrix inversion. We consider the computation of the output
vectors c2, , cn along the matrix inversion [c,. ., cn] -r :- [bo, b2, , bn]-. We
know from (4.3) that

V.j,n-i+lllb.ll for 1,..., n
.j>=n--i+

holds with [Vj, n_i+l[ < 1.5 and lib.*l[-., 4-. /4. < 4-<. Ilxll 2. This implies [[c,_,/,ll
,/1.5 Ilxll for i= 1,..., n- 1.

This shows that the coordinates of the output vectors ce,’", Cn have at most
gog2 (,/-a.5nllxll)q bits. Therefore it is sufficient to compute the inverse matrix
[el,’’’, cn]-r= [bo, be,’’’, bn] -1 modulo 2 with e + [log2 (,/-a.5nllxll)3. The
inverse matrix [bo, be,’’" ,bn] -1 exists modulo 2 since the vectors bo, b2,...,
generate the lattice Z n, and thus det [bo, b2,’"", bn] 1. This matrix inversion can be
done using O(n 3) arithmetic steps (i.e., additions, multiplications, divisions) modulo
2e. The matrix inversion requires at most n divisions modulo 2 and each division can
be done via the extended Euclidean algorithm using O(e) arithmetic steps with O( e)-bit
integers. From this we see that the matrix inversion costs at most O(n3-+ n log
arithmetical steps with O(n + log Ilxll)-bit integers. Thus the cost of the matrix inversion
is covered by the time bound of Theorem 6.1. El
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It is an interesting idea to replace in the above algorithm the Lowisz exchange
rule by Bergman’s exchange rule. Will the resulting algorithm be equally efficient? The
inequalities (6.1), (6.2) still hold for every exchange bi bi/l, and thus the number
of arithmetic operations is still O(r/3 log Ilxll), Moreover, the inequalities (6.3), (6.4),
and (6.5) still hold after each exchange bl bi/l using Bergman’s exchange rule.
However, during size-reduction of the vector bi+l where the numbers/xi+l, are transfor-
med by

t,ti+l,/:-- bi+l, ri+l,j],l,j,! for l=O,...,j-1

from j down to O, the vector by need not to be size-reduced. So we only know
Ilzj,,I <= Ilxll + n instead of I/xj,,I =< 1/2 in case of the Lovisz exchange rule. Thus in case of
Bergman’s exchange rule we only see that

max I/,i+l,/I (llxII --holds throughout size-reduction of the vector
We can obtain upper bounds for the successive minima Al(x), ", A,_l(x) of the

lattice Lx in terms of x and Hermite’s constant 3’,-1. For each n Hermite’s constant
3’, is the maximal value of AI(L) det (L) -2/" where ranges over all lattices of rank
n, AI(L) is the first successive minimum, and det (L) the determinant of the lattice L.
It is known that y,<=(4/Tr)F(l+n/2)2/" (see Cassels (1971, Chap. IX.7)), and this
implies y. _-< n for n _-> 2.

TrEOREM 6.2. Let x 7/" be a nonzero integer vector, L the lattice ofinteger relations

for x and hi(x),’’’, h._(x) the successive minima of lattice L. We have
(1) det Lx [[xl[/gcd (xl,’",x.);
(2) ,,(x)-< 74--.-(llxll/gcd (x,... ,x,))

"--1 /i(X) < ("--1(3) Hi=, r.-, )/2llxll/gcd(x,,’" ",x.)<-(n-1)"->/Zllxll/gcd(x,,’" .,x.).
Proof (1) The rank of lattice Lx is n- 1. Let cl,"" ", c. be a basis of the lattice

7’" such that 2,"" ", . is a basis of the lattice Lx. (Every basis 2,"" ", . of L can
be extended to a basis of 7’" since span (Lx)71Z"= Lx.) The component of el that is
orthogonal to c2,"" ", c, is (cl, x)llxll-2x and has length (c,, x)llxl] -1. This implies

det Z" (det L) 1(cl, x)[ Ilxll -,
On the other hand, (cl, x) is the minimal positive integer in {(m, x)lm }, and thus
(cl,x)=gcd (xl,""" ,x,). From this we see that det L= Ilxll/gcd (xl,... ,x,). The
inequalities (2) and (3) are direct consequences of (1) by the Minkowski inequality

n--1

l-I hi(L)---< )’n-l’’("-l)/2 det L
i=1

where L is a lattice with dimension n---1 and with successive minima
AI(L),’’’, &._,(L) (see Cassels (1971), Chap. VIII.2)).

The upper bound , (x)_-< 7/._ Ilxll ’/("-1) in Theorem 6.2 is optimal for rank n 2.
The shortest integer relation for x (xl, x2) Z is (-x2, x)/gcd (x, x2) that has length
Ilxll/gcd (x,, x2) ilxll/gcd (x,,
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RANKING THE BEST BINARY TREES*
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Abstract. The problem of ranking the K-best binary trees with respect to their weighted average leaves’
levels is considered. Both the alphabetic case, where the order of the weights in the sequence w,..., w,,
must be preserved in the leaves of the tree, and the nonalphabetic case, where no such restriction is imposed,
are studied.

For the alphabetic case a simple algorithm is provided for ranking the K-best trees based on a recursive
formula of complexity O(Kn3). For nonalphabetic trees two different ranking problems are considered, and
for each of them it is shown that the next best tree can be solved by a dynamic programming formula of
low complexity order.

Key words, binary trees, alphabetic and nonalphabetic trees, ranking of solutions
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1. Introduction. Let wl,’’’, wn be given "weights." This paper deals with the
problem of computing the best, second best,. ., K-best binary trees with respect to
these weights. The problem arises when we want to construct the best tree satisfying
certain constraints, and no efficient algorithm is known to find this tree. We may then
rank the best trees ignoring these additional constraints starting from the best to the
next best until the best tree obeying the constraints is reached.

We consider both the alphabetic case, where the order the weights are given must
be preserved in the leaves of the tree, and the nonalphabetic case where no such
constraints are imposed. The techniques we present can be used however in other
problems of ranking trees. For example, ranking binary search trees is done almost in
the same way as for the alphabetic case.

Ranking alphabetic trees is relatively a straightforward task. The problem is
solvable by dynamic programming, and thus partitioning of the solution set can be
obtained by introducing constraints on the decisions made while executing the computa-
tions. In this regard the problem is similar to the well-solved problem of ranking the
shortest paths between a pair of nodes in a network. In 2 we show how this can be
done efficiently, and the K-best trees can be computed in O(Kn3)-time.

Nonalphabetic trees are useful in the context of binary encoding of a set of words
where each word vi has a given frequency wi in which it appears in the language. In
a given code each word is written as a string of zeros and ones, and the length of a
word is defined as the length of the string. The main objective is to find a binary
encoding of minimum average length. Here we distinguish between two different
problems:

(a) The language is viewed as a collection of n objects (words); we say that two
codes are different if there exists a word vi, <=i<= n that is associated with strings of
different lengths in these codes (see 5).

(b) Here we do not distinguish between words of identical weights, i.e., given a
code for a language containing two words vi and v. for which w w., then exchanging
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between the strings associated with vi and v. does not induce a new code even if their
lengths (=levels) are different. In other words, the set of words {v, v2,’’’, vn} is
partitioned into disjoint subsets according to their weights. A code is identified by the
corresponding subsets of the strings’ lengths where the order in which the levels of a
particular subset are assigned to the words in that subset, is unimportant (see 3).

We note that if all the weights are different from each other, then the two problems
coincide; otherwise, the number of different codes is larger in the problem defined in
(a). In both cases care must be taken to avoid repetition of solutions (where "repetition"
is defined differently in the two cases), as a solution is uniquely identified by the length
of the words and thus may be represented in many ways by different topological trees
with different orderings of the weights.

Ranking the nonalphabetic trees is not as straightforward as ranking the alphabetic
trees since no order is defined on the problem’s elements. We note that the set of all
alphabetic trees corresponding to a given order of leaves is only a subset (of a much
smaller size) of the set of all nonalphabetic trees with the same number of leaves. (For
example, in all alphabetic trees with three leaves vl, v2, and v3 the second leaf of the
trees is of level two while in the set of nonalphabetic trees using the same leaves, v2
may also be of level one.) Therefore, the task of ranking the nonalphabetic trees cannot
be achieved by applying the corresponding algorithm for alphabetic trees on any
specific order of the leaves. Moreover, since the leaves can be ordered in n! different
ways, a direct application of the ranking procedure for alphabetic trees to the non-
alphabetic case may result in an unefficient algorithm and an enormous number of
repetitions of solutions. The main objective of this paper is in developing efficient
ranking algorithms for nonalphabetic trees.

We show that the best nonalphabetic tree (i.e., the "Huffman tree") can be
computed by any algorithm for alphabetic trees. We then extend this property to rank
nonalphabetic trees using ranking schemes for alphabetic trees: in 3 we introduce
another algorithm for alphabetic trees (with a higher complexity order-O(kn4)) that
is modified in 4 to rank the solutions for the nonalphabetic problem (b) defined
above. In 5, we present an O(kn3) algorithm that ranks the solutions for the nonal-
phabetic problem (a) by combining a procedure for ranking solutions for the assignment
problem.

We assume that the reader is familiar with the basic concepts involved with binary
trees as described, for example, in [K].

2. Alphabetic trees: Algorithm A. An alphabetic tree with n leaves vl,..., vn is
represented by the sequence of levels of its leaves, ordered from left to right. We denote
this sequence by (1,..., In). For a given sequence of weights we define the cost of
the tree T (I, , In) as C (T) i= wili. The optimal tree, i.e., the one of minimum
cost, can be found in O(n log n)-time by the algorithm of Hu and Tucker [HT];
however, we do not know of any method that will use this algorithm to rank the K-best
trees. In this section and in the next we describe, instead, two methods for ranking
the best trees that are based on the recursive algorithm suggested by Gilbert and Moore
[GM]. The first computes the K-best trees in O(Kn3)-time by modifying the above
algorithm in a way similar to that used by Dreyfus [Dre] and Lawler [L2] to rank the
K shortest s-t paths in a network. The second requires O(Kn4)-time and will serve
later to rank the best (nonalphabetic) binary trees.

Let T/ and C k denote the k-best tree and its cost for a problem consisting of the
=0 i--1 n, andweights Wi, Wi+l, w and define W0 "--f’Jr=i Wr" Then Cii

(1) C!j min {Cir-11- Cr+,}+ W/j, <j.
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For k> C is given by Cir+Cr+..j!j + W for some < r<j and u, v < k. Thus

C. is fully characterized by the triple (r, u, v) and we denote T (r k,..i, u, vij).
Let

U(i, j, r, K) max {u[ri=rand u ij=u, forsome k=l,...,K-1},

LAST i, j, r, K, u) max v[ v k k
i=v, ui=u, ri=rforsome k=l,...,K-1}.

Both U and LAST are set to zero when the maximization is over an empty set. U and
LAST focus on the subset of the (K- 1)st-best solutions for vi, vi+l,’", v in which
the left subtree consists of the leaves vi, vi+,’", Vr and the right subtree consists of
the leaves vr+,..., vj, i.e.,theset{T[ T (r, u, v), k 1,..., K- 1}. The operator
U provides us with the maximum u in the set that represents the rank value of the
worse left subtree used among these solutions. The operator LAST, on the other hand,
has an additional parameter u and is applied on a subset of the above set, namely,
{T]T (r, u, v),.k 1,..., K- 1} consisting only of those solutions using the uth
best tree for v, v+,. vr as their left subtree. LAST is assigned the maximum v 0
in this set, i.e., the rank value of the worse right subtree consisting of the leaves
vr+," , v.i used together with Tier among the (K- 1)st-best solutions for vi," , v.
The operators U and LAST are used in the design of Algorithm A.

Let

n n-I/

be the number of distinct alphabetic binary trees with n leaves [RH]. For a given
sequence of weights w,. ., w and K <_- M, we propose an algorithm, based on a
dynamic programming formulation that we explain in the sequel, for computing the
K-best trees"

ALGORITHM A.
-_<j n using recursion (1).Compute C for all _-<

For rn 1,. ., n- do begin
For i=l,...,n-m do begin
For k 2, , min (K, M,,+) do

(2) {C i+m Wi i+m -J7 min min
i<=r<i+m l<=uU(i,i+m,r,k)+l

C iUr -- cLAST(i’i+m’r’k’u)+l}}r+l,i+m
end
end

kIn (2) it is assumed that C g for k> M._i+l. It is also assumed that some
tie-breaking rule is applied whenever C+1 Ck

i j. For example, we may require in such
a case that either r/< r/+1 / k+l / k+l / rk+, k k+, andor r =ru and u <u a or r !j u u=u a
/k k+l

Formula (2) can be explained as follows. TKi,i+m can be viewed as combined of
two subtrees emanating from its root; the left one consisting of the leaves vi, vg+l, ", vr
and the right one consisting of the leaves vr+l, , Vi+m for some --< r < + m. Among
the (K- 1)st-best trees for the leaves v,..., vi+m consider only those combined of
two subtrees in which vr is the highest indexed leaf in the left subtree. The best such
solution is, of course, consisting of the subtrees Tr and Tlr/l,+m. The second best
such solution may either consist of the subtrees Ti2r and Tr+l,i+m or the subtrees Tr
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Kand T2r+l,i+m, etc. By the same reason with respect to Ti,i+m we distinguish between
the following cases"

(a) TK consists of a subtree Ti that already has been used in one of the treesi,i+m

Ti,i+m, l<-k<-K-1, i.e., u < U(i, i+m, r, K). In that case the right subtree must be
the best tree for Vr+l," ", Vi+m that has not been used previously together with Tier in
one of the solutions Tk <k <K-1 thus the right subtree is given byi,i+
LAST i,i-+-m,r,K,u )+
r+ l,i+rn

(b) If the left subtree TirU has not been used in one of the solutions Ti, i+mk
=< k _-< K 1, then it is easily verified that u must be equal to U(i, i+ m, r, K)+ and

Tr+l,i+. We observe that for u > Uthe right subtree must be the optimal one i.e.,
the operator LAST is equal to zero by definition. In addition, since the costs of Ti%

Cr+l,i+mand TVr+l,i+m, i.e., Cir and are computed relative to their roots, we must adjust
the leaves’ levels that results in adding the sum of the weights W/,i+,, to Ci + Cr+l,i+.

Formula (2) follows immediately from the above observations.
LAST(i,i+rn,r,K,u)+lMaintaining an appropriate data structure of {Cir+Cr+l,i+m r

i," ", i+ m- 1, u 1,. ., K} for each (i, m) pair, the O(K) minimizations in the
inner loop require O(n + K log (n + K))-time. Since log K =< log Mn O(n), the overall
complexity of the algorithm is O(Kn3).

3. Alphabetic trees: Algorithm B. We do not know of any efficient modification
of Algorithm A to solve for the best binary (nonalphabetic) trees. Next we describe
an O(Kr/4) algorithm for alphabetic trees, for which such a modification is possible
as will be described in the next section. This algorithm that we call Algorithm B uses
a partitioning procedure of the solution set, similar to that of Murty [M] and Lawler
ILl]. (See also [KIM2], [KIM3] and the extensive bibliographies on ranking the
K-best shortest paths.)

Let An be the set of alphabetic trees with n leaves.
Let T= (l,..., 1) be the K-best tree in An. Suppose that T1 is known. For

i= 1, n-1 let Si(SI) be the subset of An satisfying 11 1, li_l i-1, li<
(li> I). The union of all these sets is An-{T1}, so that if we can solve for the best
tree in each set then we can obtain T by comparing these trees and selecting the one
with minimum cost.

Suppose, without loss of generality, that T Si. To compute T we first partition
Si-{T2} to subsets Rj(R:).! J i,... n-1 satisfying new constraints in addition to
those defining Si. Specifically,

Ri {TAnlll 11 li li_ li < li},1, -1

R’ li- =I_ li<li<l}, and forj=i+l,.., n-1i={T6An[ll=ll, 1,

Rfi T An ll 11, 1i-1= 1-1, li 12i, 1-1 1-1,/> lj2. }.

If we could solve for the best tree in each of these sets, then we could compute
T as the tree of minimum cost among these trees and the best trees of SI, S, and

S j i. By repeating this procedure K- times we could compute the K-best trees
in

To apply such a procedure we need an algorithm that computes the best tree
satisfying constraints of the following type: l 11,’", li-1 li-1, D1 <= li <= D2. We
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denote the set of trees satisfying these constraints by G. All these trees share a common
left part consisting of the paths from the root to the (i 1)st most left leaves v, , vi_.

DEFINITION. The front of the trees in Fi consists of the subgraph of a tree T G
induced by the paths from the root to the leftmost leaves, where the path to v is
extended from the leaf so that its total length is D2. This extended path is called the
stem of the front.

We note that the front is uniquely defined and is independent of the choice of
the tree T. The front is also independent of D, so that it is characterized by the level
sequence (-,..., l_, D2).

The nodes on the front, except those on the stem, are either leaves or parents to
two sons. The nodes on the stem fall into three categories:

(i) Parents to two sons. We call them closed nodes.
(ii) Parents to a single son. We call them open nodes.
(iii) The leaf. We classify it also as an open node.
We name the open nodes in order from the leaf to the root by O,. ., O,, as in

Fig. 1, and denote their levels by l(O),..., l(Om), respectively.
Let q=max {jll(Oj) >- D and there are no closed nodes below Or}, i.e., Oq is the

open node closest to the root whose level is at least D such that all the closed nodes
on the stem have lower levels. In other words, the ith leaf of the trees in Fi must be
one of the nodes Oq, Oq_,..., 0.

FIG. 1. The front (3, 4, 4, 4, 9).
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Any tree in Fi is constructed from the front of Fi by assigning vi to an open node
Op, p<= q, deleting O1,"’, Op-1, and joining v/l,’", vn to Op+l,’", Om through
nonempty alphabetic trees whose leaves are consecutive subsequences of
and whose roots are connected to the open nodes. For example, suppose F
{ T An Ill 3, 12 4, 13 --4, 14--4, 5-_< Is_-< 9}. Then the front of F is as in Fig. 1, and
Oq 05. Figure 2 illustrates the construction of a member of Fi from the front of F.

We now show how to solve the problem of computing the best tree in Fi by
dynamic programming.

Let V;, j>_-1, l_-> 1 denote the minimum cost involved with attaching leaves
Vi, V to subtrees connected to Ol," ", Or. Let Cr; denote the cost of an optimal
alphabetic tree with leaves Vr, Vr+l," ", Vi. Note that if we attach this tree to the front
through an edge from O to its root, then the actual cost is Cr + Wrl(l(Or) + 1). Therefore,

bl min { Vj_ ,, -- Cr+ ,,! "+" Wr+ l,l( Oj 21- 1)),
iNr<=l--1

l> i, j> 2,

Vli (x), 1> i,

(3) V, { wfl( Oj)’ <=j <- q’

o, j> q.

The costs Cry, <= r < <-n can be computed in O(n3)-time by (1). Then (3) can
be computed for a given front and q (determined by a lower bound D1) and for all
relevant j and in O(n3).

To apply (3) we must first determine the levels of the open nodes on the stem.
For this purpose we make the following definitions:

8\

FIG. 2. A possible completion for the tree in Ng. 1.
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For a sequence al,’’’,an let k=min{i[ai_l=ai}. Then the sequence
a l, , ai-2, ai- 1, ai+, , an is the reduction from the left of the original sequence.
The left-reduced sequence for al,’’’, an is obtained by repeating the process of
reduction from the left until ai_ ai, i= 2," ", n. For example, the sequence (3, 4, 4, 4)
generates (3, 3, 4) and then (2, 4). No further reduction is possible and thus (2, 4) is
the left reduced sequence.

LEMMA’ [HT]. A sequence ll,"" ", In defines a tree in An if and only if its left
reduced sequence is (0).

In a similar way we can prove the following theorem.
THEOREM 2. Let l*l l’p) be the left reduced sequence of (l-i,’",/-1). Then
(a) F is nonempty if and only if D l*p and max {D1, lp*} -p _-< n + 1.
(b) If F is nonempty then the stem of the front of the trees in Fi, defined by

11," ", 1-1, D2), contains exactly p closed nodes, at levels l*- 1,. ., l*p- 1.
The costs Crl<-r<l<-n used in (3) can be computed in O(n3)-time by (1). For

a given front the open nodes can be computed with the aid of Theorem 2, and q is
determined by the front and the lower bound D1. Then (3) can be computed for all
relevant j and in O(n3)-time. For each value of k, _-< k_-< K we apply (3) at most
2n times using the above partitioning procedure, and then select the best of the solutions
obtained for the O(Kn) subsets of the partition. Therefore the time required to compute
the next best tree is O(n4 _[_ n log Kn) O(n4), and the overall complexity of computing
the K-best trees is O(Kn4).

4. Nonalphabetic trees: Algorithm C. In this section and the subsequent one, we
describe two algorithms for computing the K-best binary trees for the leaves
vl, v2,’.., vn. In contrast to the previous section, the order of the leaves is not
prespecified. The optimal tree can be computed in O(n log n)-time by the algorithm
due to Huffman [Huf]. Alternatively, the leaves can be numbered in ascending order
of their weights wl," ", wn and then the best alphabetic tree for vl, v,. ., vn can
be computed by the Hu-Tucker Algorithm [HT] that also requires O(n log n) time.
It is known that the resulting tree is indeed optimal.

As mentioned in we consider two different ranking problems on the set of
nonalphabetic trees. In this section we provide a ranking algorithm of complexity
O(Kn4) according to (b) defined in 1. In this problem a solution (/1, l,..., ln) is
characterized by the set {(l, w)[1 _-< _-< n}, i.e., interchanging the levels of two words
with identical weights will not create a new solution.

We first modify the partitioning algorithm of 3 to rank nonalphabetic trees. To
reduce the time complexity we modify the partitioning scheme so that when computing
the next best solution each subset is replaced by just two new ones, rather than O(n)
new ones. As in [G], [Der], [KIM1] and [KIM3] this requires knowledge of both the
best and the second-best solution in each subset of the partition.

Without loss of generality we assume that wl --< w-<. -<_ wn and let li denote the
level of v. A tree is uniquely defined by the sequence (11,"" ", ln) for which there
exists a permutation (1’1,"" ", l’n) defining an alphabetic tree. It is well known that a

necessary and sufficient condition for integers (11,." ", ln) to define a tree is that

(4) 2 ,=1.
i=1

The cost of the tree (11, ln) is [i=1 wili. Trees (11 ln) and (1’1, "’’, l’n) are said
to be isomorphic if one sequence is a permutation of the other. Trees T (11,. ", ln)
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and T’= (l,..., l’) are distinct if the ordered sequences (11,’’", ln) and (/’l,""", 1’,)
are different. As before, we denote by Tk= (lk, I,k) the k-best tree.

Clearly there exists an optimal binary tree (ll, 12, , ln) satisfying 11 _--> 12
and without loss of generality we call it T1. The next lemma shows that T is also the
best alphabetic tree with respect to the nondecreasing weight sequence Wl,’",

and thus can be computed by the Hu-Tucker Algorithm or by (1).
LEMMA 3 [Has]. Any noninereasing sequence (/1,"" ", l,) satisfying (4) represents

an alphabetic tree.
The following theorem uses this property and will be used to compute the

second-best tree in every subset of the partition.
THEOREM 4. Either T2 is the second-best alphabetic tree with respect to wl, ,

or T is isomorphic to T and (121 lZn) l -2, lr, lr_, lr+, ln) for some
r >--_ 2 such that/lr_l > lit and wr wr-1.

Proof Clearly if T and T2 are not isomorphic then l >- l >-_. >-_ 12n. By Lemma
3, T2 is an alphabetic tree, thus it is the second-best alphabetic tree. Suppose now that
T and T2 are isomorphic. Since l[ _-> ll_-->. _-->/in, there must exist indices j < r such
that l)> ll and 12r l). Moreover, we can assume llr_ > llr and Wr- < w. Then T2 is
the best tree satisfying lr--1), which means that except for lr the levels are non-
decreasing: ll _-> 12 _->... >_- lEt_ _->/2r+ _->... _-> 12,. Consequently, (l,..., 12n)
(l[,..., l)_l, l)+,..., llr, l),/1+1,... ln), so that T is obtained from T by a cyclic
permutation of a subsequence (!i,’", lr)" The difference in the costs of T and T is

wi(12i-li) Z wi(li-li+l)--Wr(tj-tlr)
=.j

r--1

--Wr_ ’. (l]--l+l)--Wr(1)--llr)=(Wr--Wr_l)(1)--llr)
i=j

The last term is the change in costs obtained with respect to the tree
(l, .,l’r-z, lr, lr-, l+,...,ln). Hence this tree is the second-best tree as
claimed.

Let Bn denote the set of nonalphabetic trees with n leaves. We now consider the
problem of computing the best tree in Bn satisfying li li, i Q. Let i,. ., ilQ be a
permutation of Q such that li, <- l2-<_" -<- iQ. Let ilQl+," in be a permutation

<. < w. Clearly there exists an optimalof {1 , n}\Q s.uch that WilQ[+,
n.onalph.abetic tree (l,. ., ln) with respect to the constraints l l, i Q .satisfying
lie+, >- lie+ >="" >-- ,,. Theorem 5 below shows that the sequence , li,, defines
an alphabetic tree, and obviously this implies that 1],, , ,,) is the optimal alphabetic
tree with respect to wi,,"’, wi,,. Therefore the best nonalphabetie tree under the
constraints li li, i Q can be computed by applying (3) to wi,,"’, we.

THEOREM 5. A sequence of integers (/1,"" ", 1,) satisfying conditions (a)and (b)
represents an alphabetic binary tree"

(a) Z 2-"=1i=1

(b) For some m, <= rn <- n, ll <- 12 <--" <= lm-I <5. lm, and lm lm+l >--" >- In.
Proof The proof is by induction on n. For n 2 the only sequence (l, 12) satisfying

(a) and (b) is (1, 1), which also represents an alphabetic tree. Suppose the conclusion
holds for a sequence of k elements with k _-< n and assume the sequence (l,. ., ln)
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satisfies (a) and (b). Clearly 1,, =max=j=n/ and as j= 2-J there must exist an
even number of indices for which/ 1,,. Without loss of generality assume l,, l,,+

tin+k, for some odd number k _-> 1. Let j* and j* + 1 be the most left pair of indices
for which /j.=/.+. Clearly, j*<-m. The first step of reduction from the left of the
sequence will generate the sequence (/1,"" ",/.-,/.-1,/*+2,"" ", l,,). It is easily
verified that the last sequence of n- elements satisfies both (a) and (b), thus by the
assumption it represents an alphabetic tree T with n-1 leaves. The alphabetic tree
for the sequence is obtained by adding two sons to the j*th leaf of T. [3

lln) has beenWe now describe the partitioning scheme. Suppose T --(11,
computed. T2 is then either the second-best tree in F1 { T[ ll =/11} or the optimal tree
in F2 { T[ l /1}.

To compute the optimal tree in F2 we could imitate the partitioning procedure
described in 2 also here. However, we do not know how to solve a problem with
constraints of the type li--< D2 except for by solving D2 O(n) problems with li l,

q,. , D2. The scheme requires solving O(Kn) such problems, and each requires
o(na)-time, so the overall complexity is O(KnS). We now describe a modified partition-
ing scheme, relying on our ability to compute the two best solutions to constrained
problems, that results in O(Kn4) time complexity.

The optimal tree in F2 is obtained by solving O(n) problems, each with a constraint
ofthe form I1 ’, for ’ {1," ", n}\{ll}. Altogether the two best solutions are computed
in O(n4) time complexity.

At the beginning of the kth iteration of the algorithm, we have a partition /7 of
B,,\{T, ..., Tk-} into subsets. In each subset F we are given the best and
second-best trees T(F) and Tz(F). We define T(F) to be T1(F) if
TI(F)C_{T,...,Tk-}. Otherwise we define T( F) TZ( F), and in this case
T(F)C:{T Tk-}. The next best tree Tk, is therefore the best of all trees,.
{ T(F)[F F}.

Suppose Tk= T(F*). If Tk= T(F*) then we do not change the partition and set
T(F*) T:z(F*). If Tk TZ(F*) then there existj < k such that T TI(F*). Suppose
F*={TB,[ti=t-{,iQ}. Since TkT there exist rnQ such that Ik,,,Pm. We
replace F* by new subsets, Fr {T B, [li l-, i Q, 1,, r} for all r 1, , n- 1.
For each of these new subsets we compute both the best and the second-best solutions
This requires O(n3)-time for each subset.

We note that U "- F* Tr=l Fr and these sets are disjoint. For r lm T(Fr) and
for r Ik,,, T(F) Tk. Thus for these values of r we set T(Fr) to T2(Fr). For the other
sets Fr we set T(F) to TI(F). This requires o(na)-time for each set and O(n4) in
total. Thus the overall complexity per iteration is O(n4) and for ranking K-best trees
it amounts to O(Kn4).

5. Nonalphabetic trees: Algorithm D. In this section we propose an O(Kn 3)
algorithm for ranking the K-best nonalphabetic trees for problem (a) defined in 1.
Here a solution is defined by the sequence (1,. ., 1), i.e., interchanging the lengths
of two words with identical weights will create a new solution of the same cost. The
algorithm uses a two-stage partitioning scheme. First Bthe set of nonalphabetic
treesis partitioned into subsets characterised by the (unordered) level set {1,. ., 1}.
Then these sets are further partitioned by an algorithm for ranking a special type of
transportation problems adopted from that of Murty [M] and Weintraub [W].

Let w,..., w be given in ascending order w <-w=...-< w, and T,, Tff
be the K-best alphabetic trees for w,. ., w. For k 1,. ., K, let S be the set of
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leaves of T whose level is 1. Let T,..., T, be the subsequence of Ta, TK
obtained by deleting all trees rka for which there exists j < k such that ISjll ISkll,
/=1,’’ ",n--1.

For r 1,..., R consider the following transportation problem Pr that assigns
the weights w,..., Wn to the level sets Srl of T:

Pr) minimize lwiX,
i,!

subject to Xil-- V i,

E x.--ISr,] Vl,

Xil 0 V i, 1.

Let Xkr be the k-best solution to (Pr) and let yk be the k-best solution among
{xJr]j l," ", K, r 1,..., R}. Let T be the tree defined by

THEOREM 6. Tk is the k-best nonalphabetic tree.

Proof X rk defines the k-best solution when the tree is restricted to have the level
sets defined by St1, 1,..., n- 1. Therefore, yk defines the k-best nonalphabetic
tree, under the restriction that it has ISrl] leaves of level l, 1,. , n- 1, for some
re {1, , R}. We now show that this restriction is legitimate. Assume otherwise that
the list T Tk contains a tree that does not obey the above restriction. Let k* be
the smallest index of such a tree. Clearly in Tk* the weights are assigned to leaves in
a nonincreasing order, i.e., l(wi) >- l(w.) for <j. By Lemma 3 there exists an alphabetic
tree with the same level set and where the levels of the leaves are nonincreasing.
Therefore Tk* is an alphabetic tree with respect to wl," ", wn and Tk*= T for some
r, 1-< r_-< R, in contradiction to the assumption.

Each problem (Pr) is a transportation problem that can be reformulated as an
assignment problem (P’r)"

P’r) minimize E E E lwiXie
S,.

subject to Xie-- V

E Xie-- Ve.

The next best solution of (Pr) can therefore be obtained by solving O(n) problems
of this type, as described by Murty [M] and Weintraub [W].

The complexity of producing Tl, ..., T, and deleting trees to obtain
T,. ., T is of order O(Kn3). Weintraub [W] in his interesting paper presents an
O(Kn3) algorithm for ranking the K-best assignments. By using his procedure to rank
the solutions of (P’r) our algorithm for calculating y1,..., yK requires an overall
complexity of O(Kn3).

It is worth pointing out that for the special case where w < wz <. < wn the two
last algorithms solve the same problem. In view of the differences in their order
complexities, we should prefer to use Algorithm D.
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OO3

AN ANALYSIS OF THE RATIONAL EXPONENTIAL INTEGRAL*

G. W. CHERRY?

Abstract. In this paper an algorithm is presented for integrating expressions of the form ge ldx, where

f and g are rational functions of x, in terms of a class of special functions called the special incomplete F
functions. This class of special functions includes the exponential integral, the error function, the sine and
cosine integrals, and the Fresnel integrals. The algorithm presented here is an improvement over those
published previously for integrating with special functions in the following ways: (i) This algorithm combines
all the above special functions into one algorithm, whereas previously they were treated separately. (ii)
Previous algorithms require that the underlying field of constants be algebraically closed. This algorithm,
however, works over any field of characteristic zero in which the basic field operations can be carried out.

(iii) This algorithm does not rely on Risch’s solution of the differential equation y’+fy g. Instead, a more
direct method of undetermined coefficients is used.

Key words. Liouville’s theorem, integration in finite terms, special functions, logarithmic integrals,
exponential integrals, error functions

AMS(MOS) subject classifications. 68Q40, 12H05

1. Background. It is well known that if C is the field .of complex numbers and g
is a rational function in C(x), then g dx can be written in terms of elementary
functions. Specifically, the integral can be written as the sum of a rational function
and a linear combination of logarithms. There are, however, algorithmic difficulties
encountered if we try to factor the denominator of g (or any part of this denominator)
into linear factors to determine the logarithms. Only recently (cf. [Roth76], [Trag76])
have the algorithmic details been worked out.

In this paper we present a similar analysis of the rational exponential integralsm
integrals of the form geldx where f and g are rational functions of x. Our algorithm
will determine whether a given rational exponential integral can be written in terms
of a class of functions called the special incomplete F functions [Bate53]. This class
includes, in addition to the elementary functions, a number of well-known special
functions such as the exponential integral

and the error function

ei (u) --e"dx
U

erf(u) | u’e u2 dx.

Examples of integrations performed by our algorithm are

and

-+ e dx --ei -erf
x 2

Received by the editors June 22, 1987" accepted for publication (in revised form) December 14, 1988.
i Tektronix Labs, Computer Research Laboratories, Beaverton, Oregon, 97077.
The usual error function, Err (x)= o e-’- dt [Bate53], differs from our definition, which is denoted

as Erfi in [Bate53], as follows: Err(x) 1/i Erfi (ix). Also see the Appendix.
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As these examples indicate, there are many integrals that cannot be written in terms
of elementary functions but can be written in terms of special incomplete F functions.
Another, more general example of this is the integral ge dx. It is elementary only if
g is a polynomial, but it can always be integrated in terms of elementary functions
and exponential integrals.

Algorithms for integrating in terms of special functions have been reported in
[Ssc85], [Cher83], [Cher85], and [Cher86] where separate procedures have been given
for integrating transcendental elementary functions in terms of exponential integrals
and error functions. This work was later extended in [Know86a] and [Know86b]. The
algorithm presented in this paper can be viewed as a synthesis and refinement of the
so-called "base cases" of these procedures. In addition to the synthesis we have made
two improvements to the original algorithms. The first concerns algebraic constants.
If we are interested in expressing rational exponential integrals only in terms of
elementary functions, then it is not necessary to introduce new algebraic constants
(e.g., if the integrand is composed of rational functions f and g that lie in Q(x), then
an elementary integral, if it exists, will be of the form hey where h is in Q(x)). However,
when integrating in terms of special incomplete F functions new algebraic constants
may arise. For example,

eX e,/ e5
x2_2 dx= ei (x +x/) + ei (x +x/).

In [Cher83], and again in [Know86a], [Know86b], it is assumed that the field of
constants over which the integrand is defined is algebraically closed. Under this
assumption it is not necessary to introduce "new" algebraic constants to express the
integral. It is necessary, however, to perform all operations such as partial fraction
decompositions over an algebraically closed field such as the algebraic closure of the
rationals. Although theoretically sound (cf. [DaTr81]) there are difficulties with this
approach. The algorithm presented here works over any constant field of characteristic
zero, provided the basic field operations can be performed. Also, any new algebraic
constants that are necessary for expressing the integral will be expressed in a field of
lowest possible degree. In fact, it will be shown that any algebraic constants occurring
in the error functions are quadratic over the constant field.

The second improvement presented here concerns the overall structure of the
algorithm. In previous algorithms a two step strategy has been employed" first we

generate a finite set of special functions

such that if the integral can be resolved, then the special functions that appear in the
result are from this set. For the class of special functions we are considering here, this
implies that there exist constants ci and a rational function y such that

The second step is to apply an algorithm of Risch’s [Risch69, Main Theorem, part
(b)] that reduces the calculation of the elements y, cl, , cn to the solution of a linear
system of equations. We observe, however, that the actual construction of this linear
system is often not necessary. In fact, it has recently been shown [Dav86] that in the
base case of Risch’s algorithm (the only part needed in this paper) it is never necessary
to explicitly solve a linear system of equations. Instead, by examining the partial
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fraction decompositions off and g, we can directly solve for y. The algorithm presented
here uses similar techniques to those in [Dav86] to directly solve for the elementary
part y and then for the exponential integrals and error functions

The paper is organized as follows In 2 we give a formal definition of the special
incomplete F functions and prove two results concerning the structure of integrals that
can be expressed in terms of these functions. In 3 we examine the problem of
completing squares of rational functions, which is a basic problem encountered when
integrating with error functions. The algorithm is described in 4 and examples are
given in 5.

2. The special incomplete F functions. Let F be a differential fieldZof characteristic
zero with derivation ’. A differential extension E of F is called a special incomplete F
extension ofF if there exists a tower of fields F Fo c F c Fn E such that for
each i, 1 -<_ _-< n, Fi Fi_(0i) and one of the following holds:

(i) 0i is algebraic over
(ii) 0i is logarithmic over F_ (i.e., 01 u’/u for some nonzero u in Fi-1, and

we write 0i log (u)).
(iii) 0i is an exponential over Fi_ (i.e., 01 u’Oi for some u in Fi_, and we write

0 e").
(iv) 0i is an error function over Fi_ (i.e., 01 u’v for some u and v in Fi_ such

that v’ (u) ’v, and we write 0i err (u)).
(v) 0i is an exponential integral over Fi_ (i.e., Ol=(u’/u)v for some nonzero u

and v in Fi_ such that v’= u’v, and we write 0i ei (u)).
We note that (v) could be replaced by the equivalent statement (v’):
(v’) 0i is a logarithmic integral over Fi_ (i.e., 01 u’/v for some nonzero u and

v in Fi_ such that v’=u’/u, and we write Oi=li (u)).
The following theorem is a synthesis of two results that have appeared in [Ssc85]

and [Cher83]. The proof relies on the following lemma (that also can be found in
[Cher83]).

LEMMA 2.1. Let k be a field containing the nth roots of unity and let K be an
algebraic extension of k. If v is an element of K such that v" is in k, then either v is in
k or the trace of v in K with respect to k is zero.

Proof First note that v satisfies a pure equation and therefore has a cyclic Galois
group: {tr, o-2, tr r} [Vdw50]. Next, let tr(v)= kv where : is a primitive nth root
of unity and write the conjugates of v as

(v) :v
(v) :v

(v) v.
Now since cr o"r+, k is an rth root of unity and so either r or

Tr (v)= (:+ +:)v =0. v 0.

TEOEM 2.2. Let t be a Liouvillian extension of C(x) where C is a field of
constants, x is transcendental over C, and x’= 1. Assume C is algebraically closed and
has characteristic zero, and let be an element of F that has an integral in some special

We shall assume the reader is familiar with the basic terminology of differential algebra (cf. [Kap57]).
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incomplete F-extension of E. Then there exist constants bi, ci, and di in C, elements wi, u,
and vi in E and (ti and gi algebraic over E such that

bli(2.1) 3’ Wo + bi 1_ 2 ci )i 1_ 2 diui vi
W bl

~t "2where v u ivi, v ti) ’gi, and (ti, v i, and ffi’gi are in E.
Proof A direct application of the main theorem from [Ssc8513implies that there

exist constants b, ci, and d and elements w, ui, v, , and t algebraic over E satisfying
(2.1). Now for each i, since vl u’vi, we have by the lemma on p. 338 of [RoSi77] that
ui is in E and some positive power of v is in E. Therefore some positive power of

~2(ul/u)v is in E. Similarly, for each i, we have u and some positive power of 5i in E.
Moreover, and so (ffl) is in E and some positive power of a’g
is in E. Next let E be a normal extension of E containing the w, u, v, ai, and i and
take the trace in E on both sides of (2.1) over the field E. This yields

my=(Tr(wo))’+2 c N(w) +2 c Tr
\u

v +2 di Tr(u gi)

where m is a positive integer and N(w) is the norm of w. Now Lemma 2.1 implies
that, for each i, Tr ((ul/u)v)=O unless (ul/u)v is in E and Tr (ai’g) 0 unless
is in E. In the first case u is in E and so vi is in E. In the second case (tTl) is in E

~2 ti)2/(lt)2 is in E. This completes the proof.and so V (,i
We now examine the case where F is a field of constants, f and g are in F(x),

and E is the differential field (x,
TJEOREM 2.3. Let F be a field of constants and let x be transcendental over x with

x’= 1. Let f and g be elements of F(x) and suppose that gef has an integral in some
special incomplete F-extension of F(x, ef). Then there exist constants c and di in , an
element y in F(x), and elements u and i in F(x) such that

(2.2) g y’ +f’y + c,.--+ Y da’
b/i

where
(i) For each ui there exists an algebraic over F such that u =f+ ci; and

~2(ii) For each ffi there exists a i algebraic over F such that ui =f+/3.
Proof Let 0 denote the exponential ef and apply the above theorem (where E is

the field F(x, 0)). This yields constants bi, ci, and di algebraic over F, wi, ui, and vi in
F(x, 0), and and g algebraic over F(x, O) such that

(2.3) gO W0 "JI- 2 hi w---j’i + ci- vi -ll- 2 diai’i
wi

t__ ~t ~2 ~2 t are in (x, 0). Since, for each i, v iswhere vi uivi, vi=(a2i)’gi and ui, vi and ai
an exponential of ui, Theorem 3.1 of [RoCa79] implies that there exist rational numbers
6i and constants a in so that ui 3f-c. Thus 08‘ and v are both exponentials of
u and, since two exponentials of a fixed element of a differential field must differ by
a multiplicative constant, we have vi Oiqi where r/ is in/. Note that since v is in
(x, 0), 3 is an integer. Similarly, there exist rational numbers g and constants/3 and
r/i- in F- so that/,/i~2 gf+/3 and t Og,(li. Here g must be an integer since [ii’ is in

Where the alternative definition (v’) is used for the special incomplete F-extensions.
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~’ ~’ is in F(x) and hence,F(x, O) and ui does not involve 0. This now implies that ui
~:2 ~t= (u)’/2u is in/(x). Now, absorbing r/ into ci and into d, write (2.3) as

(2.4) gO W + b F c O ai d l O
W 1,l

and compare the partial fraction decompositions in the variable 0 over the field F(x)
on both sides of (2.4). This yields 3i 3i 1, w 0 for i=> 1, and Wo yO for some y
in F(x). Equation (2.4) becomes

and dividing by 0 yields

u
gO yO )’ + E i 0 -- dil O

u ~r(2.5) g Y’ +f’Y + Ci "--JI- E diui.
l

Now let E be a normal extension of F(x) containing y and the constants ai, c, i,
and d, and let cr be an automorphism of E that fixes the field F(x). Then from (2.5)
we have

g cry +f cry + cr c
cr u

+E cr d cr a

where cr(u) =f+ cr(ai) and r(fii)2 =f+ (/3). Summing over all such automorphisms,
we have

where m is a positive integer. Since y is in F(x), dividing this equation by m yields
an equation in the same form as (2.2) and the proof is complete. Iq

The theorem implies that

gef dx yef d- E Cie-% ei i,1 -1I" E die-’ erf (/i )"

3. Completing squares of rational functions. In Theorem 2.3 we have shown that
if error functions appear in the integral, then there exist algebraic constants/3 such that

~2(3.1) f+ fli= u.
In this section we show that there can be at most two such values for/3 and that these
values are either in F or are quadratic conjugates over F.

In the case where f is in Fix] we have the familiar problem of completing squares
of polynomials. Here the basic result is well known. Iff is a nonconstant polynomial,
then there can be at most one constant/3 such that f+/3 is a perfect square. We state
and prove here an equivalent statement that shall be useful in the next section.

THEOREM 3.1. Let F be a constant field of characteristic zero and letfand g be two
nonconstant polynomials in Fix] such that f2_ g2= c where c is a constant. Then c O.

Proof Assume there are nonconstant polynomials f and g and a nonzero constant
c such that f2_ g2 c. Then f and g must be of the same degree and relatively prime.
Now differentiate both sides ofthe equationf2- g2= c. This yields the equalityf’f g’g.
Since f and g have no common factors, this implies f= 6g’ where 6 is in F. This,
however, is impossible since Of= Og (where Of denotes the degree of f). I1
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The more general problem of completing squares of rational functions and its
connection to error functions was first treated in [Ssc85]. Since then the problem has
been pursued in [CoTr82], [Cher83], and [Zwil84]. The results below were originally
stated in the unpublished manuscript [CoTr82], although the proofs presented here
are new.

THEOREM 3.2. Let Fbe a constantfield ofcharacteristic zero and letfbe a nonconstant
element of F(x). Then there are at most two constants i in such that f+ i g for
some gi in F[x].

Proof Let f=p/q where p and q are relatively prime and q is monic, and for
each let gi ri/si where ri and si are relatively prime and s is monic. Now note that
for all /3i, p+/3iq and q are relatively prime. Therefore q s and p+/3iq r i. This
determines si uniquely and therefore we drop the subscript on s. We first claim that
any two solutions ri and rj, corresponding to distinct/3 and/3j are relatively prime.
To show this let/3i and/j be distinct elements of F and ri and r. be elements of Fix]
so that p +/3iq ri and p +/3jq r. Subtraction yields the equality (/3i-/3j)q r-rj.
This implies that if a common factor of ri and rj exists, then it must divide q. But from

2p+iq ri, this common factor of q and ri also divides p. This contradicts the
assumption that p and q are relatively prime and proves our claim. Now let
max {Op, Oq} m for some integer m. Clearly, if Oq >- Op, then m 20s is even. On the
other hand, if Op>Oq then m =0p must be even if there is to be a solution r to
p +/3q r2. Therefore let m 2n. Now consider the possibility that Ori < n for some i.
This can only happen if (i) Op =Oq and/3i =-It(p) (where le(p) denotes the leading
coefficient of p) or (ii) Op < Oq and/3 0. Since these situations are mutually exclusive
we know that there can be at most one ri such that Ori < n. For the remainder of the
proof we will label such an ri as r. Thus, Or n and Orj n for j > 1.

Now differentiating both sides of the equation p/q+i =(ri/s) 2, we obtain sp’-
2ps’= 2ri(srl-ris’). Thus for distinct and j we have ri(sr’i-ris’)= r(srj-rs’), and,
in particular, r(sr-rs’)=)(srj-rs’) for j> 1. This implies, since r and r are
relatively prime, that rl(sr’ rs for all j > 1 But 0(st’- rs < 2n- 1, implying that
there can be at most one solution rj where j > and a maximum of two solutions.

COROLLARY 3.3. Let F,f g, ill, and 2 be as in Theorem 3.2. Then, if solutions fll
and 2 are not in F, they are quadratic conjugates over F.

Proof This follows directly from the observation that if/3 is a solution to (3.i),
i.e., f+/3 g2 for some g in [x], and if o-(/3) is an automorphic image over F of/3,
then o-(/3) is also a solution to (3.1).

Solutions to (3.1) can be computed by calculating the resultant, resultant
(p +/3q, p’ +/3q’ ), with respect to x. This will be a polynornial, say h (/3), in the variable
/3 ofdegree 3n- 1 where n is as above. Observe that/3 is a root of h if and only if
p +/3q has multiple factors. We can therefore find all the linear and quadratic roots
of h(/3) and test for perfect squares. However, in the next section we will see that it
is not necessary to perform this computation to integrate with error functions. Instead
it will be possible to find constants U and V such that the solutions to (3.1) are roots
of the quadratic polynomial/32- U/3 + V.

4. The algorithm. In 2 it has been shown that computing the indefinite integral
gey is equivalent to finding suitable y, c, ui, di, and gi such that

(4.1) g y’ +f’y +E c E da’

The algorithm presented in this section solves first for the elementary part y, then for
the exponential integrals, and finally for the error functions.
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First we introduce some notation. We will assume that f= p/q where p and q are
relatively prime polynomials and q is monic. Then for each i, since f+ ai ui, we can

~2write ui=pi/q where pi=p+aq is relatively prime to q. Also for each i,f+=u
implies that there exist polynomials r in F[x] such that ff r/s, where s is the unique

2monic square root of q, r =p +/3iq, and r and s are relatively prime. We note here
that no error functions can appear in the integral if q is not a perfect square.

We will also make use of the following definitions. For an arbitrary element f in
F(x) we define the de8ree off, denoted of, to be 0(num (f))-0(den (f)). Now write
f=fp +f,/fa where fp,f,, and fa are in F[x], Of, <ofa,f,, and fa are relatively prime,
and fa is monic. We define the leading coefficient off, denoted lc(f), to be the leading
coefficient of fp. Finally we borrow an idea from [Dav86]. For f not in F[x] write fn
in the form or_ix

r-1 + + Co where r is the degree offa. We then refer to the constant
cr_l as the properfraction coefficient off and denote it f. We also definef to be zero
for all f in Fix]. Note thatf 0 if Ofn < r- 1. It is easy to show that (i) (f’) 0 for
all f in F(x), and (ii) (f+ g)=f+ go for all f and 8 in F(x).

4.1. The elementary part. To compute y we can use the same strategy that is used
in Dav86, Thm. ]. We repeat the steps here to show that the partial fraction arguments
presented in [Dav86] are not hampered by the special function terms in (4.1). First
write g Ggig2 where G, gl, and g2 are in Fix], gl and g2 are monic, g2 is the product
of all the irreducible factors of the denominator of g that divide q, and gl is the product
of all the irreducible factors of the denominator of g that do not. Next perform a
partial fraction decomposition of g

(4.2) g=G+l+2
81 g

where G, ffl, and are in F[x], 0(l)<0(81), and 0(2)<0(g_). We now divide the
computation of y into three steps. Steps E1 and E2 will solve for the "fractional part"
of y, and Step E3 will solve for the "polynomial part" of y.

Step El. Perform a squarefree decomposition of gl, gl h... hi, and a partial
fraction decomposition

81 i=lj=l

where O( Go) < O( h). Combining (4.2) and (4.3), we have the following decomposition
for g"

(4.4) g a + 2 aij :2
i= 1S=l h/+’g2

Now suppose that y is written in the same format

(4.5) Y g+
i=1 j=l Zi Y2

and substitute (4.4) and (4.5) into (4.1). This yields

(4.6) G+ Z ,Z .--7+-= Y+ -2T. + + Y+ E --2T. +
i= hi g2 i=lj=l zi i=lj=l zi
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Performing the differentiations and comparing terms on both sides of this equation,
we see that r= n+l, z,=hr, and Gr=--nYn, h’r(modulo hr). Since hr and h’r are
relatively prime, this congruence can be solved uniquely for Yn,. With Yn known we
can make the substitution y .9- Y,,/h in (4.1). This will result in an equation in the
same form of (4.1) (with .9 replacing y) where the multiplicity of hr in gl is reduced.
After a sequence of such substitutions gl becomes squarefree, implying that each
irreducible factor of the denominator of y divides q. Note that we have reduced n to
zeromthe variable n will be reused below in Step E2.

Step E2. We now make the following observations concerning any irreducible
factors of Y2. Let 4 be such an irreducible factor and suppose 4"[Iden (y) and mllq.4
By assumption, n, tn > 0. Then 4"+l]lden (y’), 4m+lllden (f’) and 4"+m+lllden (f’y).
For the special function terms we have, for each i, 4llden (ul/ui), and if s 1 then
b(m/z)+l[[den (t’i). Now examine the partial fraction decompositions on both sides of
(4.1). Since m>0, the f’y term dominates with respect to 4 and d/)n+m+lllg2. Our
strategy, therefore, is to apply substitutions of the form y =)5-6 that reduce the
multiplicities in g2 until the above degree argument implies that Y2 1. This will happen
when the highest multiplicity in g2 is rn + 1 or less.

Following the strategy outlined in [Day86, Lemma 4.3], we first find a squarefree
polynomial h such that hrllg2, hmllq, and such that g2/h and q h are relatively prime
to h. h can be generated easily from the squarefree factors of g2 and q. If r <- rn + 1
then the above observations imply that h is relatively prime to y2. Therefore assume
that r> rn + 1. Then the above observations applied to the irreducible factors of h
imply that hr-(m+l)lly2. Now write the partial fraction decompositions of ,2/g2, 2/Y2
and f’ as

g2 h

Y2 h-(m+)

fff -hm+l +

where ,)3, and f are relatively prime to h with degrees less than h. We then have
---f))(modulo h). This congruence can be uniquely solved for )) and the substitution
y= -/hr-(m+l) will reduce the multiplicity of h in g2. After a finite number of such
substitutions we can assume that y is a polynomial.

Step E3. When y is written as a polynomial, y y,x"+...+yo, (4.1) becomes

u:(4.7) g y,x" + + yo)’ +f’(yx + yo) + ci---- dial.

Now we consider two cases.
Case (i). Op > Oq. Here lc(f’)=0 and we compare leading coefficients on both

"2sides of (4.7). First note that, for each i,O(ul/ui)=-I and, since ui =f+fii,
Of 1/2(Of’- 1). Therefore

( u: )O(y’+f’y) o(f’y) > 0 , ci--+Z dial

The notation u" v, for polynomials u and v and a nonnegative integer r, means that u" divides v but
u does not.
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which implies lc(g) lc(f’)yn. Solving for yn and making the substitution y y-y,x
will reduce the degree of g. Repeating this procedure will eventually yield all of y.

Case (ii). Op<-Oq. Here Of’<- -2 and, for all i, O(ul/ui)=-I and 0(if/) <- -2. In
the subcase where n > 0, we have

( u: )O(y’+f’y)=O(y’)>O Yci--+Y, dial

which implies lc(g)= nyn and we can solve for y, and reduce the degree of g. Next
consider the subcase where n 0. Choose any squarefree factor of q, say h, such that
hmllq and q/h" is relatively prime to h. Again we have h"/lllden (f’), and for each
i, h]lden (ul/ui) and hm/2+lllden (ffl). Next we form the partial fraction expansions of
g and f’

f’- f t--...g =--7+" ", hm+l
and compare partial fraction expansions on both sides of (4.1). This yields r m +
and Yo /f.

4.2. The exponential integrals. When we assume that y has been calculated, (4.1)
becomes

Comparing this equation with the decomposition of g in (4.2), we obtain

(4.8)
gl p,P Pi

and

E ci-E ci--+Ed,
g2 q p,# p,P q

We will consider each of these two equations separately.
Step P1. To resolve (4.8) compute the resultant of g and p+ aq with respect to

x. This will be a polynomial in the variable a, say h(a). The roots of h(a) will each
yield a factor Pi =P + aq of gl. We now have a factorization of gl, gl--IIp, and can
perform a partial fraction decomposition of i/g"

(4.10) g~’= Y fi.
gl Pi

Comparison of (4.8) and (4.10) determines whether constants c exist satisfying equation
(4.8). If no such constants exist, then the integral does not exist in a special incomplete
F-extension and the algorithm terminates.

Step P2. Now consider (4.9) and note that there are only two mutually exclusive
cases where p =p+ aiq is in F for some i. These are (i) Op =Oq and a lc(p), and
(ii) p is in F and a=0. In either case there can only be one term in the sum
Ep,p ci(q’/q). We therefore write this sum as c(q’/q) and, transposing the known
quantity -q’/q p;-ci to the left-hand side, we rewrite (4.9) as

3/= -c--+ di
q

where y is a known element in F(x). Now if q we have, by comparing proper
fraction coefficients on both sides of this equation, that c=-y/Oq. This concludes
the calculation of the exponential integrals.
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4.3. The error functions. We have reduced the original problem to the calculation
of constants di and polynomials ri such that

where, for each i, there exists a constant /3i so that p/q+i (ri/s)2. It is easy to
determine whether q is a perfect square and, if so, to compute s such that q s2.
Clearly if no such s exists, then there can be no error functions and the algorithm halts.

Now note, for each i, that

and therefore

Thus (4.11) can be written

(4.12)
2g

Z ds(p/q)’ r

We have, since ri and r are relatively prime for distinct and j, that the monic
denominator of the left side of this equation is the unique monic associate of the
product H ri. Denoting this denominator by h we have

(4.13) ch =Hri
where c is an unknown constant in F.

Now Theorem 3.2 implies that there can be only one or two terms in the above
sum. Thus our strategy is to first attempt to satisfy (4.11) with one error function. If
this fails, then two error functions will be tried. Again we label the two steps as follows.

Step R1. If we assume there is one term in (4.11), then (4.13) implies that ch r
and, therefore, p= c2h2-q. Since h and q are relatively prime (a common divisor
would also divide p, an impossibility), we can determine if there exist constants R and
S such that p Rh2+ Sq. If such constants exist, then they must be unique and we
have/31---S. This yields r. The constant d can then be calculated from (4.12). Of
course, if R and S do not exist or (4.12) does not yield a constant for d, then the
remaining integral is not a single error function.

Step R2. Next we consider the case where there are two error functions. Here
(4.13) yields ch rr and we have

(4.14) c2h= (p+ ,q)(p+ 2q)

or

p2= c2h2-[(l + 12)p + (/3/3z)q]q.

We now claim that 0(h 2) > n where n max {0(p), 0(q)}. This follows from (4.14)
as follows. First note that O(p+Clq)<n only if (i) Op=Oq and fl=-lc(p), or (ii)
Op<Oq and /3=0. In the first case (4.14) implies that 0(h2)> n unless P+fliq is a
constant for or 2. Without loss of generality assume p+/31q 6 where 6 is a
constant and subtract p+q= from p+zq=r2. This yields (2-l)q=r-6,
contradicting Theorem 3.1, since q= s2. In the second case, 0(h2)> n unless p is a
constant. But ifp is a constant, then the equation p + 2q r again contradicts Theorem
3.1.
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Now since O[(,+2)p+(,z)q]<-_n, we have O[(,+2)p+(,z)q]<O(h2).
We therefore calculate unique polynomials R and S such that p2= Rh2+ Sq where
0(R) < 0(q) and 0(S) < 0(h 2). This implies that

-S (/3, +/32)p + (,z)q.
We then determine if there exist constants U and V such that -S Up + Vq. If these
constants exist, then and 2 are roots of the quadratic equation 2_ U + E From
here we can calculate r and r:. Finally, comparing the numerators of (4.12), we obtain
an equation of the form k drz + dzr where k is known. From this equation we can
determine if constants d and d: exist satisfying (4.11).

5. Examples.
xample 5.1. Consider the integral

e /x dx.

Since there are no error functions here (q is not square), (4.1) becomes

(5.) =++2 Pi

Since g= 1, the elementary part of the integral, if it exists, must be of the form
y yx + To. Substituting this into (5.1), we obtain Yl and so y x + To, which we
substitute again into (5.1). This yields an equation of the form

-=y+ + cx Yo kP
Comparing partial fraction decompositions, we obtain To=0, thus completing the
determination of y. We now have

Since the denominator of 1Ix does not contain a factor relatively prime to q, we go
directly to Step P2. Here l/x, c =-y/Oq =-1, and so

el/Xdx=xel/-ei().
Example 5.2. Consider the integral

(1 )1ix-+ e dx.
X

In this case Steps El, E2, and E3 reveal that there is no elementary part, i.e., y 0,
and we go to Step P2 where we have

(/x+/x) -oq 2

Now consider the error function problem. Equation (4.12) becomes

-1= d

Applying Step R1, we find R and S such that 1 R + Sq. This yields S =0, and so
1 0 and r 1. Thus r 1, d =-1, and

+ e dx
2

ei erf S
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Example 5.3. Consider the integral

x4_l

xS+x
Here (4.8) becomes

e(x+’/x dx.

and so Step P1 applies. From the resultant h(c)=c4-4a2+4 we get c,=x/ and
a2 =-x/. Thus p, x2+x/x + and P2 x2-x/x + 1, leading to the partial fraction
decomposition

2x x v/2 x + ,//2
x4 + x2-,,/x + xz + x/x +

X5"- X X4 x

or

Comparing this to (4.8), we obtain c, c_ =1/2. Subtracting

lP’ +
2 p, 2 pz x

from g, we obtain zero and so

e4X
4

e dxxS+x 2
ei ( xZ-x/Xx +1) e

-’/g

(X2 q- V/X "+- 1)+ ei
2 x

Example 5.4. Consider the integral

e(x4+a)/xz dx.

Here the constant field F contains the parameter a (i.e., F Q(a)). The left side of
(4.12) becomes x2/(x4-a), and so h=x4-a. Solving p2=Rhz+sq, we obtain R
and S 4ax. Solving -4ax2= Up + Vq, we obtain U 0 and V =-4a. The roots of
/3-4a are 2v and -2-, yielding r, xZ+v/ and r2= x2-/-. Calculating d and
d2, we obtain

I 1 -2,/-g x 1 eZ,/-ge (x4+a)/x2 dx
2
e erf + erf

Appendix. The incomplete F functions [Bate53, Chap. 9] are functions that can
be expressed in the form

y(a, x) e-’ -’ dt, Re a>0

r(a, x) e-’ a-1 dt r(a)- y(a, x).

Bateman refers to the extensively studied members of this class as the special incomplete
F functions. Of these, the exponential integral and error function correspond to the
parameter values a 0 and a 5, respectively. Although our algorithm only explicitly
handles exponential functions and error functions, each of the other special functions
discussed in [Bate53] can be expressed in terms of these two as follows:

(i) The logarithmic integral:

dx=ei (log (u)).
U’

li(u)=
logu

X4- 2x



AN ANALYSIS OF THE RATIONAL EXPONENTIAL INTEGRAL 905

(ii) The sine and cosine integrals:

si (u)= f u’ Sinu (u)
[ei (iu)-ei (-iu)]dx 2-7

ci (u)-- ff u’ COSu (u)
dx 7 [ei (iu) + ei (-iu)].

z

(iii) The Fresnel integrals:

S(u)= u’ sin u dx= [erf (x/-rri/2u) + err (v/rri/2u)],

C(u)=f u’cos( )u dx=
2x/-5- [err(x/rri/2u)-err(x/-rri/2u)].

Acknowledgments. thank D. Coppersmith and B. Trager for the insight received
from their unpublished note on completing squares [CoTr82]. This paper is dedicated
to the memory of Dr. Hatem Khalil.
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AN ANALYSIS OF A GOOD ALGORITHM FOR THE SUBTREE PROBLEM,
CORRECTED*
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Abstract. It is shown that the proof of the main result in Reyner’s paper, similarly titled, is incorrect.

Interestingly, by combining a simple modification of the algorithm with tighter analysis, one can obtain the
original result with a minor improvement.

Key words, algorithm, algorithm analysis, bipartite graphs, computational complexity, matching, subtree
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1. Introduction. The rooted subtree isomorphism problem has several applica-
tions in computer science, besides being one of the known subcases of subgraph
isomorphism in the complexity class P. The main contribution of [2] was the analysis
of a very simple algorithm for subtree isomorphism in terms of the complexity of
bipartite matching. The result of this analysis had the following important implication:
Improvements in the upper bound for bipartite matching would yield corresponding
improvements in the upper bound for subtree isomorphism. Unfortunately, however,
we show that the proof of Theorem 1 in [2] is incorrect (for the benefit of the reader
we include the statement of Theorem 1). More importantly, by modifying the algorithm
given by Reyner we are able to prove this theorem. At the same time, our modification
preserves the simplicity of the algorithm. The proof of Theorem 2 in [2] is not affected,
except that in the last line of the proof for Theorem 2, 0+ m- should be 0+ n- 1.
The statement of Theorem 2 can be obtained from the statement of Theorem by
replacing rs by rs, omitting u > 1, and replacing nm by nm In n.

2. Main results.
THEOREM (Reyner [2]). Given an algorithm for bipartite matching that requires

at most O(rs) operations where r<= s and u > 1, the subtree algorithm will require at

most O(nm ") operations.
The original proof is erroneous. The proof starts off by choosing a b large enough

so that the matching algorithm requires at most brs" operations, and so that the subtree
algorithm requires at most bnm" operations whenever n and rn satisfy (n-1).
((m-1)"+ m-1)> nm". It was claimed in [2] that such a b exists since only finitely
many m and n satisfy the above inequality, and the marriage algorithm is O(rsU). We
show that for all real values of u, < u < 2 there are infinitely many positive integers
n and rn such that the inequality holds. Note that since n and m denote the number
of vertices of the trees S and T, respectively, the set of positive integers is the only
domain of interest for n, m. For convenience, we choose n m, which corresponds to
the tree isomorphism problem.

THEOREM 2. For all < u < 2 there is an mo(u) such that the inequality (m )u+l
__

(m-1)2- m"+l>0 holds for all tn> mo(u) or almost everywhere (a.e.).
Proof Expanding (m- 1)"+ by the binomial theorem, we need to show that

(m- 1)2- m"++ Y’, (--1)ktn u+l-k >0 a.e.
=o k

Received by the editors April 11, 1988; accepted for publication (in revised form) December 21, 1988.
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The word "rooted" will be implicit hereafter.
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or that

mU+ (--1)kmU/l-k > 0 a.e.m2 2re+l+
2 1 k=3 k

Observe that since < u < 2, the terms in the last summation are all negative and since
I(u-l)l _-< 1 for k 3, the last summation is less in absolute value than =3 mu+l-

m.-(2 - .-/ .-
k=O m )=m (m-1)<l+("+ m Therefore it suffices to show that m

2m-(u+l)m">O almost everywhere. As 2m<2m", we need only prove that
(u + 3) m" almost everywhere. Since u < 2, the last inequality is true almost everywhere
and we are done.

Remark. The above theorem can also be proved by showing that the more general
inequality 1 + x- > (1 + 1/x)- holds for all real e 0< e < 1, positive integers k, and
sufficiently large x [3].

What is more interesting and useful is that by making some modifications to the
algorithm originally described by Matula 1 ], we can prove a slightly stronger theorem
than Reyner’s main result. If G is any graph, let v(G) denote the number of vertices
of G. The basic idea is that the subtree isomorphism problem is trivial when v(S) is
or 2. In that case, S is a subtree of any rooted tree T, provided v(S) v(T). Therefore,

we determine for each vertex v in S, T the number of its children c(v), the number
of its descendants d(v), and the number of its subtrees with at least two vertices o(v).
It should be clear that this takes only 3(n + m) 6m operations. A high-level description
of the modified algorithm is as follows. It is assumed that the algorithm is given the
roots (root of a tree G is denoted rg) of the trees to be checked and invoked for trees
having at least three vertices.

Aigrithm Rte Sbtre Isomorphism (r,,
(1) If d(r.,)d(r) and e(r)c(r) and o(r,)o(r), then delete r,. and r, to obtain
rooted subtrees S,. ., Sn and T,. ., Tq, else return 0. Here p c(r.,) and q c(r,).
(2) (Recursively) For each S such that v(S) > 2 (decide whether S is a rooted subtree
of with v()>2 and form a kl matrix M with m0 1(0) if S is (not) a rooted
subtree of ). k is the number of such S’s and is the number of such ’s. Relabel
the S’s and ’s if necessary.
(3) Apply an algorithm for obtaining a maximal matching in the bipartite graph
corresponding to M. If there is no such matching, then return 0 else return 1.

We can now prove a slightly stronger theorem than the one given by Reyner.
Proof Choose c large enough so that the matching algorithm requires at most

crs for each r and s and e 1. Let d and f be the number of S’s and ’s of size at
least 3. Then the total number of operations of algorithm Rooted Subtree Isomorphism
is given by five comparisons, operations in step 3, and the operations contributed by
the recursive calls. Hence the total number of operations is bounded by

d f f

5+cdf+ 2 2 cnim.<5+cdf+c(n-l) 2
i=1 .j=l j=-I

Since l=<d -< [(n-1)/3J and mj->3 for l<=j<=f

5+c(n-1) fu/3+ 2 m <5+c(n-1)(fu/3+(f-1)3"+(m+2-3f)")=g(f)
j=

On showing that g(f)<= cnm we will be done. Also since 1-<f_-< [(m-1)/3] and the
second derivative of g(f) is positive (u > 1), the maximum occurs at an endpoint.
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Therefore an upper bound is the larger of g(1) or g((rn-1)/3). Now g(1)=
5+c(n-1)(1/3+(m-1)u)<-cnm for m>2(n<-m,u>l). Also g((m-1)/3)=5+
c(n-1)((1/3)((m-1)/3)U+(m-1)3 u-l) is less than cnm if either u >- 1.03 or u < 1.03
and m large. To see this consider h(m)=5+c(n-1)((rn-1)u3-u-+(m-1)3-l)
cnm". After careful analysis it can be shown that the second derivative of h(m) is
negative, and its first derivative is negative if u >- 1.03 or u < 1.03 and rn is large. [3

The entire algorithm (including processing) therefore takes 6m + cnm operations
or about (c+2)nrn (no preprocessing required if n<3) operations ov.erall (observe
that the preprocessing operations are done only once; hence, it is still correct to use

cnim’ for the recursive calls). This is an improvement of the result in Reyner’s original
article. In the event that a bipartite matching algorithm is obtained with < u < 1.03,
further analysis along these lines might be appropriate.

3. Conclusion. Thus we have been able to show that improving the exponent u
in the upper bound for bipartite matching will improve the exponent for subtree
isomorphism. The advantage of the algorithm is its obvious simplicity, and when there
is a hierarchical structure involved (e.g., trees representing terms), this may be the only
algorithm of interest.
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THE COMPLETE CONVERGENCE OF BEST FIT DECREASING*

WANSOO T. RHEE AND MICHEL TALAGRAND$

Abstract. Consider a probability measure/x on [0, and an independent sequence of random variables
Xi,... ,X,,,... distributed according to /x. No regularity assumptions are made on /x. Denote by
B(XI,. ., X,,) the number of unit-size bins that are used by Best Fit Decreasing to pack items of size
XI, , X,,. The existence of a constant b(/x) is proven such that for each e > 0,

E P(n--’B(X,,’’’,X,,)-b(/z) =>e)<oo.

Key words, probabilistic analysis, approximation algorithm, bin packing

AMS(MOS) subject classifications. 90B99, 60K30

1. Introduction. The bin-packing problem requires finding the minimum number
of unit-size bins needed to pack a given collection of items with sizes in [0, 1]. The
problem has many applications and has been shown to be NP-complete. There is a
growing literature devoted to the analysis of stochastic models for bin packing (see
[1]). Most authors have analyzed approximation algorithms under a model of items
drawn independently from a special distribution, e.g., uniform on some subinterval of
[0, 1]. In that case, most approximation algorithms will pack few items in a typical
bin and will never produce complicated patterns. Thus, the choice of a restrictive
stochastic model may ignore most of the inherent complexity of the algorithm. For
example, it is known that many approximation algorithms exhibit anomalous behavior
[3]. This behavior does not seem to occur for typical lists drawn at random from the
uniform distribution. One way to deepen our understanding could be to consider more
general models, where the items are drawn independently according to a distribution
/x, on which no restriction is made. (This approach has met some success in [4], [6],
[7].) In that case, the typical list can produce very complicated packing patterns. In
this paper, we are interested in the algorithm Best Fit Decreasing (BFD). In BFD, we
first order the items according to decreasing size. Each item is then packed in the bin
in which it fits the best, i.e., in which the remaining space is minimal after adding the
item, using a new bin whenever necessary. We refer the reader to [2] for the deterministic
analysis of BFD.

We denote by B(xl,’’’, x,) the number of bins used by BFD to pack items of
size x,..., x.. Our main result is the following convergence property.

THEOREM 1. For each probability measure on [0, 1], there exists a constant b(I,),
such that if (Xi) >= are independent and identically distributed like I, for each e > O, we
have

(1) nlE P( nl B(XI’ Xn)-b(l*)>=

It might be worth mentioning that while many results in the literature reach a
conclusion stronger than (1) they either deal with specific distributions or with much
better-behaved algorithms [5], [9].

*Received by the editors March 21, 1988; accepted for publication October 3, 1988.
t Academic Faculty of Management Sciences, Ohio State University, Columbus, Ohio 43210-1399. The

research of this author was supported in part by National Science Foundation grant CCR-8801517.
$ Equipe d’Analyse-Tour 46, Universit6 de Paris VI, 4 Place Jussieu, 75230, Paris, France, and Depart-

ment of Mathematics, Ohio State University, Columbus, Ohio 43210. The research of this author was

supported in part by National Science Foundation grant DMS-8801180.

909



910 WANSOO T. RHEE AND MICHEL TALAGRAND

The problem of complete convergence, i.e., of proving a result corresponding to
Theorem 1, seems of interest for all approximation algorithms. In a companion paper
[8], we investigate the case of First Fit Decreasing (FFD), which turns out to be
considerably deeper. Interestingly enough, there is a considerable difference between
these two algorithms. Using the methods of [8], one can show that the pattern BFD
produces when packing a typical random list exhibits some kind of convergence.
However, this is not needed to prove Theorem 1, which is a simple consequence of
the following deterministic result.

PROPOSITION 1. There exists a function q(3, n) such that lim,,_,_o q(3, n)=0
with the following property. Consider two lists of items, xl, , xn, and Yl, ",Yn’. Let

(2) 3 =sup
t:>0

Then

(3)

card { <-_ n" xi > t} card < n" Yi > t}
n n

q(3, min (n, n’)).

It would be of interest to know what is the best possible order of decrease of the
function q. Our method shows that for n _-> 3 -1, one can take q(3, n) K(log (1/3)) -1

for some universal constant K, and the proof of Theorem given below shows that
this implies - n(x,,..., x,)- t() O((log n)-l)a.s.

We see no reason why these estimates would be sharp.
It might be worthwhile to point out that the two-sided control in (2) is essential.

Examples in [3] show that we can have n n’, and

Vt_-> O, card{i<-n;xi>:t}>-card{i<-n;yi>:t},

but B(yl, y) (43/42)B(xl, x).
Proposition can be interpreted as a kind of uniform continuity of BFD. The

great difference in nature between BFD and FFD is that such a result does not seem
to hold for FFD. (Thus one has to establish a property of (nonuniform) continuity
instead.)

Proof of Theorem 1. For 1 -<_ -<_ n’, define

Yi =sup y; O<- y<-_ l, x([y, 1])>-_

Then, for each [0, 1],

’’>t}- ([t, 1]) --<_card{i l<=i<-_n,yi Iz -n

Thus, by Proposition the sequence b,, B(y"’1, Y,"’) is a Cauchy sequence. Denote
by b(/x) its limit. Using (3) for xi Xi, Yi Y’’, n’ large enough, and letting n’ --> gives

n(x, ,x,) t,() _<-(2(x,, .,x,) n)

where

3(X,,’’., Xn) sup
t---o

card{i<__n Xi >t} /x([t, 1])
n
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Consider now e > 0, and let 60> 0, no, such that 6 =< 60, n -> no=q(28, n) <- e. To prove
(2), it suffices to show that

E P(8(X,,..., X,)-> 80) <
nl

But it is a well-known property of the Kolmogorov-Smirnov statistics that

P(8(X1,’", X,)-> t)_-<2 exp (-2nt2).
2. The basic matching procedure. The space left in a bin at any point of the packing

procedure is called its vacancy. We agree that we begin the procedure with a sufficient
number of size-one bins (say, as many as items). Bins having not yet received an item
have a vacancy one. The number of bins having actually received items is the number
of vacancies less than 1. The difficulty in analyzing the algorithm BFD is that the
packing of any item changes the list of vacancies, and thus influences the sequel of
the packing. This difficulty will be solved by dividing the packing into stages in which
it has a simpler structure. In order to do that, we need to analyze a simpler procedure
called basic matching. In this procedure, a list of items x >=... >-xp is attributed to a
list of (bins with) vacancies v <-... <= Vq. Each xi is attributed (=matched) in turn,
starting by x, to the smallest unattributed vj_-> xi. The procedure stops when either
the list of items or the list of vacancies is exhausted. (For definiteness, say that ties
are broken by the index, but this is irrelevant since only the sizes of the items matter.)
The following simple lemma will be essential.

LEMMA 1. Consider the basic matching of two lists xl,’", Xp, v,..., Vq. Then
for O<=t<=u<- l,

(i) The number of items x >= that are attributed to a bin v. <-u is given by

inf (card { <- p; <- x <- v + card {j <= q; v < v <= u })

inf (card <- p; <-_ xi < v} + card {j <-_ q; v <- vj <- u }),

where v is allowed to take any value in R.
(ii) The number of items xi >= that are not attributed to a vacancy vj <-_ u is given by

sup (card{i<=p; v<-x<=u}-card{j<=q; v<-_vj<=u}).
tvu

(iii) The number of vacancies less than or equal to u that are not attributed an item

x >-_ is given by

sup (card{j<-_q; t<=vj<=v}-card{i<-p; t<=xi<-v}).
tZvu

Proof These statements are equivalent and well known (e.g., see [5] for the proof
of (ii)).

The main result of the section is as follows.
and two listsPROPOSITION 2. Consider two lists of items, Xl," Xp, x,.

of vacancies v,..., Vq, v’l, .,Vq,: Consider n, n’ (to be thought of as normalizing
factors) and 8 > O. Assume that

(4) Vt>0’=
_1 card{i<p;xi>t}_ l_5, x’>t}= <8,=

(5) Vt>=O,
l
card{j<__q,v.j>__t card{j<q v:>t <8.

n n’
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For s >-_ O, denote by M(s) respectively, M’(s)) the number of couples (xi, vj), vj >- xi + s
> ’+s) that are matched by the basic matching of the lists(respectively, (xl, vj), v=xi

and v’Xl," ",xp and vl," Vq (respectively, x 1,.. ,xp, l," V’q’). Then

(6) nlM(s) n’l M’(s) =<(10+3)6.
Proof Denote by S the set of couples (xi, v) that are matched in the basic matching

of the lists Xl, , Xp and Vl, ", Vq. By induction, we define a sequence (ti) as follows.
We set to 0, and we define by induction

tr+l sup {t; tr<t<=I,S["]{(X,V);x<t, tr+S<V<X+S}=}.

Obviously, there is a matched couple (Xi(r+l), Vj(r+l)) such that x(r+l)= tr+ and

tr + s < V(r+l) < tr+l + S. Thus

n S < Vj(r+) < tr+l nu S . Vj(r+2).

Since x(r+ tr+ <= Xi(r+2) tr+2 is matched later than Xi(r+Z and is matched with
this means that the vacancy v(r+l) has not yet received an item right after X(r+Z) is
packed. Since tr+2=Xi(r+2) is matched with v(r+2)> v(r+), we have tr+2 > Vj(r+), and
hence t+2 > tr nu S. This shows that the construction of the points stops with a last
point 1, where h _-< + 2Is. Let

A= ({(x, v) 6 [O, 1]2; ::lr, O<= r < h; tr< X < tr+l, tr-I- S < V

First we show that

or =lr, Or<=h,x=tr, tr+S<=V}).

AD{(x,v)[O, 1]2; v>=x+s}.

Consider (x, v) with v>-x+s. Let r< h be the smallest such that x< tr+. Then if
x tr, we have (x, v) A. Otherwise, x > tr, SO V => X + S > tr + S and again (x, v) A.

Next, we show that each matched couple (x, v) that belongs to A satisfies
vj => xi + s. This is obvious if x tr. Otherwise, if tr < x < tr+, the definition of tr+
shows that v./=> x + s. Thus, we have

m(s) card{(xi, vj); (x, v) is matched, (x, v.) A}

vj) is matched, (x’ v:) a}.m’(s)<card{(x

The set A is a disjoint union A U =2h+l Bi of 2h + sets of either type

B {(x, v); x tr, v => tr + S} or B {(x, v); tr < x < tr+l, v > tr + S}.

For a subset X of[0, 1]2, denote by N(X) (respectively, N’(X)) the number of matched
v!)) that belong to X. If X is of the type {(x, v)" <couples (x, v) (respectively, (x,

x, v_-< u}, it follows from Lemma l(i), (4), and (5) that

N(X) N’(X) <=26.

It follows that if X is the product of two intervals (that may contain their endpoints
or not), we have

1
N’(X) <=
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This holds in particular if X is one of the sets Bi. Thus

n’
M’(s) <-

n’
N’(A) <-_ (2h + 1)8 +

n
N(A),

-< 10+ 6+-N(A)=-M(s)+ 10+
n n

from which (6) follows by symmetry.
Comment It is easy to improve on the constants 10 and 32. However, we make

no attempt at giving sharp constants, but we always give the simplest estimates suitable
for our purpose.

3. Stages of packing. We decompose the packing of a list (according to the BFD
rule) into "stages" where BFD has a simpler structure. In the first stage, we put all
items of size greater than 1/2 each in a single bin. If no such item exists, we do nothing.

After the (k-1)th stage has been completed, the largest unpacked item xl has a
size 2-1-1<X1<=2-l for some l=l(k)>=O. If w2 denotes the second smallest of the
vacancies greater than 2-I, it satisfies rxl =< w2 < (r+ 1)xl for some r= r(k)=> 1. Denote
by xl-->x2 ->’’’ =>xa the unpacked items greater than 2 -!-1 Denote by vl->"" -> Vq
the vacancies less than or equal to 2-t, and by wl =<" <- wm the vacancies greater than
2-1. We now pack in turn xl xa, following the BFD rule. If an item xi is attributed
to one of the vacancies v, we call it an ordinary item and an excess item otherwise.
For an ordinary item, the new vacancy v- xi created by its packing is less than 2 -1-1

and thus does not have to be taken into account when packing xl,"" ", xa. The first
excess item xi(l (if such an item exists) will be attributed to w. If no excess items
exists, the kth stage of packing finishes with the packing of x,. In the sequel of this
discussion, we will not mention anymore the case when the items x,..., x are all
packed before the event described occurs. It is understood that in this case, the kth
stage finishes with the packing of x,. The vacancy created by attributing x() to w is
W Xi(1)

Case 1. wl < rxl. We attribute consecutive excess items x),..., xi) to w until
either of the following happens.

Case la. For some s<-r, w-x) x.)<-2-. When x,) is attributed, we
end the kth stage. The first item not packed at the kth stage is x x(,)+. For the
(k+ 1)th stage, w2 is the smallest vacancy greater than 2-I, and w2>= rx >= rx. In
particular, r( k + => r(k).

Case lb. w wl-xil x> 2-1. When xi is attributed, we end the kth
stage. The first item not packed at the kth stage is x x+l Since w’ > 2 >-_ Xb, we
have w _-> (r + 1)x, so w_>- (r + 1)Xb. Since wz is the second largest vacancy greater
than 2 -1 at the (k + 1)th stage, we have r(k + 1) _-> r(k) + 1.

Case 2. wl >= rx. After r excess items have been attributed to w, we obtain a
vacancy u w-x(l) X(r) that we call the first added vacancy. (The name
suggests that this is the first vacancy added to our list that might make the packing of
xl,"" ", xa different from the basic matching of the lists xl,’’ ", x and v,..., Vq.)
In a similar fashion, we create our second added vacancy u2, etc. The first time we
meet an item Xb for which there exists an added vacancy u xb, we do not pack Xb,

and we declare that the kth stage is finished. (This occurs in particular if we create
an added vacancy greater than or equal to 2-). If Wm is the first vacancy greater than
2-! that received no item during the kth stage, and if x is the first item greater than
2 -I- not packed during that stage, we have Xb <= U, where u is of the type Wml--
(xi()+’’’+xi()) for i(1)<...<i(r)<b, m<m, so that (r+l)xb<Wm,<=Wm Since
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there is at most one vacancy 2- < w < w, (it is of the type Win_ Xi(1) Xi(s) for
s _-< r), we have r(k + 1) -> r(k) + 1.

Observation 1. We show that at most 2 t+2 stages are needed to pack the items of
size between 2-t and 2 -!-1.

Since r(k)<=2k+l, it suffices to show that if l(k+2) l(k)= l, we have r(k+2) >
r(k).

We have shown that r(k + l)> r(k) except possibly in Case a, where nonetheless
r(k + 1) >- r(k). Thus it suffices to observe that either w>= (r+ 1)x, and then r(k + 1) >
r(k), or that (r+l)x> w>=w>=rx, and then Case 2 occurs at stage k+l, so that
r(k + 2) > r(k + 1)-> r(k).

Observation 2. We set p b-l, so that x, is the last item >2t- packed at the
kth stage. An alternative way to look at the packing of the items x,..., x is as
follows. We perform the basic matching of the lists x,. ., x, and of the list v,. ., vq
of vacancies less than 2-t, The unmatched items (excess items) are then attributed to
the vacancies w =< w2-<" that are greater than or equal to 2 -t, putting in each w as
many consecutive excess items as will fit. In the first case, only w receives excess
items. In the second case, all the vacancies w, w,. that receive excess items receive
exactly r(k) items, with the possible exception of the last one.

Thus, if h + denotes the number of vacancies w that receive excess items, we
have at most (h + l) r excess items, and the first rh ofthese items, that we call g, , g,
fit r at a time in turn in the vacancies w, w,..., w. Moreover, since x is larger
than the last added vacancy, we have

Xp> Wh --(g(r_l)h+l qt-" "+ grh)

Wh rg(r_l)h.

Proposition 3 is the crucial part of our proof. In this proposition, we keep the notations
of Observation 2. We consider a list of items 2- -> xl =>" --> xn > 2 --l that are packed
during one stage of the packing in bins with vacancies (zi)i__<n.

PROPOSiTiON 3. Consider a list of items x’l, .,xp; and a list of vacancies
z’ For u >0, letZn’.

(7) 6(u) sup card{i<-n, zi >-t} card{i <n’ z >t}
n n’

Consider a number 6 >= max (1/n, 1/n’), such that 6 >- 6 (2-t-1), and that

(8) 8->sup
t0

card{i <p,xi >t} card{i <p’’x’, >t}
n n’

Denote by 1,’", n (respectively, ’1,’’’, ’’) the list of vacancies after the items

xl,’’’, x,) (respectively, xl,’’’, x,,) are attributed according to the BFD rule to the
vacancies z, ", zn (respectively, z’l, ", Z n’): Let

(u) =sup
tu

card{i< n, i > t} card{i< n’" > t}
n n

Then for some universal constant K, we have

(9)
(u) <-_ K6 for u >- 2 -i-1 and

g(u) =< K(max (6(u), 6/u)) for
Proof We will denote by K a universal constant, not necessarily the same in each

occurrence. The idea of the proof is to show that within a small perturbation, the
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packing of x’, ,x,,’ according to the BFD rule, has the same structure as the
packing of that list by the following procedure. We perform the basic matching of
x’, ,xp; with the vacancies z:.1=< 2.t. The unmatched items are then attributed to the
vacancies z > 2-!, putting in turn as many items as possible in each such vacancy
(which is the procedure by which the items x,..., xp are packed). First we observe
that there are at most n’6 items xl that are greater than x. BFD packs these items
first. Packing them will affect at most n’ vacancies. Thus if we consider the list of
items and vacancies after these items are packed, (7) and (8) still hold with 6(u)+ 6
and 23, respectively, instead of 3(u) and . Thus one can assume that xl<-_x for all
i. A similar argument shows that we can assume xn < xi. We say that an item x’i is an
excess item if it is unmatched in the basic matching of the list of items (xl)i-<_, and of
the list of vacancies {zl;i <- n’, zl <= 2-t}. From Lemma l(iii), (7), and (8), we see that
the numbers n (respectively, n2) of excess items greater than or equal to
(respectively, %gr(h-l)) satisfy

(10) n r(h+l) n2 2h
<-+K3" <- -- K&

n’-- n n’-- n

In the process of packing, items are added to bins. Call a bin irregular if at some point
after it has received at least one of these items, its vacancyof the packing of x, x,

falls in the interval [x, x[. Call a bin regular if it is not irregular.
After a bin becomes irregular, it can accept at most one item. Call these items

irregular. Call an item regular if it is not irregular.
We now observe that the final list of the regular vacancies in the BFD packing

of x’, , x,’ is identical to the list of vacancies obtained by the following procedure.
We perform the BFD packing of the list y, , y,’ of regular items with the list of
vacancies zl, removing a bin from the list whenever it becomes irregular. Equivalently,
we first perform the basic matching of the list y,..., y,, with the list of vacancies
less than or equal to 2 -t. Call the unmatched items the special items. As many of the
special items as will fit are attributed in turn to the bins with vacancies greater than
2-t, starting with the smallest vacancy.

Our first task is to bound the number of irregular bins, and hence, of irregular
items. An irregular bin can be created only when a special item is attributed to a
vacancy greater than 2-. If a special item is attributed to a bin whose original vacancy
was in the interval ]2 -t, w[, it might create an irregular bin. There are at most 2n’8
such vacancies, so at most that many irregular bins will arise this way.

We recall the inequalities w >= rx, w- rgr(_)<xn. From (7), we have at least
n’(h/n-26) vacancies in the interval [w, w]. When attributing to these vacancies
special items of size greater than of equal to g(_), we never create irregular vacancies.
Indeed, if we attribute (r-l) items, we create a vacancy greater than or equal to
w-(r-1)x => x, but if we attribute r items, the vacancy will be less than xn. Thus
in these bins, there is enough room to accept r[n’(h/n-26)J special items greater
than or equal to g(_). Observing that special items are excess items, from (10), we
see that there is at most rK6n’ special items left. These might be attributed to vacancies
greater than w. They will create a maximum of K6n’ irregular bins. Thus we have at
most K6n’ irregular bins, and hence, at most KSn’ irregular items. From (7), we see that

(11) Vt>0 card{i<p, xi>t} card { < p" y’ > t} < K6.
n n

Thus, we have reduced the problem to the case where we do not pack the items
x’l, .,Xp; packed according to the BFD but where we first perform the basic matching
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of these items with the vacancies less than or equal to 2-, and then attribute the excess
(=unmatched) items to the vacancies greater than 2 -1. (This is the procedure by which
the items x,..., xn are packed.) We can still assume Xp=<x’i=<xl for <=p’. In that
procedure, vacancies are produced in four different manners, and we will show that
for each of the sources of vacancies, an estimate of the type (9) holds. First, there are
those of the vacancies of size in ]2--, 2-i] that receive no item. For this class, the
result follows from Lemma (iii). Second, there are the vacancies less than 2 -1-1, none
of which receive items. For this class, the result is obvious. Third, there are the vacancies
created by matching an item and a vacancy less than 2-. These are all less than 2 -1-1.
For this class, the result follows from Proposition 2.

Finally, there are the vacancies created by packing the excess items in the vacancies
greater than 2 -1. If we denote by g>...= > gb; g’ =>’’" > g’b’ the excess items in the
basic matching of x,..., xp (respectively, x,..., x,,) and of the vacancies zi
(respectively, z’ < 2-1

i= we see from Lemma 1, (ii), that

1 1_!_2 >= -card <= >= card <= b ’>t}(1) O, b; gi t}-_ {i ’; gi=

Recall also that rh <=b <=r(h+l). Also, the lists Wl <..= "<=Win, W’<’’= <=win,’ of
vacancies greater than 2-I satisfy

(13) Vt>O,= _1 card{i<m= wi>t}-l--;,card{i ,w ’>t}i=

From (12) and (13), we get easily that

where a(i) [ni/n’+ K8 ], b(i) [ni/n’- K6], whenever all the quantities are defined.
A vacancy w’=< wh will accept at most r excess items greater than or equal to gr(h-,
while a vacancy w’>_- w will accept at least r excess items. Consider a bin with vacancy
wi. We will have no control of what happens in the bin if either wi < wl or wi> wa,
or g’ri_--< gr(a-), but since g’ri > g(ri, there are at most K6n’ such bins. Otherwise, the
smallest excess item that fits in the bin is larger than g’ri, so the final vacancy w in
this bin will be greater than or equal to wi-rgri. Also, if ni> n KS, the largest excess
item that fits in the bin is less than or equal to g’r(b(i-), SO the final vacancy w is less
than or equal to wl-rg’r(b(i)-l). For k_-< h, the kth final vacancy produced by the
packing of g, , gb is w (g(r-)+ +" + gr). The sequence # increases.
For > 0, the number n (t) of final vacancies in the packing of g, , gb that are less
than is such that In(t) kl =< 1, where k is the largest such that # < (recall that we
do not control what happens in the bin w+). Thus <wi < whenever wi Wk, gr(b(i)-l)

gk(r-)+l and this occurs as soon as a(i)<k,= a(r(b(i)-l))<k(r-1)+l= Also, #’>t
as soon as w’i > Wk+, gri’ < g(k+)r, and this occurs as soon as b(i) >= k+ 1, a(ri)>(k+= 1)r.
The conclusion follows easily.

4. Proof of Proposition 2. Consider two lists of items x ->. _-> x,, Xl "- x,,.
Set

6’ sup card < n, xi > t} card < n’" > t}-- ,Xi---
>=O 1

We divide the packing of x,. , x, in stages, as described in 3. Let x() be the first
element that is packed at stage k. Let

" ’>Xb(k)}),m(k) min [n’b(k)/ n] card{i<= n, xi=
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It is easy to see that for each k_-> 0

’>t} <6,sup -card{b(k)<-i<b(k+l) xi>-t}--card{m(k)<-_i<m(k+l) xi=
t>=O n tl

where 6 2(8’ + / n + / n’).
We start the packing of x,. x, (respectively, x’, ., x,,) with n (respectively

n’) empty bins. Denote by Z,k, ", Z,,k (respectively, z’,k, ", z’n,,k) the list of vacan-
cies after the items x, ", Xb(k)- (respectively, x,..., Xm(k)-) have been packed
according to the BFD rule. Set

6(u) sup -1 card{i < n" zi, > t} ___1 card{i < n’" z’ > t}i,k
tu R H

Denote by K the constant of Proposition 3. We recall that when the last element of
size in ]2 --, 2-] is packed, a new stage begins. Consider the following statement:

H(1, m): If k is such that m stages have occurred since the last item x of size
greater than 2- was packed, then

6k(U) Km+’+2(+)(+z)/z6 if u 2--,
6k(U)u-Km+2’+2(t+(t+2)/26 if U<2--.

When is fixed, this statement follows by induction over m from Proposition 3. Since
2+ stages are enough to pack all the items of size in ]2 --, 2-] and after all these
items are packed, we have

3k(U) K2’+2(++/6 if u 2 --1,
6k(U)u-IK2’+2(t+(I+2)/z6 if U<2--.

Thus in particular

tk(tl) K2’+32(l+2)(l+3)/2t if U >-- 2 -I-z
(14)

8k(U)bl-lK2’+32(l+2)(l+3)/28 if U<2--,
which is H(l+ 1, 0). Thus the statement H(l, 0) follows by induction over/.

Let k(p) be the smallest such that Xb(k(p))2-p. Then by definition of m(k),
Xtm(k(p))Xb(k(p))2-p. NOW (14) shows that for n, n’>_’-, tk(p)(2-P)g2"t (for a
new constant K). Denote by B(p) (respectively, B’(p)) the number of bins that have
received items before Xkp) (respectively, X’,,kp))) is packed. Since B(p)=
n- card{i <= n; Zi,kp)< 1}, and since a similar formula holds for B’(p), we have

(p) 3’(p)
_-< K 2"t’.

Obviously B(p) <- B(Xl, ", xn) <= B(p)+ [2-Pn ]. A similar formula for B’(p) implies

B(x1 Xn) B’(X’ Xn)

This concludes the proof (The choice of p such that 2P---a(log 1/6’) for a small
enough gives the quantitative estimate mentioned in the Introduction.)
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THE COMPLETE CONVERGENCE OF FIRST FIT DECREASING*
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Abstract. Consider a probability measure/.t on [0, and an independent sequence of random variables
XI,’’’, X,,,... distributed according to /.t. No regularity assumptions are made on /z. Denote by
F,,(XI,..., X,,) the number of unit-size bins that are used by First Fit Decreasing to pack X,..., X,,.
The existence of a constant f(/x) is proven such that for each e > 0, we have

P( n-tF,,(X, .,X,,)-f(tx)l>-e)<.

Key words, probabilistic analysis, approximation algorithm, bin packing
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1. Introduction. The bin-packing problem requires finding the minimum number
of unit-size bins needed to pack a given collection of items with sizes between zero
and one. The problem has many applications and has been shown to be NP-complete.
There is a growing literature devoted to the analysis of stochastic models for bin
packing (see the survey paper [2]). Most authors have analyzed approximation
algorithms under a model of items drawn independently from a special distribution,
e.g., uniform on some subinterval of [0, 1]. In this paper, we are interested in the
algorithm First Fit Decreasing (FFD). In FFD, we first order the items according to
decreasing sizes. We start with an ordered collection of unit-size bins, and we put each
item in turn in the first bin in which it fits. We refer the reader to [4] for the worst-case
analysis of FFD. In the model where the items are drawn independently from the
uniform distribution on [0, 1], it is easy to see that the expected wasted space by FFD
is (R)(/-ff) [6]. When the distribution has a decreasing density on [0, 1/2], deep recent
results show that the expected wasted space is bounded [1], [3]. Two challenging
aspects of FFD are (1) that it can produce very complicated patterns and (2) that it
has erratic behavior, in the sense that the packing of a list with smaller items can use
more bins. These interesting aspects completely disappear in the two models mentioned
above, where the patterns are simple and where the good behavior of FFD is obtained
by showing that it uses fewer bins than a much better behaved algorithm called mFFD.
The algorithm mFFD has been analyzed by Rhee [9] in the same model as the present
paper, and we refer the reader to [9] to fully appreciate the dramatic difference in
complexity between mFFD and FFD. In our model, the items will be distributed
according to a distribution /x, on which no restriction whatsoever is made. Thus, it
can happen that the packing by FFD of a typical random list is very complicated.
Nonetheless, our proof will show that the packing pattern of a typical random list
exhibits some kind of convergence. This is not obvious beforehand, since one can find
lists for which a tiny decrease in the size of a single item produces a quite long packing.
Such lists are, however, exceptional and, on average, FFD behaves reasonably well.

The complete convergence result claimed in the abstract is an immediate con-
sequence ofthe properties of the Kolmogorov statistic and ofthe following deterministic
result.

Received by the editors March 21, 1988; accepted for publication October 3, 1988.
t Academic Faculty of Management Sciences, Ohio State University, Columbus, Ohio 43210-1399. The

research of this author was supported in part by National Science Foundation grant CCR-8801517.
Equipe d’Analyse-Tour 46, Universit6 de Paris VI, 4 Place Jussieu, 75230, Paris, France, and Depart-

ment of Mathematics, Ohio State University, Columbus, Ohio 43210. The research of this author was

supported in part by National Science Foundation grant DMS-8801180.

919



920 WANSOO T. RHEE AND MICHEL TALAGRAND

THEOREM 1. For each probability measure tz on [0, 1], there exists a numberf(iz),
such thatfor each e > 0, there exists > O, No >- 1, such thatfor each sequence zl , zN
of items, N >- No, that satisfies

(1) Vt-<l, -- card{ _-< N; z, ->_ } -/x ([ t, 1 ])

we have

FN(zl,’’’, z)-f(tx)

Our proof will contain explicit constructions that allow, at least in principle, us to
compute f(/x) when/x is given.

One can look at Theorem as a continuity property of FFD. It should be noted
that, given e > 0, the choice of t given by our proof will critically depend on/x. The
existence of the pathological lists mentioned above shows that given e, cannot be
chosen independently of/z. This is an interesting contrast with the case of Best Fit
Decreasing that is studied in the companion paper [10].

The principle of the approach is very simple. The first step is to define for measures
a "packing" operation that mimicks FFD. Then one shows that the packing of lists of
items that satisfy (1) proceeds very much as the "packing" of measure. To complete
this program, we will, however, have to develop new tools and to proceed to an in-depth
study. This might not be suprising in view of the delicate nature of FFD. (Working
with measures instead of lists of items was the philosophy of [7], [8], and [9].)

2. The Iasic matching procedure. The space left in a bin at any point of the packing
is called its vacancy. For our purposes, only the vacancies matter. Thus, for simplicity,
we will talk of the list of vacancies and use expressions such as "attribute an item to
a vacancy," which has the obvious meaning. We will denote items and their sizes by
the same letter.

Each time a bin receives an item, the list of vacancies changes, which influences
the way in which later items are packed. This difficulty will be solved in 3 by dividing
the packing into steps that have a simpler structure. Our first task is to analyze a
simpler procedure that we call basic matching. In this procedure, we have a sorted list
of items Z " Zp and a number a_-> z. We have an ordered list of vacancies
v, v,..., vn. For each vacancy, we define its multiplicity by rn [v.i/aJ if v->2a
and rnj otherwise. To each vacancy v./, we attribute in turn the largest unattributed
item z _-< v./if mi and the mth largest unattributed item z otherwise.

Comment. (1) To see the relevance of such a procedure, let us recall the following
fact brought to light in ]. When attributing the sorted items z, ., zp to the vacancies
v,. , vn by the FFD rule, one can think of the bins being filled in turn. To fill each
bin, the remaining items are examined in turn, and each item that fits is put in the bin.

(2) Basic matching is rather different from FFD. In particular, a vacancy vi of
size 2a-e is always attributed at most one item, while if, when its turn comes to be
filled, the largest unattributed item is of size less than or equal to vg/2, FFD should
attribute to it at least two items. But the basic matching will be used only on suitably
restricted lists for which this difference plays no role.

Our starting point is the following lemma which is probably known.
LEMMA 1. The number of items of size greater than or equal to that are attributed

to a vacancy v., j <-_ k is given by

(2) inf{card{i<-p;t<-zi<u}+{m;j<-k,v.j>=u}}.
ut
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In this formula, values of u > 1 are allowed, giving a value card { <- p; <= zi}.
Proof. By replacing in the list each vacancy vj > a by mj consecutive vacancies

of size a, we can assume that my 1 for each j. If the sequence (Vj)<__k decreases, (2)
is proved, e.g., in [9, Lem. ]. For the general case, it suffices to show that transposing
two consecutive vacancies .vi, v/l, i+ 1 <= k, does not change the collection of items
that are attributed to vacancies of index less than or equal to k. Indeed, we can go
from the decreasing case to the general case by performing a finite number of such
transpositions. If, when vi is attributed its item, there remains one item of size s such
that min (v, v/l)< s <= max (v, v/), the transposition changes nothing. Otherwise, it
simply exchanges the items attributed to vi and v+. lq

Consider a positive measure v on [0, 1Ix[0, 1]. For simplicity, set H(x, t)=
v([O,x]x[t, 1]). The idea is that for a long sequence of vacancies, (v)<__N, NH(x, t)
is the sum of the multiplicities of the vacancies of index less than or equal to N,, and
size greater than or equal to t. Consider a positive measure/z on [0, 1]. The idea is
that N/z([ t, 1])= card{i<= p; zi >- t} for our list of items under consideration.

We observe the following immediate properties. The first expresses the fact that
u(]x,y]x[a,b[)>-O.

(3) 0<= x <--_ y <-_ 1, 0<= a <= b <= 1, =>H(y, a + H(x, b) >-_ H(x, a)+ H(y, b ).

H(x, t) increases in x, decreases in t. If tn / t, xn x, we have

(4) H(x, t)= lim H(xn, t,).

In view of (2), it is natural to consider the function

G(x, t)= inf (H(x, u)+ /x([t, u[)).

in this formula, values of u > are allowed, giving a right-hand side/x([ t, 1]).
LEMMA 2. (a) G increases in x, decreases in t.

(b) Fors>-_t,

(5) G(x, t) <- ([t, s[) + G(x, s).

Proof. Lemma 2(a) is obvious. For (b), observe that for any u >-s,

G(x, t) <= H(x, u)+/z([ t, u[) =/x([ t, s[)+ H(x, u)+ tz ([s, u[),

which implies (5).
LEMMA 3. If x, xa x, t, ’ t, then G(x, t)= lim,_ G(x,, tn).
Proof. Let u _-> t. Then, since u _>- t,.

G(x,, t.) <= H(x., u) +/x([ tn, u[)

so that by (4)

and hence

lim sup G(x., t.) <= H(x, u)+ /x([t, u[)

lira sup G(x., t.) <= G(x, t).

Since G(x, t)<= G(x., t.), the proof is complete.
From Lemmas 2 and 3, we see that we can define a positive measure/xz by

(6) txz([t,s[)=lx([t,s[)+G(z,s)-G(z t).
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This represents the distribution of items that have not been attributed to vacancies
of index less than or equal to Nz.

A nice feature of basic matching is that the items attributed to the vacancies of
index greater than k depend only on the list of items that have not been attributed to
the vacancies of index less than or equal to k. We now prove a result of the same
nature. This useful technical point will be of much help. We define, for x >= z,

and we set

(7)

Hz(x, t)-" H(x, t)-H(z, t)= v(]z,x]x[t, 1]),

Gz(X, t)= inf (Hz(x, u)+/zz([t, u[)).

PRor,osi’ror 1. For x >- z,

G(x, t)= G(z, t)+ Gz(x, t).

Proof In (7), we substitute the values of/Zz and Hz. After cancellation, we obtain

G(z, t)+ Gz(x, t)= inf (/(It, u[)+ H(x, u)+ G(z, u)-H(z, u)).

By definition of G(z, u), we obtain

G(z,t)+Gz(x,t)= inf (/z([t,v[)+H(x,u)-H(z,u)+H(z,v)).

Taking v u, we get

G(z, t)+ Gz(x, t)<= inf (/x([t, u[)+ H(x, u))= G(x, t).
ut

On the other hand, since z =< x, u v, (3) shows that

H(x, u)-H(z, u)+ H(z, v)>= H(x, v),

and thus

G(z,t)+Gz(x,t)>-_ inf (tx([t,v[)+H(x,v))=G(x,t).

In the sequel, we will always assume that v({x} [0, ])--0 for all x. in particular,
/Zo =/z, G(0, t)= 0 for all t.

COROLLARY 1. (a) For y <= z, tZz <= tXy.
(b) For y<=z, s<= t,

(c) For y<=z,

(8) G(y, s)- G(y, t) <-_ G(z, s)- G(z, t).

(9) G(z, O)- G(y, O) <- H(z, O)- H(y, 0).

Proof By Proposition 1, it suffices to consider the case y--0, in which case this
is obvious. Iq

From Lemma 3, and (8), we conclude that there exists a positive measure r/ on
[0, 1] [0, 1] such that G(x, t)= r/([0, x] [t, 1]) (see [5, 4-5]). We note the formula

(10) r/(]x, y] x {s, t{)= G(y, s)+ G(x, t)- G(y, t)- G(x, s).

From (9), we observe that

(11) r/(]x, y] [0,1 ]) v(]x, y] [0, ])
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for x _-< y. In particular, since we assume v({x} x [0, ]) 0, we have r({x} x [0, ]) 0
for all x. Thus, when computing with r/, we can always disregard any set that is
contained in a countable union of vertical lines, since such a set is negligible.

The measure r/can be thought of as the distribution of the couple (j/N, x.), where
xj is the size of the item(s) attributed to the vacancy vj. Unfortunately, we are not
interested in that, but in the new list of vacancies after the basic matching has been
completed. Although this information is contained in r/, to extract it in a useful way
will require the development of more tools.

We define

q(x, t) inf{u; 0_-< u < t, x,(]u, t])=0}
when this set is not empty, and q(x, t)= otherwise. Thus we have

(12) /z,,(]q(x, t), t]) 0; Vu < t,/x,,(]u, t]) > 0.

LEMMA 4. Consider y > x. Then

u > (x, ); >_- (y, u)(y, u) _-< q,(x, ).

Proof From (12), and Corollary 1, we have

/xy(]q(x, t), t]) <= /Xx(]q(x, t), t])= 0,

and from (12) we also have

,(](y, u), u])=0.

Hence, since u > q(x, t), >= q(y, u), we have

,(](x, t), u])=0,

so q(y, u)=< q)(x, t) by definition of q(y, u).
We will prove later that "the item size attributed to a vacancy vi of size is either

or q(i/N, t)." The following is the main step toward that result.
LEMMA 5. Let 0 <= b < d <- 1. Then

(3) ({(x, t);t< d, (x, t)> hi)-<_ (]b, d[).

Proof Step 1. We define

h(x) sup t; ix(]b, t[) 0}

if this set is not empty, h(x)= b otherwise. Then

tXx(]b, h(x)[) O,

and

(14) Vu > h(x), /x(]b, u[) > O.

If q(x, t) > b, by definition of q(x, t), we have/x,(] b, t]) > O, and hence/x([ h(x), t]) > 0
if h(x)> b. So we have

{(x, t); t< d, q(x, t)> b}

{(x, t); h(x)= b, t> b or h(x)> b,/xx([h(x), u]) >_-0}

c A’-: {(x, t); > h(x) or t= h(x) > b,/xx({h(x)}) > 0}.

Hence, it is enough to prove that ,(A’)-<_/x(]b, d[). It might happen that , charges
(i.e., gives positive measure to) the set of points (x, h(x)) for which /xx({h(x)})> 0.
Since a careful accounting of these points is needed, this makes the proof very tedious.
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Step 2. Fix x such that h(x) > b. Let h(x). Consider a sequence vn => such that

G(x, t)= lim Ix(It, vn[)+ H(x, v,).

Without loss of generality, we can assume that (v,) converges. We claim that lim,_ v,
t. For, otherwise, taking w with < w < limn_ vn, we would have

G(x, t) Ix([t, w[)+ lim (ix([w, vn[+H(x, vn))) => Ix([t, w[)+G(x, w),

i.e., Ix,([t, w[)=0, so that Ix,(]b, w[) =0, which contradicts (14).
Since lim,_. v,, we get

(15) G(x, t) min (H(x, t), Ix({t}) + H/(x, t)),

where, for simplicity, we set H+(x, t)= limu_,+ H(x, u)= v([0, x] It, 1]). Thus,
for u > t,

min (H(x, t)- H(x, u), Ix({t}) + n/(x, t)- n(x, u))= G(x, t)- n(x, u)

<- G(x, t) G(x, u) <= Ix([ t, u[)

or, equivalently,

(16) v([O,x]]h(x),u[)+min(v([O,x]{h(x)}),ix({h(x)}))<=ix([h(x),u[).

This holds for all u > t, and hence

(17) v([O,x]]h(x),u])+min(v([O,x]{h(x)}),tz({h(x)}))<-ix([h(x),u]).

Step 3. When Ixx({h(x)})>0, we have (still with t= h(x))G(x, t)-G/(x, t)<
Ix({t}). Since G/(x, t)<-H+(x, t), by (15), we have

Ix({t}) > G(x, t)-G+(x, t)

>- G(x, t)- H+(x, t)=min (H(x, t)- H+(x, t), Ix({t})),

and then H(x, t) H+(x, t) < Ix({ t}). So

a’ c a=: {(x, t); > h(x) or h(x) > b, H(x, t) H+(x, t) < IX({ t})}.

Hence, it is enough to prove that v(A)<= z(]b, d[).
Step 4. Suppose now (with t=h(x)) that H/(x, t)+z({t})<=H(x, t). Hence, by

(5), (15), for u> t,

H+(x, t)+ix({t}) G(x, t)_-__ Ix([t, u[)+G(x, u).

Thus, H+(x, t)<-Ix(It, u[)+ G(x, u), and letting u t, we have H+(x, t)<-_ G+(x, t), so
G+(x, t)= H+(x, t), since G = H. Hence for u > t, by (5),

H+(x, t)- H(x, u)= G+(x, t)- H(x, u)

<= G+(x, t)- G(x, u) <=/x(]t, u[)

or, equivalently

(18) 9([0, x] x ]h(x), u[) <= Ix(]h(x), u[).
Since this holds for u > t, we also have

(19) ,([0, x] x ]h(x), u]) <- Ix(]h(x), u]).
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Step 5. Consider k > 1. We denote by hi <"" < hm-1 the different values taken
by h at the points i2-k, 0<i<2k,= and we set hm=d. For <--m-l, we set X=
{x; h(x)= ht}, and xl=infXl, xl=sup X, so that x_l<=x<=x<=x+l. For 0<=l -<

m- 1, we set

y, sup {y <_- 1; H(y, hi)- H+(y, hi) </x({h/})}
sup {y _-< 1; ,([0, y] x {hi}) </z ({h,})}.

Setting xo 0, for _-< l_-< m 1, we define

min (Yl, xl) ify > Xl
ZI

Xl_ otherwise.

We set

Ak {(X, t); 31, --<__ < m, > hi, x < x or hi > b, x < Zl}.

The sequence (Ak) obviously increases, and A\Uk Ak is contained in the countable
collection of vertical line whose abscissa n has one of the following properties"

x=sup{z; H(z, t)-n+(z, t) < /x ({ t})}, where/x({t})>0,
or

h is not continuous at x.

Thus, ,(A\U Ak)--0, and hence it is enough to show that for each k, we have
U(Ak) - tz(]b, d[).

Step 6. We define, for 0 _-< < m 1,

B={(x, t); ht < < hl+, x<xl}

J{(x, t); hi, x < zt} if Yi > xt, ht > b
Ci

otherwise

Dr={{(x’ otherwise.t=h’x<x-l} if yl<-X,h<d

Observe that by definition of y,

(20) C =:> ,(C) <= min (/x ({h,}), u([0, xl] x {h,})).

Let BI C LJ BI LJ D/I so that Ak LJ ’-1 Bl. Define, for <= m + 1,

3’, =/z (]b, hi]) if C , D, ,
and

To prove that U(Ak) <=/x(]b, d[) it is enough to show that u(B) =< 3’/1 3’1. In the
case C , D+ (respectively C f, Dl/ f; Ci , D+I f; C! f, Dl/
) this follows from (20) and (17) (respectively (16), (19), (18)) applied with u h/,
x X, and having x

We now consider a positive measure on [0, 1] and a Borel measurable map
0"[0, 1][0, 1]. We suppose that , is the image of h by the map x(x, O(x)). This
means that for each Borel subset G of [0, 1] we have

u(G)= h({x 6 [0, 1]; (x, O(x)) G}).

We define 0(x)= q(x, O(x)).
THEOREM 2. When u is as above, q is supported by the union of the graph of 0 and

of the graph of q.
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Proof Consider 3,> 0. By Lusin’s theorem [12, p. 56], we can find a compact
subset K of[0, 1] such that A([0, 1]\K)=< 3’, and that 0 and q are continuous on K.
Thus, we can find a sequence Xo 0 < x, < x2 <" < x, 1, and numbers (ai)i_<n, (bi)_<n
such that x_, < x < x, x K =:>ag < O(x) < ai + 3,; bi < 0(x) < b + 3,. Since q =< 0, we
can assume that bi -< ai. Let %= A([x_,, x]\K). Hence Y=, %<= 3,. The main point in
the proof is to show that

(21) r/([Xi_l, x] ([0, 1]\[b, hi+ 3’] [ai, ai+3,]))<=33,i

Indeed, this implies that

r/({(x, t), q(x) 3,, 6(x) + 3,] or O(x) 3,, O(x) + 3,]}) =< 53,,

and letting 3,- 0 proves the theorem.
To prove (21), we can assume by Proposition 1 that xi_, =0, i= 1. We have

r/([O, x,] x [a, + % 1]) a(xl, a, + 3") H(Xl, a + 3")
(22)

/ ({X X O(X) al q- 3’}) 3’1,

It may or may not be the case that b, + 3, < a,. If b + 3, < a, we estimate r/([0, x,] x ]b +
% a,[). Let r=inf K, so that a([0, r])-< 3’,. Since q(r, O(r))= O(r) < b, + % O(r) > al,

we must have/x,(]b, + % a,[) 0, so that/x,(]b, + % a,[) 0. Hence

r/(]r, x,] x ]b, + % al[ =/.tr(]b + 3’, a,[)- tXx,(]b, + % a,[)= 0

and thus, by (11),

r/([0, x,] x ]b, + % a,[) -< r/([0, r] x [0, 1]) + r/(]r, x,] x ]b, + %
(23)

_-< a ([o, ]) _-< ,.
We finally evaluate r/([0, x,] x [0, b[). By Lemma 5, whenever c > b,, we have

/ ({X; O(x) <: C, It(X) > hi} p({(x,/); < c, ((x, t) ) hi}

=</(]bl, C[)

and thus

({(x, t); x _-< x,, < c}) a ({x; x <-_ x,, O(x) < c})

=< a({x; O(x)<c, q,(x) > b,})+ a({x; x<-x,,xeI,:})
_-< ,(]b,, c[) + ,,,

and hence

G(x,, O) <-_ H(x, O) <- G(x, b,) + 3",

so that

(24) r/([0, x,] x [0, b,[) -<_ 3’,.

Since (20) follows from (22) to (24), the proof is complete.
We are now ready to construct the distribution of vacancies after the items have

been attributed. Consider again a Borel-measurable map 0:[0, 1]- [0, 1]. Consider a

which means

H(x, O) <- H(x, c) +/x(]b,, c[) + 3’1"

Since this holds for all c > b, we have

H(x,, O) <= G(x, b,) + 3,,,
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positive measure A’ on [0, 1]. The image u’ of A’ under the map x (x, O(x)) will be
our distribution of vacancies. The reader would expect that in a correct model we
would have u([a, b] [0, 1])=b-a for all a<-_b. However, it is more convenient not
to keep track of the vacancies of size zero, which are irrelevant for the packing. If A L

denotes Lebesgue’s measure, we will have A’-< A/, and we can think ofhaving unaccoun-
ted (irrelevant) vacancies of size zero of distribution A/-A’.

Consider a parameter a > 0 that will play a role similar to what it did in the
definition of basic matching. We define s(t, a) if < 2a, s(t, a) t a if >_- 2a.
We consider the measure u on [0, 1] that has density s(t, a) at the point (x, t) with
respect to v’. The idea is that u represents the distribution of the multiplicities of the
vacancies. Consider the measure A of density s(O(x), a) with respect to A’. Then u is
the image of A by the map x-, (x, O(x)).

We will assume that/x has a large enough mass at zero (larger than IIA is enough).
Thus, all vacancies will receive items, and we will not have to consider separately
those vacancies that receive no item. Of course, receiving a size zero item is the same
as receiving nothing. We leave to the reader to check that the claim "all vacancies
receive items" can be formalized by the equality

r/([0, x] x [0, 1 ]) G(x, O) H(x, 0) v([0, x] x [0, ]).

We will not use this fact directly. Actually, the fact that "all vacancies receive items"
is mentioned at this point solely for the purpose of convincing the reader that the
correct model is being developed. It will remain completely implicit in the rest of this
section and will be used only in the proof of the (crucial) Theorem 3.

We assume that [0, a] supports /x. We set A={x; 0(x)_->2c}, C=[0, 1]\A. We
denote by h" the measure of [0, 1] given by

A"(B) r/((B x [0, 1]) f"l (Graph q\Graph 0))

for each Borel set B of [0, 1]. We define the measure 1 on [0, 1] x [0, 1] as the image
of h’ by the map x O(x)-s(O(x), a)g/(x) restricted to A. The idea is that, in the basic
matching, the vacancies of size O(x)> a receive s(O(x), a) items of the largest size
left, i.e., 0(x). We define the measure 2 on [0, 1] X [0, 1] as the image of h" by the
map x -, O(x) tp(x) restricted to C. The idea is that (as Theorem 2 expresses) a vacancy
of size O(x) receives an item of size either O(x) or O(x). The measure h" takes in
account the fact that only some vacancies of size O(x) receive an item of size O(x).
The other bins of size O(x) receive an item of size O(x), so actually we create vacancies
of size zero represented by the distribution h’- h". Vacancies of size zero are irrelevant
for our purposes, so we do not take this piece into account, and we set l + 2.
Given v’,/x, and a that satisfy the above conditions, the construction of , and of the
related objects ,, r/, /Zx, h", etc., will be called "performing the basic matching of/x
and u’ with parameter a." When we need to be specific, we will write (/x, ,’, a).

We end this section with technical results that will be needed to stay in control
when we iterate the constructions. We say that a measure , on [0, 1]2 is decomposable
if it is the image of a measure h on [0, by the map x -, (x, O(x)) that has the following
property:

Ve > 0, there is a partition L0, L1, , L, (n depending on e) of[0, 1] in
Borel sets such that

(25) Lo={O<e} and Vi>-l,x,yLi, x<-yO(x)<-O(y).

If the map 0 satisfies (25), we will call it decomposable.
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PROPOSITION 2. If U is decomposable, then is decomposable.
Proof Consider e > 0 and a Borel set L such that

x, y Le <= O(x) <-- O(y).

We can partition L into a finite number of (Borel) pieces (Lj)<=p such that

x, y L.IO(y) O(x) < e.

If x, y L, x <-_ y, O(x) q(x) >= e, O(y) d/(y) >= e, we have q(y) < O(x), and so, by
Lemma 4, we have (y)_-< q(x), so that O(x)-(x)<-_ O(y)-(y). The same holds
with 0- sq. This completes the proof.

Let us say that a decomposable measure u has the property P(y) if the following
holds:

P(y)" for x < y, we have O(x)< 1; for x> y, we have O(x)= 1; and the restriction
of A’ to [y, 1] is Lebesgue’s measure.

PROPOSITION 3. If

Proof. The decomposable map 0 corresponding to obviously satisfies O(x)< 1
for x <y. Thus, by Proposition 1, we can replace Ix by Ixy and suppose that v has
property P(0), i.e., u is the one-dimensional measure on [0, 1] {1}. But the result is
obvious in that case.

We observe that when u has property P(y), we have l-y--u([O, 1]x{1}), i.e.,
y 1- u([0, 1] {1}).

When performing the basic matching of Ix and u’ with parameter a, we will say
that Ix is packed at Xo if Ixo 0. (In that definition, we do not insist on Xo being the
smallest possible.)

3. FFD matching. We mentioned earlier that basic matching would be an adequate
representation of "small portion" of FFD. Our task in this section is to develop that
idea. Consider a distribution u’ on [0, 1] x [0, 1] that is the image of a positive measure
A’=<A. by the map x(x, 0(x)), where O(x) is a decomposable map. Consider a
positive measure Ix on [0, 1]. Let a =inf{a; Ix(]a, 1])}=0. We will, in that section,
assume that Ix is supported by the set {0} 12 [/3, a ], where/3 _-> a/2. We allow Ix to have
a (large) mass at zero for the reasons mentioned in 2. The use of this will soon
become apparent. Define, as before, s(t, a) It/aJ for => 2a, s(t, c) otherwise.
We perform the basic matching of Ix and u’ with parameter a, and we use the notations
of 2. Our whole approach relies on the following theorem.

THEOREM 3. Suppose that for some 0<= xl <= 1 the following occur:

(26) Vs >= 2, u’([0, xl] x ]sfl, sa[) O.

(27) Ix is packed at x
(28) tx is supported by {0} [_J ]/3, a].

Then, given any e > 0, 0 < to </3, we canfind > 0 and No> 0 with thefollowingproperties.
Consider N >-_ No and a list of items z,..., zp that satisfies

1
(29) Vt>0, -;-:. card{i<-p; z,>=t}-ix([t, 1])

Consider a list of vacancies (vi)_N that satisfies

(30) ’’x_-< 1, ’t->_ to, "-is. card{
_
xN, v >-_ t}- u’([0, x] x It, 1])
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Then, if Wi)i-N is the list of vacancies after the items zi are attributed to the vacancies

v following the FFD rule, we have

(31) Vx<=l, Vt>=to, --card{i<-xN; wi>-t}-,([O,x]x[t, 1])

Proof Step 1. At most 6N items z are greater than a. Packing them will modify
at most 6N vacancies. If we delete these items from our list of items, (29) still holds
with 26 instead of 6. Thus we can assume that all items are less than or equal to a.

In a similar fashion, we can assume that all items are greater than/3.
Step 2. We show that it is enough to prove (31) for x<=xl and to prove the

following:

The number of items zi that are not packed in bins of index less than Nx(32)
is less than or equal to eN.

Since ,’ and coincide on [x, 1], from (30) we get that for t>-_O, x>=x,
1- card { i; x,N < <- xN, vi >- t} (]x,, x] t, 1 ]) -< 26.

On the other hand, since at most eN items zi have not been packed in bins of index
less than Nx, for at most eN indices > xlN, we can have w v. Thus,-- card{i; xiN<i<=xN, w>-_t}- ,(]x,x]x[t, 1]) <-26+e.

Together with (31) for x- x, this implies- eard { i; <= xN, w >- t} ([O, x] t,1]) -<26+2e

for x<-x<-I and give (31) for all 0--<x=< (with 2e+28 instead of e).
In the sequel, we assume x 1, which changes nothing but simplifies notations.

Thus (26) becomes now

(33) Vs->_2, u’([0, 1] x ]s/3, sc[) 0.

Step 3. We show now that we can assume that the items zi are attributed to the
vacancies vi according to basic matching of parameter a instead of the FFD rule. Say
that a vacancy v is abnormal (respectively, normal) if it belongs to some (does not
belong to any) interval ]s,sa[, s>-_2. From (33), ,’([O, 1]x]s,sa[)=O for s=>2.
Since it is enough to consider the case s-< 1//3, by (30) we have at most 28N/
abnormal vacancies. Thus, if we modify our list of vacancies by replacing the abnormal
vacancies by 0, (30) still holds with 6(1+2//3) instead of 8. Any vacancy can receive
at most 1//3 items, thus the abnormal vacancies can receive at most 2SNiff items.
Hence, the list of items attributed to the normal vacancies satisfies (29) with 8(1 + 2//32)
instead of 8. If we attribute these items to the modified list of vacancies following the

obtained is w whenever v is normal. Thus if the sequenceFFD rule, the ith vacancy w
(w’) satisfies (31), the sequence wi will satisfy it with e+28/fl 2 instead of e. Thus, we
see that it is enough to prove the result under the extra assumption that there are no
abnormal vacancies. However, in that case the basic matching with parameter a and
the attribution of items following the FFD rule coincide, as is seen, e.g., by induction
on the number of items, the point being that a vacancy v => a is attributed s Ivy/cJ
consecutive largest items by the FFD rule, since it satisfies v < (s+ 1)a, and thus
v; _-< (s + 1)/3 and hence cannot accept s + 1 items of size greater than/3.
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Step 4. It is convenient to use the same conventions for our list of vacancies vi
as we do for ,’. Recall that we allow a "defective" ,’, i.e., ,’([a, b] x [0, 1])= b-a.
The corresponding idea for the list of vacancies vi is to allow some indices to have
no vacancy vi attached to them, or if one prefers, one can achieve the same effect by
formally setting this vacancy equal to -1. For the purpose of counting the vacancies
w, it is very convenient to assume that all the vi receive items. This is done by adding
enough items of size zero to the list (zi). It is at this point that our hypothesis that/z
has a large enough mass at zero is explicitly used, since we can add the size zero items
and assume that (29), which is valid for > 0, also becomes valid for 0 (provided
that N--_< 6).

Consider the restriction , of ,’ to [0, 1] x [0,/3[. Then

1
k/t>-_to, -card{i;i<-xN, t<=vi<fl}-u([O,x]x[t, 1]) <=26.

By construction of , if we replace v’ by v’- , (e.g., by replacing A’ by its restriction
to the set { 0 =>/3}), we replace by - ,’. On the other hand, the vacancies vi </3 are
not changed by the packing. Thus, to prove the theorem, one can replace ,’ by ,’- ,
and remove the vacancies v </3 from the list (i.e., setting them equal to -1). Hence,
we can assume that (30) holds for all t>_-0.

Step 5. We have

9([0, x] x [t, ]) s,’([0, x] x t, ]) + E ,’([0, x] x [ice, 1]),
i>s

where s s(t, a), and a similar formula holds for the multiplicities m of the vacancies.
From (30), (which now holds for all => 0), it follows that

1 6
(34) k/t->0, -77E {m,; i<=xN, v,>= t}- ,([0, x] x [t, 1]) <=--.

To simplify notations, for a subset X of [0, 112, we set

1 card{i<-N;(- v)X},v’(x)=
N

V(X)=-77 mi; vi X

Z(X) =-- card{items attributed to a vacancy vi, (i/ N, v) X},

V(X) =--- card <= N; wi X

Thus, (30) and (34) become

k/t _--> 0, V’([0, x] t, ]) ,’([0, x] t, 1 ])[ =< 6
k/t>-_O, IV([O,x][t, 1])- ,([O,x][t, 1])l<-6/a.

From (29), (2), and the definition of G, we see that for t-> 0,

IZ([O,x][t, 1])-r/([0, x] It, 1])[<-_6(l+(1/a)).
It follows that if R is a rectangle I J, where I, J are intervals (that may contain their
endpoints or not), we have

Iz(g)-rl(g)l<-_46(1 + (1/c)).
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A similar statement holds for V’ and v’ and V and v. For simplicity, we set 6’=
46(1+ 1/a). If X is the union of k disjoint rectangles, then [Z(X)-rI(X)I-<k6’.

Step 6. We are already in position to prove (32). Since tz is packed at xl- 1, we
have/z1([/3, 1])=0, i.e., r/([0, 1] x [/3, 1])= tz([/3, 1]). Thus,

Z([0, 1] x [/3, 1])2 r/([0, 1] x [/3, 1])-6’=/z([/3, 1])-3’

1
>- card{i; zi>=}-6-6’
N

and thus at most N(6 + 3’) nonzero items are not attributed to the vacancies vi. Since
we can always assume 6 + 3 ’-< e, this proves (32).

Step 7. Since 0 is decomposable, we can find a finite Borel partition Mo," , M,
of [0, 1], where Mo {0 </3}, such that

(35) Vi>-l, x,ym,,x<yO(x)-<O(y).

Let /be a positive number to be determined later. We can approximate the sets

Mi { 0 O _-> to}, Mi fq { 0 q < to} by finite unions of intervals. That is, we can find a
partition (/)_-<m of [0, 1] in intervals, and for each j_<-m there is a measurable subset
Lj of/./ such that for some i= i(j), O-<i-< n, we have

Lj Ij n Mi n { O d/ >= to} or Lj Ij fq Mi n { o < to}

and such that if we set

;’(/\L),
we have j<=,, yj -< /(see [11, Prop. 15, p. 63). When Lj c Mi for _-> 1, we can moreover
assume from (35) that

(36) sup 0(x)-inf O(x) < to
L Li

by cutting/./in at most 2/to subintervals. When Lj c { 0 _-> to}, it follows from Lemma
4 (as in the proof of Proposition 3) that

(37)

Thus, we can also assume

(38)

x, y Lj x -< y ==> d/ y -< d/ x

sup q(x)- inf q(x) < to
Li Lj

but splitting again Ij in at most 2/to subintervals. A further splitting ensures that on
each Lj either -<0-<21 or sja-<O<(sj+l)a for some integer sj>-2.

Step 8. Let => to be fixed. We can split each of our intervals /j in at most two
pieces in such a way that for all j, one of the following occurs:

(39) Lj c Mo, i.e., x e LifO(x) < fl
(40) xLj -< O(x) -<2a, O(x)-d/(x)< t;

(41) xLj -< O(x) -<Zce, O(x)-d/(x)>- t;

(42) x Ljsja -< O(x) < (sj + )a, O(x) sjd/(x) < t;

(43) x Ljsio -< O(x) < (sj + 1)a, O(x)- s.O(x) >-_ t.

Our family of intervals ()j__<, now depends on t, but its cardinality rn is bounded
independently of t. Also if /j a’(\Lj), we have j_<_,, yj -< p, independently of t.
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Step 9. In all the preceding five cases, we are going to show

(44) Q(/ x t, 1 ]) (/ t, ])l --< 10 (6 + 3/).

Since we can assume that (/ [0, 1])-<_ /for all j, we get by summation over j <-m
that for all x =< 1,

10 11
--card{i;xN<=i,w>-t}-([O,x]x[t, 1]) <-_m+q/.a a

We choose = ae/22 (which determines m) and then 8 ae/22m to obtain (31) (in
which No is any integer => 1/6).

We turn to the proof of (44). We fix j =< m. We denote J and J’ respectively, the
smallest intervals such that x LO(x)J, g(x)J’. We observe that by (36) J is
of length less than to unless (39) occurs and that J’ is of length less than to if (41)
occurs. For simplicity of notation, we set I =/, L L, 3/= 3/. The most interesting of
the following cases will be the third one.

Case 1. (39) holds. In Step 4 we have reduced the proof to the case where
A ’(Mo) 0. Thus,

(I [0, 1 ]) <= A ’(I) A ’( I\Mo) -<- A ’( I\L) -<_ 3/.

Also

V’(I [0, ]) _-< V’(I [0, ]) -< u’(I x [0, ]) + 6’ -< 3/+ ’
so that (44) holds.

Case 2. (40) holds. We set J J’= {u u’; u J, u’ J’}. We first show that J J’
[0, t[. Since O(x) d/(x) < on L, and since 0 increases and decreases on L, we have
sup/ 0 inf/ ff t. If sup 0 inf/ $ t, since O(x) d/(x) < for L, either sup 0
or inf/ is not attained and thus does not belong to J (respectively, J’). Thus
J J’ [0, t[. Since O(x) b(x) < for x L, we have

(I x t, ]) A ’(I\ L) _-< 3/.

Since O(x) J for x L, we have

,’(I x ([0, 1]\J)) _-< A’(I\L) %

and hence, since I ([0, 1]\J) is the union of at most two disjoint rectangles,

(45) V’(I ([0, 1]\J)) =< 3/+26 ’.

Since r/ is supported by the union of the graphs of 0 and p, we have

/(1 ([0, 1]\(JtAJ’)))<-A(I\L)<- 7--,
and thus, since I ([0, 1]\(JtA J’)) is the union of at most three disjoint rectangles,

(46) Z(I ([0, 1]\(JIAJ’)))<-36’+ 7--.
Attributing an item of size in J UJ’ to a vacancy in J creates a vacancy in

J-(JtAJ’). Since J has length less than to we have J-J’[O, toil[0, t[, thus
J (J J’) c [0, t[. Thus

23/
V(I[t, 1])<-_56’+

and (44) holds again.



THE COMPLETE CONVERGENCE OF FIRST FIT DECREASING 933

Case 3. (41) holds. In that case, both J and J’ have length less than to Thus
they must be disjoint, for otherwise x L=:> O(x) q(x) < to. Since O(x) q(x) >- on
L, we have inf/ 0- sup/ q _-> t, so that J- J’c t, ].

Since r/ is supported by the union of the graphs of 0 and q, and since for x L,
we have O(x) 1J’, q(x) J’, we have

(Lx It, 1])= A"(L) /(L x [0, 1] graph O)= (L x J’).

We also have

q(LJ’)>= l(I xJ’)-q((I\L)[0, 1])_-> (I J’)- y,

and

(I [t, 13) -< ((I\L)x[0, 1])+ (L [0, 1])

=< A’(I\L) + A"(L) < y+ r/(I J’)

so that

(47) IP(I [t, 1])- r/(I J’)[_-< y.

We note that (45) and (46) still hold. An item of size in J’ that is attributed to a vacancy
in J creates a vacancy greater than or equal to t. Then, from (45),

V(I x[t, 1])-_> Z(I xJ’)-y-6’.

On the other hand, an item of size in J that is attributed to a vacancy in J creates a
vacancy less than to. Thus vacancies greater than or equal to can come only from
item sizes not in J or vacancies not in J and hence

V(I[t, 1])<-Z(Ix([O, 1]\J))+ V’(I([O, 1]\J))

<-Z(I xJ’)+Z(I x ([0, 1]\(J U J’))+ V’(I x ([0, 1]\J))

23,
<-_Z(IJ’)+56’+--,

and thus

IV(I [t, 1])-l(I J’) <=56’+--
23,

Since I(I xJ’)-z(I xJ’)l-< 6 ’, (47) shows that (44) holds again.
Case 4. (42) holds. We set s SJ, J- sJ’= {u su’; u J, u’ J’}. As in Case 2, we

see that J-sJ’c [0, t[, and thus, by definition of

( I x t, ]) _-< h ’(I\ L) _-< 3/.

Since O(x) J for x L, we have

v’(I x ([0, 1]\J)) -< A’(J\L) _-< 3/

and hence

(48) V’(I x ([0, 1]\J)) -< 3/+ 26’.
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Since r/is supported by the union of the graphs of 0 and q, and also by [0, a [0, 1],
and since 0 _-> 2a on L, on L [0, 1], r/is supported by the graph of 0, hence by L J’
and thus

So we have

r/(I x ([0, 1]\J’))<-A(I\L)<-_ y--

(49) Z(I ([0, 1]\J’)) <_- 26’ +---Y.

To vacancies in J the basic matching attributes s consecutive largest unpacked
items. If all these items belong to J’, one checks easily that the resulting vacancy
belongs to J- sJ’ c [0, t[. Thus

and (44) holds again.

V(Ix[t, 1[)<-_46’+
2y

Case 5. (43) holds. Using the notation of Case 5, we see as in Case 3 that
J-sJ’c t, 1]. By definition of ,

A’(I)- --< A’(L)_-< (I It, 13)_-< A’(I).

We observe that (48) and (49) still hold. Also we have

v’(I J) => A’(L) ->_ A’(I)- 7,

so that

V’(IxJ)>=A’(I)-T-26 ’.

To vacancies in J the basic matching attributes s consecutive largest unpacked items.
If all these items belong to J’, the resulting vacancy belongs to J-sJ’c t, 1]. Thus,

1[)=> V’(IxJ)-(26’+T--- => A’(I)-4t’ 2y9(I [t,

2y
_-> (I [t, 1]) 46’ ---.

Also

V(I [t, 1[)<= V’(I [0, 1])=< v’(I [0, 1])+3’

A’(I)+6 ’-< (I [t, 1])+’+ y.

Thus, (44) holds again and the proof is complete.

(50)

(51)

The proof of Theorem 3 needs only obvious modifications to give Theorem 4.
THEOREM 4. Same as Theorem 3, with (26) and (27) replaced, respectively, by

’v’s >- 2, u’([0, 1]x[sfl, sa[)=O,

tx is supported by {0} CJ [/3, ce ].

4. Definition of f(/.t) and proof of Theorem 1. Our last significant task will be to
prove Theorem 5.
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THEOREM 5. Given a probability measure p on [0, 1], one can find four sequences
(Uk)k--l, (U’)k=l, (Xk)k=l, (Yk)k--, of numbers, a sequence (")k-o of decomposable
measures on [0, 1] 2, and a sequence (lk)k=l of positive measures on [0, 1], with the
following properties"

(52) u is the one-dimensional Lebesgue measure on [0, 1] {1},

(53) is the measure (, _, u), and ispacked at x.
(54) has theproperty P(y) for k 1.

(55) = E

(56) lim u 0; u+ N u N u

(57) For each k 1, either ofthefollowing occurs"

(58) ]u+, u;] supports, and u([0, x] x ]su+l, su[) 0 whenever s e 2.

(59) [u+, u] supports, andu([O,x]x[su+,su;[)=O whenevers2.

Before we prove this theorem, we turn to the definition off() and the proof of
Theorem 1. From Proposition 3, we see that the sequence (y) increases and that

Yk+l Yk + II..+,ll/[1/Uk+l]. Thus, for l 1,

Yk+lYk + [ijY+
We set f()= limk Yk. Thus, for all k,

(60) f(.) +

We should observe that the quantities involved in Theorem 5 have no reason to
be uniquely determined. It is a priori unclear thatf() limy depends on only,
and not on these quantities. But we are going to show that Theorem holds for this
value of f(), thereby proving that it depends on only. Consider a list of items

Zl " zu, and let

1
(61) = sup card{iNg;zt}-([t, 1])

0NtN1

We define i [NII2= ll3. Thus, it is clear that

1 2
(62) sup card{i;iNi<i_,zt}-([t, 1]) N2+--.

0NtNI N

Consider now N empty unit-size bins, and denote by v,. , v the list of vacancies
after the items (z)= have been packed according to the FFD rule.

Claim. Given k 1, e >0, to>0, there exists No and 6>0, such that if (61) holds
for N 6, and if N No, then for all x N and to, we have

(63) card{i; iNNx, v)t}-u([O,x]x[t, 1]) Ne.

This statement is proved by induction over k, using (62) and using in the induction
step, Theorem 3 when (58) holds and Theorem 4 when (59) holds.
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Denote by Fk the number of bins that have received items after zi is packed. Thus,

Fk= N-card{iNN; v= 1}.

From (63), with x 1, we have- card{i<=N; v/= l}- u,([O, 1]x {1}) <-e

so that we have ]N-F-yl<-_e, since y= 1-vJ,([0, 1] {1}). Denote by F the total
< < + N([1/Uk+,number of bins needed to pack z, ",zu. Then Fk=F=Fk 1+ J)-,

since new bins accept at least [1/Uk+J items of size <--Uk+. Thus, with (60) we have

]N-F-f(tz)[<=e+ N-’+2([1/u,+,])-’.

Since lim_ uk+ =0, given e’>0, we can first pick k such that 2([1/ut,+J)-<=e’/3;
we then pick 3 such that (63) holds for e’= e/3, then, if needed, N large enough that
1/N =< e’/3. This completes the proof of Theorem 1.

To prove Theorem 5, it suffices to apply inductively the following to the restriction
of/x to the interval ]2 -t-, 2-t], -> 0.

THEOREM 6. Given a positive measure Ix on [0, 1 ], supported by ]2--, 2-t] (1 ->_ 0),
and a decomposable measure v’ on [0, 1] that has property P(y), we can find a finite
sequence 2-1 u >u’ > > > 2 -t-l,=Uz=U=>...=up+= increasing sequences (yg)gp,
(Xk)k<=p of numbers, a sequence (V’)O<=k<=p of decomposable measures on [0, 1] 2, and a
sequence (tXk)k<__p ofpositive measures on [0, 1] with the following properties:

(64) Vo v,

(65) v’ is the measure (tx, v’_, u’), and/x is packed before x.

(66) v’ has property P(y,),

(67) /z= ,.
l<=kp

(68) For each 1 <= k <= p, either ofthefollowing occurs:

(69) ]u+,, u,] supports tx and vJ,([0, xk] x ]suk+ su’[) 0

whenever s >= 2, or

(70) [u+,, uJ,] supportstxandv’([O,x]x[su+l,su’[)=O

whenever s >-_ 2.

Proof Since v’ is decomposable, we can find a finite Borel partition L,..., L,
of the set { 0 => 2--1}, such that for i-< n,

x,yO(x)<-O(y).

The procedure we will define will take at most n21+1 steps. We define, for i_-< n,

Oi(x) inf ({ 0(y); y >-_ x, y L}).

Thus 0i is increasing, and Oi(x)= O(x) if x Li.
We define u=inf{a>0;/x(]a, 1])=0}. We use u as a parameter for the basic

matching, and we consider the measure v of density s(t, u) with respect to v’. We
perform the basic matching of/x and v. Define

F(x) inf{a > 0; tz,,(]a, 0]) 0}.
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This is a decreasing function. It is right continuous, as follows from the relation (see
(8)) for x=< y.

#x.(]a, 0]) #Xy(]a, 0]) <= r# ([x, y] x [0, 1])
_
h ([x, y]) <_- 2’+’(y x).

inf ({s(0i(y), u’For inn, we define si l),y>0}), Since 0 is increasing, 0(y)<
(s +1)ul for y small enough. Since F is right continuous, we have limy_o+ Ft(y) u’,
so we can find y>0 such that O(y)<(s+l)F(y) for inn. Define

x sup {y > 0; Vi <= n, Oi(y) < (s

so that xi > 0. We define u2 lim.-.,< F(x).
Case 1. Ft(x) > u2 for x < x. Let x < xt. For x < x’ < xt, we have Oi(x) <= Oi(x’) <-_

(x’) < Oi(x) < (si + 1)u2 for(s + 1)F Letting x - xt gives O(x)<-_(si + 1)uz. Since su
0 < x < x, we have u’([0, x] x ]su2, su][) 0 for all s > 2. We define #z as the restriction
of #x to ]uz, u]. It is supported by ]u2, u’], since (#z)x, <= #xx,, (#z),,, is supported by
[0, u]. Since (#z)., _<--#z, it is supported by ]u, U’], so we have (#zt),,, 0. This shows
that #z is packed before x and that (69) holds.

Case 2. For some Xo < x, we have F(xo)= uz. For x < x, we have

O(x) <= 0(max (x, Xo))< (s + 1)F,(max (x, Xo))= (si + 1)u2.

Thus, v’([0, xl] x [su2, su’]) 0 for s 2.
We define /z as. the restriction of /z to ]u2, u], to which we add the mass

/z({/z2})-/x,,({u2}) at u2. It is supported by [u2, u’]. To finish this case, we prove that
/z is packed before xt. Since/xl is supported by [uz, u’t], so is (/X)x,. Since (/zt),,,-/Zx,,
(/z i),,, is supported by {u}. If/z,,,({u}) 0, the proof is finished. So suppose h
/x.,({u2}) > 0. For t> u, we have/zx,([t, 1]) =0. Thus, for u> u2,

kt([ t, 1 ]) a(x,, t) <=/.([ t, u[) + v([0, x,] x u, 1]).

So/z([u, 1])=< v([0, x] x [u, 1]) for u> uz. This shows that

(71) inf (/z([uz, u[)+ v([0, x,] x [u, 1]))>=/z([u2, 1]).

Since/z,,(]u2, 1])=0, we have

h #x,,({uz})=/.t,,([u2, 1])= #.t ([u ,l ]) G(x, u2)

so that

/x([u2, 1])-h=G(xi, u)= inf (/x([u, u[)+ v([0, xi] x [u, 1])).
uu

By (71), we have G(xt, u2)= v([0, x] x [u2, 1]), and thus, for u> u2, by (71) again

([0, x,] [u, 1])= O(x,, u)= g([u2,1])-h

-<- tx ([ u, u[) + v([O, xl] u, 1]) h.

Thus, replacing /x by /z replaces /z([u2, 1]) by /x([u2, 1])-h but does not change
G(Xl, u2). Thus, (/z)x,([uz, 1])=0, and this finishes the proof that /zt is packed
before xl.

’r(x)<r,(x)<1+ 1)Fl(x) sothat Oi(x)--S =U WhenFor x < x, we have O(x) < (s
x Li and O(x) > u’ 2-I., we have F(x) O(x), and thus Oi(x)- s(O(x), u’l)q,(x) < u
When O(x)< u, we also have O(x)-q(x)_-<2-!. The definition of shows that v
(/xl, V’o, u)doesnotcharge[O, xt]x]2-I, 1]. Also, v’ and v’ coincide on [x ,1] x [0, 1].
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Consider/x’ =/x -/x .. We perform the basic matching of/x’ and u’, with parameter
1. Define

F(x) =inf{a > 0; (x’)x(]a, 1]) 0}.

’=F(X1), SO UObviously F(x) < u2. We set u2 =u2. We now perform the basic
matching of/X’l and V’l with parameter u, and we define

F2(x) =inf{a > 0; (/X’l)x(]a, 1]) 0}.

Obviously, since v’l does not charge [0,.xl] x[2-t, 1], F2 and F coincide on [0, x],
thus u F2(x). We define, for =< n,

2
si =inf ({s(Oi(y), u’2), y> x}).

,)We note that, by definition of x, there exists one iN n such that Oi(y’)>-_ (si + 1)F(y
whenever y’_>- x. So, if x < y’ < y, Oi(y) >= Oi(y’) >- (s + 1)Fl(y’). Letting y’-+ x, since

+l)u >(s 2>F is right continuous, we get Oi(y)>-(si i+l)u;. Thus we have si=si+l.
We define

x2= sup {y> 0; Vi<-_n, O(y)<(s+l)Fz(y)}

u3 lirn_ Fz(y),

and we proceed as in the first step of the construction to define x2. The measure

v (/x2, V’l, u) is then such that v([0, x2] x ]2 -t, 1])= 0.
We continue this procedure until/x is exhausted. At each step k of the procedure

there is one _-< n such tht s+1 >_- s + 1. The numbers s) are always less than 1/2--1

2+l, This shows that the procedure terminates in at most n2+l steps. The proofof
Theorem 6 (and thus of Theorem 1) is complete.
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IMPROVED TIME BOUNDS FOR THE MAXIMUM FLOW PROBLEM*

RAVINDRA K. AHUJA, JAMES B. ORLIN’, AND ROBERT E. TARJAN

Abstract. Recently, Goldberg proposed a new approach to the maximum network flow problem. The
approach yields a very simple algorithm running in O(n3) time on n-vertex networks. Incorporation of the
dynamic tree data structure of Sleator and Tarjan yields a more complicated algorithm with a running time
of O(nm log (n2/m)) on m-arc networks. Ahuja and Orlin developed a variant of Goldberg’s algorithm
that uses scaling and runs in O(nm + n log U) time on networks with integer arc capacities bounded by
U. In this paper possible improvements to the Ahuja-Orlin algorithm are explored. First, an improved
running time of O(nm + n log U/log log U) is obtained by using a’nonconstant scaling factor. Second, an
even better bound of O(nm + n2(log U) /) is obtained by combining the Ahuja-Orlin algorithm with the
wave algorithm of Tarjan. Third, it is shown that the use of dynamic trees in the latter algorithm reduces
the running time to O(nm log((n/m)(log U)1/2+2)). This result shows that the combined use of three
different techniques results in speed not obtained by using any of the techniques alone. The above bounds
are all for a unit-cost random access machine. Also considered is a semilogarithmic computation model in
which the bounds increase by an additive term of O(m log,, U), which is the time needed to read the input
in the model.

Key words, maximum flow, network algorithm, combinatorial optimization, scaling

AMS(MOS) subject classifications. 68Q20, 68Q25, 90C35

1. Introduction. We consider algorithms for the classical maximum network flow
problem [5], [6], [13], [15], [20]. We formulate the problem as follows. Let G=(V, E)
be a directed graph with vertex set V and arc set E. The graph G is a flow network if
it has two distinct distinguished vertices, a source s and a sink t, and a nonnegative
real-valued capacity u(v, w) oneach arc (v, w) E. We assume that G is symmetric,
i.e., (v, w) E if and only if. (w, v) E. We denote by n, m, and U the number of
vertices, the number of arcs, and the maximum arc capacity, respectively. For ease in
stating time bounds, we assume m _-> n and U => 4. Bounds containing U are subject
to the assumption that all arc capacities are integral. All logarithms in the ,paper are
base two unless an explicit base is given.

A flow f on a network G is a real-valued function f on the arcs satisfying the
following constraints:

(1) f(v, w) <- u(v, w) for all (v, w) E (capacity constraint);

(2) f(v, w)= -f(w, v) for all (v, w) E (antisymmetry constraint);

(3) f(v, w)=0forall we V-{s, t} (conservation constraint).
(v,w)E
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The value [fl of a flow f is the net flow into the sink:

Ifl Y f(v,t).
(v,t)E

A maximum flow is a flow of maximum value. The maximum flow problem is that of
finding a maximum flow in a given network.

Remark. We assume that all arc capacities are finite. If some arc capacities are
infinite but no path of infinite-capacity arcs from s to exists, then each infinite capacity
can be replaced by the sum of the finite capacities without affecting the problem.

The maximum flow problem has a long, rich history, and a series of faster and
faster algorithms for the problem has been developed. (See [10] for a brief survey.)
Until now the fastest known algorithms have been the one of Goldberg and Tarjan
[9], [10] (running in time O(nm log(hElm))) and the one of Ahuja and Orlin [1]
(running in time O(nm+/12 log U)). Both of these algorithms are refinements of a
generic method proposed by Goldberg [8], w.hich we shall call the preflow algorithm.
For networks with rn I(n), the Goldberg-Tarjan bound is 0(//3), which matches
the bound of several earlier algorithms [12], [14], [16], [21]..For networks with
m=O(n2-) for some constant e >0, the Goldberg-Tarjan bound is O(nm log n),
which matches the bound of the earlier Sleator-Tarjan algorithm [17], [18]. Under the
similarity assumption [7], namely, U O(n) for some constant % the Ahuja-Orlin
bound beats the Goldberg-Tarjan bound unless m O(n) or m

The Goldberg-Tarjan and Ahuja-Orlin algorithms obtain their speed from two
different techniques. The former uses a sophisticated data structure, the dynamic tree
structure of Sleator and Tarjan 18], 19], [20], whereas the latter uses scaling. In this
paper we explore improvements in the Ahuja-Orlin algorithm obtained by incorporat-
ing other ideas, including the use of.dynamic trees. We begin in 2 by reviewing the
generic preflow algorithm [8], [9], 10]. In 3, we develop a version of the Ahuja-Orlin
algorithm that uses a stack-based vertex selection rule and a nonconstant scaling factor
to obtain a time bound of O(nm+ n log U/log log U). In 4, we describe an even
faster variant that uses a constant scaling factor but combines, the scaling idea with
the wave algorithm of Tarjan [21]. This algorithm has a running time of O(nm+
n (log U)/). In 5, we add dynamic trees to the method of 4, thereby obtaining a
running time of O(nm log((n/m)(log U)/:+2)). The results in 3-5 rely on the
assumption that pointer manipulations and arithmetic operations on integers of magni-
tude U take O(1) time. In 6, we consider the effect on our time bounds of a weaker
assumption, namely, that arithmetic on integers of magnitude n takes O(1) time. The
extra time needed by our algorithms in this semilogarithmic computation model is an
additive term of O(m log, U), which is the same as the time needed to read the input.
We conclude in 7 with some final remarks.

2. The preflow algorithm. In contrast to the classical augmenting path method of
Ford and Fulkerson [6] that moves flow along an entire path from s to at once, the
preflow method moves flow along a single arc at a time. The key concept underlying
the algorithm is that of a preflow, introduced by Karzanov [12]. A preflow f is a
real-valued function on the arcs satisfying constraints (1), (2), and a relaxation of (3).
For any vertex w, let the flow excess of w be e(w)=,v,w)Ef(v w). The required
constraint is the following’

(4) e(w)>=O /w V-{s} (preflow constraint).

We call a vertex v active if v St and e(v)> 0. Observe that the preflow constraint
implies that e(s) <- 0.
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The residual capacity of an arc (v, w) with respect to a preflow f is Uf(V, w)=
u(v, w)-f(v, w). An arc is saturated if Uf(V, w)=0 and unsaturated otherwise. (The
capacity constraint implies that any unsaturated arc (v, w) has Uf(V, w)> 0.)

The preflow algorithm maintains a preflow and moves flow from active vertices
through unsaturated arcs toward the sink, along paths estimated to contain as few arcs
as possible. Excess flow that cannot be moved to the sink is returned to the source,
also along estimated shortest paths. Eventually the preflow becomes a maximum flow.

As an estimate of path lengths, the algorithm uses a valid labeling that is a function
d from the vertices to the nonnegative integers such that d(s)=n, d(t)=0, and
d (v)=< d (w)+ for every unsaturated arc (v, w). A proof by induction shows that, for
any valid labeling d, d(v)=<min {d.r(v,s)+ n, df(v, t)}, where dr(v, w) is the minimum
number of arcs on a path from v to w consisting of arcs unsaturated with respect to
the flow f We call an arc (v, w) eligible if (v, w) is unsaturated and d(v)=d(w)+ 1.

The algorithm begins with an initial preflow f and a valid labeling d defined as
follows:

w) if v s,
f(v, w)= -u(w, v) ifw=s,

0 if v# s and w# s,

d(v) =min {df(v, s)+ n, dr(v, t)}.

The algorithm consists of repeating the following two steps, in any order, until no
vertex is active:

Push(v, w).
Applicability: Vertex v is active and arc (v, w) is eligible.
Action: Increase f(v, w) by min {e(v), uy(v, w)}. The push is saturating if (v, w)

is saturated after the push and nonsaturating otherwise.

Relabel( v).
Applicability: Vertex v is active and no arc (v, w) is eligible.
Action: Replace d(v) by min {d(w)+ l(v, w) is unsaturated}.

When the algorithm terminates, f is a maximum flow. Goldberg and Tarjan [10]
derived the following bounds on the number of steps required by the algorithm:

LEMMA 2.1 10]. Relabeling a vertex v strictly increases d v). No vertex label exceeds
2n- 1, and the total number of relabelings is O( n2).

LEMMA 2.2 [10]. There are at most O(mn) saturating pushes and at most O(n2m)
nonsaturating pushes.

Efficient implementations ofthe above algorithm require a mechanism for selecting
pushing and relabeling steps to perform. Goldberg and Tarjan proposed the following
method: For each vertex, construct a (fixed) list A(v) of the arcs out of v. Designate
one of these arcs, initially the first on the list, as the current arc out of v. To execute
the algorithm, repeat the following step until there are no active vertices:

Push/Relabel(v).
Applicability: Vertex v is active.
Action: If the current arc (v, w) of v is eligible, perform push(v, w). Otherwise,

if (v, w) is not the last arc on A(v), make the next arc after (v, w) the
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current one. Otherwise, perform relabel(v) and make the first arc on A(v)
the current one.

With this implementation, the algorithm runs in O(nm) time plus O(1) time per
nonsaturating push. This gives an O(n2m) time bound for any order of selecting
vertices for push/relabel steps. Making the algorithm faster requires reducing the time
spent on nonsaturating pushes. The number of such pushes can be reduced by selecting
vertices for push/relabel steps carefully. Goldberg and Tarjan showed that first-in,
first-out selection (first active, first selected) reduces the number of nonsaturating
pushes to O(n3). Cheriyan and Maheshwari [3] showed that highest label selection
(always pushing flow from a vertex with highest label) reduces the number of non-
saturating pushes to O(n2m/2). (The latter rule was first proposed by Goldberg [8],
who gave an O(n 3) bound.) Ahuja and Orlin proposed a third selection rule, which
we discuss in the next section.

3. The scaling algorithm. The intuitive idea behind the Ahuja-Orlin algorithm,
henceforth called the scaling algorithm, is to move large amounts of flow when possible.
The same idea is behind the maximum capacity augmenting path method of Edmonds
and Karp [4] and the capacity scaling algorithm of Gabow [7]. One way to apply this
idea to the preflow algorithm is to always push flow from a vertex of large excess to
a vertex of small excess, or to the sink. The effect of this is to reduce the maximum
excess at a rapid rate.

Making this method precise requires specifying when an excess is large and when
it is small. For this purpose the scaling algorithm uses an excess bound A and an integer
scaling factor k_-> 2. A vertex v is said to have large excess if its excess exceeds A/k
and small excess otherwise. As the algorithm proceeds, k remains fixed, but A periodi-
cally decreases. Initially, A is the smallest power of k such that A __> U. The algorithm
maintains the invariant that e(v)<= for every active vertex v. This requires changing
the pushing step to the following:

Push (v, w).
Applicability: Vertex v is active and arc (v, w) is eligible.
Action: If w t, increase f(v, w) by min {e(v), Ut.(v, w), zX- e(w)}. Otherwise,

(w t), increase f(v, w) by min {e(v), Ur(V, w)}.

The algorithm consists of a number of scaling phases, during each of which A

remains constant. A phase consists of repeating push/relabel steps, using the following
selection rule, until no active vertex has large excess, and then replacing A. by A/k.
The algorithm terminates when there are no active vertices.

Large excess, smallest label selection: Apply a push/relabel step to an active vertex
v of large excess; among such vertices, choose one of smallest label.

If the edge capacities are integers, the algorithm terminates after at most
[log U + 1] phases. After [log U + 1] phases, zX < 1, which implies that f is a flow,
since the algorithm maintains integrality of vertex excesses. Ahuja and Orlin derived
a bound of O(kn log U) on the total number of nonsaturating pushes. We repeat
the analysis here, since it provides motivation for our first modification of the algorithm.

LEMMA 3.1 [1]. The total number of nonsaturating pushes in the scaling algorithm
is O(kn2(log U + 1)).

Proof Consider the function =Yct e(v) d(v)/zX. We call the potential of
the current preflow f and labeling d. Since 0< e(v)/zX<-_ and 0_-< d(v)<-2n for every
active vertex v, 0_-< _-< 2n throughout the algorithm. Every pushing step decreases .
A nonsaturating pushing step decreases by at least l/k, since the push is from a
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vertex v with excess more than A/k to a vertex w with d(w)= d(v)- 1, and e(w)<.A/k
or w t. The value of @ can increase, only during a relabeling or when A changes.
A relabeling of a vertex v increases , by at most the amount d (v) increases. Thus the
total increase in @ due to relabelings, over the entire algorithm, is at most 2n 2. When
A changes, increases by a factor of k, to at most 2n 2. This happens at most [1Ogk U +
times. Thus the total increase in over the entire algorithm is at most 2n2 [1Ogk U + 2J.
The total number of nonsaturating pushes is at most k times the sum of the initial
value of and the total increase in . This is .at most 2kn2[lOgk U+ 3J.

Choosing k to be a constant independent of n gives a total time bound of
O(nm + n log U) for the scaling algorithm, given an efficient implementation of the
vertex selection rule. One way to implement the rule is to maintain an array of sets
indexed by vertex label,each set containing all large excess vertices with the correspond-
ing label, and to maintain a pointer to the nonempty set of smallest index. The total
time needed to maintain this structure is O(nm + n log U).

Having described the scaling algorithm, We consider the question of whether its
running time can be improved by reducing the number of nonsaturating pushes. The
proof of Lemma 3.1 bounds the number of nonsaturating pushes by estimating the
total increase in the potential . Observe that there is an imbalance in this estimate:
O(n lOgk U) of the increase is due to phase changes, whereas only O(n) is due to
relabelings. Our plan is to improve this estimate by decreasing the contribution of the
phase changes, at the cost of increasing the contribution of the relabelings. Making
this plan work requires changing the algorithm.

We use a nonconstant scale factor k and a slightly more elaborate method of
vertex selection. We make use of the stack-push/relabel step defined below, which
performs a sequence of push and relabel steps using a stack. The stack provides an
alternative way of avoiding, pushes to large-excess vertices (other than t).

Stack-Push/ Relabel(r).
Applicability: Vertex r is active.
Action" Initialize a stack S to contain r. Repeat the following step until S is empty"
Stack Step. Let v be the top vertex on S and let (v, w) be the current arc out of
v. Apply the appropriate one of the following cases"

Case 1: v, w) is not eligible.
Case la: (v, w) is not last on A(v). Replace (v, w) as the current arc out

of v by the next arc on A(v).
Case lb: (v, w) is last on A(v). Relabel v and pop it from S. Replace

(v, w) as the current arc out of v by the first arc on A(v).
Case 2: (v, w) is eligible.

Case 2a: e(w)> A/2 and w # t. Push w onto S.
Case 2b: e(w)<=A/2 or w= t. Perform push(v, w) (modified as at the

beginning of this section to maintain e(w)<--A if w# t). If e(v) =0,
pop v from S.

Some remarks about stack-push/relabel are in order.. Let us call a nonsaturating
push big if it moves at least A/2 units of flow and little otherwise. During an execution
of stack-push/relabel, every vertex pushed onto S, except possibly the first, has an
excess of at least A/2 when it is added to S. A vertex v can be popped from S only
after it is relabeled or its excess is reduced to zero. Of the pushes from v while v is
on S, at most two are nonsaturating, only the last of which can be little.
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Our variant of the scaling algorithm, called the stack scaling algorithm, consists
of phases just as in the scaling algorithm. A phase consists of repeatedly applying the
stack-push/relabel step to a large-excess active vertex of highest label; a phase ends
when there are no large-excess active vertices.

LEMMA 3.2..The total number of nonsaturating pushes made by the stack scaling
algorithm is O( kn2 + n2(log, U + 1)).

Proof. To bound the number of nonsaturating pushes, we use an argument like
the proof of Lemma 3.1, but with two potentials instead of one. The first potential iS
that of Lemma 3.1, namely, =vactve e(v) d(v)/A. By the analysis in the proof of
Lemma 3.1, every push decreases , the total increase in over all phases is
O(n2 IOgk U), and the difference between the initial and the final values of (I) is O(n2).
Each big push moves at least a/2 units offlow and hence decreases (I) by at least 1/2.
Thus the number of big pushes is O(n2(lOgk U + 1)).

To count little pushes, we divide them into two kinds, those that result in an empty
stack S, called emptying pushes, and those that do not, called nonernptying pushes.
A nonemptying push from a vertex v is such that e(v) was at least A/2 when v was
added to S, and the push results in e(v) decreasing to zero. We can charge such a
push against the cumulative decrease of at least 1/2 in resulting from moving
the original excess on v to vertices of smaller label. Hence there can be only
O(n2(lOgk U+ 1)) nonemptying pushes..

An emptying push from a vertex v can be associated with a decrease of at least
1! k in , namely, the drop in (I) caused by the movement of the original excess on v,
which is at least 4/k, to smaller labeled vertices, But using this drop gives a bound
on the number of emptying pushes of only O(kn2(logk U+ 1)).. We count emptying
pushes more carefully by using a second potential, . The definition of 2 involves
two parameters, an integer and a set P. The value of is equal to the minimum of
2n and the smallest label of a vertex added to S while S was empty during the current
phase. Observe that 2n at the beginning of a phase and that is nonincreasing
during a phase. The set P contains all vertices that have label greater than l, and also
all vertices that have label equal to and from which an emptying push has been made
during the current phase. Observe that P is empty at the beginning of a phase and P
never loses a vertex during a phase. The definition of (i)2 is

e(v)(d(v)-l+l)/A.(IfP=f,thencb2=O.)
vP:e(v)>O

Observe that 0=< 2---2n 2. Any emptying push can be associated either with an
addition of a vertex to P or with a decrease in 2 of at least l!k. (If the push is from
v, either v P when v is added to S but v e P after the push, or v P when v is added
to S and 2 drops by at least 1/k because of pushes from v while v is on S.) The
number of vertices added to P is at most n LlOgk U + lj over all phases, and hence so
is the number of emptying pushes not associated with decreases in 2.

To bound the number of emptying pushes associated with decreases in 2, we
bound the total increase in 2. Increases in 2 are due to relabelings and to decreases
in I. (A vertex added to P because of an emptying push has zero excess and hence
adds nothing to 2.) A relabeling of a vertex v increases 2 by at most the increase
in d(v) plus one; the "plus one" accounts for the fact that the relabeling may add v
to P. Thus relabelings contribute at most 4n to the growth of 2.

There are at most 2n decreases in per phase. A decrease in by one adds at
most n/k to 2, since when the decrease occurs every vertex in P has small excess.
(Such a decrease occurs because some vertex v of label less than is added to S while
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S is empty. The label of v becomes the new value of/. When this happens, P contains
only vertices of label exceeding the new value of l, all of which must have small excess.)
Thus the total increase in 2 due to decreases in is at most 2n2[1Ogk U + l J/k over
all phases.

The total number of emptying pushes associated with decreases in 2 is at most
k times the total increase in 2, since 2 is initially zero. Thus the total number of
such pushes is at most 4kn2 + 2n [lOgk U + lJ. I-]

As in the Goldberg-Tarjan and Ahuja-Orlin algorithms, the time to perform
saturating pushes and relabeling operations and to examine ineligible arcs is O(nm).
The only significant remaining issue is how to choose vertices to add to S when S is
empty. For this purpose, we maintain a data structure consisting of a collection
of doubly linked lists: list(j)={iN:e(i)>A/k and d(i)=j} for each j
{ 1, 2, , 2n 1}. We also maintain a pointer to indicate the largest index j for which
list(j) is nonempty. Maintaining this structure requires O(1) time per push operation
plus time to maintain the pointer. Each pointer increase is due to a relabeling (the
increase is at most the amount of change in label) or due to a phase change (the
increase is at most 2n). Consequently, the number of times the pointer needs to be
incremented or decremented is O(n2+ n (1Ogk U + 1)). The overall running time of the
algorithm is thus O(nm + kn2+ n2(1Ogk U + 1)). Choosing k [log U/log log U] gives
the following result:

THEOREM 3.3. The stack scaling algorithm, with an appropriate choice of k, runs in

O(nm + n log U/log log U) time.

4. The wave scaling algorithm. Another way to reduce the number of nonsaturating
pushes in the scaling algorithm is to keep track of the total excess, defined to be the
sum of the excesses of all active vertices. The key observation is that if the total excess
is sufficiently large, the algorithm can make significant progress by applying stack-
push/relabel to each active vertex in turn, processing vertices in topological order with
respect to the set of eligible arcs. Even though some vertices of very small excess are
processed, the overall benefits of this approach yield an even better running time than
that of the stack scaling algorithm. The idea of processing vertices in topological order
originated in the wave algorithm of Tarjan [20], [21]; therefore, we call the new
algorithm the wave scaling algorithm.

The wave scaling algorithm seems to derive no benefit from using a nonconstant
scaling factor; therefore, we fix k 2. The algorithm uses another parameter, l-> 1,
whose exact value we shall choose later. A phase of the wave scaling algorithm consists
of two parts. First, the wave step below is repeated until the total excess is less than
nA/l. Then stack-push/relabel steps are applied to large-excess active vertices in any
order until there are no large-excess active vertices.

Wave: Construct a list L of the vertices in V-{s, t} in topological order with respect
to the set of eligible arcs. (Ordering L in nonincreasing order by vertex label
suffices.) For each vertex v on L, if v is active and v has not been relabeled
during the current wave, then perform stack-push/relabel(v).

Observe that the total excess is a nonincreasing function of time. Constructing L
at the beginning of a wave takes O(n) time using a radix sort by vertex label. The
time spent during a single wave is O(n) plus time for the relabelings and pushes. Thus
the total time required by the wave scaling algorithm is O(nm) plus O(n) per wave
plus O(1) per nonsaturating push. We complete the running time analysis with two
lemmas.
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LEMMA 4.1. The number ofnonsaturating pushes done by the wave scaling algorithm
is O( n 2 + n2/ l) log U) plus O(n per wave.

Proof We count big pushes (those that move at least A/2 units of flow) and little
pushes separately. The analysis in the proof of Lemma 3.1 applies to bound the number
of big pushes, with the following improvement. At the end of a phase, the total excess
is less than hA I. Thus the potential at the beginning of the next phase is at most 4n2/1.
(The new value of A is half of the old; each vertex label is at most 2n.) Thus the sum
of the increases in caused by changes in A is O( n2/ l) log U), which implies that
the number of big pushes is O(n+ (n2/l) log U). The same argument gives the same
bound on the number of little pushes from vertices that have large excess when added
to the stack S, since as in the proof of Lemma 3.2 each such push can be charged
against a drop of at least in . The remaining little pushes consist of at most one
per vertex to which stack-push/relabel is applied during waves, totaling at most n per
wave.
Ln 4.2. The number of waves in the wave scaling algorithm is O(min {nl +

log U, n 2}).
Proof Consider any wave except the last in a phase. At the end of the wave, the

total excess is at least nail. The only way for excess to remain on a vertex x at the
end of a wave is for x to have been relabeled during the wave; once x is relabeled,
e(x) remains constant until the end of the wave. The maximum excess on any single
vertex is A. It follows that at least n/l relabelings must have occurred during the wave.
Since the total number of relabelings is O(n), the total number of waves is O(nl+
log U). Furthermore, a wave during which no relabeling occurs causes all vertices to
become inactive, and hence terminates the entire algorithm. Thus the number of waves
is O(n:).

THEOREM 4.3. The running time of the wave scaling algorithm is O(nm+
nZ(log U)/) if is chosen equal to (log U) /2.

Proof By Lemmas 4.1 and 4.2, the running time of the wave scaling algorithm is
O(nm+(n2/l)log U+min{nZl+nlog U, n3}). Choosing /=(log U)/ gives a bound
of O(nm+nZ(logU)/Z+min{nlogU, n3}). But min{nlogU, n}<-n:(logU)/,
since n log U_-> nZ(log U) 1/2 implies (log U)/:>= n.

5. Use of dynamic trees. The approach taken in 3 and 4 reduced the total
number of pushes. An orthogonal approach is to reduce the total time of the pushes
without necessarily reducing their number. This can be done by using the dynamic
tree data structure of Sleator and Tarjan [18], [19], [20]. We conjecture that, given a
version of the preflow algorithm with a bound ofp >= nm on the total number of pushes,
the running time can be reduced from O(p) to O(nm log ((p/nm) + 1)) by using
dynamic trees. Although we do not know how to prove a general theorem to this effect,
we have been able to obtain such a result for each version of the preflow algorithm
that we have considered. As an example, the O(nm log (n2/m)) time bound of Goldberg
and Tarjan results from using dynamic trees with the first-in, first-out selection rule;
the bound on the number of pushes in this case is O(n3). In this section we shall show
that the same idea applies to the wave scaling algorithm of 4, resulting in a time
bound of O(nm log ((n/m)(log U)/+2)). This idea can also be applied to the stack
scaling algorithm of 3, giving a bound of O(nm log ((n log U/m log log U)+2)); we
omit a description of the latter result since the former bound is better.

The dynamic tree data structure allows the maintenance of a collection of vertex-
disjoint rooted trees, each arc of which has an associated real value. We regard each
tree arc as being directed from child to parent, and we regard every vertex as being
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both an ancestor and a descendant of itself. The data structure supports the following
seven operations:

find-root(v):
find-size(v):

find-value(v):

find-min v

change-value(v, x):

link(v, w, x):

cut(v):

Find and return the root of the tree containing vertex v.
Find and return the number of vertices in the tree containing
vertex v.
Find and return the value of the tree arc leaving v. If v is a tree
root, the value returned is infinity.
Find and return the ancestor w of v with minimum find-value(w).
In case of a tie, choose the vertex w closest to the tree root.
Add real number x to the value of every arc along the path from
v to the root of its tree.
Combine the trees containing v and w by making w the parent
of v and giving the arc (v, w) the value x. This operation does
nothing if v and w are in the same tree or if v is not a tree root.
Break the tree containing v into two trees by deleting the arc
joining v to its parent; return the value of the deleted arc. This
operation breaks no arc and returns infinity if v is a tree root.

A sequence of h tree operations, starting with an initial collection of singleton
trees, takes O(h log (z+ 1)) time if z is the maximum tree size [10], [18], [19], [20].

In the network flow application, the dynamic tree arcs are a subset of the current
arcs out of the vertices. Only eligible arcs are tree arcs. The value of a tree arc is its
residual capacity. The dynamic tree data structure allows flow to be moved along an
entire path at once, rather than along a single arc at a time. We shall describe a version
of the wave scaling algorithm, which we call the tree scaling algorithm, that uses this
capability. Two parameters govern the behavior of the algorithm, a variable bound A

on the maximum excess at an active vertex and a fixed bound z, 1-< z-< n, on the
maximum size of a dynamic tree. The algorithm is identical to the wave scaling algorithm
except that it uses the following step in place of stack-push/relabel:

Tree-Push / Relabel( r)
Applicability: Vertex r is active.
Action: Initialize a stack S to contain r. Repeat the following step until S is empty.
Stack Step. Let v be the top vertex on S and let (v, w) be the current arc out
of S. Apply the appropriate one of the following cases:

Case 1: v, w) is not eligible.
Case la: (v, w) is not last on A(v). Replace (v, w) as the current arc out

of v by the next arc on A(v).
Case lb: (v, w) is last on A(v). Relabel v and pop it from S. Replace

(v, w) as the current arc out of v by the first arc on A(v). For every
tree arc (y, v), perform cut(y).

Case 2: (v, w) is eligible. Let x =find-root(w).
Case 2a: e(x) > A/2 and x t. Push x onto S.
Case 2b: e(x)<--A/2 or x= t. Let e=min {e(v), us(v w),find-min(w)}.

Let 6 e if x t, 6 min {e, A- e(x)} if x t. Send 6 units of flow
from v to x by increasing f(v, w) by 6 and performing change-
value(w,-3). (This is called a tree push from v to x. The tree push
is saturating if 6 min {us(v, w),find-min(w)} before the push and
nonsaturating otherwise.) While it is the case that find-value(find-
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min(w))=O, perform cut(find-min(w)). If e(v)=0, pop v from S,
and if in addition U1.(v, w)>0 and find-size(w)+find-size(v)<-_z,
perform link(v, w, Ul.(v, w)).

The tree scaling algorithm stores flow in two different ways; explicitly for arcs
that are not dynamic tree arcs and implicitly (in the dynamic tree data structure) for
arcs that are dynamic tree arcs. After each cut, the flow on the arc cut must be restored
to its correct current value. In addition, when the algorithm terminates, the correct
flow value on each remaining tree arc must be computed. For arcs cut during the
computation, the desired flow values are returned by the corresponding cut operations.
Computing correct flow values on termination can be done using at most n find-value
operations. We have omitted these bookkeeping steps from our description of the
algorithm.

The algorithm maintains the following invariants: every active vertex is a tree
root, every tree arc is eligible, no excess exceeds A, and no tree size exceeds z. Let us
call a nonsaturating tree push big if it moves at least A/2 units of flow, and little
otherwise. Of the pushes from a given vertex v while v is on S, at most two are
nonsaturating and at most one (the last) is small.

The tree scaling algorithm is a variant of the dynamic tree algorithm of Goldberg
and Tarjan [9], [10]. Their analysis applies to give the following result:

LEMMA 5.1 [10]. The total time required by the tree scaling algorithm is

O(nm log (z + 1)) plus O(log (z + 1)) time per tree push plus the time needed to construct
and scan the list L during wave steps. The number of links, cuts, and saturating tree

pushes is O( nm ).
Making the tree scaling algorithm efficient requires careful implementation of the

list L used in wave steps. For the moment we shall ignore the time spent manipulating
L. The remaining issue in analyzing the algorithm is bounding the number of nonsaturat-
ing pushes. To do this we need two lemmas:

LEMMA 5.2. The number of waves in the tree sealing algorithm is O(min {nl+
log U, n2}).

Proof Identical to the proof of the same result for the wave scaling algorithm
(Lemma 4.2).

LEMMA 5.3. The number of nonsaturating tree pushes done by the tree sealing
algorithm is O(nm + (n2/l) log U) plus O(n/z) per wave.

Proof The potential function used in 3, as applied in the proof of Lemma
3.3, serves to bound the number of big tree pushes by O(n2+(n:/l) log U). We count
little tree pushes as follows. Any little tree push, say from a vertex v, reduces e(v) to
zero. We shall count such a push against the most recent previous push that made
e(v) nonzero; or, if there is no such previous push, against the preflow initialization.
We call the event of e(v) becoming nonzero an activation of v. We shall derive a
bound of O(nm + (n:/l) log U) plus O(n/z) per wave on the number of activations,
thereby proving the lemma.

Initializing the preflow f at the beginning of the entire algorithm causes O(n)
vertex activations. Every other activation is due to a tree push (Case 2b of tree-

push/relabel). If such a tree push results in a link or cut, we charge the activation
against the corresponding link or cut. Similarly, if the tree push is saturating, we
charge the activation against the arc saturation. Such charges account for O(nm)
activations.

Any remaining activation, say of a vertex x, is produced by a tree push through
an arc(v, w) to x=find-root(w), after which find-size(v)+find-size(w)>z, since no
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link is performed. Let T and Tw be the dynamic trees containing v and w, respectively.
We call a dynamic tree large if it contains more than z/2 vertices and small otherwise.
Just after the push, one of T and Tw must be large.

If the tree push is big, we charge the activation of x against the push. By the
argument above counting big tree pushes, this accounts for O(nZ+(n2/l)log U)
activations. Otherwise, the push is little, and thus it reduces e(v) to zero. There can
be at most one such push from v per wave. If Tv has changed between the beginning
of the most recent wave and the push, we charge the activation of x to the link or cut
that most recently changed T. There are O(nm) such charges, at most one per link
and at most two per cut, since vertex v is the root of T when the push occurs. Similarly,
if T has changed between the beginning of the most recent wave and the push, we
charge the activation of x to the link or cut that most recently changed T. There are
O(nm) such charges, since a vertex x can be activated at most once per wave, and x
is the root of T when the push occurs. If neither T nor T has changed, we charge
the activation of x to whichever of T or Tw is large. Each large tree existing at the
beginning of a wave can be charged at most twice (once as a T, once as a T). Since
there are fewer than 2n/z large trees at the beginning of any wave, the total number
of such charges is O(n/z) per wave. Combining all our estimates gives the claimed
bound on vertex activations. [3

THEOREM 5.4. The number of tree pushes done by the tree scaling algorithm is

O(nm) if z is chosen equal to min {n, max {1, (nZ/m 2) log U}}, and is chosen equal to

m/n if z= 1, (n/m) log U if <z<-n.
Proof By Lemmas 5.2 and 5.3, the number of tree pushes done by the algorithm

is O(nm+(n2/l) log U+(n/z) min {n/+log U, n2}). We consider three cases:
Case 1. (n-/m2) log U _-< 1. Then z and mn _-> 1. The number of tree pushes

is O(nm+(n3/m)log U+n min{m+log U, n2}). Since log U<=mZ/n2, the bound on
tree pushes is O(nm+min {m2/n, n3})=O(nm), because mZ/n<=n implies m<-n 2,
which means m2/ rt nm, and m2/ n >= n implies m _->/2, which means n <- nm. (This
analysis allows for the possiblity of multiple arcs in G, i.e., the possibility that m > n2.)

Case 2. l<(nZ/m:)log U<n. Then z=(nZ/m2) log U and l=(n/m)log U>=I.
The number of tree pushes is O(nm+(mZ/n log U) min {(nZ/m) log U+log U, nZ})
O(nm+min {mZ/n, m2n/log U})= O(nm+min {m/n, n3}), since logU>m/n.
Since min {mZ/n, n 3} <= nm (see Case 1), the number of tree pushes is O(nm). (As in
Case 1, this analysis allows for the possiblity that m > rt2.)

Case 3: (n2/m-)log U>=n. Then z=n and l=(n/m)log U>=l. The number of
tree pushes is O(nm+min{(nZ/m) log U+log U,n})=O(nm). [3

Observe that if z is chosen as in Theorem 5.4, i.e., equal to
min {n, max {1, (n2/m 2) log U}}, the time per dynamic tree operation is O(log (z + 1))
O(log ((n/m)(log U)/2+ 2)). Thus the running time of the tree scaling algorithm, with
k and z chosen as in Theorem 5.4, is O(nm log ((n/m)(log U)/2+2)) (ignoring time
spent manipulating L).

All that remains is to show that the manipulations of the list L in wave steps can
be performed in O(nm log ((n/m)(log U)/:+2)) time. It is not sufficient to represent
L simply as a linked list, for then the time spent scanning L will be O(n) per wave,
and this scanning time will dominate the time for the rest of the computation. Instead,
we represent L as follows. For each integer in the range <-i<-2n- 1, we maintain
the set K(i) of active vertices with label that have not been relabeled during the
current wave. For each integer j in the range 1-<_j_-< [(2n-1)/z], we maintain a heap
(priority queue) H(j) of the integers with K(i) and [i/z] =j. We also maintain
a current index j*, initially equal to [(2n-1)/z].
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During a wave, we find the next vertex v to which to apply a tree-push/relabel
step by decrementing j* until H(j*) , then finding the maximum integer H(j*),
and finally selecting v to be any vertex in K(i). During each tree push/relabel step,
the sets K(i) and heaps H(j) are updated as vertices become active or inactive and
labels change. Each insertion or deletion in a set K(i) takes O(1) time. The heaps
H(j) are implemented using any standard heap implementation (see [20]), so that
insertion or deletion in a heap H(j) takes O(log(z+ 1)) time, as does finding the
maximum integer in a given heap H(j). (The maximum number of elements in any
heap H(j) is z.) A set K(i) or a heap H(j) can change only as the result of a tree
push or a relabeling, and the time required for the associated updating of sets and
heaps is O(log (z + 1)). Thus we obtain the following result:

LEMMA 5.5. The total time spent maintaining the sets K(i), the heaps H(j), and
the index j* during the tree scaling algorithm is O( nm log (z + 1)), if z and are chosen
as in Theorem 5.4.

Proof The number of relabelings is O(nm), as is the number of tree pushes by
Theorem 5.4. There is O(n/z) time per wave spent decrementing j*, but this amount
of time is included in the O(nm) bound of Theorem 5.4.

THEOREM 5.6. The tree scaling algorithm runs in O(nm log ((n/m)(log U)1/2+2))
time if z is chosen equal to min n, max 1, (n2/m2) log U} and is chosen equal to m/n
if z= or to (n/m)log U if z> 1.

Proof Immediate from Theorem 5.4 and Lemma 5.5, since log(z+1)=
O(log ((n/m)(log U)1/2+2)). [3

6. Bounds in a semilogarithmic computation model. The time bounds derived in
3-5 are all based on the assumption that addition and comparison of integers of

magnitude at most U takes O(1) time. If U is huge, this assumption may be unjustified.
In this section we explore the consequences to our results of using a semilogarithmic
computation model in which each computer word is allowed to hold O(log n) bits,
and any operation involving O(1) words takes O(1) time. In this model, all the
elementary graph and list manipulation operations needed by our algorithms take O(1)
time each, but adding or comparing two capacity or flow values can take O(logn U)
time if an exact answer is required. Thus a straightforward translation of our results
into the semilogarithmic model increases each of the time bounds by a factor of
O(log, U).

By suitably modifying the algorithms, however, it is possible to reduce the extra
time each of our algorithms requires in the semilogarithmic model to an additive term
of O(m logn U). Thus, for example, the running time of the tree scaling algorithm
becomes O(nm log((n/m)(log U)/2+2)+ m logn U). Note that the time needed to
read all the arc capacities is t0(m logn U) in this model. Thus, as U grows exponentially
large, the total running time becomes linear in the size of the input.

The general approach is to approximately solve a sequence of O(logn U) closer-
and-closer approximations to the original problem. Each approximation uses as a

starting point the approximate solution to the previous problem. Solving each problem
requires manipulation of integers of only O(log n) bits.

Making this approach work involves a number of messy technical details. Since
the result is mainly of theoretical interest, we shall merely sketch the ideas involved
in modifying the algorithms of 4 and 5. We assume (without loss of generality) that
n is a power of two and that U is a power of n. For k= 1, 2,...,log, U, we define
problem k to be the maximum flow problem on the graph G with arc capacities Uk (V, W)
defined by Uk(V, W)= [U(V, W)/Sk]tk, where 8k’-" U/n k. Observe that for k=log, U,
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6k----- 1; thus, problem log, U is the original problem. Also, for a general value of k,
all capacities in problem k are divisible by 6k; and, for every arc(v, w), 0_-<

u_,(v, w)- u(v, w) <- _,.
We solve problem k for k= 1, 2,..., log, U-1 approximately and then solve

problem 1Ogn U exactly. Throughout the computation we maintain a preflow f and a
valid labeling d for the current problem. Preflow f satisfies the following constraint:

e(v)_->min { f(u, v), n(8-l)} Vvs (flow holdback constraint).
f(u,v)>O"

(In inequality (5), the sum overf(u, v) is taken to be zero iff(u, v) -_< 0 for all arcs (u, v).)
For a vertex v, the available excess at v, which is the amount actually allowed to

be pushed from v, is a(v) =max {0, e(v)- n(6k-- 1)}. Throughout the computation, the
available excesses are used in place of the actual excesses to determine when vertices
are active and how much flow can be pushed.

The flow holdbacks are needed to maintain the preflow property when converting
a solution for one problem into a good initital preflow for the next problem. For the
first problem, the preflow f and valid labeling d are initialized exactly as in 2
(using the arc capacities Ul(V, w)). Once a solution to problem k-1 is computed,
it is converted into an initial preflow for problem k by replacing the current
preflow f by the preflow f’ defined by f’(v, w)=min {f(v, w), Uk(V, W)}. Since 0 -<

Uk-I(V, W)--Uk(V, W)<=6k_,f is obtained from f by decreasing the flow on each arc
(v, W) by an amount between zero and min {f(v, w), ,Sk_} (inclusive). Since 6k- n6k,
the validity of the flow holdback constraint for f in problem k- implies the validity
of the flow holdback constraint for f’ in problem k. The flow holdback constraint
implies that f’ is a preflow, since f’ satisfies the capacity constraint by construction.
Since every arc saturated by f in problem k- 1 remains saturated by f’ in problem k,
d is a valid labeling for f’ in problem k.

For _-< k < logn U, a preflowf and valid labeling d constitute a solution to problem
k if a(v)<=2n(6k--1) for every active vertex v. Thus a solution to problem log, U gives
a maximum flow in the original network. After the initialization of the preflow for
problem k, every active vertex has an excess of at most 4n26k, of which 3nZBk 3n6k_
comes from the excess on v in problem k-1 (since a(v)<=2n(6k_-l)), and n26k
n,Sk-1 comes from the changes made to f in initializing the preflow for problem k.
(These are overestimates.) The initial value of A (the bound on maximum available
excess) for problem k is 4n26k. Problem k is solved by performing a number of phases,
continuing until the maximum available excess is at most 2n (6k- 1), which happens
by the time 4. is reduced to rusk (or to if k logn U). If k < log, U, the number of
phases needed is at most log n + 2; if k =log, U, the number of phases needed is at
most 2 log n + 3. Thus each problem requires O(log n) phases, and the total number
of phases over all subproblems is O(log n log, U)= O(log U).

During the solution of problem k, the preflow f is maintained so that f(v, w) is
a multiple of 6 for each arc (v, w). (This happens automatically, since A, the initial
flow values, and all capacities are multiples of 6.) Thus the flow values and capacities
can be represented in units of 6g. Furthermore, the flow values and capacities are not
represented explicitly, but rather as differences from the initial flow values. To be more
precise: let f_ be the final preflow for problem k-1; let fo =0. Then the current
preflowf is represented by the valuef( v, w) --fk-( V, W) for each arc v, w). The capacity
function uk is represented by the value min {Uk(V, w)--f_(V, W), 9nS,Sk} for each arc
(v, w). We claim that the amount by which the flow on an arc can change during the
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solution of problem k and subsequent problems is at most 8n53k. This claim implies
that if Uk(V, w)--fk(V, w)>9n56k, the extra residual capacity (beyond 9n3k) on arc
(v, w) will never be used and can be ignored. To prove the claim, we note that between
relabelings at most nA <=4n36k units of flow can be moved through any given arc, and
there are at most 2n 2 relabelings over the entire algorithm. This accounts for 8n6k
units of change. The change on an arc due to modifying f between subproblems is at

log,, Umost S=k-1 S 2tk_--2ntSk. Thus the claim is true.
Storing f and Uk in such a difference form, in units of 6k, allows the algorithm to

manipulate numbers consisting of only O(log n) bits, and all necessary additions and
comparisons of flows and capacities take O(1) time. Constructing the final preflow is
merely a matter of adding together the successive flow differences fl-fo, fz-fl,
computed when solving successive problems. By adding these differences from right
to left, the time per addition can be made O(m), and the total time is O(rn log, U).
This is also the total time required for initializing the preflow for each problem (O(rn)
time per problem).

If the wave scaling algorithm is used, the bounds in 4 remain valid almost without
modification and apply to the calculations involved in solving all log, U problems.
Specifically, the number of relabelings is O(n2), the number of saturating pushes is
O(nm), the number of nonsaturating pushes is O(n + (n2/I) log U) plus O(n) per
wave, and the number of waves is O(min {n/+log U, n2+log, U}). The bound on
waves is the only one that changes, in that n becomes n+ log, U; this occurs because
a wave without relabelings terminates only the solution of the current problem and
not the entire algorithm. Choosing (log U) /2 gives an overall bound of O(nm +
nZ(log U)/+ rn log, U) time.

Use of the tree scaling algorithm of 5 results in a time bound of
O(nm log ((n/rn)(log U)1/2+2) + rn log, U). To obtain this bound, we must verify that
the extra time required for initializing the sets K (i), the heaps H(j), and the dynamic
trees for each problem, and the extra time for tree pushes associated with vertices that
become active at the beginning of a new problem, is O(m) per problem.

We need two extra facts about the dynamic tree data structure. By traversing the
entire data structure, the flow values for all the dynamic tree arcs can be computed in
O(n) time. Furthermore, a new set of flow values for all these arcs can be installed in
the data structure in O(n) time. These facts can easily be verified by checking the
description of the data structure [19], [20].

When the flow f is modified at the beginning of a new problem, new vertices with
available excess are created, possibly as many as n-2. Handling these newly active
vertices is the hardest part of the initialization of the new problem. To begin a new
problem, the current flow on all dynamic tree arcs is computed explicitly. (This takes
O(n) time as noted above.) Then the flow and capacities are modified to their initial
values for the new problem. The bound on maximum available excess is set equal to

4n36k. (This is n times the value proposed earlier in this section and is greater than
the total excess on all active nodes.)

Next, the vertices of G are scanned in topological order with respect to the set
of eligible arcs. A vertex v is scanned by applying to it a push relabel step of the kind
defined in 2. Such a step either relabels v or reduces its available excess to zero.
After all vertices have been scanned, all the available excess is on vertices that have
been relabeled during the scanning. The current flow values for dynamic tree arcs are
reinstated in the dynamic tree data structure, and every dynamic tree arc that has been
saturated during the scanning or that has had one of its end vertices relabeled is cut.
Finally, the sets K(i) and heaps H(j) are reinitialized, which takes O(n) time.



THE MAXIMUM FLOW PROBLEM 953

(A heap can be initialized in linear time [20].) Then the tree scaling algorithm is
begun.

Because the starting value of A for each problem is increased, the number of
phases increases, but only by log n per subproblem, or log U overall. The time to carry
out all the scanning in the initialization is O(m). The time to initialize the dynamic
tree data structure is O(rn) plus O(log (z + 1)) per cut; the time for a cut can be charged
against the corresponding arc saturation or vertex relabeling. The time to initialize the
sets K(i) and heaps K(j) is O(n). At the beginning of a subproblem, the only active
vertices are those that have been relabeled during the initialization, and the timing
analysis for the tree scaling algorithm is virtually the same as the analysis in 5. Thus
we obtain a total time bound of O(nm log ((n/m)(log U)1/2+2)+ m logn U).

The techniques discussed above can also be applied to the maximum flow algorithm
of Goldberg and Tarjan [10], resulting in a time bound in the semilogarithmic model
of O(nm log (n2/m)q-m logn U). The details are straightforward.

7. Remarks. The algorithms of 3-4 not only have good theoretical time bounds,
but they may be very efficient in practice. We hope to conduct experiments to determine
whether either of these algorithms is competitive with previously known methods. The
tree scaling algorithm of 5 is perhaps mainly of theoretical interest, although for
huge networks there is some chance that the use of dynamic trees may be practical.

The two obvious open theoretical questions are (1) whether further improvement
in the time bound for the maximum flow problem is possible and (2) whether our
ideas extend to the minimum cost flow problem. It is not unreasonable to hope for a
bound of O(nm) for the maximum flow problem; note that the bounds of Theorems
4.3 and 5.6 are O(nm) for graphs that are not too sparse and whose arc capacities are
not too large, i.e., (log U)/2= O(m/n). Obtaining a bound better than O(nm) would
seem to require major new ideas.

As a partial answer to the second question, we have been able to obtain a time
bound of O(nm log log U log (nC)) for the minimum cost flow problem, where C is
the maximum arc cost, assuming all arc costs are integral [2]. This result uses some
ideas in the present paper and some additional ones [11].

As a final remark, we note that in certain cases the bounds of our algorithms can
be improved by substituting a smaller value for U. To be precise, suppose that f is a
flow of value U1 obtained by some fast heuristic and that U2 is an upper bound on
the maximum flow value, also obtained by some fast heuristic. Then all of our bounds
can be improved by substituting U* max {4, min U, U2- U1)/n}} for U.

To see this, we first construct the residual network for the flow f This network
has the same graph as the original network, with the capacity of each arc (v, w) equal
to Ul.(v, w). A flow of value x in the residual network corresponds to a flow of value
U1 + x in the original network and vice-versa. It thus suffices to find a maximum flow
in the residual network. For this network, U2- U is an upper bound on the maximum
flow value.

We now add to the network a new source So, new vertices v,..., v, and arcs
(So, vi), (vi, s), (vi, so), and (s, vi) for l<=i<=n. We define U(So, v)=u(v,s)= [U*],
u(v,so)= u(s, vi)=0 for <_-inn. This augmented network has the same maximum
flow value as the residual network. Then we run one of our excess-scaling algorithms
on the augmented network, choosing as the original excess bound iX the smallest
possible allowed value exceeding U*.

As an application of this result, we can take U 0 and U2 Yvc v u(s, v), giving
a value for U* of max {4, Yvc v u(s, v)/n}.
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VERY FAST PARALLEL POLYNOMIAL ARITHMETIC*
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Abstract. Parallel algorithms for polynomial arithmetic--multiplication of n polynomials of degree m,
polynomial division with remainder, and polynomial interpolationmare presented. These algorithms can be
implemented using polynomial time constructible families of Boolean circuits of polynomial size and optimal
order depth, or log space constructible families of polynomial size and near optimal depth, for computations
over 7/, Q, finite fields, and several other domains. Arithmetic circuits of polynomial size and optimal order
depth are obtained for polynomial arithmetic over arbitrary fields.

Key words, polynomial arithmetic, iterated product of polynomials, interpolation, polynomial division,
parallel algorithms, circuit depth
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Introduction. A variety of efficient parallel algorithms have appeared in the
recent literature. Computation of the product of n polynomials of degree m, polynomial
division with remainder, and polynomial interpolation have received much attention,
both as the main subject of research (see Reif [17] in particular) and as components
in algorithms for related problems, including exponentiation and the factorization of
polynomials over finite fields (see, for example, Fich and Tompa [10] and yon zur
Gathen [13]). Parallel algorithms whose running times are within a constant factor of
optimal have been obtained for these problems, for arithmetic computations over fields
supporting discrete Fourier transforms (see Bini [2] and Reif [17]). Efficient parallel
algorithms for Boolean computations have been obtained for related integer problems,
including the computation of the product of n k-bit integers, and integer division with
remainder (see Reif [17] and Beame, Cook, and Hoover [1]).

In this paper, we generalize these results. We obtain (log space) NC-reductions
from the computations for (integer) polynomials described above to the "Iterated
Integer Product" problemmone of the integer problems discussed by Reif and by
Beame, Cook, and Hoover. As a result, we obtain polynomial time constructible
Boolean circuits of logarithmic depth and polynomial size, or log space constructible
Boolean circuits of slightly larger depth and polynomial size, for all of these (integer)
problems. Generalizing these still further, we obtain small depth Boolean circuits for
polynomial arithmetic over finite fields and number fields. We generalize the arithmetic
(rather than Boolean) results of Reifto show that the problems in polynomial arithmetic
mentioned above can be solved, for polynomials over an arbitrary ground field F,
using arithmetic circuits over F of logarithmic depth and polynomial size.

We first discuss Boolean computations. The model used to discuss these computa-
tions is a uniform family of Boolean circuits; algorithms are considered to be efficient
if they can be implemented using a uniform family of circuits of size polynomial in
N, and of depth polynomial in log N, for input size N. We are interested in algorithms
that are optimal (or near optimal)malgorithms for which the corresponding circuits
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This paper contains results from the author’s M.Sc. Thesis ([9]). A preliminary version of this paper has
appeared in Proceedings of the 25th Annual IEEE Symposium on Foundations of Computer Science,
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have depth O(log N) (or depth O(logl+ N) for small constants e). Several definitions
of circuit uniformity have been presented; since some algorithms can be implemented
by "uniform" circuit families under some definitions of uniformity but (possibly) not
for others, the complexity of a problem may depend on the definition used. Ruzzo
18] presents several commonly used definitions of uniformity and discusses relation-

ships between the parallel complexity classes defined using them. Cook [8] gives an
overview of parallel Boolean computation by uniform circuit families, including
definitions of the model, complexity classes, and a survey of problems having efficient
parallel solutions.

To discuss computations for polynomials with integer or rational coefficients, we
must begin with algorithms for integer arithmetic--addition, multiplication, iterated
product (multiplication of n integers, each of length n), and division with remainder
of integers of length n. The sum or product of two n-bit integers can be computed by
uniform circuit families using depth O(logn) and polynomial size (Savage [19],
Borodin, Cook, and Pippenger [6]). Applying these results, it is not difficult to obtain
uniform circuit families with depth O(log n) and polynomial size for iterated product
and division with remainder. Reif [17] improved this result, obtaining log space
constructible families of circuits with depth O(log n log log n) and polynomial size for
iterated integer product and integer division with remainder. Beame, Cook, and Hoover
[1] get smaller depth using a weaker definition of circuit uniformity: they obtain
polynomial time constructible circuit families of depth within a constant factor of
optimal (O(log n)) and polynomial size for these problems.

Efficient arithmetic circuits for polynomial arithmetic have been obtained (and
will be discussed later). Reasonably efficient Boolean circuits for arithmetic for poly-
nomials with integer coefficients can be obtained if we replace each field operation
(indicated by a node) in such an arithmetic circuit by a Boolean circuit implementing
that operation (over Q). However, by doing this we increase the depth of the original
circuit by a small multiplicative factor; we will not obtain optimal order depth Boolean
circuits. Circuits with optimal depth (to within a constant factor) have been obtained:
Eberly [9] presents such circuits for computation of the iterated product of polynomials
with integer coefficients, for (integer) polynomial division with remainder, and for
(integer) polynomial interpolation. Bini and Pan [5] have subsequently used a different
method to obtain similar results for (integer) polynomial division with remainder.
Their Boolean circuits for this problem are smaller, and hence more efficient, than
ours; the circuit depths obtained are the same to within a constant factor. The same
technique is used in each case: integer computations are used to obtain the value of
a polynomial at a sufficiently large power of two; this value is then used to recover
the coefficients of the desired polynomial using circuits of small depth. We will review
the reduction from the problem "Iterated Product of Integer Polynomials" to "Iterated
Integer Product," and the reductions from other computations for integer polynomials
to the latter problem. Applying the results of Reif and Beame, Cook, and Hoover for
the integer problem, we conclude that small depth circuits exist for all these problems.
We obtain uniform circuit families of the same order depth for arithmetic for poly-
nomials with coefficients in finite fields and in number fields.

We next consider arithmetic computations. As stated above, efficient arithmetic
circuits have been obtained for polynomial arithmetic over many fields. Bini [2] presents
an optimal order depth algorithm for inversion of a triangular Toeplitz matrix; as
indicated by Bini and Pan [3]-[5], Bini’s algorithm can be applied to compute the
quotient and remainder of polynomials over a large class of fields. Reif [17] presents
optimal order depth circuits for computation of the iterated product of polynomials,
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interpolation, evaluation of elementary symmetric polynomials, polynomial division
with remainder, and for some Taylor series computations. Reif, Bini, and Bini and
Pan all assume that the ground field F supports a discrete Fourier transform: that is,
F includes nth primitive roots of unity for arbitrarily large n. The assumption is not
necessary: Eberly [9] modifies the algorithm presented by Reif to obtain circuits for
polynomial arithmetic over arbitrary fields, while Bini and Pan [4] modify Bini’s
algorithm to obtain such circuits for polynomial division with remainder. We discuss
the generalization of Reif’s algorithm to computations over arbitrary fields.

As we note above, the definition of uniformity used for Boolean circuits affects
the results obtained for these problems. The importance of "uniformity" for arithmetic
circuits is less clearmin part, because this has not received much attention. Von zur
Gathen [14] presents a survey of results for parallel arithmetic computation, and
proposes several definitions of uniformity for arithmetic circuits. We consider two of
these definitions. The first is quite generous; we show that our algorithms can be
implemented using "uniform" families of circuits when this definition is used. The
second definition is much more restrictive; using this definition, we obtain uniform
families of arithmetic-Boolean circuits of near optimal depth for these problems, and
a reduction to the "Boolean" problem "Iterated Integer Product."

In 1 we introduce the problems in polynomial arithmetic to be discussed, and
describe the representations of field elements to be used for Boolean computations.
In 2 and 3 we present results for Boolean computations: for polynomials with integer
coefficients in 2, and for more general domains in 3. We discuss arithmetic computa-
tions in the next sections. "Nonuniform" computations over arbitrary fields are dis-
cussed in 4. We discuss definitions of "uniformity" for arithmetic circuits, and apply
them to our algorithms, in 5. Section 6 includes extensions and open problems.

1. Definitions of problems. We begin with the definition of the "Iterated Integer
Product" problemmthat to which all others will be reduced. We continue with
definitions of problems in polynomial arithmetic over arbitrary domains. These
definitions are sufficient for discussions of arithmetic computations. To discuss Boolean
computations, however, we must consider "Boolean" representations of elements of
various domains. We conclude with a discussion of these representations.

Our "basic" problem for Boolean computations is the following.

ITERATED INTEGER PRODUCT.
Input. Binary representations of integers n, k > 0, and of integers al, a2,

such that lail < 2k for all i.
Output. Binary representation of the product 1-[i=1 ai.

an

Next we define the problems "Iterated Product of Polynomials," "Polynomial
Interpolation," "Evaluation of Elementary Symmetric Polynomials," and "Polynomial
Division with Remainder" as computational problems for polynomials with coefficients
in a commutative integral domain D. The definitions are made as general as possible
to avoid redefining the problems for various domains later.

ITERATED PRODUCT OF POLYNOMIALS (D).
Input. Binary representations of integers n > 0, and rn -> 0.

Coefficients aij D (for 0-<j=< m) of polynomials

f=ao+alx+’" "+aim xm D[x] for l<=i<=n.
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Output. Coefficients bo, bl," ", b,,n D of the product

g bo + blx +" + b,,nx I f D[x].
i=1

POLYNOMIAL INTERPOLATION (D).
Input. Binary representation of an integer n > 0. Distinct values al, a2, , a, D,

and values bl, b2,..., b, D (not necessarily distinct).
Output. Values d 1-[l=<j<i=<n (ai-aJ) D and Co, cl,’’’, en D such that

f Co + ClX +" + Cn-- X
n-1 D[x]

is the (unique) interpolating polynomial such that f(ai) db for -< _-< n.

EVALUATION OF ELEMENTARY SYMMETRIC POLYNOMIALS (D).
Input. Binary representations of integers n ->_ m -> 0. Values al, a2,. an D.
Output.

an,,(al, a:, an)= E [I aJ.
J{a,aa,’..,a,,} jJ

DIVISION WITH REMAINDER OF POLYNOMIALS (D).
Input. Binary representations of integers n >- m >- 0.

Values ao, a, , a D and bo, b, , b,, D such that b,, 0.
Output. Values d=bn"/D and qo, q,’’’,qn-,,,,ro, r,’’’,rm-D such

that df qg + r for the polynomials

f ao + ax +. + anxn D[x], g bo + bx +" + bmxm D[x],

q qo+ qx +. + qn_,,x D[x], r ro + rlx +" + rm_lx’’- D[x].

We have actually defined "pseudodivision" of polynomials instead of "division,"
because the former problem is well defined over arbitrary commutative integral
domains, while the latter problem is not, as follows: Suppose f, g D[x] such that the
degree of f is greater than the degree of g, and that the leading coefficient of g is not
a unit in D. Then the coefficients of the quotient q and remainder r (such that f qg + r
and r has degree less than that of g) will lie in the quotient field of D, but not in D
itself. We have given a nonstandard definition of the problem "Polynomial Interpola-
tion" for the same reason. Note that the "standard" outputs for these problems--
coefficients of the quotient and remainder for "Division," and of the interpolating
polynomial for "Interpolation"mcan be computed efficiently from the outputs of our
generalized problems if the domain D is a field and the operation "Division over D"
is inexpensive.

We have also included binary representations of integer parameters as inputs for
our "arithmetic" problems. These actually specify the size of the input; if desired, they
can be left out or, for models allowing elements of the domain D as the only inputs,
they can be represented as strings of O’s and l’s (where 0 and represent the arithmetic
and multiplicative identify of D, respectively).

These definitions are sufficient for discussions of arithmetic computations. To
define Boolean problems, we must describe Boolean representations of elements of
the domain D. We also add extra inputs, describing the length of the values used as
input or the structure of the domain D. We conclude this section with a discussion of
the Boolean representations and additional parameters for the domains to be con-
sidered.
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D 77. We use binary representations of integers, with an additional sign bit.
We add an additional parameter k, identifying the length of the integers
used as coefficients for our input polynomials: each input coefficient
a has absolute value less than 2k.

D [Fp. Each element of the field :p 77/ p corresponds to an integer between
zero and p-1. We use the binary representation of this integer to
represent the element of zp. We add the binary representation of the
prime p as an additional parameter.

D Q. We represent a rational number a by binary representations of an
integer numerator and denominator a and/3 such that a a/fl and
/3 > 0. We do not require that a and/3 be relatively prime. We add
an additional parameter k, identifying the maximum length of the
integer numerators and denominators given as input.

D 77[y]. We use a dense representation of polynomials: a polynomial yo + Yl Y +
+ yky

k (with Yi 77 for 0_-< _-< k) is represented using binary rep-
resentations of each of the coefficients yo, yl,’", Yk. We add two
additional parameters, k and k2. The first is the maximum length of
any of the integer coefficients of the elements of D included in the
input; the second is the maximum degree (in the indeterminate y) of
any of these elements of D.

D =Zp[y]. We use a dense representation of polynomials, as above. We add as
additional parameters the prime p and the maximum degree in y of
any of the elements of D given as input.

D Q[y]. Again, we use a dense representation for polynomials. A polynomial

0/o 1 Ok k+ +...+y,
/30 11 y

with ai, /3i 77, and /3 > 0 for 0_-<i_-< k, is represented using binary
representations of numerators and denominators ao, /30,
ill,’’’, ak, /k. As above, we add two parameters: the maximum
length of any of the integer numerators and denominators in the input,
and the maximum degree (in y) of any of the elements of D used as
input.

D [Fp,,. Weusethefactthat:p:p[y]/(ch)foramonicirreduciblepolynomial
4 n[Y] with degree k. To each element of Zpk there corresponds a
unique polynomial in :p[y] with degree less than k; we use a rep-
resentation of this polynomial (as described above) to represent the
field element. We add as additional parameters binary representations
of p and k, and the coefficients of the polynomial 4 e :p[Y].

D is a finite algebraic extension of Q. We use the fact that each of these extensions
is isomorphic to Q[y]/(th), for some polynomial 4 77[Y] that is
irreducible in Q[y]. Each element of the field corresponds to a unique
polynomial in Q[y] with degree less than that of 4’; we use the
representation of the polynomial (described above) to represent the
field element. We use as additional parameters the additional para-
meters described for the domain Q[y], as well as the degree and
coefficients of the polynomial 4.

For the sake of completeness, we note here that we will also need to describe the
representation of finite algebraic extensions of finite fields to discuss some algorithms
for our computational problems. We will state these details in 4 and 5, where they
are applied.
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2. Boolean computations for integer polynomials. We begin by reducing the prob-
lem "Iterated Product of Polynomials (7/)" to "Iterated Integer Product." We use this
reduction, and techniques that previously have been used to reduce arithmetic problems
to "Iterated Product of Polynomials (D)," to show that the Boolean problems "Poly-
nomial Interpolation (7/)," "Evaluation of Elementary Symmetric Polynomials (7/),"
and "Division with Remainder of Polynomials (7/)" can also be reduced to "Iterated
Integer Product."
We use uniform families of Boolean circuits as our model for parallel Boolean

computation. We consider "log space" uniformity (and call families of circuits "uni-
form"), and "polynomial time" uniformity (and use the term "P-uniform"). The
reductions we state are "NC-reductions, as defined by Cook [8].

Our reduction from "Iterated Product of Polynomials (7/)" to "Iterated Integer
Product" is based on the fact that the coefficients of an integer polynomial g can be
computed from the integer g(2 L) for sufficiently large L. This idea, "Interpolation via
Binary Segmentation," has been applied for the sequential computation of polynomials
in a number of settings (see Fischer and Paterson [11], Pan [16], [24, 4], SchiSnhage
[20]). It has also been used to obtain other NCl-reductions from computations for
integer polynomials to integer computations (Eberly [9], Bini and Pan [5]). Bini and
Pan include a short history of the use of this method. While it has been presented
elsewhere, the method must be modified (slightly) to be used for parallel reductions.
Hence we present it in detail.

Suppose now that the polynomial g e 7/[x] has degree at most d, so that

g=go+gx+’"+gexa for go, gl,’",geeT/.

Suppose also that Igi[ < 21 for >- 0, e 7/, for all i. Let L + 1.
LEMMA 2.1. Let d, l, L 7/, and g 7/[x] be as above, and suppose ho, hi, , ha

7/. Then the following are equivalent:
(i) Ihil<=Zl for O<=i<=d, and g(ZL)=ho+h2+ .+ha2a"
(ii) gi hi for 0 <= <= d.
Proof Clearly (ii)=>(i). We show that (i)(ii) by induction on d. The case d 0

is trivial. For positive d we note that condition (i) implies

(ho- go) + (ht gl)2 +-’" + (he_ ga_)2 c(a-’ (ge he )2 ’a.
Since Ihi- gl -< 21+ 1 2- 1 for all i, it is easy to show that the value of the left-hand
side has magnitude less than 2a. Since the value of the right-hand side is divisible by
2a, it is clear that both values equal zero; hence ga ha, and the result follows by the
inductive hypothesis. [3

We compute the coefficients of g from the value g(2L) by using the binary
representation of this number to find a set of integers satisfying the first condition in
this lemma, as shown below.

EXTRACTION OF COEFFICIENT ALGORITHM.
Input. Integers G and L, L> 0, and d _-> 0, such that G g(2L) for some polynomial

g e 7/[x] with degree at most d and whose coefficients have absolute value less
than 2-l.

Output. Coefficients go, gl," , ge of the polynomial g.
(1) Compute the values

if G=>0,
and H sG.s=

_1 if G<0,

Note that H-> 0.
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For 0_-< d in parallel, perform steps (2)-(4).
(2) Compute ki (H div 2 Li) mod 2 L.

(Note. H =id__0 ki2 Li, 0 <= kj <2e for all j, and ka < 2e-.)
(3) Compute

0 if i=0,

Ci--" 0 if i>0 and 0-<ki_ <2L-l,
if > 0 and 2 L-1 < ki- < 2 L.

Let ca+ O.
(4) Compute gi s(ci+ ki--2Lci+).

LEMMA 2.2. The algorithm "Extraction of Coefficients" is correct and can be used
to compute the coefficients of the polynomial g from the value G g(2), using a (log
space) uniform family of Boolean circuits of depth O(log dL) and size (dL)1).

L d LiProof It is easy to verify that Igil<-_2 L-1 for all and that g(2 )=i=0gi2
Correctness then follows by Lemma 2.1. The depth and size bounds are also obvious,
assuming that a binary representation of the integer G is given as input.

For the problem "Iterated Product of Polynomials (Z)," we consider the poly-
nomial g I] i= f, where each polynomial f has degree at most m and has coefficients
with magnitude less than 2k, for integers m_-> 0 and k> 0. Lemma 2.3 gives us a
reasonably small upper bound for the magnitude of the coefficients of g.

LEMMA 2.3. Let g Hi=if 7/[x], for integer polynomtals f j-o aoxJ with
degree at most m and with coefficients aij with magnitude less than 2k, f all i. Then
g=,i=ogiX for integers go, g,,’’’,g/1m such that Igil<2’ for O<-i<-nm, where
l= n(k+ [log2 (m+ 1)]).

Proof This follows immediately from the equation

gi: H ahj,,,
Jl,J2," ",J,, >=0 h

jlWj2+’" "+j,,

relating the coefficients of g to those of f, the bound la01 < 2, and the fact that there
are fewer than (m+ 1)/1 possible choices of the integers j,j2,"’,j/1 for each value
of i.

We can now state the algorithm that reduces "Iterated Product of Polynomials
(Z)" to "Iterated Integer Product."

ITERATED PRODUCT OF POLYNOMIALS (Z) VIA ITERATED INTEGER PRODUCT
ALGORITHM.
Input. Binary representations of integers n > 0, m => 0 and k > 0.

Binary representations of coefficients ai 7 (for 0_-<j _-< m) of polynomials

fi aio + aix +" + aimxm
such that lai l < 2 for 0-<j _-< m, <= _-< n.

Output. Binary representations of coefficients bo, bl," ", bin/1 of the product

g bo + blX +" + bmnXmn I f e 7/[x].
i=1

(1) Compute L=n(k+[log2(m+l)])+l.
(2) For all i, in parallel, compute

Fi =f(2L) aio + ai2 +" + aim2Lm.

(3) (Iterated integer product.) Compute G I-Ii= Fi. (Note. G g(2t).)
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(4) (Extraction of coefficients.) Use the value G to compute the coefficients of g.
THEOREM 2.4. The problem "Iterated Product ofPolynomials (7/)" is NC-reducible

to "Iterated Integer Product."
Proof It is sufficient to note that the above algorithm is correct (by Lemmas 2.2

and 2.3) and that steps (1), (2), and (4) can be implemented using depth logarithmic,
and size polynomial, in the input size. [3

We reduce the remaining integer problems to "Iterated Integer Product" by
reducing them to "Iterated Integer Product" and "Iterated Product of Polynomials
(Y)," and applying the above theorem. It is sufficient to adapt the arithmetic reductions
of Reif (see [17, 2.4-2.5]) to obtain division-free (Boolean) algorithms in order to
do this; we sketch the resulting methods below.

(i) Polynomial interpolation. Given integers n->_0 and distinct integers
al, a2,. ", a, ;, the integer

d 1-I (ai-aj)
lj<iNn

and the polynomials

Lh= I-I (ai-aj) (x-aj) (ai-x)
i=2 j=l \j=l i=h+l
ih jh

are computed using instances of "Iterated Integer Product" and "Iterated Product of
Polynomials (7)" in parallel. It is clear that, for 1 <_-i, j_-< n,

Li(aj)=O if i#j and Li(ai)=d.

Given integers b, b2, , b,, we set f Yi=l biLi; then f(ai) dbi for I =< -< n, as
desired.

(ii) Evaluation ofelementary symmetricpolynomials. It can be verified by a straight-
forward expansion that

(x4ai)-- i n,m(al,a2,’’’,
i=l m=O

Thus we can compute o-n, (al, a2, , an) by computing the product ofthe polynomials
(x + al), (x + a2), , (x + an) and selecting the coefficient of x in the result.

(iii) Division with remainder ofpolynomials. Given integers n -> m => 0 and poly-
nomials

xn--I m--1f= anxn 4" an-1 4"" + ao and g bmx 4" bin-1X 4"" + bo,

with a,,, an-l,’", ao, b,,,, b,,_, bo 7/ and bm O, we compute the ("pseudo")
quotient and remainder obtained by dividing df= bn-m+lf by g, by considering the
"reversals"

F=xnf() =an+an_lx4"" "+aoxn and G=xmg() =bm+bm_iX+. .4"boxm.

Set H b,,_ + b,,,_2x +" + box "-l, so that G bm 4" xg. Solving instances of Iterated
Product of Polynomials (7/)" and "Iterated Integer Product" in parallel, we (first)
compute the powers H, H, H3,..7/ H and b,,, b,..., bnrm, and (then) the
polynomials Qo, Q1,"’, Qn-m in Ix] with degree at most n-m such that

n--m--j

Q.i =- bxj ((--1)kbnm-m-j-kxkHk) mod xn-re+l,
k=O
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Then, Qj. G=Qj. (b,,+xH)=-b",m+lx=dx modx"-’+1, for O<-j<=n-m. Setting
Q aoQo+ aQ +. + a,_,,Q,_,, 7/[x], we find that Q has degree at most n m

(since each Q does), and that dF=- d(ao+ ax+. .+ an_mxn-m)
Now, setting q=x"-mQ(1/x)7/[x], and r=df-qg7/[x], we find that r has

degree less than m and df= qg+ r" that is, q and r are the (pseudo) quotient and
remainder we require.

Note. Reif includes this basic reduction (in a form suitable for computations over
fields) as well as a variation that eliminates the need to compute most of the powers
H and b (for _-< i_-< n m) explicitly--producing circuits of smaller size for this
reduction. See 2.5 of Reif [17] for details.

TqEOREM 2.5. The problems "Polynomial Interpolation (77)," "Evaluation of
Elementary Symmetric Polynomials (7/)," and "Division with Remainder ofPolynomials
(7/)" are all NC-reducible to "Iterated Integer Product."

Proof Each of the algorithms sketched above can be implemented using (log
space) uniform families of Boolean circuits, with oracles for "Iterated Integer Product,"
of polynomial size and logarithmic depth.

Now we are ready to apply the results of Reif 17] and Beame, Cook, and Hoover
1] stated below.

FACT 2.6 (Reif [17]). The problem "Iterated Integer Product" can be solved using
a (log space) uniform family of Boolean circuits of depth O(log N log log N) and size
N(), for input size N.

FACT 2.7 (Beame, Cook, and Hoover ]). Theproblem "Iterated Integer Product"
can be solved using a P-uniform family of Boolean circuits of deptk O(log N) and size
N(), for input size N.

Combining the results of Theorems 2.4-2.5 and Facts 2.6-2.7, we obtain the
following.

COROLLARY 2.8. Eack oftke problems stated in Theorems 2.4 and 2.5 can be solved
using a uniform family of Boolean circuits of deptk O(log N log log N) and size N(),
or a P-uniform family of Boolean circuits of deptk O(log N) and size N(), for input
size N.

The results in this section were first presented in Eberly [9]. Bini and Pan [5]
have subsequently shown that the problem "Division with Remainder of Polynomials
(7/)" is reducible to the problem "Integer Division with Remainder"also using
"Interpolation via Binary Segmentation" to obtain their reduction. Since the integer
problems "Integer Division with Remainder" and "Iterated Integer Product" are
equivalent with respect to log space reducibility, they also establish the reduction for
"Division with Remainder of Polynomials (7/)" stated in Theorem 2.5. As they note,
their more direct algorithm produces smaller (hence, more efficient) circuits than those
that would be obtained using the reduction stated here; the depths of their (log space)
uniform circuits and P-uniform circuits are the same as ours, to within a constant factor.

3. Boolean computations over other domains. The results of 2 for computations
of integer polynomials can be extended to computations of polynomials over more
general domains. In this section we consider Boolean computations of polynomials
with coefficients in a domain D, for each of the domains discussed in 1. We assume
that elements of these domains are represented as described in that section. We apply
the techniques that have been described in 2 to exhibit NC-reductions from computa-
tions over these domains to our "basic" problem, "Iterated Integer Product."

THEOREM 3.1. For each of the domains D=ff:p, Q, 7/[y], [Fv[y] Q[y], [Fv, and
Q[Y]/(4) (for ch irreducible in Q[y]), the problems "Iterated Product of Polynomials
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(D)," "Polynomial Interpolation D ," "Evaluation of Elementary Symmetric Poly-
nomials D ," and "Division with Remainder ofPolynomials D are all NC l-reducible
to "Iterated Integer Product."

Proof We first reduce "Iterated Product of Polynomials (D)" to "Iterated Integer
Product," for each of these domains D. We then adapt Reif’s reductions (in [17]; used
here to prove Theorem 2.5) to reduce the remaining problems to "Iterated Integer
Product." We make repeated use of Theorems 2.4 and 2.5, and the fact that "Integer
Division with Remainder" is NCl-reducible to "Iterated Integer Product" (see Beame,
Cook, and Hoover [1, Thm. 3.1 and Cot. 6.2.]).

(i) The result is straightforward for the case D =Zp, since the elements of Zp are
represented using integers between zero and p- 1. We simply treat the input as a set
of binary representations of integer polynomials, compute their product, and compute
the residue (modulo p) of each coefficient of the result to obtain a representation of
the product (in :p[x]) to be generated.

(ii) For the case D Q, we note that by computing a small number of products
of integers in parallel, we can "rewrite" each input polynomial so that its coefficients
have the same integer denominator: that is,

1 f/f, ,(,o+ ,x+... + ,mx ,
for , aio, ai, , aim Z, fig > 0, and for Z[x], for N N n. Solving instances of
"Iterated Product of Polynomials (Z)" and "Iterated Integer Product," we compute

=l and the coefficients of g =l separately. We then use the binary
representations of these values to obtain a representation of the polynomial g -l.

(iii)-(v) For the case D Z[y] we can use either of two simple methods to reduce
our problem to "Iterated Product of Polynomials ()." The coefficients of the product
to be computed are integer polynomials in the indeterminate y; we can use "Interpola-
tion via Binary Segmentation" to compute these coefficients by replacing y by a suitably
large power of two, computing the product of the resulting univariate integer poly-
nomials, and then extracting the coefficients (in y) as described in 2. Alternatively,
we can replace y by a suitably large power of x (x’+ is sufficient)and again recover
our coefficients after computing the product of univariate integer polynomials. We use
the latter method to reduce our problems for D v[y] and D Q[y] to the problems
for D v and D Q, respectively.

(vi) We next consider the case D . As stated in 2, we are given an irreducible
polynomial fv[y] with degree k, such that ,, v[y]/(). An instance of "Iterated
Product of Polynomials ($)" includes the polynomial &, and polynomials
f,L,""" ,L ($vfy])[x]; the latter plynomials "represent" the polynomials L
(f mod), f2 (fz mod),... , (L mod) whose product we wish to compute.

Set g==,ffv[x] and ==,(fv[y])[x]; then it is clear that g=
( mod ). We compute g in two steps: We first use an instance of "Iterated Product
of Polynomials ($v[y])" to compute the polynomial . We then use instances of
"Division with Remainder of Polynomials ($)" in parallel, dividing each of the
coefficients of (for powers of x) by to obtain the coefficients of g.

We have already seen that "Iterated Product of Polynomials ($v[y])" is NC-reducible to "Iterated Integer Product." It is clear that we can solve an instance of
"Division with Remainder of Polynomials ($v)" by performing (pseudo) division of
integer polynomials, and then computing residues (modulo p) of the resulting
coefficients. Applying Theorem 2.5, and the NCl-reduction of "Integer Division with
Remainder" to "Iterated Integer Product" ([ 1, Thm. 3.1]), we conclude that "Division
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with Remainder of Polynomials (:p)" is NCl-reducible to "Iterated Integer Product."
Thus "Iterated Product of Polynomials (Zp),, is NCl-reducible to "Iterated Integer
Product," as well.

(vii) The case D Q[y]/(b) is analogous to the case D zpk: we compute the
desired product by solving instances of the problems "Iterated Product of Polynomials
(Q[y])" and "Division with Remainder of Polynomials (Q)." Again, we can reduce
the last problem to "Iterated Integer Product" by extracting the denominators of
coefficients (as in (ii), above) and performing pseudodivision of integer polynomials.

For each domain D stated above, we use the division-free forms of the reductions
to "Iterated Product of Polynomials (D)" given by Reif [17] (and used here already
to prove Theorem 2.5) to reduce our (Boolean) problems "Polynomial Interpolation
(D)," "Evaluation of Elementary Symmetric Polynomials (D)," and "Division with
Remainder of Polynomials (D)" to "Iterated Product of Polynomials (D)" and "Iter-
ated Integer Product," and hence to "Iterated Integer Product" alone. We cannot
apply Reif’s reductions directly. We leave it to the reader to verify that the versions
of the reductions given in 2 are division-free and correct for arbitrary commutative
integral domains. It is also easily checked that these "modified" reductions can be
used to produce (Boolean) NCl-reductions from each of these problems to "Iterated
Integer Product" (see Eberly [9] for a more detailed presentation). [3

Applying Facts 2.6 and 2.7 again, we obtain Corollary 3.2.
COROLLARY 3.2. Each of the problems stated in Theorem 3.1 can be solved using a

uniform family of Boolean circuits of depth O(log N log log N) and size N), or a

P-uniform family of Boolean circuits of depth O(log N) and size N, for input size N.
For fields D=Q, :p, :p,, and Q[y]/(b), it is clear that we do not need the

denominator d included in the output for our division and interpolation problems:
polynomial division and interpolation (rather than pseudodivision and our "nonstan-
dard" interpolation problem) are well-defined problems for computations over fields.

Unfortunately, we do not obtain NCl-reductions from these "standard" problems
to "Iterated Integer Product"mfor we do not have log depth circuits for division of
field elements for fields z, p, and Q[y]/(b), using our representations.

For the field zp 7//(p), and representations we are using, we must compute the
binary representation of an integer s such that su (mod p) if we are to invert the
element u. We can do this sequentially by using the extended Euclidean algorithm to
compute gcd (u, p) as well as integers s and such that su + tp gcd (u, p) 1. However,
no efficient parallel algorithm for this computation is known.

For the field extensions :p,, and Q[y]/(b) and the representations we use, we
again compute inverses sequentially by using the extended Euclidean algorithmmbut
for polynomials, rather than integers. This method can be implemented using Boolean
circuits of depth O(log N) and size N) for input size Nusing a "redundant
notation" (as above) for elements of zp or of Q (see Borodin, von zur Gathen, and
Hopcroft [7], von zur Gathen [13]). Recently, the problem "Inversion in zp,, has been
reduced (with respect to log space or NC computations) to "Inversion in :p" for
arbitrary primes p (see Litow and Davida [23] and von zur Gathen [22]). However,
this is not sufficient for the problem at hand.

4. Nonuniform arithmetic computations. We discuss results for two models of
parallel arithmetic computation. Arithmetic circuits use elements of a commutative
integral domain D for inputs and constants, and return elements of D as outputs. We
execute one arithmetic operation over D (that is, one of +, -, , or the selection of
an input or constant in D) at each node of the circuit; if D is a field, we also allow
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nodes for division (+). Arithmetic-Boolean circuits include these operations as well as
a Boolean component: we include nodes for selection of Boolean constants (T, F),
operations (^, v,-), zero tests (using an input from D and producing a Boolean
output), and selections (of one of two inputs from D on the basis of a third Boolean
input--branching). This second model of arithmetic computation is strictly stronger
than the first: Fich and Tompa [10] present a problem that has an efficient parallel
solution in the second model, but that has no such solution in the first. We will not
define "uniform" families of arithmetic-Boolean circuits in this section; hence we call
the circuit families we discuss "nonuniform."

Henceforth we consider polynomial arithmetic over a field (F). We begin with a
discussion of computations for infinite fields. Bini [2] and Reif [17] have presented
circuits with optimal depth (to within a constant factor) for a problem that is clearly
equivalent to "Division with Remainder of Polynomials (F)," and for "Iterated Product
of Polynomials (F)," respectively, for fields F containing nth primitive roots of unity
for infinitely many n. Reif also notes that a variety of other problems (including those
discussed here) are reducible to "Iterated Product of Polynomials (F)."

Reif [17] computes the "Iterated Product of Polynomials (F)" by implementing
a discrete Fourier transform as follows. Given polynomialsfl, f2, , fn, whose product
g is to be computed, he uses a discrete Fourier transform to compute the values of
each of the f’s at a set of roots of unity. He then uses multiplication in F to compute
the value of g at each of these roots, and, finally, uses the inverse Fourier transform
to recover the coefficients of g from this set of values. We obtain an optimal order
depth algorithm for "Iterated Product of Polynomials (F)" that is correct for an

arbitrary infinite field F, but that is implemented using circuits of larger size than those
obtained by Reif, by replacing the roots of unity used (as evaluation points) in his
method by any sufficiently large set of distinct elements of F. The resulting algorithm
is stated below.

ITERATED PRODUCT OF POLYNOMIALS VIA EVALUATION-INTERPOLATION
ALGORITHM.
Input. Binary representations of" integers n 0, and m - 0.

Coeffcients a F (for 0j = m) of polynomials

=ao+aix+"’+amX"F[x] for lin.

Output. Coefficients bo, b,..., b,,, F of the product

g bo + blx +. + branxmn I f F[x].
i=1

Constants used. Distinct Y0, Y," ", /mn G F;
the entries of the inverse of the Vandermonde matrix
V(yo, y,’", Ymn) of order mn + defined by

V(’o, ’)/1, ", ")/mn)O y’{2 for <-_ i, j <- mn+ 1.

(1) For all iandj, l<-i<-n,O<=j<=mn, compute

E
I=0

(2) For all j, O<-_j<-mn, compute g(Yj)=l-I,=f(Yj).

Arithmetic-Boolean circuits have been called arithmetic networks in some papers.
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(3) Use the values computed in step (2) and the entries of V(yo, ")/1,’ ’’, "/mn) -1

(supplied as constants) to compute the coefficients bo, bl,’’’, bran such that

bo g(Yo)
b,

V(yo y,,’’’, ym.) -I g(Y’)

b’m. g(Ymn)

Return these coefficients as output.

THEOREM 4.1 Let F be an infinite field. Then the problem "Iterated Product of
Polynomials (F)" can be solved using a (nonuniform) family of arithmetic circuits of
depth O(log N) and size N1), for input size N.

Proof It is sufficient to show that the above algorithm is correct and efficient,
when the field F is infinite.

It is easily checked that

bo [ g(Yo)

V(y0,)’l,’’’,ymn) b lg(yl)

and that det V(’)/o, /1," ", ")Iron) H i=1 I-I.i=o (//i ’)/j) 0, so that the matrix
V(To, "Y1," )’mn) is invertible. It follows that the values bo, bl,. ., b,,, returned by
this algorithm are the coefficients we want: that is, the algorithm is correct.

The only operations used in the algorithm are the evaluation of polynomials with
small degree (in step (1)); multiplication of elements in F (in step (2)); and the
multiplication of a matrix by a vector (in step (3)). It is clear, then, that the algorithm
can be implemented using arithmetic circuits of the stated depth and size. [3

We obtain corresponding results for the problems "Polynomial Interpolation (F),"
"Evaluation of Elementary Symmetric Polynomials (F)," and "Division with Remain-
der of Polynomials (F)," by applying Theorem 4.1 and arithmetic reductions from
each of these problems to "Iterated Product of Polynomials (F)." We use the definition
of "NC F-reduction’’ stated by von zur Gathen [14], and state these reductions in a
general form suitable for their use in the rest of 4-5.

FACT 4.2 (Reif [17]). Let F be an arbitrary field. Then each of the problems
"Polynomial Interpolation (F)," "Evaluation of Elementary Symmetric Polynomials
F)," and "Division with Remainder ofPolynomials F) is NC1F-reducible to "Iterated
Product of Polynomials F)."

Proof The reductions stated by Reif [17, 2.4-2.5] are sufficient. We leave it as
an exercise for the reader to verify that these are (log space uniform)
"NC-reductions," as defined in [14].

Combining Theorem 4.1 and Fact 4.2, we obtain Corollary 4.3.
COROLLARY 4.3. Let F be an infinite field. Then each of the problems "Iterated

Product ofPolynomials F)," "Polynomial Interpolation F)," "Evaluation ofElementary
Symmetric Polynomials (F)," and "Division with Remainder of Polynomials (F)" can
be solved using a (nonuniform) family of arithmetic circuits of depth O(log N) and size
N, for input size N.

We now consider computations over the finite field F Zq pk, for prime p and
positive k. As above, we first consider the problem "Iterated Product of Polynomials
(F)." Suppose m and n are as defined in the statement of this problem. If q >= mn +
then our algorithm for infinite fields can be used directly, because F includes a suitable
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set of constants. Otherwise, we must construct a field extension and perform arithmetic
over the extension if we are to use this algorithm. A direct simulation, in which we
simulate each operation over the extension individually using arithmetic over F, is not
sufficient" the circuit depth is increased by a small multiplicative factor, so circuits of
optimal depth (to within a constant factor) are not obtained. In the rest of this section
we describe a slightly more complicated simulation that we use to obtain optimal order
depth circuits for this problem.

We begin by describing our representation of finite fields F q and E r z q,
_

F (the extension used by our algorithm). Since all finite fields of size r are isomorphic,
E F[y]/(ch) for every irreducible polynomial & F[y] with degree 1. Hence we could
represent elements of E as the residues modulo 4 of polynomials in F[y] for any
such polynomial 4. Embedding F in E is trivial" the elements of the smaller field
correspond to the residues of constant polynomials (and we convert between representa-
tions of inputs and outputs as "elements of F" and "elements of E" using constant
depth). Addition and multiplication in E are also straightforward. To multiply elements
of E (represented as residues of polynomials) we multiply the corresponding (small
degree) polynomials in F[y] and then compute the remainder (resulting from division
by b) to obtain a representation of the product. This last step can be implemented
using circuits with size polynomial in and depth O(log2 l). (Note that one of our
goals is to prove that polynomial division with remainder can be performed using
circuits of polynomial size and logarithmic depth. We "charge" depth (R)(log l) for
the division mentioned here to avoid the use of a result we have yet to prove.) If the
residues y modulo 4) are "precomputed," for 0_-< _-< 21, then the depth for subsequent
multiplications in E can be reduced to O(log l). Addition in E requires "coefficient-
wise" addition in F[y], and can be implemented using circuits of depth one and size
O(l). Division and exponentiation in E are (slightly) more expensive: each can be
implemented using polynomial size circuits, with depth O(log2 l) for division and
depth O(log n log l) for computation of the nth power of an element of E. Using these
costs, we find that evaluation of a polynomial of degree n with coefficients in F at an
element of E can be performed using depth O(log n log l) and polynomial size. We
can compute the product of n polynomials with degree m and coefficients in F =q
by implementing our algorithm over an extension E =:q,, for [logq (ran + 1)]
O(log mn), using circuits of polynomial size and depth O(log mn log log ran).

Examining the algorithm "Iterated Product of Polynomials via Evaluation-Inter-
polation," implemented over a fixed extension E, we see that the only steps using
depth w(log ran) are the evaluations of products of O(mn) elements of E. We can
perform these computations quickly using a different representation of E. Since the
multiplicative subgroup of any finite field is cyclic, there exists some nonzero sr E
such that

E {0}U {sri" 0 -< i_-< [E[-2 q-2}.

We can represent a nonzero element a of E by its (discrete) logarithm with respect
to base ’--that is, by the unique integer such that 0 <- < q- 1 and sri= a. Using this
representation, we can compute the product of n nonzero elements by adding their
logarithms and dividing this sum by q- 1 (we know ’q’- 1). The remainder of this
division is the discrete logarithm of the product. Division in E is also straightforward,
since the inverse of sri is q’--l--i if 0, or r otherwise. We use circuits of polynomial
size and depth O(log n+log l) to multiply n elements of E, and circuits of depth
O(log l) to divide. Unfortunately, it is not easy to add elements of E represented by
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discrete logarithms, or to convert between the "standard" representation of c F and
its representation by a discrete logarithm in E.

As noted above, however, we only need to perform computations over a field
extension when F is very small. Furthermore, we can solve our problem using an
extension E_ F such that E has size less than (mn + 1) 2. Under this condition, we
can combine the two representations for E =[Fq, by choosing a monic irreducible
polynomial b F[y] with degree such that the element y modulo h is a generator
of the multiplicative subgroup of E F[y]/(ch). That is,

E iyi "Co, C,’’’,ct_F’={O}l.3{y’O-<-i< -1}.
i=0

We know a suitable polynomial b exists: E must contain some generator of its
multiplicative subgroup, and we choose b to be the minimal polynomial (over F) of
(any) generator. Since E is small, we can "hardwire" a table, listing the two representa-
tions of every nonzero element of E, into our circuit. We use the "small degree
polynomial" representation of elements for most computations. To perform multiplica-
tions of m > 2 elements of E, we perform a "table lookup" to compute discrete
logarithms, compute the logarithm of the product, then perform another lookup to
obtain the "polynomial" representation of this product. Using this combined rep-
resentation, we can evaluate polynomials of degree n over E, compute products of rn
elements of E, and divide elements of E, using circuits of depth O(log mn) and
polynomial size. It can then be easily checked that we can implement our algorithm
over a small field extension E using arithmetic-Boolean circuits of polynomial size
and depth O(log mn) (with arithmetic over F at unit cost), as required. We apply
Reif’s reductions once again to obtain small depth circuits for the other problems in
polynomial arithmetic being discussed.

THEOREM 4.4. Let F be a finite field; then there exist nonuniform families of
arithmetic-Boolean circuits ofdepth O(log N) and size N1 solving each ofthe problems
"Iterated Product of Polynomials F) ," "Polynomial Interpolation F) ," "Evaluation of
Elementary Symmetric Polynomials F), and "Division with Remainder of Polynomials
(F)."

Finally, we note again that the techniques we describe for computations over
infinite fields fail us only when our ground field F is very small--specifically, when
]F] < N, where N is our input size, and c is a small constant. We leave it to the reader
to verify that under this condition, a "zero test" in F can be simulated by the evaluation
of a fixed polynomial of small degree; "selection gates," ^, v and - gates can also
be simulated by small arithmetic circuits. Hence, we can strengthen Theorem 4.4 by
replacing "arithmetic-Boolean circuits" by "arithmetic circuits" in the statement of
the result (at the cost of complicating the proof slightly). Using this observation,
together with Corollary 4.3 and Theorem 4.4, we obtain Corollary 4.5.

COROLLARY 4.5. Let F be an arbitrary field. Then each of the problems "Iterated
Product ofPolynomials F)," "Polynomial Interpolation F)," "Evaluation ofElementary
Symmetric Polynomials (F)," and "Division with Remainder of Polynomials (F)" can
be solved using a (nonuniform) family of arithmetic circuits (over F) of depth O(log N)
and size N1, for input size N.

These results first appeared in Eberly [9]. Bini and Pan [4] have independently
generalized Bini’s algorithm for "Division with Remainder of Polynomials (F)" to
obtain optimal order depth circuits for this problem over arbitrary infinite fields, and
over each finite field. Hence they independently prove the results stated for "Division"
in Corollary 4.3 and Theorem 4.4. As they note, their more direct algorithms can be
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implemented using smaller (and hence more efficient) circuits than are obtained using
the method described here.. Arithmetic eompttations Alting uniformity. The circuits we have discussed in
the last section have been called "nonuniform"--mainly because we have yet to define
"uniform" families of arithmetic (or arithmetic-Boolean) circuits. In this section we
discuss several definitions of uniformity proposed recently (yon zur Gathen 14]). Our
algorithms can be used (with minor modifications) to produce uniform families of
arithmetic-Boolean circuits for each of these definitions.

It can be argued that a precise definition of"uniformity" for families of arithmetic
circuits is not really necessary, provided that we consider algorithms that are reasonably
simple, and that can be implemented using uniform families of Boolean circuits (for
computations over Q and finite fields). It is clear that our algorithms have these
properties; we will not improve our Boolean results by showing that the algorithms
can be implemented using "uniform" families of arithmetic-Boolean circuits. On the
other hand, it is clear that the arithmetic problems we have discussed are closely
related. We make this statement more precise by adopting formal definitions of
arithmetic uniformity, complexity classes, and reductions--and exhibiting reductions
between the problems.

The definitions we use were proposed in von zur Gathen [14]; to our knowledge,
they have not been used anywhere else. It is conceivable that they will be replaced by
a different set of uniformity criteria; we regard them as provisional. They also include
technical details beyond the scope of this paper. Consequently, we give a less formal
presentation of uniformity. Precise statements of our results and a sketch of their
proofs are given at the end of this section.

The criteria for uniformity proposed by yon zur Gathen are similar to criteria for
uniformity of families of Boolean circuits: families of arithmetic-Boolean circuits are
considered to be "uniform" if the circuits have "descriptions" that can be computed
quickly (using a deterministic Turing machine). Unfortunately, the task of defining a
"circuit description" for an arithmetic-Boolean circuit over an arbitrary field is non-
trivial. Encoding nodes for arithmetic operations (+,-, x, +), Boolean operations,
and connections between these nodes is not difficult. However, we must also encode
arithmetic constants--elements of the field F. If F is uncountable then we cannot
avoid "missing" some elements completely, or using encodings that do not identify
unique field elements. We need a method for describing elements of F, and arithmetic-
Boolean circuits, that is simple enough to be usable, but also general enough so that
"reasonable" algorithms can be implemented using families of arithmetic-Boolean
circuits that we can encode easily.

Von zur Gathen presents two encoding methods and develops definitions for
"uniform" families, complexity classes, and reductions for each. One of these is quite
generous: it is not difficult to show that the constants (and circuits) for our algorithms
can be encoded using this method, and that the encodings can be computed using a
deterministic Turing machine using space logarithmic in the number of inputs. That
is, our algorithms can be implemented using "L-L-uniform" families of arithmetic-
Boolean circuits.

Unfortunately, this first encoding method and definition of uniformity may be too
generous. For example, we would like to be able to take (as "input") an encoding of
an arithmetic-Boolean circuit over Q or over a finite field, and produce (as "output")
an encoding of a Boolean circuit. This process is nontrivial, because it is not clear
how to obtain binary representations of constants from their "encodings" efficiently.
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Von zur Gathen proposes a second method for encoding circuits that is simpler, but
also much more restrictive. Under this method, the only constants that can be encoded
(hence the only constants used in "uniform" families of arithmetic-Boolean circuits)
are the arithmetic constants 0 and 1 and the Boolean constants T and F. Elements of
the prime field of F can be computed from these using size linear and depth logarithmic
in the lengths of their binary representations; no other constants can be supplied or
computed. Now the task of defining circuit encodings, and uniformity, is straightfor-
ward. However, showing that an algorithm can be implemented using a "uniform"
family of arithmetic-Boolean circuits is much more difficult.

We do not expect that this second scheme will be adopted as a criterion for
uniformity--it is clearly much too restrictive. We use it here to make our statements
as strong as possible: we view these results as evidence that our algorithms are uniform
for any reasonable definition of uniformity.

In fact, we do not obtain log space constructible families of arithmetic-Boolean
circuits for our algorithms when this restrictive encoding method is used. Instead, we
obtain a formal reduction from our arithmetic problems to the Boolean problem
"Iterated Integer Product." For each problem, we therefore have "L-uniform" (log
space constructible) families of arithmetic-Boolean circuits of depth O(log N log
log N) and size N1, and "P-uniform" (polynomial time constructible) families of
arithmetic-Boolean circuits of depth O(log N) and size N1, for input size N. In
some sense we have reversed the usual roles of "arithmetic" and "Boolean" computa-
tions: we have shown that any improvement in the known results for a (concrete)
Boolean problem yields a corresponding improvement in results for a set of (abstract)
arithmetic problems.

In the rest of this section we give a precise statement of our results for "uniform"
arithmetic computations and sketch their proof. For the sake of brevity we omit most
of the details and leave it as an exercise for the reader to develop the full proof using
this sketch and the results in von zur Gathen [14]. The reader who is not interested
in these details can skip ahead to 6.

THEOREM 5.1. Let F be a field.
(1) Each of the problems "Iterated Product of Polynomials (F)," "Polynomial

Interpolation (F)," "Evaluation of Elementary Symmetric Polynomials (F)," and
"Division with Remainder of Polynomials (F)" can be solved using an L-L-uniform
family of arithmetic-Boolean circuits of depth O(log N) and size NTM, for input size N.

(2) Each of the above problems is reducible to "Iterated Integer Product." Hence
each can be solved using an L-uniform family of arithmetic-Boolean circuits of depth
O(log N log log N) and size N, or a P-uniform family ofarithmetic-Boolean circuits

of depth O(log N) and size N(l), for input size N.
Proof We consider the problem "Iterated Product of Polynomials (F)." Reif’s

reductions can be used to prove the results stated for the other problems.
(1) We first note that it is sufficient to consider descriptions of constants for our

algorithms; the rest of the circuit descriptions can clearly be computed efficiently.
Let K be the prime field of F (:p if F has characteristic p > 0, or Q otherwise).

Von zur Gathen proposes that we "describe" constants in F using encodings of division
free straightline programs computing polynomials with coefficients in K, together with
a small amount of extra information indicating how these polynomials are to be used.

In fact, yon zur Gathen only allows the arithmetic constant one. However, we note that the constants

0, T, and F are easily obtained as well by using subtraction in F to obtain zero, and zero tests to obtain the
Boolean constants.
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Since K is countable, it is easy to define encodings of these straightline programs. A
family of arithmetic-Boolean circuits is "L-L-uniform" if the circuit description (includ-
ing encodings of straightline programs describing constants) for the circuit for M
inputs can be computed using a deterministic Turing machine using space O(log M).
We illustrate the use of straightline programs to describe constants in F using the
constants required by our algorithms for "Iterated Product of Polynomials." We leave
it to the reader to verify that encodings of the straightline programs described here
comprise "standard encodings of descriptions of constants" for the constants we need
(see von zur Gathen [14] for the definitions required).

Suppose F is infinite. For n input polynomials each with degree at most m, our
algorithm requires the following constants"

(i) N (rnn + 1) distinct field elements 71, y2, , yu;
(ii) The entries of the nonsingular Vandermonde matrix V(yl, y2," ",

(iii) The entries of V(),I ),2,"" ", ),N) -1.
We simplify the problem of describing these constants by requiring that yi yi-1 for
some y F (so yl 1, ),2 ),, Y3 ),2, etc.). We can use as ), any element of F that is
not a root of the polynomial

N-1

g II (y- 1) /[y],
i=1

for K the prime field of F.
We will supply as constants the entries of adj V(),I, ),2,’’’, ),N) and

det V(),l, ),2,’’’, ),N), instead of the entries of V(yl, ),2,’", ),N) -’, note that the
latter values can be computed easily from the former. Now each of the constants
and V(),I, ),,’", ),u)., (for 1-<s, -< N) is a small power of ),. For =<iN N, the
entries of the ith column of adj V(),I, ),2, ),N) are the coefficients of the polynomial

N N k-1

(-)-’ II (x-.) II II (-);
j=l k=2 h=l
ji ki hi

N i-1
det V(71, y2,’’’, ),u)=I]i-2 I-I.j=l (),i-),./). Each of these values can be computed
from ), using a log space constructible straightline program of size N(). The poly-
nomial g describing ), can also be computed using a log space constructible straightline
program. Hence we have established the first part of the theorem, for infinite fields.

We next consider computations over the finite field F z,, =:q. If IFI pk> N
then we use the constants we have just describedmand these have log space computable
descriptions. Otherwise, we must supply the constants described in 4. That is, we
include the following:

(i) The coefficients of the minimal polynomial (over F) of a generator ), of
the multiplicative subgroup of an extension E

_
F of size greater than N (q F[y],

O(Y) =0, and E F(),)= F[y]/(d/)).
(ii) A table of discrete logarithms (for base ),) for E" that is, the coefficients of

the polynomials (y mod ), for 0=< i<=lEI-2.
(iii) Representations of the entries of the matrices V(1, y, y2, ),N-) and

adj V(1, y, 7,2, yN-1), and of det V(1, ),, ),2, ),u-l). Each of the elements 6
of E can be represented by a vector of coefficients (in F) of a polynomial h F[y]

In fact, the resulting circuit description describes a set of circuits, corresponding to different choices

for this constant y. The description of constants is correct because this set is nonempty, and because any
circuit in the set can be used to solve our problem.
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such that h(y) 3. We use this method to represent the entries of these matrices (using
constants in F).

We also include as a constant a generator c of F over :e. The description of the
constant c is an encoding of a straightline program encoding the minimal polynomial
of c over :,. As a description of any other constant/3 (in F), we use an encoding of
a straightline program computing a polynomial k e:p[y] such that k(c)=/3.

It is actually easy to compute "descriptions" for the generator c and for the
constants listed in (i) and (ii), because the fields F and E are very small. The minimal
polynomial of c over zp and the minimal polynomial 0 of 3’ over F=Ze(c) have
binary representations with length O(log N); we can use an exhaustive search to find
these polynomials. Since 0 is small, we can also compute descriptions for the constants
in (ii) using space O(log N) by a straightforward method. We obtain log space
constructible straightline programs computing the constants in (iii) using the
expressions for the determinant and entries of the adjoint of the Vandermonde matrix
V(’)/1, ’)/2, ’)/N) stated in the proof of part (1) for infinite fields.

(2) As we have noted, we can only use "constants" from the prime field K of F
when using this more restrictive definition of uniformity. We cannot assume K will
include a suitable set of constants. Instead, we compute the value y (described above)
as an element of G K(c, c2, , cM) where c, c2, , cM are the inputs for our
circuit; or, if G is small, we choose y from a field extension of G. This method is
correct for our problems because our outputs are all rational functions of our inputs:
hence we can "assume" G F. Note that this assumption could not be made safely
for all problems. For example, we could not make this assumption when describing
circuits for factorization of polynomials over F.

While nontrivial, it can be shown that the element y can be computed using (log
space constructible) circuits of size N() and depth O(log N). We can also compute
a table of discrete logarithms for a small extension E of G at this cost, if G is small.
We must also compute the determinant and adjoint of the Vandermonde matrix
V(I, T, ,)/2, TN-1); this requires the inversion of an integer Vandermonde matrix
(if we are to use "uniform" circuits for the computation). While the rest of the
computation can be performed using depth O(log N), this step is reducible to "Iterated
Integer Product." Hence we obtain the reduction stated in the theorem.

We obtain different bounds when using the different methods of describing
constants because the first method is much more generous: we are only required to
show that we can encode straightline programs using space O(log N). It is not required
that these programs can be implemented using circuits wiith depth O(log N). We have
algorithms for our problems that use constants whose descriptions can be computed
using small space, but we do not know how to compute the constants from their
descriptions using circuit depth O(log N). When using the second definition of unifor-
mity, we must "construct" these constants as part of our circuits, and the depth of the
circuits increases.

6. Extensions and open problems. We conclude with some extensions of our results
and suggestions for further work.

The set of domains D over which we can perform polynomial arithmetic using
small depth Boolean circuits is easily extended to include rings of polynomials in h
indeterminates (for any fixed integer h) over Z or any of the fields :p, Q, z,k, or number
fields. The methods used in 3 can be applied to obtain these extensions.

We have not emphasized the size of the circuits we obtained. While they have
size N(1) for input size N, we have a substantial increase over the size of the best
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sequential algorithms. With some effort, we can reduce this increase for arithmetic
computations over infinite fields. Bini and Pan [3]-[5] obtain optimal order depth
parallel algorithms for "Polynomial Division with Remainder" for infinite fields that
have asymptotically smaller size than can be obtained by our methods. No such
"optimal depth, size efficient" algorithms for computations over finite fields are known.

Von zur Gathen [14] includes a precise definition for "NC-reducibility" of
arithmetic problems. Since we did not obtain optimal order depth circuits for our
arithmetic problems, using the strictest definition of uniformity proposed, reductions
between the problems are of some interest. If F is a field with characteristic 0 then all
of the arithmetic problems (over F) listed in are NC --equivalent. For an arbitrary
field F, they are all NC-reducible to "Iterated Product of Polynomials (F)." However,
it is not known whether the problem "Iterated Product of Polynomials (F)" is

NC-reducible to "Division with Remainder of Polynomials (F)," if F is a field with
positive characteristic.

Having seen that our problems are all solvable using (polynomial time construct-
ible) families of bounded fan-in circuits of polynomial size and logarithmic depth, it
seems natural to ask whether they can also be solved using unbounded fan-in circuits
of constant depth and polynomial size. As we show below, we can answer part of this
question by applying the results of Furst, Saxe, and Sipser [12] and Smolensky [21]
in a fairly direct way.

For the Boolean case, it is easy to see that the answer to this question is "no"mat
least, for our integer problems. That is, these problems cannot be solved using
unbounded fan-in Boolean circuits of constant depth and polynomial size: Furst, Saxe,
and Sipser show that parity cannot be computed using Boolean circuits of this type
and give a "constant depth, polynomial size" reduction from parity to the computation
of the (binary representationof the) product of two n-bit integers (see [12]). It is a
simple matter to show that this multiplication problem is "constant depth, polynomial
size" reducible to each of our integer polynomial problems--so that none of them can
be solved using constant depth, polynomial size Boolean circuits. It is possible that
some of the Boolean computations for polynomials over finite field that are discussed
in this paper can be performed using unbounded fan-in Boolean circuits of constant
depth and polynomial size.

The arithmetic case is quite different. If we allow unbounded fan-in gates for both
addition and multiplication, then it is easy to show that the computations for poly-
nomials over an infinite field F discussed in 4 can be performed using unbounded
fan-in arithmetic circuits over F of polynomial size and constant depth: we need only
implement the algorithms presented in that section. It is almost as easy to show that
this is not the case when F=2: we simply note that, given Cl, 2,"" ", n E2, we
can determine whether the majority of these values is one by examining the coefficients
of Hi=l (x-ci). Thus majority is ’constant depth, polynomial size" reducible to the
problem "Iterated Product of Polynomials (f2)." Now if F=z2, and we identify
elements of z with the Boolean values zero and one, then an unbounded fan-in x-gate
is equivalent to an unbounded fan-in /x-gate, and an unbounded fan-in +-gate is
equivalent to a parity- or MOD2-gate. Hence the statement that "Iterated Product of
Polynomials ([F2)" cannot be solved using unbounded fan-in arithmetic (or even
arithmetic-Boolean) circuits of constant depth and polynomial size is a direct result
of the corollary of Theorem 2 of Smolensky (see [21]). It is conceivable, however, that
"Division with Remainder of Polynomials (:)," or some of our problems for poly-
nomial arithmetic over finite fields other than , can be solved using unbounded fan-in
arithmetic circuits of constant depth and polynomial size.
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Finally, we ask whether the above (positive) results for computations over infinite
fields by unbounded fan-in arithmetic circuits remain valid if we consider circuits with
unbounded fan-in gates for addition, but with fan-in 2 gates for multiplication. Conven-
tional wisdom, and our own intuition, would suggest that the answer is "no." However,
Kung has shown that exponentiation (computing x given x F and n,N) can be
performed using constant depth, polynomial size (in n) arithmetic circuits over F, with
gates of this typemprovided that the field F contain an nth primitive root of unity
(see [15, Algorithm 3.1]). We do not know whether this result can be generalized,
either to the problems we have discussed, or to exponentiation over a more general
class of ground fields.

Acknowledgments. Many thanks go to my advisor, Joachim von zur Gathen, who
suggested the problem and made many contributions. I also thank Alan Borodin and
Faith Fich for much helpful advice.
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TOPOLOGICAL COMPLETENESS IN AN IDEAL MODEL
FOR POLYMORPHIC TYPES*
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Abstract. The topological structure underlying the ideal model of recursive polymorphic types proposed
by MacQueen, Plotkin, and Sethi are examined. It is shown that their central argument in establishing a
well-defined semantical function, viz., completeness with respect to a metric obtained from the construction
of their domain, is a special case of complete uniformities, which arise in a natural way from the study of
closeness of ideals on domains. These uniformities are constructed and studied, and a general fixed-point
theorem is derived for maps defined on these ideals.

Key words, polymorphic topological type models, domain theory, fixed points
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1. Introduction. MacQueen, Plotkin, and Sethi discuss in [6] the semantics of
types and propose or-ideals over domains as a formalization of the naive view of types
as sets of values. This is based on the following observations. Naively, one may tend
to model types as sets of values: saying that the variable a has the type r means that
a always will be a member of the set modeling r. Since types are thought to preserve
structural similarity, and since this latter property should be preserved by approxima-
tions (i.e., it is closed downward) and by taking least upper bounds of consistent sets
of values (i.e., it is closed upward), the formulation of a type as a set of values having
all the properties of a or-ideal is quite attractive (see [6, for a more detailed account).

In their model, self-application and recursion is possible, i.e., a type r may be
described by an expression such as r=f(r), e.g., r= r-+cr. Hence, it has to be
established that types of this kind do exist. This is not too difficult if the type constructor

f has pleasant mathematical properties, monotonicity and continuity among them. In
the case of type constructors, however, these properties cannot be guaranteed (cf., the
zig-zag example in [6, pp. 98-99]). Hence, other ways of establishing the existence of
a fixed point have to be found, and MacQueen, Plotkin, and Sethi propose using
Banach’s celebrated fixed point theorem.

This theorem is a tool that is long established in numerical mathematics to make
sure that numerical iterations converge. Under proper conditions, the machinery
associated with this theorem works as follows: if the convergence of an iteration has
to be established, this iteration is formulated in terms of a function, mapping the search
space into itself in such a way that the wanted value appears as a fixed point of the
mapping. If the map can be shown to be a contraction, then convergence of the iterates
to the fixed point follows from Banach’s theorem. The underlying mathematical
structure for the Banach theorem is a complete metric space, and the map to be
considered must be a contraction, i.e., the distance between the image of two points
must be by a proportionality factor smaller than the distance of these points. MacQueen,
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Plotkin, and Sethi establish such a complete metric on the space of all or-ideals, which
is used in that paper as a type model. This metric is introduced using an arbitrary
witness function, and a closer look at the situation and at the completeness proof
suggests that this scenario may indeed be a special case of a far more general one,
since nature as well as properties of the witness function are rather negligible--the
only interesting thing here is that the witness function exists.

In this note we demonstrate that the case considered in [6] is a special case from
a topological point of view. We consider the usual generalization of metric spacesw
uniform spaces--and show that the method to define a metric space may be applied
to a more general one yielding complete uniform spaces.

We characterize those uniformities on the set of all or-ideals of a domain that are
generated by a rank function. Completeness was only a tool for establishing fixed
points, so we discuss fixed points in greater detail, establishing from Landes’s Fixed
Point Theorem [5] for uniform spaces a characterization of those maps for which a
unique fixed point exists. This is done first in the general uniform setting over the
space of all ideals, and then a special case including the metric situation is derived
from this.

The main technical innovation of this paper is to impose a uniform structure on
a set of types and to establish existence of recursively defined types using a rather
general fixed-point theorem. Thus, we propose replacing the metric arguments intro-
duced by MacQueen, Plotkin, and Sethi with uniform ones, when it comes to using
completeness results and in particular fixed-point arguments. Arguments from the
theory of uniform spaces are usually easier to apply from a technical point of view
and have the advantage of not involving the use of real numbers, since uniformities
may be formulated using intrinsic properties of the objects under consideration. In
addition, we expect that the results here may ease the application of fixed-point
arguments without having to struggle through the technical details of metric or uniform
spaces. Such fixed-point constructions seem to occur in mathematical semantics quite
frequently (apart from [6], see e.g., [1]).

The present note is organized as follows: 2 collects some notations from domain
theory and from uniform spaces, and 3 deals with Landes’s fixed-point theorem. In

4, we generalize the metric investigated by MacQueen, Plotkin, ad Sethi to specific
uniformities, and we study the question under which conditions the uniformity may
be generated by a metric. Section 5 contains some results on fixed points, and in 6
we indicate how the methods and results obtained may be used in the situation studied
in [6].

2. Some preliminaries. For easier reference and to make the paper self-contained,
we collect some notations. The standard reference for topological and uniform spaces
is [4], and for domains we refer to [7].

A complete partial order (cpo) is a partial order -< on a set D which has a smallest
element _t_ such that each increasing sequence has its supremum in D. An element
x D is said to be compact if for each increasing sequence (Yn)n in D with x_-<

supn yn there is an index k such that x _-< Yk holds. D is algebraic if there are countably
many compact elements, and if for each x D the set

L, := {a D; a is compact with a -< x}

is directed such that x sup Lx holds (as usual, here we call a set L directed if two
elements in L have an upper bound in L). Denote by A all compact elements in A,
hence A A f3 D. D is called a domain if it is an algebraic cpo such that each subset
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bounded from above has a supremum. We fix a domain D for the rest of this paper.
A nonempty set I D is said to be an ideal if it is downward closed; hence, if

x _-< y I implies x I for each x D, y I; denote by 5 (D) the set of all ideals in D.
An ideal is called a o-ideal if it is closed with respect to taking suprema of increasing
sequences; denote by 5(D) the set of all r-ideals in D and by 5(D) the augmented
set 5,(D)U {}. The map I--->I is a bijection from 5(D) to (D), the inverse of
which is given by

2(D) I-->{sup xn; (xn),c I is increasing}

([6], Proposition 1).
A subset of the power set (S) of a set S is a filterbase if Q , # Q, and

if we may find for each A, A2 an element A with A A n A2. A filter is
a filterbase that is a dual ideal, i.e., if the following implication holds:

Ag, ABB.

A filter 3 on S S is said to be a uniformity if

(1) VG:G-:={(y,x);(x,y)G}(G- is called the inverse of G).

(2) A 3, where A :-- {(x, x); x S} is the diagonal.

(3) VG ::IHCg:HoHG

(here the composition operator is defined as usual by I J := {(x, z);
By:(x,y)I and (y,z)J}).

We then call (S, cg) a uniform space.
A filterbase generating a uniformity is called a base for this uniformity. If d is a

metric on S (i.e.,ifd:SS-->(R) with Vy Vy: d(x,y)=d(y,x); VxVy: d(x,y)=O::,
x y; VxVyVz: d(x, z) <-_ d(x, y)+ d(y, z)), then it is easily seen that the smallest filter
% on S S that contains all the sets {(x, y); d(x, y)<-r} is a uniformity. In a metric
space, we may numerically evaluate the closeness of two points x, y by computing
d (x, y); in a uniform space, closeness of x and y is expressed in terms of the elements
of : x and y are close with respect to H if and only if (x, y) H. Thus, uniform
spaces generalize metric spaces; they are, in turn, less general than topological spaces.

We will use two constructions from the theory of uniform spaces, viz., the product
of two uniformities and the Hausdorff uniformity on the space cg(9o) of all nonempty
closed subsets of a uniform space. Both constructions will be needed later when we
show that under certain topological conditions, fixed points do exist. This will be
described in terms of the Hausdorff uniformity on the space cg( ) for a suitably
chosen uniform space . Let (S, G) be a uniform space. First, let W 94, then define
the shuffle

(W) := {(a, c, b, d); (a, b, c, d) W}.

Then the set of all shuffled rectangles

q3[ := {(A x B); A, B }

defines the basis for the product uniformity q3(R) on S x S (intuitively, a pair is close
if and only if both components are close to each other). If has a base o,
forms a base for (R) . Turning to (S), we define for A S, U the U-neighbor-
hood U(A) of A by

U(A) := {y S; (x, y) U for somexA};
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two sets C, D ow5(S) are U-close if and only if they lie in the U-neighborhoods of
each other. Formally,

U] := {(C, D); C, D CS(S) withCc U(D),Dc U(C)}

then{[U]; Ue 3} defines the basis for a uniformity on (S), the so called Hausdorff
uniformity (see [2, II]).

(S, ) is called separated (or Hausdorff) if and only if (’1 = A; so two distinct
points can always be separated by an element of . The space is called complete if
and only if each Cauchy net converges. This means the following: a net (nr)rcR in S
is a map R r-- nr e S such that R is a set that is directed by a transitive and reflexive
relation (which is usually omitted in the notation; the natural numbers N are a directed
set under the natural order; hence, each sequence is a net). The net (nr)rcR converges
to n if and only if elements of the net are eventually close to n; hence if and only if

VUe ::iroeR VRr>-ro:(nr, n)eU

and it is a Cauchy net if and only if

VU 3roaR Vr, s >= to: (nr, n,) U,

hence if and only if the elements of the net are eventually close to each other.
It is not too difficult to see that (S x S, (R) 3) is a Hausdorff space, if (S, ) is

one, and that this space is complete if (S, ) is. In addition, w(S) with the Hausdorff
uniformity is a separated space whenever (S, ) is [2, Thm. II-12, p. 45].

Finally, if A, B c S, define the symmetric difference A B of A and B by (A U B)
(A B). It is rather easy to see that ((S), A) is an Abelian group, and that for all
A,B, CcS

A/ Bc(A/ C)U(C/ B)

as well as

(A / B)n C=(Afq C)/ (Bfq C)

hold (see, e.g., [3, p. 6]).

3. Fixed points. Since we will study fixed points over uniform structures on the
set of all o--ideals of a domain as a generalization of [6], we need an extension of the
fixed-point arguments of the Banach type. Recently, Thomas Landes gave a suitable
generalization of Banach’s celebrated theorem that fits into the framework considered
here and that will be of considerable use in the arguments below. Since this result has
not been published yet, and in order to make the present paper self-contained, we give
Landes’s result in greater detail and sketch its proof (for technical reasons the arrange-
ment is a bit different from the one given by Landes; however, the proofs are entirely
due to Landes).

For this section fix a uniform space (S, 3) with a complete and separated uniformity
having o as a base. We begin with some definitions.
DEFINITION 3.1. A map F:o-* o is said to be an attractor if and only if the

following condition holds

(A-l)

(A-2)

VU o: F(U)c U.

3N=N(U)N VkN: FN(U) FN+k(U) c U.

This notion of an attractor simulates contractions in a metric space in the following
sense: suppose (X, d) is a complete metric space, and f:X X has a contracting
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property, viz., there is 0</3 < 1 such that d(f(x),f(y)) <- d(x, y) always holds. Taking
the set of balls {Kr(x); r > 0, x X} (with Kr(x):= {y; d(x, y) < r}), it is easy to see
that the map Kr(x)’-f[Kr(x)] furnishes an attractor.

DEFINITION 3.2. A map f" M- M is called a contraction if

(A-3) there exists an attractor Fs with the property that for all U fro the following
holds: (f(x),f(y)) Fs(U), whenever (x, y) U.

(A-4) VxM VUCo :lm: (f"(x),f"+l(x)) U.

If in addition the condition (A-5) holds, then we call f a strong contraction"

(A-5) Vxy zlU6Co ::lm:(x,y)C_Uand(f"(x),fm(y))U.

The fixed-point theorem due to Landes then reads as follows"
THEOREM 3.3. (1) Any contraction fhas a fixed point x*, and x*=limn_ofn(x)

holds, where x S is arbitrary.
(2) Iff is a strong contraction, then x* is the unique fixed point.

Proof (1) Uniqueness is easily established for a strong contraction, once we know
that x* exists.

(2) Fix x S, then it is enough to show that the sequence (fn(x))n is a Cauchy
sequence; completeness will then establish a limit for this sequence, which in turn is
easily seen to be a fixed point. Given U o, we may find m such that

(fm(x),f"+l(x)) U.

Now let k_-> 1, n => N+ m, where N is chosen according to condition (A-2) for the
attractor F, then

(f"(x),f"+k(x)) F( U) FC/k( U) c U.

This establishes the theorem.
We will need to extend the notion of a contraction to several dimensions, and for

the sake of demonstrating techniques we will focus on the case of two dimensions.
We call a map f" M x M - M a (strong) contraction if and only if for each s, M
the maps f := At.f(s, t) and f := As.f(s, t) are (strong) contractions, where the attrac-
tors belonging to Ff and Fz,, respectively, are uniformly equal, i.e., Vs,

4. Constructing uniformities. When defining a uniformity cg, one has to specify
which elements are considered to be close to each other. If, in addition, closeness can
be specified in numeric terms, i.e., in terms of a distance function, a metric space is
defined.

Let r" D-> be a rank function on the compact elements of a domain; then the
closeness c(x, y) for x, y 6 5(D) is defined by

ifx=y
c(x,y):=

min {r(k); k x A yO}, otherwise.

Hence, x and y are the closer the later one realizes that there is a witness x A yo,
since x=y if[ x=y if[ xA y=

The distance associated with the rank function r is then defined by

d(x, y) := 2 -c(x,y).

This makes ((D), d) a complete (ultra-) metric space.
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The use of c(x, y) suggests that in the general situation the closer the two ideals,
the less distinguishable their compact elements are, i.e., the smaller x A yO is. Taking
an arbitrary set d c 9 as a yardstick, we say that the ideals x and y are M-close if
the difference of their compact elements is witnessed by M. This is stated formally in
Definition 4.1.

DEFINITION 4.1. For A c D, define

GA := {(x, y); x, y 5(D), x A yO A}.

Thus two r-ideals are close to each other with respect to A if the difference of the
trace they leave on the compact elements is contained in A. Now we will demonstrate
that this constitutes a basis for a uniformity on 5(D).

LEMMA 4.2. Let P(D) be a filter base, then we have the following properties:
(a) cg := {GA; A M} is the base for a uniformity * (thus * is the smallest

uniformity containing fg);
(b) if is another filter base with dc , then d*; ,.(c) if 3;(M) denotes the filter generated by M, then )
(d) q* is Hausdorff,, provided that (qM .
Proof. (a) It is enough to demonstrate that we can find for any A d an element

B d with GB GB GA. In fact, we will show that B may be chosen as A itself.
Now, let (x, y) GA GA, then we know that we can find z with xA zc A .and
z A yc A. But because

x A yc(x A z)U(z A yO)c A,

we see that (x, y) GA. The other properties of a uniformity are straightforward.
(b) Property (b) follows from the observation that C * if and only if G C

for some G
(c) Property (c) is established similarly: Since F (d) iff A F for some A d,

and since B Gn is an increasing map, the assertion is immediate.
(d) Let (x, y) f’l d* be a pair of ideals, then x A yO (q d; so we may infer

that (x, y) f’l if and only if x y, provided M . But this means that in the
latter case fq * reduces to the diagonal.

The metric defined in [6] falls rather naturally into the realm of the uniformity
defined above. As indicated, let d be derived from a rank function r, then

d(x,y)<e

r(k) >-- [log2]
for each k x A yo, provided the tr-ideals x and y are different. It is then easily seen
that the metric uniformity r coincides with * where

:={An;nl andA,}

with

An:={r>=n}:={tD; r(t)>=n}.

We will return to the question under which conditions 3" equals r for some r in
due course.

We are interested in the completeness of *. Recall that a uniform space is
complete if each Cauchy net has a limit. We are going to represent the limit in terms
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of the following set-theoretical construction. Let (Ar)rR be a net of sets, then

liminfAr:= U f’l Ar
rR rR ro>=r

is said to be the limit inferior of this net and is the set of all elements which are
eventually in all A, and

limsupA:= f’l t_J A
rR rR ro>--r

is called the limit superior of this net and is the set of all elements which are frequently
in A.

It is rather easy to verify the following technical lemma.
LEMMA 4.3. Let (Xr)R be a net of ideals in D, then we have the following:
(a) lim infR X and lim SUprR Xr are both ideals in D;
(b) lim infg Xr c lim SUprg Xr;
(c) for every s R, the following inclusions hold

lim inf x c lim inf Xr
s<-rR rR

and

lim sup x lim sup x.
s<--_rR rR

This allows the representation of a limit in purely set-theoretical terms, provided one
knows that it exists. Recall that a sequence in a Hausdorff space has at most one limit.

PROPOSITION 4.4. Let (X)rR (D) be a net with d*--limR xr x e (D),
and assume that q* is Hausdorff. Then we have

x lim infx lim sup x.
rR rR

Proof. (0) c*--limR X X means that we can find for every A 4 an index
ro to(A) such that x A x A holds for every r >- to.

(1) Fix A and select ro for A according to part 0. If r >- ro, we have x A x A,
or, equivalently, x A x A. Consequently,

x-A lim inf xo_ A.
rR

Because * is Hausdorff, hence f)4 , we may infer

EcF

from

Thus we may conclude that

VAt,g" E-Ac F-A.

x c lim inf xo.
rR

Similarly, we see that

lim sup x x.
raR

Now the conclusion follows from 4.3(b).
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From 4.4, we infer completeness for the uniformity.
PROPOSrrION 4.5. If* is Hausdorff, then it is complete.
Proof. (0) We show that each Cauchy net (Xr)xR of tr-ideals converges with

respect to *a. Fix for the moment A M, then we find an index ro R such that
x A xs c A whenever r, s >= ro.

(1) From the latter inclusion we see that

Is, >= ro" xs A xt A,

hence we have for any s >-ro the inclusion

x A lim inf xo A lim inf x A.
s<-rR rR

Similarly, we see that

x A lim sup- A.
rR

Now let x 5(D) be determined by the equation

x lim inf x,
rR

then we see that x -A x -A, whenever s
Let us illustrate Proposition 4.5 and our constructions with an example. It is well

known that D := (N) is a domain, using set inclusion as the order relation and that
the compact elements are just the finite subsets. Count D using the bijection

Putting

q "a-> E 2’.
ta

d:= {{_-> n};

we obtain a complete Hausdortt uniformity * on 5*(D). Now define

x, := {a D; k_-> n holds for all k a},

then x, is easily seen to be a g-ideal.

CLAIM. (X nN is a Cauchy sequence.
Proof Given N 6 N, select k with 2k> N. If s, N, let

a Xk+ / c XXk+s+t k+s,

thus

q(a)= 2m>card(a)2k+S>N,

so (xk+, xk++,)e G_>N. Since s and have been chosen arbitrarily, the above claim
is established. ]

Consequence. c. lim,_ x, .
This has been the reason for including the empty set into the set of tr-ideals that

we wanted to consider. Usually, one considers only the set of nonempty tr-ideals; this
is justified by the fact that the bottom element in a domain constitutes an ideal.

Let us remark that q may serve as a ranking function, so that on one hand we
have the uniform space (5(()), qff*), and on the other we have the metric space
(5((N)), d) with the metric d as defined by MacQueen, Plotkin, and Sethi. It is not
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difficult to see that the uniformity defined by the metric is just the same as g*. We
will denote the uniformity that is generated from the metric obtained from the rank
function r by gr. Now we will discuss conditions under which the uniformity g* is
actually generated by a rank function. Since a rank function has the property that its
uniformity is generated by some countable sets, it is worthwhile to investigate countabil-
ity conditions.

If is a filter, then is said to be countably based if there exists a countable
filter base M such that J equals (M). It is the countably based filters which constitute
the special case of metrizable uniformities. We return to the case of a general D for
an investigation of this question.

PROPOSITION 4.6. Let be afilter base with f-) . There exists a rankfunction
r"D with g* g* if and only if (4) is countably based.

Proof (1) If 3" d* for some rank function r, then

{A.; n,An#;}
with

An:=(r>-n}
constitutes a countable base for (4).

(2) If (4) has a countable base

3 {B,; },
we may assume without loss of generality that the Bt form a descending chain

BlaB2
(otherwise, force this condition without losing the propeies of ). Let for v D the
rank function be defined by

r(v) := card ({ t; v Bt}).
Then r is a finite function, because , and Bt {r t} is easily seen. This

implies the desired equality .
5. Fixed points. Completeness is only a necessary condition for establishing the

existence of a fixed point for a map of a metric or a uniform space into itself. The
technical condition used in [6] was that the maps in question are contractions, so that
the distance between the image of two points is bounded by a constant factor times
the distance between the points themselves; the constant being strictly smaller than
unity. This is shown to have the effect that successive applications of the map will
eventually result in closer and closer points, thus yielding a Cauchy sequence that
must converge to the fixed point.

A similar strategy is employed in the case of a complete uniform space. Since
here numerical measurements of distances are not possible, one has to use other
techniques in establishing the convergence of the iterates of the map in question. This
has been discussed in 3, and we will show how to utilize this result in the context
of r-ideals over a domain.

It will be convenient to consider a general situation first. Let M be a complete
uniform space with uniformity g and let go be a base for g. Assume that q:M- M
is a contraction, and define for V go

R.,(p, V):= closure ((pm x p m+l)[ V]),
where

(mxm+l)[v]:-’{(tm(a), m+l(b)); (a, b) V}
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is the image of the basic neighborhood Vc M x M under the map (CruX (m+l), the
closure being topological in the product space M x M, where M is endowed with the
topology canonically generated by the uniformity that is based on go. Thus (x, y)
M x M is in Rm(, V) if and only if there exists a net ((a,, b,)nR) V such that

(x, y)= lim (p x pm+l)(an, bn).
nR

R (qg, maps basic neighborhoods into closed and nonempty subsets of the Cartesian
product. A useful condition for a fixed point may be derived from this observation:
if applying two subsequent iterations of to an arbitrary pair in V renders the images
more and more indistinguishable, or, topologically speaking, if R,(, V) is absorbed
eventually by the diagonal, then condition (A-4) establishing a fixed point is satisfied.

This condition is intuitively rather clear, and in order to formulate it we need the
topological framework which is sketched in 2.

PROPOSITION 5.1. If limm_. Rm(, V) exists for each V Co and is a subset of the
diagonal, then has a fixed point.

Proof. O. According to Theorem 3.3 it is enough to show that given x M, and
U1 go, there exists m t such that

((x), +(x)) u.
Since do is a base for d, there exists for U1 a neighborhood U do that is symmetric
(i.e., for which U-1= U), holds, such that U U c U, and for x there exists a basic
neighborhood V with the property that (x, (x)) V. Consequently,

’ke N: (ok(x), (k+l(x)) Rk(O, V)

holds.
(1) Let A* := limn_.oo R.(o, V) be the limit with respect to the Hausdorff uniformity.

Since the sequence (R.(o, V)). converges, we know that there exists an index no
such that

Vn >- no: gn(, V)c (U x U)(A*).

Thus (z, z, ’(x), n+(x)) U x U) for a suitably chosen z M and all such n. This
implies the desired property. [3

The condition given above is a bit strong and not very practical. First, the proof
shows that one need not insist on the convergence of the closures of ( X (0m+l)[ V]o
This has been done to assure a proper topological formulation ofthe sufficient condition
(otherwise, one would have to have resorted to a topology on the space of all subsets
ofM x M, a space that is too large to be topologized properly). Second, the convergence
is not easily checked, so the condition is not really useful, although it applies to the
situation in question as well.

Let us return to the space (D) of all tr-ideals of the domain D (note that now
we can do without the empty set). Assume that we have a contraction defined on
(D) and that furthermore a rank function r: D is defining the uniformity. Let

be the base determined by r, then * is Hausdortt. Define for each subset A D
its weight

r*(A) := min {r(d); d Af’ID}

(we adopt the convention that r*()= +).
The next lemma will be an auxiliary statement establishing the existence of a fixed

point. Intuitively, it describes what happens when the map makes the difference of
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the images of two ideals harder to discern than the ideals themselves. Call a map
go" 5(D) 5(D) discerning if r*(go(x) /X go(y)) > r*(x A y) holds whenever x y.

LEMMA 5.2. If go is discerning, then we can findfor every A, B M an index mo such
that

holds whenever m >-_ mo.
Proof (0) We show first that

Rm(go, GB)C GA

T := min { r*(al A a2); (al, a2) (id x go)[ GB]}

is a finite quantity. Assume on the contrary that T= +, then a --a2, whenever
(al, a2) (idx go)[Gn]. But this means that G {(x, x)} for some x (D). But since
the diagonal on (D) is a subset of Gz by definition, there is only one tr-ideal x on
D, thus the domain is trivial, and go is not discerning. Hence we have arrived at a
contradiction.

(1) Now an inductive argument will show that

-t" V(al, a)m (gomx gom+I)[GB]: r*(a A a) >- T+ m.

This is trivial for rn 0 by construction of T. Now assume that (+) holds for m, and
consider (al, a2)(gom+lXgom+2)[Gn], thus ap=go(bp) for some (bl, b2)
(gom X go"+I)[GB], consequently

r*(al A a2)= r*(go(bl) A go(b2))

> r*(bl A b2)

>=T+m.

(2) In (+) we may substitute Rm(go, GB) for (go" x gom+l)[Gu], since the former
is the topological closure of the latter, and we can find for each element in Rm(go, Gu)
a net in (gom x go"/l)[Gu] converging to it. Hence Proposition 4.4 actually justifies the
substitution.

(3) Since we may assume that A {r ->_ t} for some suitably chosen value t, Lemma
5.2 now follows from relation (+).

We are now in a position allowing us to formulate a fixed-point theorem adequate
for the considered situation.

PROPOSITION 5.3. Let go o(D)--> o(D) be discerning. Then go has a fixed point.
Proofi (1) We infer from Lemma 5.2 that for any x 5(D) and for any B

there exists m with

(gorn(x), gom+l(x)) e GB,

thus condition (A-4) is satisfied. To establish the existence of a unique fixed point, it
has to be shown that the condition (A-5) is satisfied, too. For this, let x and y be
tr-ideals. Because * is Hausdortt, we can find C g so that Gc does not contain
the pair (x, y), and we may find B /with (go (x), y) GB. From Lemma 5.2 we see
that eventually R,(go, Gn) Gc holds, so we find rn such that

(gom+l(x), gom+l(y)) (gom X gom+l)(go(X), y) Gc,

thus condition (A-5) indeed holds.
(2) It remains to be shown that go is a quasi contraction. Define for U /the

map F"/M by setting

F(U) := {(go(x), go(y)); (x, y) e U}
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then by construction (o(x),o(y))F(U) holds whenever (x,y)U. We have,
however, to establish the properties (A-l) as well as (A-2). Since o is discerning, we
have for A := {r >-n} the property

xo/ y c A implies o(x)/ o(y) c A,

which in turn establishes (A-l). In order to establish (A-2), we first observe that

F( U, U2)= F(U,) F( U2);

hence F is a homomorphism with respect to composing relations. From this, (A-2) is
easily inferred, since from what we have shown it is plain that

UNcU
holds for each U

6. Discussion. So far we have demonstrated that the metric completeness result
and the application of Banach’s fixed-point theorem in [6] are special cases of a
situation that may more generally be described by uniformities and by a fixed-point
theorem due to Landes. The metric defined in [6] was defined using a rank function,
and in turn the value of this function is determined by the construction of the special
kind of domain that MacQueen, Plotkin, and Sethi use. This domain is constructed
using a limiting process [6, 2.3] in which an increasing sequence of approximating
domains is built up. The rank of an element is then its height in that sequence.

The results proposed here suggest that one does not need to make use of this
limiting process, but that rather intrinsic properties of the uniformity are sufficient for
the constructions employed in [6] as far as the semantics of type expressions are
concerned. We want to demonstrate this with a simple example; rather than going
through the formalism of specifying a language with recursive types, we show how
one of the central specific results in [6] may be obtained using the framework sketched
in this note. For this, we assume that the domain D under consideration satisfies the
domain equation

D= Y+DxD

for some domain Y, where the equality actually is an order isomorphism. Thus
D yo + D x D holds, and we may identify (s, t) (D) x oCt(D) with the o--ideal
s x c D x D. We will consider the map induced by this identification; hence, the map

D) x o,(D) (Dx D)
P: (s,t) sxt,

and show that this is a strong contraction for a wide class of uniformities * on oCt(D).
DEFINITION 6.1. Let A (D) be a filter basis, then
(a) 4 is p-closed iff /A 4 /t o(D): A x I,.J x A c A;
(b) 4 is absorbing iff /s,tC(D)/Ag:lm: s’nxtk.JtxsmcA;
(c) 4 is suitable iff 4 is p-closed as well as absorbing.

Suppose for the moment that 4 is determined by a ranking function r which has the
additional property that

r(a, b) > max {r(a), r(b)}

holds, whenever a, b D; this is the case, e.g., in [6]. Hence,

={{r_-> n}; {r>_- n}#;, n e}

holds. It is immediate that 4 is suitable.



TOPOLOGICAL COMPLETENESS 989

Now fix for the general case an absorbing filterbase . We will show now that p
is a strong contraction for the uniformity *, where the attractor on is the identity.
For the sake of not duplicating arguments, we will restrict our attention to Ps At. p(s, t)
for some arbitrarily chosen s 5(D). Since the conditions (A-l) and (A-2) are obvious
for the identity on q3, and since (A-3) holds because is suitable, we will have to
focus on the conditions (A-4) and (A-5). Since is absorbing, we may find for A ,
5(D) an exponent m such that

Consequently,

which is equivalent to

(s)mtcA.

(s)m(sAsxt)cA,

(pm (t),p’+l(t)) GA.
(Here we have used the identity

Px(Q A R)=(P Q) A (P x g),

which is easily established using the indicator function 1M of a set M:

1M g := ifg 6 M then 1 else O fi
by observing the identities

and

1MN(g, h)- l4(g)" 1N(h)

1M/ N(g)= I1M(g)- 1M(h)[.
The argumentation above shows that Ps satisfies (Ao4), and the identity

((S) )< t) A ((s) X t) (S) X (t A t)

immediately yields condition (A-5).
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THE DISTRIBUTED FIRING SQUAD PROBLEM*
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Abstract. The distributed firing squad problem is defined in the context of a synchronous distributed
system where the correct processors operate in lock-step synchrony but do not share a global clock. If one
or more correct processors receive a command to start a firing squad synchronization, then at some future
time all correct processors must "fire" (formally, enter a special state) at exactly the same step. For various
fault models, upper and lower bounds are proved on the number of faulty processors that can be tolerated
and on the number of rounds of communication required between the reception of the start command and
firing. For example, if a firing squad protocol is resilient to fail-stop faults, then at least + rounds are
necessary and sufficient. For the case of Byzantine faults with authentication where the faulty processors
can take steps in between the synchronous steps of the correct processors, the firing squad problem can be
solved in + 5 rounds, provided that n > 3t, where n is the number of processors and is the number of
faults, and the problem cannot be solved at all if n _-< 3 t. Moreover, in the case that n =< 3 t, the impossibility
of a firing squad protocol holds even for a weaker "timing fault model" where all processors generate
messages correctly according to the protocol, but the faulty processors can affect the system by slightly
slowing down or speeding up messages.

Key words, firing squad problem, Byzantine generals problem, synchronization, coordination, fault
tolerance, distributed computing
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1. Introduction. Many fault-tolerant distributed algorithms assume a synchronous
system, in which processing is divided into synchronous unison "steps" separated by
rounds of message exchange (see, e.g., [11], [20], [25]). A message sent at step s from
a correct processor p to a correct processor q is received by q at step s/ 1. This
assumption is motivated by the impossibility results of [15] and [8], which show that
if the system is asynchronous then there is no protocol for distributed agreement
tolerant to even one benign processor failure. There are various ways to maintain
synchronous-steps in an unreliable distributed system. For example, one can have
hardware that sends a periodic signal to all processors. Another common assumption
is that all processors begin the algorithm simultaneously, i.e., at the same step. Typically,
however, an algorithm is executed in response to a request from some specific processor
that may in turn be responding to some external request. If the given processor is
correct then all correct processors learn of the request simultaneously, so they can
indeed begin the algorithm in unison. However, if the processor is faulty then the
correct processors may learn of the request at different steps.
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In this paper we justify the design assumption of simultaneous starts. Specifically,
we provide algorithms to solve the associated synchronization problem that we call
the distributed firing squad problem. An algorithm for the distributed firing squad
problem has two properties"

(1) If any correct processor receives a message to start a firing synchronization,
then at some future time all correct processors will "fire" (formally, enter a special
state); and

(2) The correct processors all fire at exactly the same step.
Our principal results, which are summarized in this Introduction, are for the case in
which the processors, although operating in lock-step, are not assumed to share a
common view of the current "global" time. We also present a simpler algorithm for
the case in which such a common view is assumed.

The tWO complexity measures we study are fault tolerance, the maximum number
of faulty processors that can be tolerated, and time, the maximum number of rounds
of message exchange taken by the algorithm, starting with the step at which some
correct processor receives a message to start a firing synchronization and ending with
the step at which all correct processors fire. We are also interested in the communication
complexity of an algorithm, that is, the total number of message bits sent by correct
processors, but only to the extent of distinguishing polynomial from exponential
communication complexity. Below, n denotes the number of processors in the system;
denotes the maximum number of faults that can be tolerated by a particular algorithm,

and any such algorithm is said to be t-resilient.
In the case of fail-stop faults (the most benign type of fault usually studied, in

which a faulty processor follows its algorithm correctly but simply stops at some point),
it is easy to find a t-resilient distributed firing squad algorithm for any number <= n
of faults that halts in + 1 rounds. This was observed independently by Burns and
Lynch [3]. By reducing the Weak Byzantine Agreement (WBA) problem to the dis-
tributed firing squad problem, we can use a lower bound of Lamport and Fischer 18]
on the time complexity of the WBA problem to show that any t-resilient algorithm for
the distributed firing squad problem requires + 1 rounds for fail-stop faults, and
therefore also for more malicious types of faults. Thus, the situation for fail-stop faults
is well understood. Burns and Lynch [4] give a distributed firing squad algorithm for
the case of Byzantine faults without authentication (the most serious type of fault
usually studied, where faulty processors can exhibit arbitrary behavior); we say more
about this case below. The main results in this paper concern Byzantine faults with
authentication. Byzantine processors can exhibit arbitrary behavior, but we assume
that every processor can sign messages in such a way that the signature of a correct
processor cannot be forged by a faulty processor (see, e.g., [11]), and the signatures
are common knowledge.

In trying to determine the maximum fault tolerance of the distributed firing squad
problem in the authenticated Byzantine case, we found it necessary to distinguish
between several types of faulty behavior, since these distinctions affect the fault
tolerance. In rushing, a Byzantine faulty processor can receive, process, and resend
messages "between" the synchronous steps of other processors. Figure l(a) shows a
normal communication round involving three correct processors A, B, and C, with A
sending messages to B and C. Fig. l(b) shows a similar round in which processor C
is faulty, takes a step between the steps of the correct A and B, computes its response
to the message it received from A, and then "rushes" this response to B in the same
round. A special case of rushing is the timing fault model, where faulty processors
never fail and always follow their algorithms correctly, but may take steps at irregular
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FIG. 1. (a) A communication round with three correct processors. For simplicity, only the messages sent
by A at time s are shown. (b) The processor C rushes.

times and may experience slight delays or accelerations in communicating with the
other processors. Rushing and timing faults are realistic types of faults whenever there
is sufficient uncertainty in message transmission time. The length of a communication
round must be chosen as large as the maximum possible transmission time between
correct processors, but if a message happens to be delivered to a faulty processor in
time less than this maximum, the faulty processor has the opportunity to rush.

We must also distinguish the case where faulty processors can sign messages using
the signature functions of other faulty processors, which we call collusion, and the case
where a faulty processor has only its own signature function. Collusion is unlikely to
occur as a result of a random failure, but it could occur if the faulty processors were
controlled by a malevolent intelligence that allowed faulty processors to share signature
keys.

Table 1 summarizes our results and the results of [4] for the different fault models.
Each entry gives r/min, the smallest number n (n->_ 2) of processors for which there
exists a t-resilient distributed firing squad algorithm (t -> 1). Unless otherwise indicated,
all algorithms require at most + c rounds, where c-<_ 5 is a constant independent of
n and t, and the total number of bits of communication sent by correct processors is
polynomial in n. In proving lower bounds on the minimum n, we make the usual
assumption that the receiver of a message knows the identity of the sender; however,
this assumption is not needed by our algorithms because the necessary deductions
about the sender’s identity can be made in the fault models we consider.

There are several interesting things to note about these results. First we should
emphasize that the lower bound n _-> 3 + 1 holds for the timing fault model in which
all processors follow the algorithm correctly. The only way faulty processors can affect
the system is by taking steps at irregular times and unknowingly delaying and speeding
up certain messages by small amounts. Second, even though our bounds on the
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TABLE

Fault nmi for t-resiliency Remarks

fail-stop
Byzantine with authentication

no rushing, no collusion
collusion, no rushing 5t/3 < nm <= 2t + 2
rushing, no collusion 3t +
rushing and ollusion 3t +

timing faults 3 +
Byzantine without authentication 3t + 3

Remarks. (1) Due independently to Burns and Lynch [3]. (2) Lower bound 5t/3 <
n,i,, proved only for >- 3; algorithm with 2t + processors takes 2t + rounds. (3)
Algorithm due to Burns and Lynch [4]; algorithm uses either exponential communication

or more than + O(1) rounds. Except as noted in 2 and 3, running time of all algorithms
is + c, c <= 5, and communication complexity is polynomial in n.

minimum n in the case of collusion but no rushing are presently not tight, the bounds
are sufficient to show that collusion does decrease fault tolerance when compared to
the case of no collusion and no rushing, and rushing alone admits less fault tolerance
than collusion alone. The distinction thus shown between these three fault models is
(to us) an unexpected result of this work.

Burns and Lynch [4] solve the distributed firing squad problem in the unauthenti-
cated Byzantine case essentially by adapting an agreement protocol. Since all known
unauthenticated agreement protocols either use exponential communication, use more
than t+ O(1) rounds, or require n > 8t [2], [5], [9], [10], [20], [24], their distributed
firing squad solution has the same property. Recently, Moses and Waarts [24] have
devised a new unauthenticated agreement protocol; together with the work of Burns
and Lynch, this gives an unauthenticated distributed firing squad protocol using
polynomial communication, n > 8t processors, and the optimal time + 1. By using
signatures, we achieve polynomial communication, time t+5, and the maximum
resiliency t= [(n-1)/31. Our lower bounds n>3t (n>5t/3) for rushing (collusion)
suggest that the approach of directly adapting agreement protocols to the distributed
firing squad problem will not work in the authenticated case, since there are authenti-
cated agreement protocols tolerant to any number of failures 11 ]. For the same reason,
the distributed firing squad problem seems to be different from the clock synchroni-
zation problem studied in [16], [19], [21], [26], where the object is to bring the clocks
of correct processors "close" together: in the authenticated Byzantine case, there is a
clock synchronization algorithm tolerant to any number of failures 16]. Our problem
is also different from the version of the firing squad problem that was proposed in the
late 1950s [23]. That version of the problem was interesting because the processors
were finite state machines which were connected in a linear array so each processor
could count only to some fixed constant independent of n; however, faults were not
considered. In our version of the problem, the difficulty arises not from limitations on
the processors or communication network (we assume a completely connected system
of powerful processors) but rather from the possibility of processor and timing faults.

In 2 we give definitions. Section 3 contains results (firing squad algorithm and
lower bound) for the case of no collusion and no rushing, 4 gives results for rushing
and timing faults, and 5 considers the case of collusion but no rushing. In 6 we
mention some related results, such as the application of firing squad ideas to the
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problem of Byzantine Agreement in the case that the processors do not all start at the
same round, and results concerning the distributed firing squad problem where the
processors share a common view of global time.

2. Definitions. For simplicity we give definitions for a single occurrence of a firing
squad synchronization. Let p, P2,"" ", Pn denote the processors in the system. For
technical reasons we introduce another "processor" w, whose only purpose is to start
a synchronization; w does not receive messages from the pi’s. In reality w might be
another process running within one of the Pi. Formally a distributed firing squad
algorithm is specified by an infinite set of messages M and for each processor Pi an

infinite set of states Qi, a state transition function cri, and a sending function/3i, where

O’i Oi m+1"* Oi,

i Oi Mn+l Mn.
The inputs to O" and/3i are the current state and an (n + 1)-tuple of received messages,
one from each processor p,..., p,, w. The function ri gives the new state, and /i
gives an n-tuple of messages (m,. ., rn) such that mJ is sent to p for each j. There
are special messages , the null message, and "Awake", the awake message, which
is sent by w to start a synchronization. For each there are states qo and q. in Qi, the
quiescent state and the firing state, respectively, where qo # q.r. In addition,

oi(qo, ," ", ) qo,

/i(qo, ,""", ) (,""", ).
We introduce the concept of global time as an expositional convenience. The

individual processors have no knowledge of global time. We assume that processors
take steps at global times specified by nonnegative real numbers. A run is specified
by giving, for each processor p,..., p,, w (including both correct and faulty pro-
cessors), a list of nonnegative real numbers that specifies the times at which the
processor takes steps. A message sent from a processor p to a processor q at time s is
received by q at time s’, where s’ is the smallest s’> s such that q takes a step at s’.
(If q receives more than one message from some p at some step, then the message
sent at the latest time is used by the transition functions; since this occurs only if either
p or q is faulty, this convention is not critical.) Whenever w takes a step, it sends the
awake message to some (possibly empty) subset of the pi’s and it sends the null message
to the rest.

A processor Pi is correct in a run R if
(1) Pi takes its first step at time 0 in state q0 receiving messages (, ,..., ),

and thereafter takes steps at successive integer times 1, 2, 3,...
(2) Pi executes its algorithm (transition functions) correctly; and
(3) if authentication is assumed (see below), then no other processor p signs any

message using the signature function of Pi.
A run R is active if some correct processor receives a non-null message at some

step; define awake(R) to be the earliest such time (necessarily integer). If a correct pi

receives a non-null message for the first time at time s, we say that Pi awakens at time
s. Define firei(R) to be the time of the first step in R during which Pi makes a transition
into state q.l (undefined if Pi does not enter qs).

A distributed firing squad algorithm is t-resilient with respect to a given type of
faulty behavior if for any active run R in which at most of the processors p, , p,
are faulty and in which the faulty processors conform to the given type of faulty
behavior, there is a (necessarily integer) time fire(R)>= awake(R) such that firei(R)=
fire(R) for all such that Pi is correct in R. The time complexity of the algorithm is
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the maximum offire(R)-awake(R) over all such runs R. (Note that w is not counted
among the faulty processors no matter how it behaves.)

Since the definitions above consider a processor to be faulty throughout a run if
it fails at any time in the run, the definitions would seem to allow a scenario S where
some processor Pi first fails after time fire(R); thus, the definitions do not require pi

to fire with the other processors even though it is actually "correct" throughout
execution of the algorithm. It is sufficient to note, however, that any such scenario can
be modified to a scenario S’, where p is correct throughout the entire (infinite) run,
and all processors behave exactly as they do in S from time 0 through time fire(R).
In the modified S’, Pi violates the definition of correctness. We find it convenient, both
for definitions and for proofs of correctness, to consider a processor to be either correct
or faulty throughout an entire run rather than to define the first time when a faulty
processor actually exhibits faulty behavior.

We now define various types of faulty behavior. A faulty processor Pi is fail-stop
if it operates as a correct processor up to some time s, at time s some nonempty subset
of the messages pi is supposed to send are replaced by null messages, and for all
subsequent steps p sends only null messages. A processor is Byzantine if its behavior
can deviate in any way from the behavior specified by its transition functions. A special
case of Byzantine faultiness is Byzantine faults with authentication, where each pro-
cessor p can sign messages using a private signature function Ep in such a way that
the signature of a correct processor cannot be forged by any other processor. In this
case, if processor q receives a message Ep(m) from a third processor r, then q knows
that if p is correct then p actually sent the message Ep(m) at some previous time. We
also let E denote the signature function of processor p. A Byzantine faulty processor
rushes if it takes some step at a noninteger time. In this case, messages to and from
faulty processors may take less than one round to be delivered. Faulty processors p
and q collude if p signs a message using the signature function of q. In this case q is
considered faulty, even though the messages it sends may be correct.

Finally we define the timing fault model Runs in this model have the following
properties:

(1) all processors execute the algorithm correctly;
(2) correct processors take steps at times 0, 1, 2,.
(3) faulty processors take steps at times 1/2, , ,...
(4) messages between two correct processors or between two faulty processors

take one unit of time to be delivered; and
(5) messages between a correct and a faulty processor take either 5 unit of time

or 5 units of time to be delivered.
It is not hard to see that the timing fault model is a special case of authenticated

Byzantine faultiness with rushing (but no collusion). The model with rushing can
simulate a delivery time of simply by having a Byzantine processor either delay
sending or delay receiving the message. For example, if in the timing fault model the
faulty processor p sends a message rn at time which the correct q should receive at
time 3, then in the model with rushing the (now Byzantine) p simply holds rn and
sends it to q at time -}. Therefore, giving an algorithm for the model with rushing yields
a result for both models, as does proving a lower bound on n for the timing fault model.
The communication complexity of an algorithm is the maximum total number of

message bits sent by correct processors, between the time when a correct processor
first awakens and the time when all correct processors fire. The communication
complexity is expressed as a function of n. Of course, there is no way to bound the
number of bits sent by Byzantine faulty processors. For each of our algorithms it is
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easy to see that exceedingly long messages sent by faulty processors never cause a
correct processor to send exceedingly long messages. This is true because each correct
processor has, at each step of the algorithm, a bound on the length of messages it
expects to receive. Once the length of a message exceeds that bound, the message can
be ignored.

As the firing squad problem is defined above, any single Byzantine faulty processor
can initiate a firing synchronization. One way to limit the ability of faulty processors
to start extraneous synchronizations in models with authentication is to have w sign
the awake message with its own unforgeable signature. A correct processor considers
as null any received message that does not contain w’s signature. The necessary changes
to our algorithms are trivial (in algorithms that count the number of signatures on a
message, the signature of w is not counted). This still allows a faulty w to start
extraneous synchronizations, but this is unavoidable in any model where we allow a
single processor or an external agent to start a synchronization.

Processors as defined above are deterministic. Coan and Dwork [6] have studied
probabilistic protocols for firing squad synchronization and have found that probabilis-
tic protocols are essentially no better than deterministic ones for the firing squad
problem.

3. No rushing and no collusion.
3.1. Upper bound. We begin with a simple algorithm that tolerates any number

of fail-stop or authenticated Byzantine faults. It does not tolerate rushing, timing faults,
or collusion. This algorithm was discovered independently by Burns and Lynch [3].
The basic idea is that since any processor, faulty or otherwise, can add at most one
signature per round, we can use the number of signatures on a message as a clock,
giving a lower bound on the time elapsed since the protocol was initiated. A correct
processor fires as soon as it knows that at least + rounds have elapsed. The details
of the algorithm and its proof of correctness are similar to those of the Dolev-Strong
algorithm for authenticated Byzantine agreement 11 ].

THEOREM 3.1. In the model with authenticated Byzantine failures (but no rushing
or collusion) there is a t-resilient distributed firing squad algorithm for any number n >-

ofprocessors. The algorithm has time complexity of + rounds, and it uses an amount

of communication polynomial in n.

Proof Each processor p participating in the protocol has a private clock c, that
is completely under the control of p. Initially, c, -1. A message rn is proper if it has
the form

m EiI(Ei2(’’" Eil, (Awake)..-))
where E! is the signature function of Pi, and the k signatures are by distinct processors.
The length of the proper message m, denoted Iml, is the number of signatures appearing
in m (i.e., k above). The awake message has length 0. A proper message m is acceptable
to p if and only if Iml > cp. A proper message m is new to p if and only if p’s signature
does not appear in m.

Upon first awakening, p sets its clock to Iml, where m is any acceptable message
of maximum length received by p. If cp + 1, then p fires; otherwise, p signs m and
broadcasts the result En(m). If all messages received by p in this first step are
unacceptable, then p sets its clock to 0 and broadcasts Ep(Awake).

At each subsequent step, if p receives any acceptable message, p arbitrarily chooses
one such message m of maximum length and sets cp to ]m]. If cp >-_ + 1, then p fires;
if cp < + and m is new to p, then p signs m and broadcasts the result Ep(m). If no
acceptable message is received, p increments cp by one. Again, if cp _-> + then p fires.
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This completes the description of the protocol for a correct p.
LEMMA 3.1.1. For all k with k >-0 and for any message m, at least k rounds are

required to add k distinct signatures to m.

Proof Each processor knows at most one signature function and there is no
rushing. 13

LEMMA 3.1.2. In any execution of the protocol resulting in a firing, all correct

processors fire simultaneously.
Proof Let r be the earliest step at which some correct processor fires, and let p

be a correct processor that fires at step r. We will show that for all correct processors
q, Cq>- t+ 1 by the end of step r, so q fires at r.

There are two cases to consider, according to whether or not p receives
an acceptable message at step r. If p receives an acceptable message m at step r,
then m has at least t+l signatures. Without loss of generality, let m=
Ek(Ek-(’’" E(Awake)... )), where k =]ml=> t+ 1. Clearly, if Pk is correct then all
correct processors receive m at r, and so all correct clocks have value at least + by
the end of step r. If Pk is faulty, then let Pi be the last correct processor whose signature
appears in a substring mi E(... E(Awake)...) of m, and let s-1 be the step at
which m is sent by p. By Lemma 3.1.1 at most one signature can be added to mi in
each step, so r- s _-> ]m]-]mil. Furthermore, since p is correct, the clocks of all correct
processors have value at least ]mi] by the end of step s. Since the clock of a correct
processor is incremented by at least at each step, by the end of step r the clocks of
all correct processors will have value at least

Im,[+(r-s)lm,l+(lml-lml)--lml t+

so all correct processors will fire at step r.
In the second case where p receives no acceptable message at step r, let be such

that step r-i is the last step at which p broadcasts. (Since this happens when p first
awakens, is well defined.) Let Ep(m) be the message broadcast by p at r-i. Since
this message has length Iml + 1 and since all correct processors receive this message at
step r- + 1, by the end of step r- + all correct processors have clock value at least
Iml + 1. Therefore, the clocks of all correct processors have value at least [m + by the
end of step r. We now want to argue that p increments its clock by exactly at each
step j with r- + _-<j <_- r. Suppose otherwise that p increments its clock by more than
1 at step j, and let m’ be the acceptable message received at step j which causes this
increment. Since p receives no acceptable message at step r, we must have j < r. If m’
is not new to p at step j, then using Lemma 3.1.1 as in the preceding paragraph, it is
easy to show that m’ could not cause p to increment its clock by more than 1. If m’
is new to p, then by definition of the algorithm p would broadcast at step j, contradicting
the choice of i. Therefore, such a j and m’ cannot exist. Having bounded p’s clock
increment at each step j with r-i+ l_-<j_-< r, it follows that Cp Iml+i at the end of
step r. Since p fires at r, we have Iml+ i-_> t+ 1. Thus all correct processors fire at
step r.

LEMMA 3.1.3. Let R be any active run and let s be the earliest time when some
correct processor p awakens in R. Then p fires at time s + + or earlier.

Proof Upon awakening, p sets its clock to some value cp >= O. At every step cp is
incremented by at least one, and p fires when Cp >= + 1. 13

It is now easy to complete the proof of Theorem 3.1. By Lemma 3.1.3, if any
correct processor awakens there is a firing, and by Lemma 3.1.2 all correct processors
fire simultaneously. Lemma 3.1.3 also implies that the time complexity of the algorithm
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is at most + rounds. Furthermore, at each step each correct processor broadcasts
at most one message. Since this message is proper, it requires only polynomial in n
bits. Thus the communication required is polynomial in n.

Obviously, the algorithm of Theorem 3.1 also works for fail-stop faults: instead
of signing a message rn with the signature function En, the processor p simply attaches
its name to rn.

3.2. Lower bound. We now show that the time complexity of this algorithm is
optimal by reducing the Weak Byzantine Agreement problem (WBA) [17] to the
distributed firing squad problem. Optimality follows from the fact that WBA requires
at least + 1 rounds 18].

In the WBA problem, all processors start the algorithm at the same global time
(say, time 0), and each processor has a binary initial value. By maintaining a counter,
all correct processors have a common notion of global time. A protocol solves WBA
if (1) every correct processor eventually reaches a decision; (2) no two correct processors
reach different decisions; and (3) if all initial values are the same, say v, and there are
no failures, then v is the value decided. The following result shows that WBA reduces
to distributed firing squad at no cost in running time.

THEOREM 3.2. Let A be a distributed firing squad algorithm that is t-resilient to

fail-stopfaults (respectively, unauthenticated Byzantinefaults) and that requires k rounds
between awakening and firing in the execution in which all the processors awaken simul-
taneously and no failure occurs (note that k is unique since the system is completely
deterministic in this case). Then there exists an algorithm for WBA that is t-resilient to

fail-stop faults (respectively, unauthenticated Byzantine faults) and that always halts in
k rounds.

Proof Consider an instance of WBA in which processor Pi has initial value vi. If
vi 0, then p begins simulating A at time 0. That is, p acts as if it received the awake
message from w and null messages from the rest. If vi 1, then p begins simulating
A at time 1. That is, p sends null messages during the first round and acts as though
it received the awake message from w at time (p could receive non-null messages
from other processors at time in this case if other processors had initial value 0). If
the simulation of A causes p to fire at time k or earlier, then pi decides 0 at time k;
otherwise, p decides at time k.

Correctness of A immediately implies that all correct processors decide on the
same value, since either all correct processors simulate a firing at a time _-<k or none
do. If all processors begin with value 0 and there are no failures, then by choice of k
each processor will simulate a firing at time k, so the decision will be 0. However, if
all begin with and there are no failures, then all processors will simulate a firing at
time k + 1, so the decision will be 1.

COROLLARY 3.3. (1) Let <--n- 2. Any distributed firing squad algorithm resilient
to fail-stop faults requires at least + 1 rounds. Moreover, this is true even if the order
in which processors are sent to in a round is fixed a priori. It is also true even in all
executions in which all processors are correct.

(2) Any distributed firing squad algorithm resilient to unauthenticated Byzantine
faults requires at least 3 + processors.

Proof The proof is immediate from the preceding theorem and the corresponding
bounds for WBA [13], [14], [17], [18], [22].

Remark. To close the gap between Theorem 3.1 and Corollary 3.3(1) for n _-< -<

n, note that if we take n 2 in the algorithm of Theorem 3.1, then the algorithm is
in fact n-resilient. If there is only one correct processor p, then p will fire within +
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(= n- 1) steps after awakening, since cv is incremented by at least at each step. If
there are no correct processors, then there is nothing to prove.

In the next section the lower bound of Corollary 3.3(2) is strengthened to hold
in the model with authentication and rushing.

4. Rushing and timing faults.
4.1. Upper bound. This section contains tight bounds on fault tolerance for timing

faults and authenticated Byzantine faults with rushing. The following result gives the
principal algorithm of the paper.

THEOREM 4.1. In the model with Byzantine failures and authentication, in which
faulty processors can both rush and collude, there is a t-resilient distributed firing squad
algorithm requiring + 5 rounds, n >= 3 + processors, and communication polynomial
in n.

Before giving the details of the algorithm and its proof of correctness, we begin
with an informal discussion of the principal ideas. Our protocol is composed of a set
of identical subprotocols executed independently and in parallel. A processor initiates
a subprotocol by broadcasting its signature. Let p be an arbitrary (possibly faulty)
initiator, and consider a set of processors all receiving p’s signature at the same step.
In some sense these processors are synchronized, in that they share a common idea
of when they first heard from p, although no processor in the set knows which other
processors are in the set. If the set of synchronized processors is sufficiently large, then
because they are synchronized these processors can run an agreement protocol similar
to the Dolev and Strong protocol 11 that assumes synchronous start. The processors
are essentially agreeing on the members of the set. If the agreed upon set is sufficiently
large, then correct processors will order a firing. In particular, a correct processor in
the set orders a firing only if there are at least n- t-> 2t + processors in the agreed
upon set. Of these, at least + are correct, synchronized processors. Thus a correct
processor orders a firing only if at least + correct processors do so simultaneously.
Now, consider a processor q receiving at least + commands to fire. Since q knows
at least one of these messages is from a correct processor, it knows at least + are.
Thus q knows that every processor receives at least + commands to fire, and therefore
that every processor knows every processor has received these commands, and so on.
In short, it becomes common knowledge that every processor has received + com-
mands to fire, so it is safe to fire.

Proof of Theorem 4.1. As stated above, the protocol is composed of a set of
identical subprotocols executed independently and in parallel. Specifically, as each
correct processor awakens it initiates a core protocol. If the core protocol is successfully
completed, then the correct processors fire upon completion. An execution of the core
protocol initiated by a correct processor will complete successfully, unless a firing
occurs earlier due to the completion of a different execution of the core protocol. An
execution of the core protocol initiated by a faulty processor may not cause a firing,
but if it does then all correct processors fire simultaneously. (Thus, it would be sufficient
to have any + processors initiate the core protocol.) In the following, if a correct
processor receives the same message at different times, all receptions but the first are
ignored; this prevents a faulty processor from doing any damage by taking a message
that was broadcast by a correct processor and resending it at a later time.

A processor p initiates a core protocol by broadcasting its signature, Ee(p). Each
processor (including p itself) that receives Ep(p) signs it and broadcasts it. Each
processor q then attempts to form a core for p, that is, a list of the form

(Ei,(Ep(p)), Ei(Ep(p)))
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where k_-> n- and each of the k copies of Ep(p) is signed by a distinct processor.
The signatures Ei, ,’’’, Ei,. belong to the core, and the core contains these signatures.
Intuitively, a core is a set of processors which claim to have received Ep(p) at the
same time.

A notarized core for p is a list of the form

(E,,(C,), E,,(C,))
where k -> n and the C’s are (possibly different) cores for p, each signed by a distinct
processor.

We now describe how a processor q participates in the core protocol initiated by
p. (Processor p participates in the core protocol initiated by itself.) Let s be the global
time when q receives E(p). Then q tries to form a core for p at time s + 1. This is
done by looking for a set of messages { E, (Ep (p)),. , Eik (Ep (p))} received at time
s + where k => n- and where each of the k copies of E(p) is signed by a distinct
processor. This is the only time at which q tries to form a core for p, and q includes
in the core only messages received at time s + 1. If q forms a core then q includes in
the core all messages of the form signature(E,(p)) received at time s + 1. If a core is
formed, q signs it and broadcasts it. Processor q also tries to form a notarized core
for p at time s + 2. This is the only time when q tries to form a notarized core for p.
A notarized core, if formed, contains all messages of the form signature(core for p)
received at time s +2. If a notarized core N is formed by q at this step, then N is
considered to have been "received" at this step. Starting with the second step after
Ep(p) was received, each correct processor q does the following (regardless of whether
or not q formed a core for p or a notarized core for p).

If q receives message m, q checks if m is acceptable in the following sense:
(1) m E,(E_("" Ei.(N) )), where N is a notarized core for p and each of

the k signatures (k =>0) is distinct (m is said to have length k, denoted
(2) q’s signature belongs to at least n 2t of the cores in N (we say that q supports

N); and
(3) q first received Ep(p) k / 2 steps back (this condition implies that at any given

step of q, messages of only one particular length are acceptable).
An acceptable message m as in (1) is new to q if none of the signatures

E,, E.2," ", Ejk is by q. If q finds one or more messages of length k that are new and
acceptable, q chooses one such message m arbitrarily and broadcasts Eq(m), ignoring
the rest. Finally, if q receives an acceptable message m of length + 1, then q signs
and broadcasts "fir%". A correct processor fires at step f if and only if at step f it
receives at least + commands "firep" signed by different processors.

Lemmas 4.1.1-4.1.4 show that the core protocol causes a firing if the initiator is
correct. For these lemmas, let p be a correct processor initiating a core protocol at
time r.

LEMMA 4.1.1. At time r + 2 all correct processors can form a core for p containing
the signature of every correct processor, and at time r + 3 all correct processors can form
a notarized core for p.

Proof Since p is correct, all correct processors receive Ep(p) at time r+ 1. All
correct processors q broadcast Eq (Ep (p)) at time r + 1, and these messages are received
at time r + 2. Since there are at least n- correct processors, every processor receives
at least n- messages of the form Eq(Ep(p)) signed by distinct processors. Thus all
correct processors can form a core at time r + 2. Furthermore, since a correct processor
puts all messages E(E,(p)) received into the core, for every correct processor q the
message Eq(Ep(p)) appears in the cores formed by the correct processors.
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A similar argument shows that every correct processor can form a notarized core
for p at time r + 3.

LEMMA 4.1.2. Let N be any notarized core for p. Then every correct processor q
supports N.

Proof A notarized core contains at least n-t cores, each signed by distinct
processors, so at least n-2t of the cores contained in N were formed by correct
processors. By Lemma 4.1.1 all these n -2t cores contain the signature of every correct
processor.

LEMMA 4.1.3. For all i, 0 <-_ <= t, at time r + 3 + at least one correct processor receives
a new acceptable message of length i.

Proof The proof is by induction on i.
Basis 0. By the previous two lemmas every correct processor forms a notarized

core which it supports at time r+3. By convention, this notarized core is a new
acceptable message "received" at time r + 3.

Assume the lemma is true inductively for (i => 1). Thus at time r + 3 + (i 1)
r+ + 2 some correct processor receives a new acceptable message of length i-1. It
signs this message and broadcasts the resulting message m of length with notarized
core N. The message m is received at time r+ i+3 by all correct processors. Since
there are n _-> 2t + 1 correct processors, at most of which have signed m, and since
by Lemma 4.1.2 every correct processor supports N, m is acceptable to some correct
processor that has not yet signed it, so the induction holds.

LEMMA 4.1.4. If a correct processor p initiates a core protocol at time r, then the
core protocol runs to completion and the correct processors fire at time r + + 5.

Proof By Lemma 4.1.3, at time r+3 + at least one correct processor receives
a new acceptable message m. Thus by time r+4+ every correct processor receives
an acceptable message of length t+ 1, so all correct processors broadcast "firep".
Since there are at least n- > + correct processors, every processor receives at
least + 1 commands to fire at time r + 5 + t, so a firing will indeed take place at time
r+5+t.

We now show that for an arbitrary initiator p, the core protocol never causes two
correct processors to fire at different times. Let p be a possibly faulty processor initiating
a core protocol. If S is a set of processors, we say that S forms a core for p if any
processor in S forms a core for p. A group is a maximal set of correct processors
receiving Ep(p) at the same time. Let G be a group and let s be the time at which the
members of G receive Ep(p). Let H be the set of correct processors not in G.

LEMMA 4.1.5. If G forms a core for p, then H does not form a core for p.
Proof First we observe that if G forms a core, then the core contains no signatures

of processors in H. Similarly, no signature of a processor in G is contained in a core
formed by any processor in H.

If G forms a core for p, then there exists some g in G that received at least n-
messages of the form Eq(Ep (p)) at time s + 1. Since none of those messages were sent
by processors in H, we have IHI =< t. Thus even if the processors in H form a group
and faulty processors cooperate in helping H to form a core, the total number of
cooperating processors is 2t < n- t, so H cannot form a core.

LEMMA 4.1.6. If G forms a core for p and if any processor forms a notarized core
Nfor p, then every processor in G supports N.

Proof Every notarized core N contains at least n cores, at least n -2t of which
were formed by correct processors. Since no processor in H forms a core at least n -2t
of the cores in N were formed by processors in G and therefore contain all the
signatures of all the processors in G.
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LEMMA 4.1.7. Let N be a notarized core for p. If some g in G supports N then
(1) all processors in G support N, and
(2) no processor in H supports N.
Proof We will show that if g belongs to n- 2t of the cores in N, then G forms

a core for p. It follows by Lemma 4.1.6 that every processor in G supports N. This
will give us (1). Furthermore, by Lemma 4.1.5 if G forms a core, then H does not.
Since neither processors in G nor in H form cores containing signatures of processors
in H, the only cores that contain processors in H are formed by faulty processors.
Thus, there can be at most < n- 2t of them, so we have (2).

It remains to show that if g belongs to at least n- 2t > of the cores in N, then
G forms a core. This is immediate from the fact that no processor in H forms a core
containing elements of G. Thus, if g appears in more than cores, at least one of these
was formed by some processor in G.

LEMMA 4.1.8. Ifany processor in G everfinds a message acceptable, then G contains

at least n- 2t processors.
Proof Let m be acceptable to some g in G and let N be the notarized core of

m. Of the n-2t_-> + cores in N containing g, at least one is signed by a correct
processor. Let q be such a correct processor and let C be the core in N signed by q;
i.e., Eq (C) has the form

E(C) ((..., E((p)),...)).

Of the n processors whose signatures belong to C, at least n -2t are correct. These
n- 2t correct processors (one of which is g) all wrote to q at the same time, indicating
that they received Ep(p) at that time. Since no processor in H received Ep(p) at the
same time as g, no processor in H belongs to C. Since the correct processors are in
either G or H, it follows that G contains at least n-2t processors.

LEMMA 4.1.9. Let m be a message that is new and acceptable to processor g in group
G at time z. Then Eg(m) is acceptable to all processors in G at time z + 1.

Proof Let N be the notarized core of m. One of the conditions of acceptability
is that g supports N. By Lemma 4.1.7, every processor in G supports N. By condition
(3) of acceptability, g first received Ep(p) at time z-lm1-2, as did all other processors
in G (by definition of a group), so every processor in G first received E,(p) at time
(z+l)-IEg(m)l-2. Thus every processor in G finds Eg(m) acceptable at time
z+l.

LEMMA 4.1.10. Let f be the earliest time at which some correct processor q fires (as
a result of the core protocol initiated by p). Then all correct processors fire at time f

Proof Since q fires only if it simultaneously receives at least + messages "firep",
some correct processor g sent "firep" at time f- 1. Therefore, g received an acceptable
message m of length t+l at time f-1. Let G be the group of g. Without loss of
generality, let

m E,+,(E,(... E,(N)...)).

Let c--pj be a correct processor among the + processors that signed N. Let

m’= Ej_l(" E,(N) ).

Since c finds m’ acceptable, c supports N. Since g finds m acceptable, g supports N.
It follows from Lemma 4.1.7(2) that c belongs to G. Let z be the time when c receives
m’. By Lemma 4.1.9, all processors in G find E(m’) acceptable at time z + 1. Further-
more, by Lemma 4.1.8, G contains at least n-2t => + processors, so there will be
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some processor in G that has not yet signed N, provided IE,(m’)l-< t. By repeated
application of Lemmas 4.1.9 and 4.1.8, all processors in G receive an acceptable
message of length + at time f- 1, so they all broadcast "firep" at time f- 1. Recall
that G contains at least t+ processors. It follows from the definition of the core
protocol that all correct processors fire at time f.

The proof of Theorem 4.1 follows directly from Lemmas 4.1.4 and 4.1.10. It is
clear from the definition of the protocol that the number of bits of communication is
polynomial in n.

4.2. Lower bound. We next give a matching lower bound, n -> 3 + 1, for the timing
fault model. As noted in 2, the lower bound of Theorem 4.2 holds also for the fault
model of Theorem 4.1 (even without collusion).

THEOREM 4.2. In the timing fault model there is a t-resilient distributedfiring squad
algorithm only if n >= 3 + 1.

Proof Consider first the proof that there is no algorithm for and n 3. We
consider four scenarios with three processors, A, B, and C, in each. Processor C is

faulty in Scenarios and 4, B is faulty in Scenario 2, and A is faulty in Scenario 3.
It is possible to fix the wake-up times and the message transmission times (see Fig. 2)
so that the following lemmas hold.

LEMMA 4.2.1. If A fires at time z in Scenario 1, then A fires at time z+ in

Scenario 4.

Proof This follows since Scenarios 1 and 4 are identical except that all processors
wake up exactly one time unit later in Scenario 4. [-1

1/2

/2[

2

Scenario

1/2-- 32

/2

2

Scenario 2

1/2

5/2 3

Scenario 3 Scenario 4

FIG. 2. The scenarios used to prove Theorem 4.2. The number on the edge directed from processor X to

processor Y is the message transmission time from X to Y. The number written next to processor X is the time

when processor X wakes up. Correct (faulty) processors are drawn as circles (squares).
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For the next lemma it is convenient to introduce the "local step number" of a
processor. A processor executes its first local step at the time it wakes up, and the
local step number is incremented by one at each subsequent step. For example, in
Scenario in Fig. 2, A is executing its first step at global time 2, whereas B is executing
its second step at global time 2. Letting p denote a processor, two scenarios are
p-equivalent if the message history of p, i.e., messages received and messages sent at
each local step of p, are the same in the two scenarios. Two scenarios are strongly
p-equivalent if they are p-equivalent and p wakes up at the same global time in both
scenarios.

LEMMA 4.2.2. For 1, 2, 3, Scenarios and + are strongly p-equivalent where
p is the processor that is correct in both scenarios.

Proof By inspection of the scenarios in Fig. 2, one can easily verify that the
following two facts hold for all four scenarios and for all integers s _>- 1:

(1) for all messages sent from A to B, from B to C, or from A to C, the message
sent at local step s of the sender is received at local step s + 2 of the receiver; and

(2) for all messages sent from B to A, from C to B, or from C to A, the message
sent at local step s of the sender is received at local step s of the receiver.

It follows easily from these facts (formally by induction on the local step number)
that any two scenarios are p-equivalent where p is any of the three processors. The
lemma then follows immediately from the choice of the wake-up times.

These lemmas easily give a contradiction. Say that A fires at time z in Scenario
1. By strong A-equivalence of Scenarios and 2, A fires at time z in Scenario 2. Since
A and C are correct in Scenario 2, C also fires at z in Scenario 2. By a similar argument,
B fires at z in Scenario 3, and A fires at z in Scenario 4, which contradicts Lemma 4.2.1.

The impossibility proof for general n and with n =<3t is done as usual (cf. [25])
by replacing each processor by a group of at least one and at most processors. The
intragroup transmission times are all 1. The intergroup transmission times and the
wake-up times are chosen as in Fig. 2. This completes the proof of Theorem 4.2.

5. Collusion.
5.1. Upper bound. In this section we examine the distributed firing squad problem

in the authenticated Byzantine model, in which faulty processors may share signature
functions but they cannot rush messages.

THEOREM 5.1. In the model with Byzantine failures and authentication wherefaulty
processors can collude but cannot rush, there exists a t-resilient distributed firing squad
algorithm requiring n >-_ 2 + processors, 2 + rounds, and an amount ofcommunication
polynomial in n.

We describe the main ideas informally before giving the formal proof. As in the
other protocols, correct processors attempt to build messages signed by several pro-
cessors and to use the length of these messages to synchronize. Since faulty processors
can add several signatures at a given step, we wish to obtain a sort of "notarization"
for each signature in a string of signatures guaranteeing that a specific amount of time
was spent adding the signature.

In the straightforward approach, a processor p requests notarization of a signed
message E(m) by broadcasting Ep(m). Then all processors attempt to obtain at least
+ acknowledgments of the form Eq (Ep (m)). The list

m’=(Eq,(E(m)), Eq,+,(Ep(m)))

is the notarization of Ep(m). If the length of a message is the number of notarizations
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it has undergone, then a message of length k requires exactly 2k steps to be constructed,
even if the k signers of the message are faulty. Although conceptually simple, this
approach leads to an algorithm with communication complexity exponential in t, since
each notarization increases the size of a message by at least the factor t+ 1. Our
algorithm uses the idea of notarization with an implementation that is harder to prove
correct but that requires communication only polynomial in n. The basic idea is as
follows. Suppose that p has received a notarized message m in the form of at least
+ 1 signatures of m by distinct processors. Then p "requests support" of Ep(m) by

broadcasting Ep (m) together with a "prooF’ that m was notarized. This proof consists
of + signatures of m by distinct processors. Any correct processor q receiving En(m),
together with such a proof, "supports" Ep(m) by signing Ep(m) and broadcasting the
result. The key fact is that the proof that m was notarized can be thrown away by q
at this point, so message length does not grow exponentially. The idea of notarization
and its implementation below is similar to the fault-tolerant distributed clocks described
in [1], [12]. Similar ideas were also used in [27].

Proof of Theorem 5.1. We first define certain types of messages. A proper message
has the form

E,,(E,(. E,,.(p,) ))

where the k signatures are by distinct processors. Such a message is called an Ok-message.

At various times in the protocol, processors may request support for a message
m. A processor p supports m by sending a support message of the form Ep(support m).
We let S(m) denote a support message for m.

A proof of a message m is a list of + support messages for m, each signed by
a distinct processor. We let P(m) denote a proof for message m.

A processor p requests support for a message Ep(m) by broadcasting a message
of the form (Ep(m), P(m)). We let R(Ep(m)) denote a request for support of Ep (m).
When Ep (m) has the form ak, k > 1, we call this request an Rk-message. An Rl-message
has the form (Ep(p), A), where A denotes the empty string.

We now describe the protocol for a correct processor p. At every step p may issue
both support messages and requests for support. In particular, after receiving at each
step, p does the following.

(1) p chooses the maximum such that p can form an Re-message, R(Ep(m))=
(Ep(m), P(m)), where Ep(m) is proper and p could not form an Ri-message at any
previous step. If such an exists then p broadcasts an Ri-message. If it can construct
several syntactically distinct Ri-messages, then it arbitrarily chooses one to broadcast.

(2) For each processor q, p chooses the maximum j such that p receives an

R-message (Eq(m), P(m)) from q. If j< t+ 1, then p broadcasts the corresponding
support message Ep(support Eq(m)).

(3) If p receives an R-message for some j->_ + 1, then p fires.
Viewing the number of signatures on a message as a clock, the two key lemmas

state that the faulty processors cannot increment the clock faster than by 1 within two
steps (Lemma 5.1.1) and that the correct processors can increment the clock at least
that quickly (Lemma 5.1.2).

LEMMA 5.1.1. Let R(m) be an Re-message and let s be the earliest time at which
some correct processor sends R( m). Let s’ be the earliest, time at which some (possibly
faulty) processor q sends R(m’), where m’ is an a.i-message of the form Eb (Ec (" (m)).
Then s’ >= s + 2(j i).

Proof The proof is by induction on j- i.
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Basis j- i= 0. Since R(m) is sent by a correct processor, m is of the form En(m")
for some correct processor p. Since m’= m in this case, and since q cannot forge p’s
signature, q cannot construct R(m’) before time s.

Assume the lemma inductively for j =< k. Let j + k + 1. Let m" E. (. (m))
be such that Eb(m")= m’. By the inductive hypothesis R(m") can be constructed no
sooner than step s + 2(j 1).

If q constructs R (m’) at s’, then q constructs P(m") at s’, so q receives + 1 S(m")
messages no later than time s’. Thus some correct processor received R(m") at s’- 1,
so R(m") was sent not later than s’-2. We therefore have s’-2 => s + 2(j-i-1) by
the inductive hypothesis, so s ’-> s + 2(j-i) and the induction holds.

LEMMA 5.1.2. Fix a time s. Let be the maximum such that a correct processor
broadcasts an Ri-message at time s, and let p be such a processor. If < + 1, then by
time s + 2 some correct processor qforms and broadcasts an Rj-messagefor somej >- + 1.

Proof Without loss of generality, we may assume s is the first time at which p
can construct an Ri-message. In this case p broadcasts R(Ep(m))=(Ep(m), P(m)) at
s ((E,(m), A) if i= 1), where Ep(m) is an ai-message, and every processor receives
R (Ev(m)) at time s + 1. Since this is the only request for support sent by p at s, every
correct processor responds by broadcasting S(Ep(m)) at s+ 1. Thus all processors
receive n- t_-> + S(Ev(m)) messages at s + 2, each signed by a distinct processor,
so at time s + 2 every correct processor can construct a proof for Ep(m). By signing
E(m) to obtain an a+-message and combining this with the proof for Ep(m), any
processor that has not already signed Ep(m) can construct an Ri/-message. Because
< + 1, there is at least one such correct processor, say, q. If q has already broadcast

an Rj-message for some j-> + 1, then the lemma holds trivially. Otherwise, by Step
of the protocol and the fact that it can construct an Ri+-message, q will broadcast
an R-message for some j >- + at time s + 2.

LEMMA 5.1.3. If any correct processor awakens, then every correct processor even-
tually fires. Moreover, if s is the earliest time when some correct processor awakens, then
every correct processor fires by time s + 2t + 1.

Proof Upon awakening, each correct processor forms and broadcasts an R-
message, for. some j >- 1, since the proof of an R-message is the empty string. Let p
be the first correct processor to awaken, and let s be the time at which it awakens. By
applications of Lemma 5.1.2, some correct processor constructs and broadcasts an

Rj-message for some j>--t + 1 by time s +2t. Thus every correct processor fires by
s+2t+l.

LEMMA 5.1.4. In any execution of the protocol resulting in a firing, all correct

processors fire simultaneously.
Proof Let p be the first correct processor to fire and let f be the time at which p

fires. If p fires at f then, for some k >- + 1, p receives an Rk-message at f Let R(m’)
be such a message. Without loss of generality let m’= Ek(.. E2(E(p))). Let be the
maximum i, =< -< k, such that Pi is correct. (Since there are at most faulty processors,
some such p exists.) If pi=p,, then all processors receive R(m’) at f so all fire
simultaneously at f

If i< k, then at some round f’ <f, p broadcast an Ri-message. This message was
received by all correct processors no later than round f’+ 1-<f If >- + 1, then by
Step 3 of the protocol all correct processors fire at f’+ 1. Since f is the first round at
which any correct processor fires, we have f’+ =f, and all correct processors fire
simultaneously.

We now consider the case < + 1. Let s be the time at which p broadcasts R(m),
where m-- Ei(... (E(p))). Since p is correct, s is the earliest time at which R(m) is
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sent. By Lemma 5.1.1, no processor can construct R(m’) before step s + 2(t + 1- i), so

f-> s + 2(t + i) + 1. By + applications of Lemma 5.1.2, some correct processor
constructs and broadcasts an Rj-message for some j >- + by time s + 2(t + i), so
every correct processor receives such an Rj-message by time s + 2(t + 1- i)+ 1. Thus
all correct processors fire by time s + 2(t + i) + 1. Since p is the first correct processor
to fire and p fires at f, we have f=< s + 2(t + 1- i)+ 1. Thus all correct processors fire
simultaneously at f F]

It is now easy to complete the proof of Theorem 5.1. By Lemmas 5.1.3 and 5.1.4,
the algorithm is t-resilient. By Lemma 5.1.3, every correct processor fires within 2t +
rounds after the first correct processor awakens. Finally, at each step a correct processor
broadcasts at most one request for support and n support messages, so at each step
the number of bits sent by any correct processor is polynomial in n. Since there are n
processors and O(n) steps, the total amount of communication is polynomial in n. [3

5.2. Lower bound.
THEOREM 5.2. In the fault model of Theorem 5.1 (Byzantine faults with authentica-

tion, collusion, but no rushing), if >-_ 3, there is a t-resilient distributed firing squad
algorithm only if n >= [5 t/3 + 1.

Proof The general outline of the proof is similar to the proof of Theorem 4.2.
Consider the impossibility proof for 3 and n 5. We consider six scenarios, with
three faulty and two correct processors in each. Figure 3 shows the message transmission

2

Scenario
2

Scenario 3

2

Scenario 2
2

2 2ZI I/,2

Scenario 4
2 3

Scenario 5 Scenario 6

FIG. 3. The scenarios used to prove Theorem 5.2.
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times, wake-up times, and which processors are faulty in each scenario. A link that is
not drawn in these scenarios means that the faulty processor at one end of the link
does not communicate along that link; i.e., no messages are sent along that link by
the faulty processor, and messages received along that link are ignored. The link drawn
as a dotted line is used only by faulty processors. Therefore, in each scenario the
network is essentially a ring from the point of view of a correct processor. In each
scenario, two of the faulty processors simulate a "timing fault" where messages in one
direction take time 2 and messages in the other direction take time 0. The only
nonobvious part is simulating a transmission time of zero. To see how this is done
focus, for example, on Scenario 1, where messages from C to B take zero time. Note
that D is also faulty in Scenario 1. Whenever D takes a step at some time x in which
it should send the message m to C, it sends m to B also. At time x + 1, B has enough
information to do the processing that C would do at time x + to find the message
m’ that C should send to B at time x + (the ability of B to sign messages with C’s
signature is necessary here). But B has m’ during the step it is executing at time x + 1,
thus simulating the transmission of m’ from C to B in zero time. Message transmission
time of 0 is simulated similarly in the other scenarios.

By following the proof of Theorem 4.2, it is straightforward to show that analogues
to Lemmas 4.2.1 and 4.2.2 hold. (Formally, in defining equivalence of scenarios, only
messages sent along the ring links are included in message histories; the messages sent
over dotted links are not included.)

The proof for general n and is done by replacing each processor by a group of
at most [t/3J or at most [t/3J + 1 processors in such a way that the total number of
faulty processors never exceeds in any of the scenarios.

Remark. Regarding the condition >-3 in Theorem 5.2, by using the assumption
that the receiver of a message knows the identity of the sender, it is not hard to find
a 2-resilient distributed firing squad algorithm for any number n_-> 2 of processors.
Briefly, the algorithm is a modification of the algorithm used to prove Theorem 3.1 in
the case of no collusion and no rushing. In the modified algorithm, whenever a processor
p sends a message m to a processor q, p attaches a header to m that says "the next
signer of this message should be processor q". When checking acceptability of a proper
message

m Ei,(Ei2(’’" Ei (Awake)...))
p also checks that m was received from processor p, and that each signature in m
matches the header of the message being signed. This effectively prevents two faulty
processors from adding two signatures in one step, even if they collude. Given this
observation, the correctness proof is identical to that of Theorem 3.1, and details are
left to the reader. (Note, however, that the modification does not prevent three faulty
processors from adding three signatures in two steps, so this method does not generalize
to t=>3.)

Remark. We can close the fault-tolerance gap between Theorems 5.1 and 5.2 by
adding the requirement that each correct processor must broadcast one message at
each step (formally, if (m, m2," , mn) is in the range of some sending function/3i,
then m m2 mn). Note that the algorithm of Theorem 5.1 meets this require-
ment. With this requirement, the proof of the lower bound, Theorem 5.2, can be done
with a ring of four processors, two of which are faulty, thus improving the lower bound
to n => 2t + 1. This can be done because the broadcast condition prevents the correct
processors from hiding from the faulty processors signed text that these faulty pro-
cessors would otherwise have to forge. Details are left to the reader. (Note that this



THE DISTRIBUTED FIRING SQUAD PROBLEM 1009

result applies to communication systems like the Ethernet, in which eavesdropping
cannot be avoided.)

6. Related results.
6.1. Byzantine agreement with nonunison start. Suppose we want to solve authenti-

cated Byzantine agreement when the correct processors do not all awaken at the same
time and the faulty processors can rush. For simplicity, we consider the version of the
Byzantine agreement problem as in [11], where the protocol is initiated by a single
"sender" processor p that wants to send a "value" v to all the processors. If the sender
p is correct, then p sends Ep(v) to all processors at exactly the same step; in this case,
we require that all correct processors eventually decide that v was the value sent by
p. If the sender p is faulty, it can initially send different values to different processors,
and it can send values at different times; in this case, we require that if any correct
processor decides on a value u, then all correct processors must decide on u. The
second type of faulty behavior, initiating the protocol at different times with respect
to different processors, is not considered in Dolev and Strong [11], and their efficient
(t + round) algorithm does not work in this case. An obvious solution would be to
first run the firing squad algorithm of Theorem 4.1 to synchronize the processors and
then run the Dolev-Strong algorithm for a total time of 2t+6. This time can be
improved to + 5 by modifying the algorithm ofTheorem 4.1 to solve agreement directly.

THEOREM 6.1. In the model with Byzantine failures and authentication, in which
faulty processors can both rush and collude, there is a t-resilient protocol for Byzantine
agreement with nonunison start, requiring + 5 rounds, n >- 3 + 1 processors, and com-
munication polynomial in n.

Proof The algorithm of Theorem 4.1 is modified by associating a value with every
core and with every notarized core. Let h be a function that maps a set of values to
a single value as follows: h({v})-v; if S is not a singleton set, then h(S)-0. The
value associated with the core

(E,,(E,(v,)),. E,

is h({vl,. ", Vk}). The value of the notarized core

(E,,(C1),. .,E,,,(G))

is h applied to the set containing the values of the cores C,. ., Ck. Each processor
q remembers the set Vq of values of notarized cores that it has seen in acceptable
messages. In addition to the previous algorithm for signing and forwarding acceptable
messages, whenever q receives an acceptable message m containing the notarized core
N, and if the value of N is not currently in Vq, then that value is added to V and q
signs m and broadcasts the result E(m). At the point where q receives an acceptable
message of length + 1, q signs and broadcasts "decidep h(Vq)". A processor decides
v if it receives, at the same step, at least + messages "decidep v" signed by different
processors. The correctness proof is very similar to the correctness proof given in 4;
only Lemma 4.1.10 requires modification. Details are left to the reader.

A similar modification to the algorithm solves the version of the agreement problem
where each processor begins the algorithm with an initial value.

A drawback in modifying a distributed firing squad algorithm to solve agreement
is that it requires n > 3t. By adapting an algorithm of Cristian, Aghili, Strong, and
Dolev [7] to the model used in this paper, there is a completely different solution, not
using firing squad ideas, which tolerates any number t-< n of faults but which takes
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2t + 2 rounds. It is an open question whether arbitrary fault tolerance and time + O(1)
can be obtained simultaneously.

6.2. Distributed firing squad with a glolal clock. At this point, one might suspect
that the difficulty of the distributed firing squad problem is due to the processors
having no common notion of global time. We show now, however, that the problem
does not become trivial, even with a common clock, although for one fault model the
problem does become easier. Informally, a common clock means that at each integer
time s, all correct processors taking their unison step at time s know that it is time s.

(More formally, the state set Qi of pi is partitioned into sets Q, for integer j_-> 0, and
all transitions from a state in Q, must go to states in Q,+I. Each set Qs, contains a

copy qo, of the quiescent state. The initial state of Pi is qo,o. If pi is in state qo,j and
receives only null messages, then pi next enters state qo,+l.)

Let the clocked distributed firing squad problem be defined like the distributed
firing squad problem, but in the model with a common clock. We first give a reduction
similar to that of Theorem 3.2. As corollaries of this reduction, clocked distributed
firing squad still requires + rounds for fail-stop faults, and n-> 3t + is needed in
the unauthenticated Byzantine case.

THEOREM 6.2. Let A be an algorithm for clocked distributed firing squad that is

t-resilient to fail-stop faults (respectively, unauthenticated Byzantine faults) and that has
time complexity of k rounds. Then there exists an algorithm for WBA that is t-resilient
to fail-stop faults (respectively, unauthenticated Byzantine faults) and that always halts
in k rounds.

Proof Given A, define the function f on the natural numbers as follows. For a
given integer r => 0, consider the run of A in which all processors wake up at (common)
time r and there are no faults; then f(r) is the (common) time when all processors
fire. Since f(r)>= r for all r, there must be a time s such that f(s+ 1) >f(s).

Now consider an instance of WBA in which processor p has initial value v. If

v 0, then Pi begins simulating A as though it were time s. That is, at time 0 of the
WBA algorithm, ps acts as though it were in state qo,L receiving the awake message
from w and null messages from the rest. If v 1, then p; waits one step during the
WBA algorithm and begins simulating A as though it were awakened at time s + 1.
(In general, time in the WBA algorithm corresponds to time s +i in the simulation
of A.) Let rn =f(s) s. If the simulation of A causes p to fire within rn steps after the
beginning of the WBA algorithm, then pi decides 0 at time m; otherwise, p decides
at time m. Since A has time complexity k, we have m-< k. The correctness proof for
this WBA algorithm is very similar to the proof of Theorem 3.2 and is left to the
reader.

The next result concerns the case of Byzantine faults with authentication and
rushing and shows that the clocked version of the problem is easier for this fault
model; specifically, the fault-tolerance improves to any t-< n, and the time is optimal.

THEOREM 6.3. In the model with Byzantine failures and authentication, in which
faulty processors can both rush and collude, there is a t-resilient clocked distributed firing
squad protocol requiring + rounds, n >-t processors, and communication polynomial
in n.

Proof In this algorithm, a proper message has the form

m E,(Ei(... E,. ("fire at c")... ))

where c is a natural number modulo + 1, where k->_ 1, and where the k signatures
are by distinct processors; the length of m is k and the content of m is c. Such a
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message is acceptable at common time r if and only if r c + k mod (t + 1). This message
is new to p if p’s signature does not appear in m.

A processor p that is awakened by the Awake message at common time s computes
c s mod (t + 1) and broadcasts Ep("fire at c"). If any processor q receives one or
more new acceptable messages with content c at some time, q arbitrarily chooses one,
say m, and broadcasts Eq(rn). A processor q fires at common time z if q has received,
at time z or earlier, an acceptable message m with content c, where c--z mod (t + 1)
such that message rn has not caused q to fire at any time earlier than z.

It is clear that if some correct processor awakens at common time s, then all
correct processors fire on or before common time s + + 1. To argue that all correct
processors fire together, we note that if m is new and acceptable to some correct p at
time r, then Ep(m) is acceptable to all correct processors at time r+ 1. Let z be the
earliest time when some correct processor fires, and let p be a correct processor that
fires at z. Therefore, p received an acceptable message m with content c, where
c-= z mod (t + 1). If rn was received before time z, then all correct processors receive
an acceptable message with content c on or before time z, because p must have
broadcast such a message before time z. If rn is received by p at time z, then
z-= c + k mod (t + 1) where k is the length of m, because rn is acceptable at time z.
Since c--- z mod (t+ 1) and k>_- 1, it follows that k->_ t+ 1. So rn must contain the
signatures of + processors, at least one of which is correct, and again it is easy to
argue that all correct processors received an acceptable message with content c by
common time z. [-!

Acknowledgment. We are grateful to Nancy Lynch for saving an extra round in
our reduction of the WBA problem mentioned in 3.2.
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FASTER SCALING ALGORITHMS FOR NETWORK PROBLEMS*
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Abstract. This paper presents algorithms for the assignment problem, the transportation
problem, and the minimum-cost flow problem of operations research. The algorithms find a minimum-
cost solution, yet run in time close to the best-known bounds for the corresponding problems without
costs. For example, the assignment problem (equivalently, minimum-cost matching in a bipartite
graph) can be solved in O(v/’rn log(nN)) time, where n, m, and N denote the number of vertices,
number of edges, and largest magnitude of a cost; costs are assumed to be integral. The algorithms
work by scaling. As in the work of Goldberg and Tarjan, in each scaled problem an approximate
optimum solution is found, rather than an exact optimum.

Key words, graph theory, networks, assignment problem, matching, scaling
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1. Introduction. Many problems in operations research involve minimizing a
cost function defined on a bipartite or directed graph. A simple but fundamental
example is the assignment problem. This paper gives algorithms for such problems
that run almost as fast as the best-known algorithms for the corresponding problems
without costs. For the assignment problem, the corresponding problem without costs
is maximum cardinality bipartite matching.

The results are achieved by scaling the costs. This requires the costs to be
integral-valued. Further, for the algorithms to be efficient, costs should be polynomi-
ally bounded in the number of vertices, i.e., at most n(1). These requirements are
satisfied by a large number of problems in both theoretical and practical applications.

Table 1 summarizes the results of the paper. The parameters describing the input
are specified in the caption and defined more precisely below. The first column gives
the problem and the best-known strongly polynomial time bound. Such a bound
comes from an algorithm with running time independent of the size of the numbers
(assuming the uniform cost model of computation [AHU]). The second column gives
the time bounds achieved in this paper by scaling. The table shows that significant
speedups can be achieved through scaling. Further, it will be seen that the scaling
algorithms are simple to program. Now we discuss the specific results.

The assignment problem is to find a minimum-cost perfect matching in a bipartite
graph. The strongly polynomial algorithm is the Hungarian algorithm [K55], [K56]
implemented with Fibonacci heaps [FT]. This algorithm can be improved significantly
when all costs are zero. Then the problem amounts to finding a perfect matching in a
bipartite graph. The best-known cardinality matching algorithm, due to Hopcroft and
Sarp, runs in time O(v/-m) [HK]. The new time bound for the assignment problem is
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just a factor of log(nN) more than this. The algorithm is similar to the Hopcroff-Karp
cardinality algorithm and appears simple enough to be useful in practice.

TABLE 1
Bounds for network problems.

Strongly Polynomial Bound New Scaling Bound

Assignment problem
O(n(m / Iogn)) [FT]

Shortest paths (single-source, directed graph,
possibly negative lengths)

O(nrn) [Bel

Minimum cost degree-constrained subgraph
of a bipartite multigraph

O(U(m + n log n)) [FT], [GS3]

Transportation problem
(uncapacitated or capacitated)

O(min{U, n log U}(m + n log n))
[FT], [EK], ILl

Minimum cost flow
+ [GAIT]

O(v/ra log(nN)

O(v/-m log(nN))

O(min{v/, n2/3M1/3}-log(nN))

O((min{x/,n}m + U log U)log(nN))

O(nrn log n log(nN)log M)
convex cost functions allowed

O(n(m + n log n) log M)
lower bounds only

Parameters: n number of vertices; rn number of edges;- number of edges
counting multiplicities; U total degree constraints; N maximum cost magnitude;
and M maximum flow capacity or lower bound, or edge multiplicity.

The new algorithm improves the scaling algorithm of [G85], which runs in time
O(n3/4rn log N). The improvement comes from a different scaling method. The algo-
rithms of [G85] compute an optimum solution at each of log N scales. The new method
computes an approximate optimum at each of log(nN) scales; using log n extra scales
ensures that the last approximate optimum is exact. The appropriate definition of ap-
proximate optimum is due to Tardos [Tard] and independently to Bertsekas [BerT9],
Ber86]. The new approach to scaling was recently discovered by Goldberg and Tarjan
for the minimum-cost flow problem [Go], [GoT87a], [GoT87b]. Their minimum-cost
flow algorithm solves the assignment problem in time O(nrn log(nN)), which this pa-
per improves. Bertsekas [Ber87] gives an algorithm for the assignment problem that
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also runs in sequential time O(nrn log(aN)) and has a distributed asynchronous ira-
plementation.

The assignment algorithm extends to other network problems. This paper presents
extensions to problems on bipartite graphs and directed graphs. For algorithms on
general graphs (and bidirected graphs) and other extensions, see 4. Throughout this
paper all undirected graphs are bipartite (we usually mention this explicitly).

Variants of minimum-cost perfect bipartite matching (such as minimum-cost bi-
partite matching) can be done in the same time bound. The linear programming dual
variables for perfect bipartite matching can be found from the algorithm. This gives
a solution to the shortest path problem when negative edge lengths are allowed. The
table entry for the degree-constrained subgraph problem is just a factor of log(aN)
more than the bound of [ET] for the corresponding problem without costs, namely,
the problem of maximum flow in a 0-1 network. These bounds improve [G85] in a
manner analogous to the assignment problem.

The table entry for the transportation problem is a good bound when total supply
and demand (U) is small. The key fact for this bound is the low total augmenting path
length for the assignment algorithm; this fact generalizes the bounds of [ET] for car-
dinality matching and 0-1 network flow. The entry for minimum-cost flow is a double
scaling algorithm it scales edge capacities, and at each scale solves a small trans-
portation problem by the above cost-scaling algorithm. This algorithm is not as good
asymptotically as the recent bound of Goldberg and Tarjan, O(nrn log(n2/rn) log(aN))
[GoT87b]. The latter is just a factor of log(aN) more than the best bound for maxi-
mum value flow [GoT86]. The double scaling algorithm may be more useful in practice,
however, since it requires fewer data structures. The double scaling algorithm gener-
alizes to find a minimum-cost integral flow when the cost of each edge is an arbitrary
convex function of its flow. The time bound is unchanged, as long as the cost for
a given flow value can be computed in O(1) time. The last bound of the table im-
proves the previous one for problems where edges have a lower bound on the flow and
infinite capacity (more generally, O(n) finite capacities are allowed). Such problems
arise as covering problems. We illustrate how this bound leads to an efficient strongly
polynomial bound for the directed Chinese postman problem.

Section 2 presents the matching algorithm and its analysis, including facts used
in the generalizations. Section 3 presents the extensions to more general network
flow problems. Section 4 gives some concluding remarks. This section closes with
definitions from graph theory; more thorough treatments are in ILl, [PSI, [Tarj].

We use interval notation for sets of integers: for integers and j, define [i..j]
{klkisaninteger, _< j _< k}, [i..j) { klk is an integer, _< j < k}, etc. The
symmetric difference of sets S and T is denoted by S T. The function log n denotes
logarithm to the base two.

For a graph G, V(G) and E(G) denote the vertex set and edge set, respectively.
The given graph G is bipartite and has bipartition V0, V1 (so V(G) is the disjoint
union of V0 and V1, and any edge joins V0 to V1). The given graph G has m edges;
in 2, n IV01 IV11 (we assume without loss of generality that the two sets of
the bipartition have equal cardinality); in 3, n IV(G)I. If H is a subgraph of
G, an H-edge is an edge in H and a non-H-edge is not in H. When an auxiliary
graph G is constructed from the given graph G, G-edge refers to an edge of G that
represents an edge of G. We use this term without explicit comment only when the
representation is obvious (i.e., vw E E(G) is represented by vw, where v and w are

obvious representatives of v and w). We say path P ends with edge vw if vw is at an
end of P and further, v is an endpoint of P.
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A matching in a graph is a set of vertex-disjoint edges. Thus a vertex v is in
at most one matched edge vvr; v is the mate of v. A free vertex has no mate. A
maximum cardinality matching has the greatest number of edges possible; a perfect
matching has no free vertices (and is clearly maximum cardinality). An alternat-
ing path (cycle) for a matching is a simple path (cycle) whose edges are alternately
matched and unmatched. An augmenting path P is an alternating path joining two
distinct free vertices. Augmenting the matching along P means enlarging the matching
M to M G P, thus giving a matching with one more edge. Suppose each edge e has a
numeric cost c(e); in this paper costs are integers in [-N..N], unless stated otherwise.
The cost c(S) of a set of edges S is the sum of the individual edge costs. A minimum
(maximum) perfect matching is a perfect matching of smallest (largest) possible cost.
The assignment problem is to find a minimum perfect matching in a bipartite graph.
More generally, a minimum-cost maximum cardinality matching is a matching that
has the greatest number of edges possible, and subject to that restriction has min-
imum cost possible. (The phrase "minimum-cost maximum cardinality set" can be
interpreted ambiguously. In this paper it refers to a set that has maximum cardinality
subject to any other restrictions that have been mentioned, and among such sets has
minimum cost possible.) A minimum-cost matching is a matching of minimum cost
(its cardinality can be any value, including zero).

A multigraph has a set of edges E(G), where each.edge e has an integral mul-
tiplicity u(e) (i.e., there are u(e) parallel copies of e). The size parameter m is the
number of edges, m IE(G)I; counts multiplicities, i.e., {u(e)le e E(G)};
M is the maximum edge multiplicity. (In a graph M 1.) When each vertex v has
associated nonnegative integers t(v) and u(v), a degree-constrained subgraph (DCS) is
a subgraph such that each vertex has degree in [g(v)..u(v)]. It is convenient to use
both set notation and functional notation for a DCS. Thus we use a capital letter
D to denote a DCS, and the corresponding lowercase letter d to denote two func-
tions defined by D" for an edge e, d(e) denotes the multiplicity of e in D, and for
a vertex v, d(v) denotes the degree of v in D, i.e., d(v) ,{d(vw)lvw e E(G)}.
Hence d(e) <_ u(e) and t(v) _< d(v) <_ u(v). The deficiency of DCS D at vertex v is
(v, D) u(v) d(v). In a perfect DCS each deficiency is zero. The size of the DCS
is measured by V ’{u(v)lv e V} (so U is twice the number of edges in a perfect
DCS). When edges e have costs, the usual assumption is that each copy of e has the
same cost, denoted c(e). When this assumption fails, we use cost functions, defined
in the text. Other definitions for DCS e.g., minimum perfect DCS, minimum-cost
maximum cardinality DCS, etc., follow by analogy with matching.

The transportation problem is to find a minimum-cost perfect DCS in a bipar-
tite multigraph in which all edges have infinite multiplicity; alternatively, if M is the
maximum degree constraint, all multiplicities are M. If some multiplicities are less
than M, the problem is a capacitated transportation problem. The usual definition
of the transportation problem allows nonnegative real-valued degree constraints and
edge multiplicities (both given multiplicities and those in the solution). This paper
deals with the integral case of this problem. Note that if the given degree constraints
and multiplicities are rational, they can be scaled up to integers. Also note that
no loss of generality results from the constraint in this paper that the solution to
the transportation problem has integral multiplicities such an optimum solution
always exists when the given degree constraints and multiplicities are integral ILl. Fi-
nally note that in our terminology the minimum perfect DCS problem is the same as
the capacitated transportation problem.
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2. Matching and extensions. Section 2.1 presents our algorithm to find a
minimum perfect matching in a bipartite graph. Section 2.2 gives extensions to other
versions of matching, some facts about the algorithm needed in 3, and our shortest
path algorithm. In this section n denotes the number of vertices in each vertex set V0,
V1 of the given bipartite graph.

2.1. The assignment algorithm. For convenience assume that the given graph
G has a perfect matching (the algorithm can detect graphs not having a perfect match-
ing, as indicated below).

The plan for the algorithm is to combine the Hungarian algorithm for weighted
matching with the Hopcroft-Karp algorithm for cardinality matching. Recall that
the Hungarian algorithm always chooses an augmenting path of smallest net cost.
The Hopcroft-Karp algorithm always chooses an augmenting path of shortest length.
Both of these rules can be approximated simultaneously if the costs are small integers.
Arbitrary costs can be replaced by small integers by scaling. Thus our algorithm
scales the costs. At each scale it computes a perfect matching. The computation is
efficient because it is similar to the Hopcroft-Karp algorithm; the matching is close
to optimum because the computation is similar to the Hungarian algorithm. Now we
give the details.

Each scale of the algorithm finds a close-to-minimum matching, defined as follows.
Every vertex v has a dual variable y(v). A 1-feasible matching consists of a matching
M and dual variables y(v) such that for any edge vw,

y(v) + y(w) <_ c(vw) + 1,

y(v) + y(w) c(vw), forvweM.

A 1-optimal matching is a perfect natching that is 1-feasible. If the +1 term is omitted
from the first inequality, these are the usual complementary slackness conditions for a
minimum perfect matching ILl, [PSI. The following result is due to Bertsekas [Ber79],
[Ber86].

LEMMA 2.1. Let M be a 1-optimal matching.
(a) Any perfect matching P has c(P) >_ c(M) n.

(b) If some integer k, k > n, divides each cost c(e), then M is a minimum perfect
matching.

Proof. Part (a) follows because

c(M) E{c(e)le e M} E{y(v)]v e V(G)} _< c(P) + n.

Part (b) follows from (a) and the fact that any matching has cost a multiple of k. [:]

This lemma is the basis for the main routine of the algorithm, which does the
scaling. The routine starts by computing a new cost (e) for each edge e, equal to n+ 1
times the given cost. Consider each (e) to be a signed binary number +bib2...b
having k [log(n + 1)N] + 1 bits. The routine maintains a variable c(e) for each edge
e, equal to its cost in the current scale. The routine initializes each c(e) to 0 and each
dual y(v) to 0. Then it executes the following loop for index s going from 1 to k:

Step 1. For each edge e, c(e) 2c(e)+ (signed bit be of (e)). For each vertex v,
y(v) - 2y(v)- 1.

Step 2. Call the scale_match routine to find a 1-optimal matching.
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Lemma 2.1(b) shows that the routine halts with a minimum perfect matching.
Each iteration of the loop is called a scale. We give a scale_match routine that runs
in O(vrn) time. Since there are O(log(nN)) scales, this achieves the desired time
bound.

It is most natural to work with small costs. The scale_match routine transforms
costs to achieve this. Specifically, scale_match changes the cost of each edge vw to
c(vw)- y(v)- y(w); then it calls the match routine on these costs to find a l-optimal
matching M with duals y’(v); then it adds y’(v) to each dual y(v) (y(v) is the dual
value before the call to match).

Clearly, M with the new duals is a l-optimal matching for cost function c. Fur-
ther, since Step 1 of the main routine changes costs and duals so that the empty
matching is l-feasible, the costs input to match are integers -1 or larger. If vw is
an edge in the l-optimal matching found in the previous scale, then after Step 1,
y(v) + y(w) >_ c(vw) 3. Hence vw costs at most three in the costs for match. Thus
there is a perfect matching of cost at most 3n. (This is true even in the first scale).
We will show that if every edge costs at least -1 and a minimum perfect matching
costs O(n), match finds a l-optimal matching in O(v/--rn) time. This gives the desired
time bound.

Note that the transformation done by scale_match is for conceptual convenience
only. An actual implementation would not transform costs; rather match would work
directly on the untransformed costs.

The cost-length of an edge e with respect to a matching M is

cl(e) c(e) + (if e M then 1 else 0).

The net cost-length of a set of edges S with respect to M is

cl(S) E{cl(e)le E s- M} E{cl(e)le S M}.

This quantity equals the net cost of S (with respect to M) plus the number of un-
matched edges in S. Hence an augmenting path with smallest net cost-length approx-
imates both the smallest net cost augmenting path and the shortest augmenting path;
this is in keeping with our plan for the algorithm.

An edge vw is eligible if y(v) + y(w) cl(vw), i.e., the 1-feasibility constraint for
vw holds with equality. (Note that a matched edge is always eligible.) It follows from
the analysis below that an augmenting path of eligible edges has the smallest possible
net cost-length. Hence the algorithm augments along paths of eligible edges. If no
such path exists, it adjusts the duals to create one. The details are as follows.

Assume the costs given to match are integers that are at least -1, and there is a
perfect matching costing at most an. (In the scaling algorithm a 3.)
procedure match.
Initialize all duals y(v) to 0 and matching M to 0. Then repeat the following steps
until Step 1 halts with the desired matching:

Step 1. Find a maximal set A of vertex-disjoint augmenting paths of eligible edges.
For each path P A, augment the matching along P, and for each vertex w V1 P,
decrease y(w) by 1. (This makes the new matching 1-feasible.) If the new matching
M is perfect, halt.

Step 2. Do a Hungarian search to adjust the duals (maintaining 1-feasibility) and
find an augmenting path of eligible edges. V1
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We now give the details of Steps 1 and 2 that are needed to analyze match. (A full
description of these steps is given below, in the paragraphs preceding the statement
of Theorem 2.1. The reader may prefer to examine these details now, although this is
not necessary.) Both steps can be implemented in O(m) time. Step 2 is a Hungarian
search (essentially Dijkstra’s shortest path algorithm, see e.g., ILl, [PSI). The search
does a number of dual adjustments. Each dual adjustment calculates a positive integer
5 and increases or decreases various dual values by 5, so as to preserve 1-feasibility
and eventually create an augmenting path of eligible edges. (The dual adjustment is
defined more precisely below.) At any point in the algorithm define

F the set of free vertices in V0;
A the sum of all dual adjustment quantities 5 in all Hungarian searches so far.

The Hungarian search maintains the duals so that any free vertex v E F has y(v) A
and any free vertex v E V1 has y(v) O.

To analyze the match routine, first observe that it is correct: The changes to the
matching (in Step 1) and to the duals (in Steps 1-2) keep M a l-feasible matching.
If M is not perfect but G has a perfect matching, the Hungarian search creates an

augmenting path of eligible edges. Hence the algorithm eventually halts with M a
l-optimal matching, as desired. (Note that if G does not have a perfect matching,
this is eventually detected in Step 2.)

To analyze the run time, consider any point in the execution of match. Let M be
the current matching, and define F and A as above. Let M* be a minimum perfect
matching. For any set of edges S let cl(S) denote net cost-length with respect to M.

M* (R)M consists of an augmenting path Pv for each v F, plus alternating cycles
Cw. Thus

(1) n + c(M*) c(M) >_ el(M* @ M) E c/(Pv) + E cl(Cw).
vEF w

To estimate the right-hand side, consider an alternating path P from u G V0 to rn V0,
where u is on an unmatched edge of P and rn is on a matched edge of P (m stands
for "matched"; no confusion should result from the double usage of m). Then

(2) < v( n) +

This follows since for edges uv M and vm e M, y(u) + y(v) <_ cl(uv) and y(v) +
y(m) cl(vm), so y(u) <_ y(m) + cl(uv)- cl(vm). Inequality (2)implies that any
alternating cycle C has el(C) >_ O. It also implies that any augmenting path P
from some v E F to some free vertex t V1 has y(v) + y(t) <_ cl(P). Recall that the
Hungarian search keeps y(v) A and y(t) 0. Hence A _< cl(P), and the right-hand
side of (1) is at least ]FLA.

By assumption on the input to match, c(M*) <_ an and c(M) >_ -n. Hence the
left-hand side of (1) is at most bn for b a + 2. Thus we have shown

(3) IFI/X <_ bn.

This implies there are O(x/) iterations of the loop of match. To see this, note
that each execution of Step 1 (except possibly the first) augments along at least one
path because of the preceding Hungarian search. Hence at most + 1 iterations
start with IFI _< v/. From (3), IFI _> v/ implies A _< xfb-. The next paragraph
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shows that each Hungarian search increases A by at least one. This implies that at
most v/ + 1 iterations start with A <_ v/, giving the desired bound.

Now we show that a Hungarian search $ increases A by at least one. It suffices
to show that , does a dual adjustment (since any dual adjustment quantity 5 is a
positive integer). Search $ does a dual adjustment unless there is an augmenting path
P of eligible edges when it starts. Clearly, P intersects some augmenting path found
in Step 1. It is easy to see that P contains an unmatched edge vw, with w but not v
in an augmenting path of Step 1, and w V. But vw is ineligible after the Step 1
decreases y(w). So P does not exist, and $ does a dual adjustment.

In summary, match does O(v/-) iterations. Each iteration takes time O(m),
giving the desired time bound O(v/-dm).

It remains to give the details of Steps 1 and 2. Step 1 finds the augmenting paths
P by depth-first search. To do this, it marks every vertex reached in the search. It
initializes a path P to a free unmarked vertex of V0. To grow P, it scans an eligible
edge xy from the last vertex x of P (x will always be in V0). If y is marked, the next
eligible edge from x is scanned; if none exists, the last two edges of P (one matched
and one unmatched) are deleted from P; if P has no edges, another path is initialized.
If y is free, another augmenting path has been found; in this case y is marked, the
path is added to ,4, and the next path is initialized. The remaining possibility is that
y is matched to a vertex z. In this case y and z are marked; edges xy, yz are added
to P; and the search is continued from z.

It is clear that this search uses O(m) time. To show that it halts with A maximal,
first observe that for any marked vertex x V0- V(A), every eligible edge xy has y
marked and matched, or y in V(A). (Note that V(A) is the set of vertices in paths of
A.) Hence an easy induction shows that an alternating path of eligible edges, starting
at a free vertex of V0 and vertex-disjoint from A, has all its V0 vertices marked and is
not augmenting.

Step 2 is the Hungarian search. It grows a forest $" of eligible edges, from roots F.
An eligible edge vw with v V0 C? 9r and w $" is added to whenever possible. If w
is free, 9r contains an augmenting path of eligible edges. Otherwise, the matched edge
ww is added to 9r. Eventually either contains an augmenting path or 9r cannot be
enlarged.

In the latter case a dual adjustment is done. It changes duals in a way that
preserves 1-feasibility and allows $" to be enlarged, as follows. It computes the dual
adjustment quantity

min{cl(vw)- y(v)- y(w)lv e Vo J:, w

Each v E gets y(v) increased by 5 (if v E V0 then 1 else -1). It is easy to see
that this achieves the goal of the dual adjustment (an edge vw achieving the above
minimum becomes eligible and so can be added to .T’).

After the dual adjustment, the search continues by enlarging 9. Eventually 9v

contains the desired augmenting path of eligible edges and the Hungarian search halts.
Note that, as claimed above, at any point in the algorithm a free vertex v has

y(v) A if v F (since every dual adjustment increases y(v)) and y(v) 0 if v V1
(no dual adjustment changes y(v)).

A Hungarian search can be implemented in O(m) time. This depends on two
observations. First, the proper data structure allows a dual adjustment to change all
duals y(v) in O(1) time total. Specifically the algorithm keeps track of A (defined
above). When a vertex v is added to $’, its current dual value and the current value
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of A are saved as y(v) and A(v), respectively. Then at any time the current value of
y(v) can be calculated as

y(v) + (A- A(v)) (if v e V0 then 1 else 1).

Hence the dual adjustment is accomplished by simply increasing the value of A.
The second observation is how to compute 5 in a dual adjustment. The usual

implementation of a Hungarian search does this with a priority queue that introduces
a logarithmic factor into the time bound (e.g., [FT]). This can be avoided when, as in
our case, costs are small integers (this was observed in [D], [W] for Dijkstra’s shortest
path algorithm). The details are as follows. The next value of 5 is the amount that
the next value of A increases from its current value. Hence it suffces to calculate the
next value of A. The next value of A is the smallest possible value such that some
edge vw with v E V0 n 9 and w $" becomes eligible (when duals are adjusted by 5).
Thus the next value of A equals

min{cl(vw) y(v) y(w) + A(v)lv e V0 n ’, w 9}.

Since any Hungarian search has IFI _> 1, inequality (3) implies A _< bE. The algorithm
maintains an array Q[1..bn]. Each entry Q[r] points to a list of edges vw that can
make A r, i.e., v V0 N $’, w 9v, and r cl(vw)- y(v)- y(w)+ A(v). The
algorithm scans down Q and chooses the next value of A as the smallest value r
with Q[r] nonempty. This gives the next value of 5, and the newly eligible edges, as
desired. The total overhead for scanning is O(n), since Q has bn entries. (Note that
an edge vw with v V0 , w $" does not get entered in this data structure if

 0(v) + >
Only one detail of the derivation remains: We have assumed that the dual values

y(v) do not grow too large, so that arithmetic operations use O(1) time. To justify this,
we show that each y(v) has magnitude O(n2N). It suffices to do this for v V0. Define
Y8 as max{ly(v)llv V0} after the sth scale. Then Y0 0 and Ys+I <_ 2Y + bn 1
(since A _< bE). Thus Yk

_
(2k- 1)(bE-1) O(n2N), as desired. Note that the input

uses a word size of at least max{log N, log n} bits. Hence at worst the algorithm uses
triple-word integers for the dual variables.

THEOREM 2.1. A minimum perfect matching in a bipartite graph can be found
in O(x/-dm log(nN)) time and O(m) space. Yl

A heuristic that may speed up the algorithm in practice is to prune the graph at
the start of each scale. Specifically, scale_match can delete any edge whose new cost
is 6n or more. In proof, recall that in the costs computed by scale_match there is a
perfect matching M costing at most 3n; taking into account the low-order bits of cost
that are not included in the current scale, the true cost of M is less than 4n. In the
costs computed by scale_match every edge costs at least -1; again taking into account
low order bits, the true cost is more than -2. Hence a matching containing an edge
of new cost 6n or more has true cost more than 4n and so is not minimum.

2.2. Extensions of the assignment algorithm. The bounds of Theorem 2.1
also apply to finding a minimum-cost matching. To see this, let G be the given graph.
Form G by taking two copies of G; for each v V(G) join the two copies of v by a
cost zero edge. Then G is bipartite, and a minimum perfect matching in G gives a
minimum-cost matching in G.

A similar result holds for minimum-cost maximum cardinality matching. The
construction is the same except that the edges joining two copies of v cost nN. The
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problem of finding a minimum-cost matching of given cardinality can also be solved
in the same bounds; it is most convenient to use Theorem 3.2 below.

Returning to perfect matching, several properties of match are needed for 3.
Define

A the total length of all augmenting paths found by match.

We first derive a bound on A. Let Pi denote the ith augmenting path found by match.
Let i be its length, measured as its number of unmatched edges; let Ai denote the
value of A when P is found; let M be the matching after augmenting along Pi. Recall
that in the Hopcroft-Karp algorithm, for some constant c, <_ cn/(n- + 1). Thus
the total augmenting path length is En__l O(n log n) [ET]. In match, does not
have a similar bound. However, it is bounded in an amortized sense, as follows.

LEMMA 2.2. For any k 6 [1..n], c(Mk)-F Ei--1 i Ei--1/i.
Proof. A calculation similar to (2) shows that for any i, A cl(P). It is easy to

see that cl(P) + c(Mi) c(M-l) (assume c(Mo) 0). Summing these relations
gives the lemma.

COROLLARY 2.1. A O(n log n).
Proof. Since IMkl k, the entry conditions for match imply c(Mk) > -k. Hence

A < n + -]n__l A. By (3), A < bn/(n- + 1). Summing these inequalities gives the
lemma.

The second property shows that the depth-first search of Step 1 never encounters
a cycle. A similar property for network flows is used in [GoT87a].

LEMMA 2.3. In match there is never an alternating cycle of eligible edges.
Proof. Initially there are no matched edges, so there are no alternating cycles of

eligible edges. In a Hungarian search, whenever the duals of a matched edge vw are
changed, w E V1 gets y(w) decreased. Hence any edge joining w to a vertex not in the
search forest $- is ineligible. This implies that the Hungarian search does not create an
alternating cycle of eligible edges. Similar reasoning applies when an augment creates
a new matched edge and changes duals.

Some applications of matching require the optimal linear programming dual vari-
ables. The dual variables y(v) are optimal if there is a perfect matching M such that
every edge vw has y(v) + y(w) < c(vw), with equality for every vw M. (This
implies that M is a minimum perfect matching.) Such duals exist for any bipartite
graph having a perfect matching [L], [PSI. The scaling algorithm halts with duals that
are 1-optimal but not necessarily optimal. Optimal duals can be found as follows.

Let G+ be G with an additional vertex s V0 and an edge sv for each v V1.
Extend the given cost function c to G+ by defining c(sv) as an arbitrary integer;
the cost function used by the matching algorithm extends to G+ by its definition,

(n + 1)c. To specify a cost function on G+, we write G+; c or G+;. Let M be
a minimum perfect matching in G; for vertex v, let v denote its mate, i.e., vv M.
For v V0, let My be a minimum perfect matching in G+ v; c. (Such a matching
exists, for instance, M- vv + sv.) Set

y(v) if v e V0 then -c(Mv) else c(vv’)- y(v’).

These duals are optimal on G. (This can be proved by an argument similar to the
algorithm given below. Alternatively, see [G87] for a proof from first principles.)

Suppose a Hungarian search (as in match) is done on G+; . It halts with a tree T
of eligible edges, rooted at s. Clearly T is a spanning tree. For any v V0, augmenting
along the sv-path in T gives a l-optimal matching N in G+ -v; . N is a minimum
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perfect matching in G+ -v; c. This follows from Lemma 2.1, since G+ -v and G have
the same number of vertices. Hence Nv qualifies as My.

In summary, the following procedure finds optimal duals. Given is the output of
the matching algorithm, i.e., a 1-optimal matching in G; with duals y. Form G+; ,
defining c(sv) [y(v)/(n + 1)] for each v E V1; also set y(s) 0 (this gives i-feasible
duals). Do a Hungarian search to construct a spanning tree T of eligible edges rooted
at s. DO a depth-first search of T to find c(M) for each v E V0. Define optimal duals
y(v) by the above formula.

The time for this algorithm is O(rn). This is clear, except perhaps for the time for
the Hungarian search. The choice of c(sv) ensures that A _< n. Hence, as in match,
the Hungarian search can be implemented using an array Q. This gives O(rn) time.

COROLLARY 2.2. Optimal dual variables on a bipartite graph can be found in
O(xfdrnlog(nN)) time and O(rn) space. [:]

This implies the next result. Consider a directed graph with n vertices, m edges,
and arbitrary (possibly negative) edge lengths.

THEOREM 2.2. The single-source shortest path problem on a directed graph with
arbitrary integral edge lengths can be solved in O(v/-dm log(nN)) time and O(rn) space.

Proof. This problem can be solved by finding optimal duals on a bipartite graph
whose costs are the edge lengths and then running Dijkstra’s algorithm [G85]. [:]

Obviously the same bound holds for O(x/-) sources.

3. Degree-constrained subgraphs and extensions. This section extends
the assignment algorithm to derive the last three bounds of Table 1. Section 3.1
gives an algorithm for the minimum perfect degree-constrained subgraph problem,
deriving time bounds for finding a degree-constrained subgraph and for solving the
transportation problem. Section 3.2 discusses scaling edge multiplicities, which im-
proves the bounds when edge multiplicities are large. Section 3.3 extends the results
to network flow. Throughout 3, n denotes the number of vertices in the input graph.
The problems of 3.1-3.2 are defined on a multigraph. Recall that for a multigraph
rn denotes the number of edges and the number of edges counting multiplicities.

3.1. The degree-constrained subgraph algorithm. This section gives an
algorithm for the perfect degree-constrained subgraph problem. Note that a perfect
DCS problem on a multigraph of n vertices and edges can be reduced in linear time
to a perfect matching problem on a graph of O() vertices and edges [G87]. Hence
Theorem 2.1 immediately implies a bound of O(3/2 log(N)) for the DCS problem.
We now derive the better bound given in Table 1.

For a DCS D, the cost-length of edge e is

cl(e) c(e) + (if e t D then 1 else 0).

A 1-feasible DCS is a DCS D and dual variables y(v) for each vertex v, such that for
any edge vw,

y(v) + y(w) <_ cl(vw), for vw D,
y(v) + y(w) >_ cl(vw), for vw D.

A 1-optimal DCS is a perfect DCS that is 1-feasible. (Note that the definition of
a 1-feasible matching is slightly different the second relation holds with equality.
The difference is not significant: if we treat a matching problem as a DCS problem, a
1-feasible DCS gives a 1-feasible matching, by lowering duals as necessary to achieve
the desired equalities.)
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As in Lemma 2.1, if every cost is divisible by k, k > n/2, then a 1-optimal DCS
is a minimum perfect DCS. This is essentially a result of Bertsekas [Ber79], [Ber86].
In proof, note that a perfect DCS D has minimum cost if any alternating (simple)
cycle C has c(C N D) <_ c(C D). This condition can be verified for a 1-optimal DCS
D by a calculation similar to Lemma 2.1.

Now we describe the algorithm. Many details are exactly as in 2, so we elaborate
only on the parts that change. All data structures have size O(m) (not O()). Clearly
the multigraph G can be represented by such a structure.

The main routine works in (at most) [log(n / 2)N] scales. (This is justified by
the above analog of Lenma 2.1; each original cost is multiplied by [(n + 1)/2.) Steps
1-2 and scale_match are unchanged. Let Do be the 1-optimal DCS of the previous
scale. Note that the match routine is called with integral costs c(e) that are at least
-1 for e Do and at most three for e E Do.

The match routine initializes all duals y(v) to 0 and D to {elc(e < -1}. (Clearly
D does not violate any degree constraint.) The definition of an eligible edge vw is still
y(v) + y(w) cl(vw). Step 1 of match finds a maximal set of edge-disjoint augmenting
paths of eligible edges such that any vertex v is an end of at most (v, D) paths. (In
a multigraph, "edge-disjoint" means a given copy of an edge is in at most one path.)
It augments the DCS along each path. Unlike 2, no duals are changed after an
augment; the new DCS is 1-feasible, and the edges on an augmenting path become
ineligible. Step 2 does a Hungarian search to adjust duals and find an augmenting
path of eligible edges.

Note that this algorithm is correct: Since the Hungarian search maintains 1-
feasiblity, the algorithm halts with a 1-optimal DCS (assuming a perfect DCS exists).

Step 1 is implemented by a depth-first search similar to that of 2, modified for
degree constraints larger than one: Each augmenting path P is initialized to a vertex
x E V0 with positive deficiency; x is used to initialize paths P until its deficiency
becomes zero or it is deleted from P. P is grown as an alternating path, so that when
its last vertex x is in V0 an edge not in D is scanned, and when x is in V1 an edge of
D is scanned. Instead of vertex marks, each vertex has a pointer to its last unscanned
edge. The last edge of P gets deleted if x has no more unscanned edges. It is easy to
see the time for Step 1 is O(). (As shown below, each augmenting path is simple,
although this fact is not needed for correctness.)

The details of the Hungarian search are similar to 2. The main differences stem
from the fact that the search forest $" is grown edge by edge, rather than in pairs
of unmatched and matched edges. The time for the search is O(m). This assumes
that, as in 2, an array Q[1..dn] is used to compute minima; here d is the constant of
Lemma 3.3, which justifies using the array.

This completes the description of the DCS algorithm. The discussion shows that
it is correct. The efficiency analysis uses three inequalities, each analogous to (3) of
2. To state the inequalities, we use notation similar to that of 2: D is the DCS at
any point in match. Do is the 1-optimal DCS of the previous scale; hence each of its
edges costs at most a 3. F is the set of vertices in V0 with positive deficiency; (I) is
their total deficiency,

E{(v,D)lv e F}.

A is the sum of all dual adjustment quantities 5 in all Hungarian searches so far. Each
x F has y(x) A. Px denotes any one of the augmenting paths in Do G D that
contains x.

LEMMA 3.1. For some constant b, at any point in match, OA <_ bU.
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Proof. The argument of 2 gives an analog of (1),

cl(Do D) >_ E{(v, D)y(v)lv e F}.

An edge of Do D has cost-length at most a + 1; an edge of D Do has cost-length
at least -1. Hence the lemma holds with b (a + 2)/2. [:]

The second inequality is for graphs with bounded multiplicity. It generalizes [ET].
Recall that M denotes the maximum multiplicity of an edge in the multigraph.

LEMMA 3.2. For some constant c, at any point in match,
Proof. Set b a + 2. For each integer j define

Uj {u e Voly(u) e [b(j- 1)..bj)},
Wj {w e Vlly(w)- a- 1 e (-bj..- b(j- 1)1}.

We will show that for any j e [1..[A/b + 1]], each Px has an edge uw with
Uj, w e Wj. This implies MIUjlIWjl >_ . Thus Igjl or Iw l is at least V/O/M.
Hence n >_ V/O/M(A/b), as desired.

To find the desired edge uw of Px, let the edges in Px D be tiWi 1,’’’,
(thus Ul x, and Ui+lWi+l follows UiWi). Since Px C_ Do (R) D,

(4)
y(ui) + y(wi) <_ a + 1,

y(wi) + y(ui+l) >_ -1.

Note that y(ttl)-" /; y(tk) < b (by (4) and y(wk)= 0); and y(ti+l)

_
y(ti)-b (also

by (4)). These three inequalities imply that for any j E [1..[A/b + 1], P has some
ui Uj. For a given j, choose the last such i. Then ui+ Uj_. Together with (4)
this implies wi Wj, since

-bj < -y(ui+) b <_ y(wi) a- 1 <_ -y(ui) <_ -b(j 1).

We have shown that wi Wj and ui Uj, as desired. Yl
Before giving the third inequality, we note a useful refinement of Lemma 3.2. Let

X be a matching such that every edge not in X has multiplicity at most Mx.
COROLLARY 3.1. For some constant c, at any point in match, Ax/- _< cnx/-M-.
Proof. The proof is similar to the lemma. We show that for any j E [1.. [A/b + 1]],

each P has an edge uw not in X with u Uj UUj_I, w Wj. This implies
Mxlgy gj-lllWjl >_ which leads to the desired conclusion.

To find the desired edge uw for a path P, proceed exactly as in the lemma to
find an index with ui Uj, ui+ Uj_, and wi E Wy. One of the edges uiwi,

Witi+l is not in X and can be taken as uw.
Another bound on A is useful for large multiplicities. It is similar to the bound

used in [GoTSTa]. It justifies using the array Q[1..dn] to compute minima in the
Hungarian search.

LEMMA 3.3. For some constant d, at any point in match, A <_ dn.
Proof. The proof of Lemma 3.2 shows that for any j [1..[A/b + 1]], P has

some u Uj. r?
COROLLARY 3.2. The number of iterations ofmatch is O(min{v/-, n2/3M/3, n}).
Proof. Each execution of Step 1 (except possibly the first) augments along at

least one path, i.e., it decreases by at least one. The definition of Step 1 implies
that each Hungarian search (except the last) increases A by at least one. Now the
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first two bounds of the lemma follow because at any point in the algorithm A or is
at most B, where Lemma 3.1 gives B and Lemma 3.2 gives B (cn)2/3M1/3.
The third bound follows from Lemma 3.3. [:]

The corollary implies the following time estimates. The estimates are good for
graphs or multigraphs of very small multiplicity.

THEOREM 3.1. A minimum perfect DCS on a bipartite multigraph can be found
in O(min{v/-,n2/3M/3}log(nN)) time. The space is O(m). [:]

For example, in a bipartite graph a minimum perfect DCS can be found in
O(min{v/- n2/3}m log(nN)) time.

The bounds of the theorem also apply to finding n minimum-cost DCS. To see
this let G be the given multigraph or graph. Form G by taking two copies of G and
adding a set of edges X, where for each v V(G), X contains an edge joining the
two copies of v, with multiplicity u(v) g(v) and cost zero. It is easy to see that
G is bipartite, and a minimum perfect DCS on G gives a minimum-cost DCS on G.
Furthermore, X is a matching, so Corollary 3.1 applies with Mx M. This implies
the time bound of the theorem for minimum-cost DCS.

A similar reduction can be used to find a minimum-cost maximum cardinMity
DCS. The only difference is that an X-edge costs nN rather than zero. A minimum
perfect DCS on this graph G induces the desired DCS on (either copy of) G. (In proof,
let D be a minimum perfect DCS on G. We can assume that D contains the same
subgraph D in the two copies of G. Suppose D does not have maximum cardinality.
Let P be an augmenting path. Then an alternating cycle C is formed by the two copies
of P plus two edges of D X that are incident to the two ends of P. Furthermore,
c(D (R) C) < c(D), a contradiction.)

Now we derive bounds that are good for multigraphs with moderately sized mul-
tiplicities. First observe that Lemma 2.3 still holds’ in match there is no alternating
cycle of eligible edges. The proof is essentially the same" There is no such cycle ini-
tially, since the edges initially in D are ineligible. A Hungarian search does not create
such a cycle, since immediately after a dual adjustment a cycle leaving .7" on a new
eligible edge reenters .7" on an ineligible edge.

This fact ensures that the time for a depth-first search in Step 1 is O(m) plus the
total augmenting path length. Thus the total time for match is O(mB + A), where B
is the number of iterations and A is the total augmenting path length. Corollary 3.2
bounds B; now we estimate A.

LEMMA 3.4. A O(min{V log.U, nv/MV}).
Proof. As in Corollary 2.1, A < U + L’iU__l Ai. For the first bound, estimate the

summation as in Corollary 2.1, using Lemma 3.1. For the second bound, Lemma 3.2
shows that the summation is at most --]iu__ cnv/M/i O(nv/MU). D

THEOREM 3.2. The transportation problem capacitated or not) can be solved in

O((min{v/-’,n2/3M1/3,n}m + min{UlogU, nx/MU})log(nN)) time. The space is

O(m).
To understand this rather involved time bound, first note that the terms con-

taining M are relevant only in the capacitated transportation problem. The main
use of the theorem in this pper is when U O(nm), in which case the time is

O(nm log n log(nN)); this bound is used in 3.2 to solve transportation problems with
larger U. For further applications we concentrate on the range M O(n). In this
case the above bound for U O(nm) holds, and also the bound O(n,’--log(nN));
hence in this range the performance is competitive with [GoT87a]. In most of the
range M O(n), the bounds of Theorem 3.2 are those of Theorem 3.1, with re-
placed by m" Using Ulog U as the second term of the time bound and writing Bm
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as the first term, the first term dominates if U O(Bm/ log n). Hence the bound is
O(n2/3M1/3m log(aN)) if U O(n2/3M/3m/logn), e.g.., M O(n/(logn)3/2); the
bound is O(v/mMmlog(ng))if U O(v/mMm/ log n), e.g., M O(m/(logn)2);
the bound is O(-mlog(aN)) if V O(v/--m/log n), e.g., all degree constraints
are O(M) and M O(m2/(n(logn)2)).

As in Theorem 3.1, the same bounds hold for networks where each node has an
upper and lower bound on its desired degree, and the objective is minimum cost or
minimum-cost maximum cardinality.

3.2. Scaling edge multiplicities. In multigraphs with large multiplicities, ef-
ficiency is gained by scaling the multiplicities. Let D be a DCS. Recall that for an
edge e, u(e) and d(e) denote the multiplicities of e in G and D, respectively; for a
vertex v, u(v) and d(v) denote the degree constraint of v and the degree of v in D,
respectively. The term u-value refers to a multiplicity u(e) or a degree constraint u(v).
The approach is to scale u-values. The "closeness lemma" needed for scaling is the
following.

Let G be a multigraph with u-values for which D is a minimum-cost maximum
cardinality DCS. Form u+ by adding one to the u-values of an arbitrary subset of
vertices and edges (in particular a u-value can increase from zero to one). Let I be the
number of increased u-values (so I _< m / n). Let D+ be a minimum-cost maximum
cardinality DCS for u+. Let D+ (9 D denote the subgraph that is the direct sum of
subgraphs D+ and D (i.e., for any edge e, D+ (9 D has Id+(e)- d(e)l copies of e).
Choose D+ so that ID+ (9 D is as small as possible. +(v,D) denotes the deficiency
of D at v for u-values u+.

LEMMA 3.5. D+ (9 D can be partitioned into at most I simple alternating paths
and cycles (where "alternating" means with respect to D and D+ ).

Proof. Since both D+ and D are DCSs for u+, D+ (9 D can be partitioned into
simple alternating paths and cycles; for each vertex v, at most +(v, D+) paths end
at v on a D-edge, and similarly for a D+-edge. Call an edge vw with d+(vw) > d(vw)
new if either

(i) d(vw)= u(vw), or

(ii) vw is an end of a path of D+ (9 D and d(v) u(v).
There are at most I new edges. (A type (i) new edge clearly has an increased u-value.
For a type (ii) new edge vw, v has an increased u-value and +(v, D) 1, so vw is the
only type (ii) edge associated with v.) Thus it suffices to show that any alternating
path or cycle P of D+ (9 D contains a new edge.

P does not begin and end with a D-edge, since D+ has maximum cardinality.
Suppose P does not contain a new edge. Then D (9 P is a feasible DCS for u. (This
follows, since a D+-edge vw of P has d(vw) < u(vw); further, if this edge vw is an
end of P, then d(v) < u(v).) P does not begin and end with a D+-edge, since D
has maximum cardinality. Thus P is an even length alternating path or cycle. This
implies that P has zero net cost (with respect o D or D+). But this contradicts the
fact that ID+ (9 D is as small as possible. [:]

It is convenient to define a new cost function ON(e,) c(e)- nN. Here, as usual,
N denotes the largest magnitude of an edge cost. Observe that D+ is a minimum-cost
DCS for cy. (To prove this, we show that any DCS F with fewer edges than D+
is not minimum: F has an augmenting path P. The DCS F (9 P has cy(F (9 P) <_
cy(F) + (n 1)g -ng < cy(F).)

Lemma 3.5 indicates that D+ (9 D can be found in a multigraph G that models
alternating paths. More precisely G is defined as follows. A vertex v E V(G) corre-
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sponds to vl, v2 E V(G’); G’ has an edge vlv2 of cost 0 and multiplicity I. An edge
vw e E(G) corresponds to edges VlW, vw E(G’), with multiplicities and costs

u’(vw) u+(vw) d(vw), ct(VlWl) CN(VW);
U’(V2W2) d(vw), c’(v2w2) --CN(VW).

Finally, each v V(G) has upper- and lower-degree constraints u’(v) u’(v2) I,
l’(vl) 0, t’(v) I- +(v,D).

Edges of type vv2 are called non-G-edges, and all other edges are G-edges; edges
of type v2w2 are called D-edges, and type VWl are non-D-edges. Observe that G is
bipartite, since a cycle has an even number of non-G-edges and the G-edges give a

(not necessarily simple) cycle of G.
The desired subgraph D+ can be chosen as D D, where D is a minimum-cost

DCS on G. To prove this, we will show two properties:
(a) A DCS D+ for u+ gives a DCS D’ on G’ of cost cg(D+)- cN(D).
(b) A minimum-cost DCS D’ on G’ gives a DCS for u+ of cy-cost cy(D)-bc’(D’).

To see that (a) and (b) suffice, observe that (a) implies cg(D+)- cg(D) >_ c’(D’),
(b) implies cg(D) + c’(D’) >_ cg(D+), implying equality in both relations.

For (a), D consists of the D-edges of D- D+ and the non-D-edges of D+ D;
additionally, for each vertex v, D has I- k copies of edge VlV:, where v is on k of
the I paths and cycles of D+ O D given by Lemma 3.5. Note that the lower bound
constraint for v2 is satisfied, since D+ has at most +(v,D) more non-D-edges than
D-edges.

Part (b) follows from the observation that the G-edges of D can be partitioned
into at most I paths and cycles that are alternating for D, and that D(R)D is a feasible
DCS. The lower bounds P(v:) ensure that D D satisfies all upper bounds u+.

Now we can state the capacity-scaling algorithm for finding a minimum perfect
DCS. Given a DCS problem on a multigraph G, let Z denote the given u-values, with
M the largest Z-value. (Without loss of generality, M is the Z-value of a vertex.)
Consider each Z-value to be a binary number b... bk of k [log MJ + 1 bits. The
routine maintains u as the u-values in the current scale. Each scale constructs a
minimum-cost maximum cardinality DCS D for u; d is the function corresponding to
D. The routine initializes each u(e), d(e) and each u(v), d(v) to zero. Then it executes
the following loop for scale index s going from 1 to k:

Step 1. For each edge e, d(e) 2d(e) and u(e) 2u(e)+ (bit bs of Z(e)). For each
vertex v, u(v) 2u(v)+ (bit b8 of Z(v)).
Step 2. Form the multigraph G defined above. (Note that the function u+ in the
definition of G is given by the function u constructed in Step 1; increased u-values
correspond to bits bs that are one in Step 1.)
Step 3. Let D beaminimum-cost DCSonG. Set D -D(R)D, and let dbethe
function corresponding to D.

To see that this algorithm is correct, note that the subgraph D constructed in Step
3 is a minimum-cost maximum cardinality DCS for u, by the above discussion. Hence
in the last scale, D is the desired minimum perfect DCS. (Note that the algorithm
works on both bipartite and general graphs.)

To estimate the running time, assume that Step 3 uses the cost-scaling algorithm
of Theorem 3.2 to find the minimum-cost DCS. Noting that U O(nm) gives the
following.
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THEOREM 3.3. The transportation problem capacitated or not) can be solved in
M)

This result extends to the variants of the perfect DCS problem mentioned above.
Next consider the transportation problem with cost functions. This problem allows

parallel copies of an edge to have different costs. Specifically the cost of the pth copy
of an edge e, 1 _< p _< u(e), is given by c(e, p), a nondecreasing function of p that can
be evaluated in O(1) time. As usual, these costs are in [-N..N], and each vertex v
has a desired degree u(v). The problem is to find a minimum-cost perfect DCS for
these degree constraints. Note that the desired DCS can still be represented by an
integral function on the edges d(e), where 0 _< d(e) <_ u(e), since we can assume that
the DCS contains the d(e) smallest cost copies of e.

As examples of this problem, c(e, p) [aepJ + be is the original DCS problem for
ac 0, and a simple example of diminishing returns to scale for ac > 0. Alternatively,
c(e,p) could be, say, a piecewise quadratic function; in this case evaluating c(e,p) for
arbitrary p would probably involve a binary search on the breakpoints. (Note that
in the definition of the transportation problem with cost functions, the restriction to
nondecreasing cost functions c(e,p) is crucial: without it the problem is NP-hard [GJ,
p. 214]. Also note that the solution to the problem is a multigraph with integral
multiplicities, by definition. This assumption of integrality is also crucial. This issue
is discussed further after Theorem 3.5 for network flows, where real-valued flows make
sense.)

In a trivial sense, the algorithm of Theorem 3.3 solves the transportation problem
with cost functions just treat parallel copies of an edge with different costs as
different edges. The disadvantage of this approach is that in the time bound, the term
m must count each edge e according to the number of distinct costs c(e,p). We show
how to avoid this: We extend the capacity-scaling algorithm to the transportation
problem with cost functions, preserving the time bound of Theorem 3.3.

First we modify the cost-scaling algorithm to preserve the time bounds of Theo-
rems 3.1-3.2. The derivation of those theorems remains valid for cost functions and
gives the desired time bounds, provided all individual steps are implemented to run
in essentially the same time as before. This means implementing Step 1 of the main
routine and scale_match in time O(m) (even though they modify every cost) and sim-
ilarly for match. This can be done because of the following observation. When there
are cost functions, the conditions for a DCS D to be l-feasible are equivalent to a
system involving only two inequalities per edge e vw,

c(e, d(e)) <_ y(v) + y(w) <_ c(e, d(e) + 1) + 1.

Furthermore, the only copies of e that can be eligible are D-edges costing c(e, d(e))
and non-D-edges costing c(e, d(e)+ 1)+ 1.

Step 1 of the main routine and scale_match do not explicitly modify edge costs.
Instead, match computes the cost of an edge when it is needed, in O(1) time using
arithmetic operations. Specifically, the pth cost for vw is

+  0(v)

where + denotes integer division, k [log(n + 2)NJ is the number of cost scales, s is
the index of the current cost scale, and y0 denotes duals at the start of scale s.

The match routine starts by initializing D to contain all edges costing less than
-1. This is done by examining each edge and adding smallest cost copies to D until
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the cost reaches -1. The time is O(m / U), which suffices for the bounds of Theorems
3.1-3.2.

In the depth-first search of Step 1, it is unnecessary to know the multiplicity of
each eligible edge when the search begins. Rather, costs c(e, d(e)) and c(e, d(e) + 1) are
used to determine which edges have at least one eligible copy. When the depth-first
search finds an augmenting path P, the next cost for each edge e P is used to see
if there is another eligible copy of e (i.e., for e P D, another copy of e is eligible
if c(e,d(e)- 1) c(e,d(e)), and similarly for e P- D). Thus the time for the
depth-first search is still O(m) plus the total augmenting path length. It is obvious
that the Hungarian search, given costs c(e, d(e)) and c(e, d(e) + 1), uses time O(m).
Thus the bounds of Theorems 3.1-3.2 apply.

Now we modify the capacity-scaling algorithm of Theorem 3.3. The new version
works by scaling the domain of the cost functions. The closeness lemma (Lemma 3.5)
generalizes as follows. Let G be a multigraph with cost functions c and u-values for
which D is a minimum-cost maximum cardinality DCS. Form u+ by adding one to
the u-values of an arbitrary set of vertices and edges. Form c+ so that for each edge
e and p e [0..u+(e)),

(6) c(e,p + 1) >_ c+(e,p+ 1) >_ c(e,p).

(Here c(e, O) -, c(e, u(e) + 1) .) Let I be the number of vertices with an
increased u-value plus the number of edges with an increased u-value or some decreased
c-value (so that I _< m + n). Let D+ be a minimum-cost maximum cardinality
DCS for c+ and u+, chosen so that ID+ @ D is minimum (D+ (R) D has the obvious
interpretation).

LEMMA 3.6. D+ D can be partitioned into at most I simple alternating paths
and cycles.

Proof. The argument is an expanded version of Lemma 3.5. We will explicitly
state only the new material. The definition of new edge is expanded to include a type
(iii) new edge e, defined to have d+(e) > d(e) and c(e,d(e)+ 1) > c+(e,d(e)+ 1),
where by definition only the d(e) + 1st copy of e is new. (Note that d+ (e) d(e) may
be larger than one.)

The argument remains unchanged until the end, when P is an even length alter-
nating path or cycle not containing a new edge, and we must show that it has zero
net cost (with respect to c+ and D+). The net cost of P with respect to c+ and D+
is nonnegative, by the minimum-cost property of D+. Hence it suffices to show that
the net cost of P with respect to c+ and D is nonnegative.

This follows from the minimum-cost property of D if for every edge e whose pth
copy is in P N D+, c+(e,p) >_ c(e,d(e) + 1). We prove this inequality as follows. The
pth copy of e is not new and p >_ d(e) + 1. Consider two cases: If p d(e) + 1 then
c+(e,p) c(e,d(e) + 1), as desired. If p :> d(e) + 1 then c+(e,p) >_ c(e,d(e) + 1) by
(6), as desired. [-1

This lemma justifies an algorithm similar to the capacity-scaling algorithm. The
main differences are as follows. Step 1, in addition to scaling d and u, scales the cost
function domain. Specifically let co denote the given cost function. Then for each e
and p e [1..u(e)] (where u(e) is the new u-value) Step 1 sets c(e,p) co(e,2-*p),
where k [logM] + 1 is the number of capacity scales and s is the index of the
current capacity scale. Observe that the DCS corresponding to the new (scaled) d
is a minimum-cost maximum cardinality DCS for the new (scaled) u-values rounded
down to even numbers and the new costs c with c(e, 2p- 1) increased to c(e, 2p). So
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Lemma 3.6 applies and justifies the remaining steps: Step 2 defines G as before but
with costs changed in the obvious way to take cost functions into account. Step 3
computes D using the cost-scaling algorithm described above.

For efficiency, these three steps are not done explicitly. (For instance, doing Step
2 explicitly would use O(m2) time, since an edge can be in G with multiplicity m +n.)
Step 1 computes only two new costs for each edge e, c(e,d(e)) (already known) and
c(e, d(e) + 1). To do Step 2, G’ is initialized to contain only the cheapest copy of each
edge of type vlwl, v2w2. This is the copy that will be added to the DCS D first.
Each copy comes from a cost computed in Step 1. When the cost-scaling algorithm
checks to see if there is another eligible copy of an edge e (in the depth-first search),
the next higher (or lower) cost copy of e is computed (by the formula of Step 1) and
the cost is scaled down using (5).

THEOREM 3.4. The transportation problem (capacitated or not) with cost func-
tions can be solved in O(nm log n log(aN)log M) time. The space is O(m). [:]

We close this section with a variant of the capacity-scaling algorithm of Theorem
3.3. It will be useful in the next section for flow problems with lower bounds. The
variant is essentially the (capacity scaling) mincost flow algorithm of Edmonds and
Karp [EK]. For completeness we sketch this algorithm, which we call EK (capacity)
scaling.

It is convenient to describe EK scaling in terms of two well-known ideas, which we
now summarize. The algorithm could be given in terms of 1-feasibility, but it is more
natural to use optimal dual variables. Analogous to 2.2 for matching, optimal duals
satisfy the 1-feasible inequalities with cost-length cl replaced by cost c. Specifically,
variables y(v), v E V, are optimal for a DCS D if for any edge vw, y(v) + y(w) <_ c(vw)
if vw D and y(v) + y(w) >_ c(vw) if vw D. Any graph with a perfect DCS has a
minimum perfect DCS with corresponding optimal duals. (Optimal duals correspond
to the optimal linear programming dual variables.)

The classic Hungarian search for the Hungarian matching/DCS algorithm works
with such optimal dual variables (see [L], [PSI). In contrast, the Hungarian search of
3.1 uses 1-feasible duals. The difference in the two Hungarian searches is essentially

the definition of "eligible": 3.1 uses cost-length in the definition of eligible where the
standard Hungarian search uses cost. In either case, the purpose of the Hungarian
search is to adjust duals, preserving 1-feasibility or optimality as appropriate, and find
an augmenting path of eligible edges. A Hungarian search (with optimal duals) can
be done in time O(m + n log n) using Fibonacci heaps [FT].

Hungarian search can be used to do sensitivity analysis for the DCS problem.
We will need two sensitivity problems: Given is a minimum perfect DCS D with
corresponding optimal duals y. The first problem is to increase the degree constraints
of two vertices v, w each by one, and update D and y (if a perfect DCS exists). The
second problem is to add an edge vw to the multigraph and update D and y. Both
problems can be solved in the time for one Hungarian search. We briefly sketch the
algorithms.

First, suppose u(v) and u(w) are each increased by one. Do a Hungarian search
from v. Eventually the search finds an augmenting path P of eligible edges from v to
w. (The augmenting path can only end at w. If no such path is found, there is no
perfect DCS for the new degree constraints.) The algorithm augments along P.

Next, suppose edge vw is added. If y(v) + y(w) <_ c(vw), then D and y remain
optimal. Suppose y(v) + y(w) > c(vw). Add new vertices v’, w’, and new edges vv’,
ww’ with c(vv’) c(ww’) 0; set y(v’) -y(v), y(w’) -y(w). Do a Hungarian
search from v, to adjust duals and find an augmenting path of eligible edges. Note that
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the search lowers y(v). If at some point y(v) is lowered so that y(v) + y(w) <_ c(vw)
the search stops, since now vw can be added to the graph. Otherwise, the search
finds an augmenting path P of eligible edges from v to wI. (Note that if there is no
augmenting path from v to w, the Hungarian search can eventually lower y(v) so
that the first case holds.) The algorithm augments along P and adds vw to the DCS.
(This is permissible, since y(v)+ y(w) > c(vw).) Finally, the new vertices and edges
are deleted.

The EK-scaling algorithm scales capacities similar to the capacity-scaling algo-
rithm. Since it works with optimal duals, it modifies the graph of each scale to ensure
that a perfect DCS exists. This is done by using the graph G (defined in 3.1): G
consists of two copies of G plus edges X, where for each v E V(G), X contains an
edge joining the two copies of v, with multiplicity u(v) and cost nN. Note that (as in

3.1) a minimum perfect DCS on G induces a minimum-cost maximum cardinality
DCS on G. Hence in the last scale, the desired minimum perfect DCS is found.

Now we present the EK-scaling algorithm. It finds a minimum perfect DCS. Given
a DCS problem on a multigraph G, define g, M, k as in the capacity-scaling algorithm.
The routine maintains u as the u-values in the current scale. Each scale constructs
a minimum perfect DCS D for the graph G; d is the function corresponding to D.
The routine initializes each u(e), d(e), and each u(v) to zero. Then it executes the
following loop for scale index s going from 1 to k"

Step 1. For each e e E(G), d(e) - 2d(e) and u(e) 2u(e). For each v V(G),

Step 2. For each e E(G) such that the binary expansion of g(e) has bit b8 1, do
the following: For each copy of G, add one to the copy of u(e) and add another copy
of e, updating D and y using the above routine for adding an edge.

Step 3. For each v V(G) such that the binary expansion of g(v) has bit bs 1, do
the following" Add another copy of the edge joining both copies of v to G. Update
D and y using the above routine for adding an edge. Then add one to both copies of
u(v), and update D and y using the above routine for increasing upper bounds, gl

The correctness of EK scaling follows from the fact that it maintains a set of
optimal duals on G for u and D. Note that in Step 3 in the update routine for
increasing upper bounds, an augmenting path always exists: If the edge vv was added
to D in the routine for adding an edge, the augmenting path that was used can now
be reused.

In problems where each scale has I O(n), the total time for EK scaling is
O(n(m + n log n) log M) slightly improving Theorem 3.3. We will encounter such
problems in the next section.

3.3. Network flow. This section extends the results to integral network flows.
It is convenient to work with the problem of finding a minimum-cost circulation, de-
fined as follows ILl. Let G be a directed graph where each vertex v has a nonnegative
integral capacity u(v), and each edge e has a nonnegative integral capacity u(e), a
lower bound t(e) and a cost c(e). The minimum circulation problem is to find a
feasible circulation with smallest possible cost. (If vertex capacities are not given,
setting u(v) vw u(vw) does not change the problem. The circulation problem
includes the minimum-cost flow problem as a special case. As already mentioned, the
usual definition of the circulation (network flow) problem allows real-valued parame-
ters. However, note that if all capacities and lower bounds are integral, an optimum
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circulation (flow) that is integer-valued always exists [L].)
A minimum circulation problem on a network G can be transformed to a minimum

perfect DCS problem on a bipartite multigraph B, as follows. A vertex v E V(G)
corresponds to vl, v2 E V(B); B has an edge vlv2 of cost 0 and multiplicity u(v).
An edge vw E(G) corresponds to vlw2 E(B) with cost c(vw) and multiplicity
u(vw) i(vw). The degree constraints on B are

c

u(v2) u(v) E{ (wv)lwv c E(G)}.

A circulation on G corresponds to a perfect DCS on B costing less by exactly
E{i(e)c(e)le E(G)}. Thus the flow problem can be solved using the DCS algo-
rithms given above. Note that B has n vertices in each vertex set, O(m) edges,
U O(E{u(v)lv V(G)}) and O(U + Y{u(e)le E(G)}). In part (a) below,

is the number of edges, with each edge counted according to its capacity.
THEOREM 3.5. A minimum-cost circulation on a network with all edge capacities

and lower bounds in [0..M] can be found in the following time bounds (and space

(a) O(min{x/, n/3M/3}log(nN)).
(b) O((min{v/--, n2/3M/3, n}m + min{mM log(mM), n2v/})log(aN)).
(c) O(nm log n log(nN)log M).

These bounds also hold when each edge cost is a convex function of its flow.
Proof. These bounds follow essentially from Theorems 3.1-3.4. Note that M

does not necessarily bound the multiplicities in B, since we assume no bound on
vertex capacities in G. Nonetheless, the bound for part (b) holds. To show this,
use Corollary 3.1, with matching X containing all edges of the form vv2; note that
Mx M. Also the bound for part (c) holds" There are log(mM) capacity scales,
but the time bound involves the factor log M, because each of the first log rn scales is
trivial.

Note that in Theorem 3.5(c), the algorithm for convex cost functions finds an

optimal integral-valued flow. However, this flow need not be the global optimum,
which may involve real-valued flow values. Finding this solution appears to be much
harder. For instance, if the cost of an edge is a quadratic function of its flow, finding
a minimum-cost flow is NP-hard [GJ], [H].

Next, consider a minimum circulation problem in which O(n) vertices and edges
have finite capacity. As usual, every edge has a lower bound, perhaps zero. Such
problems arise as covering problems; a common special case is circulations with lower
bounds but no upper bounds (e.g., the aircraft scheduling problem of [L, p. 139]).

THEOREM 3.6. A minimum circulation on a network with lower bounds but only
O(n) finite capacities, all lower bounds and finite capacities in [0..M], can be found in
O(n(m + n log n)log(aM)) time and O(m) space.

Proof. Without loss of generality assume that no cycle has negative cost and infi-
nite capacity. (Such a cycle can be detected in time O(nm) using Bellman’s algorithm
[Bel].) Recall that a circulation can be decomposed into flows around cycles [Tarj].
Hence it is easy to see that all infinite capacities (on edges or vertices) can be re-

placed by any number that is at least S {if c(e) is finite then c(e) else
E(G)} / ,{c(v)[v e V(G), e(v) is finite}.

The algorithm is as follows: Find S and set k [log S. For each infinite capacity
vertex v, redefine its capacity to S; for each infinite capacity edge e, redefine its
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capacity to t(e) + 2k+l. Transform the new circulation problem into a DCS problem,
as above, and solve the DCS problem using EK scaling.

The correctness of this algorithm follows from the definition of S. To estimate
the efficiency, note that in the DCS problem, every infinite capacity edge of G has
multiplicity 2k+l and every vertex vl, v2 has degree constraint at most S _< 2k.
Hence the first scale is trivial no edges are in the DCS, and the duals can be set
to any sufficiently small values (say min{c(e)/21e e E}). Every scale after the first
has I O(n) (recall that I is the number of increased u-values), since the u-values
of infinite capacity edges double. Hence the total time is O(n(m + n log n) log S)
implying the desired bound.

The term log(nM) in the time bound can be replaced by log M, or more precisely,
(1 + log(S/n)). This modified bound is an asymptotic improvement for S very close
to n. The modified bound follows because, although there are log S scales, the first
log n scales do O(n) augmentations. (This in turn holds, since every unit of I in the
first log n scales contributes at least Sin to the sum for S. Actually, to achieve this
requires a slight modification to the algorithm: the capacity of an infinite capacity
vertex v is changed to 2k + {/(e)le is incident to v}.) Bounds similar to this are in
[EK], [ALl.

As an example of an application of these bounds, consider the directed Chinese
postman problem. A complete definition of the problem is given in [EJ], [PS]; it
is a special case of the above problem with S O(m). The theorem gives time
O(n(m+n log n) log n) for this problem; the modified bound is slightly better, O(n(m+
n log n) log(m/n)). (For instance, it is easy to see that the modified bound is no worse
than O(nm log n).) Aho and Lee [AL] give a complete discussion of covering problems
such as this one.

4. Concluding remarks. Table 1 shows that in terms of asymptotic estimates,
many network problems can be solved efficiently by scaling. Scaling algorithms also
tend to be simple to program. For instance, the assignment algorithm consists of an
outer scaling loop plus an inner loop that does a depth-first search, followed by a
Dijkstra calculation. We believe that such algorithms will run efficiently in practice.
Note that in the experiments done by Bateson [Ba] the scaling algorithm of [G85]
ran faster than the Hungarian algorithm as long as the cost of the matching could be
stored in a machine integer. Our assignment algorithm has even simpler code than
[G85] and so should do even better.

We have extended the assignment algorithm in three other directions. The first
direction is parallel computation. Almost-optimum speedup can be achieved for a
large number of processors. Specifically, the time bound for the assignment problem
improves by a factor of (log(2p))/p for a version of the algorithm running on an
EREW PRAM with p processors, for p <_ m/(x/log2 n). Details are in [GabT88].
The second direction is matroid generalizations of bipartite matching, such as the
independent assignment problem and weighted matroid intersection. As in this paper,
time bounds very close to the best-known bounds for the cardinality versions of the
problems can be achieved; see [GX89a], [GX89b]. The third direction is matching
on general graphs. The time bound for finding a minimum perfect matching on a
general graph is O(v/n(m n)logn rn log(nN)). The algorithm is more complicated
than the assignment algorithm because of "blossoms" that occur in general matching.
Blossoms compound the error due to scaling. Details are in [GabT89].

Since the initial writing of this paper several related results have also been ob-
tained by others. Orlin and Ahuja [OA] discovered an alternative O(v/-dm log(nN))-
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time algorithm for the assignment problem. Their algorithm uses our scaling approach
in combination with a hybrid inner loop that uses the Goldberg-Tarjan "preflow-push"
method in a first phase and single augmentations in a second phase. (We chose not
to use this approach because of the conceptual and practical advantages.of a uni-
form algorithm.) Orlin and Ahuja also show how to use their assignment algorithm
(or ours) to find a minimum average cost cycle in a directed graph with edge costs,
in the same time bound. Ahuja, Goldberg, Orlin, and Tarjan [AGOT] have studied
other double scaling algorithms for the minimum-cost flow problem. Their fastest
algorithm runs in O(nm log(nN)loglogM) time with sophisticated data structures
or O(nm log M(1 + log(nN)/log log M)) time with simple data structures. Aho and
Lee [ALl have investigated the use of Edmonds-Karp scaling in covering problems, as
already mentioned in 3.3.
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inspired this work.

[AGOT]

[AHU]

[ALl

[B]

[Ber79]

[Ber86]

[Ber87]

[D]

[EJ]

[EK]

[ET]

[FT]

[GabT88]

[GabT89]

REFERENCES

R.K. AHUJA, A.V. GOLDBERG, J.B. ORLIN AND R.E. TARJAN, Finding minimum-
cost flows by double scaling, Tech. Report CS-TR-164-88, Dept. of Comput. Sci.,
Princeton University, Princeton, NJ, 1988; submitted for publication.

A.V. AHO, J.E. HOPCROFT, AND J.D. ULLMAN, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

A.V. AHO AND D. LEE, EJficient algorithms for constructing testing sets, covering paths,
and minimum flows, unpublished manuscript, 1988.

C.A. BATESON, Performance comparison of two algorithms for weighted bipartite match-
ing, M.S. thesis, Dept. of Comput. Sci., University of Colorado, Boulder, CO, 1985.

R.E. BELLMAN, On a routing problem, Quart. Appl. Math, 16 (1958), pp. 87-90.
D.P. BERTSEKAS, A distributed algorithm for the assignment problem, unpublished
working paper, Laboratory for Information and Decision Sciences, Mass. Inst. of
Technology, Cambridge, MA, 1979.

Distributed asynchronous relaxation methods for linear network flow problems,
LIDS Report P-1606, Mass. Inst. of Technology, Cambridge, MA, 1986; preliminary
version in Proc. 25th IEEE Conference on Decision and Control, December 1986., The auction algorithm: A distributed relaxation method for the assignment
problem, LIDS Report P-1653, Mass. Inst. of Technology, Cambridge, MA, 1987.

R.B. DIAL, Algorithm 360: Shortest path forest with topological ordering, Comm. Assoc.
Comput. Mach., 12 (1969), pp. 632-633.

J. EDMONDS AND E.L. JOHNSON, Matching, Euler tours and the Chinese postman,
Math. Programming, 5 (1973), pp. 88-124.

J. EDMONDS AND R.M. KARP, Theoretical improvements in algorithmic efficiency for
network flow problems, J. Assoc. Comput. Mach., 19 (1972), pp. 248-264.

S. EVEN AND R.E. TARJAN, Network flow and testing graph connectivity, SIAM J.
Comput., 4 (1975), pp. 507-518.

M.L. FREDMAN AND R.E. TARJAN, Fibonacci heaps and their uses in improved network
optimization algorithms, J. Assoc. Comput. Mach., 34 (1987), pp. 596-615.

H.N. GABOW, Scaling algorithms for network problems, J. Comput. System Sci., 31
(1985), pp. 148-168.
, Duality and parallel algorithms for graph matching, unpublished manuscript,

1987.
H.N. GABOW AND R.E. TARJAN, Almost-optimum speed-ups of algorithms for bipartite

matching and related problems, Proc. 20th Annual ACM Symposium on Theory of
Computing, 1988, pp. 514-527; submitted for publication., Faster scaling algorithms for general graph matching problems, Tech. Report
CU-CS-432-89, Dept. of Comput. Sci., University of Colorado, Boulder, CO, 1989;
submitted for publication.



1036 HAROLD N. GABOW AND ROBERT E. TARJAN

[GX89a]

[GX89b]

[GAIT]

H.N. GABOW AND Y. XU, Efficient theoretic and practical algorithms for linear matroid
intersection problems, Tech. Report CU-CS-424-89, Dept. of Comput. Sci., University
of Colorado, Boulder, CO, 1989; submitted for publication.
, Efficient algorithms for independent assignment on graphic and linear matroids,

Proc. 30th Annual Symposium on Foundations of Computer Science, 1989, to appear.
Z. GALIL AND 1. TARDOS, An O(n2(m + n logn)logn) rain-cost flow algorithm, Proc.

27th Annual Symposium on Foundations of Computer Science, 1986, pp. 1-9.
[GJ] M.R. GAREY AND D.S. JOHNSON, Computers and Intractability: A Guide to the Theory

of NP-Completeness, W.H. Freeman and Co., San Francisco, CA, 1979.
[Go] A.V. GOLDBERG, Ejficient graph algorithms for sequential and parallel computers,

Ph. D. dissertation, Dept. of Electrical Engrg. and Comput. Sci., Mass. Inst. of
Technology, Tech. Report MIT/LCS/TR-374, Cambridge, MA, 1987.

A.V. GOLDBERG AND R.E. TARJAN, A new approach to the maximum flow-problem,
J. Assoc. Comput. Mach., 35 (1988), pp. 921-940.
, Solving minimum-cost flow problems by successive approximation, Proc. 19th

Annual ACM Symposium on Theory of Computing, 1987, pp. 7-18.
Finding minimum-cost circulations by successive approximation, Tech. Report

CS-TR-106-87, Dept. of Comput. Sci., Princeton University, Princeton, NJ, 1987;
Math. Oper. Res., to appear.

[HI P.P. HERRMANN, On reducibility among combinatorial problems, Report No. TR-113,
Project MAC, Mass. Inst. of Technology, Cambridge, MA, 1973.

[HK] J. HOPCROFT AND R. KARP, An n5/2 algorithm for maximum matchings in bipartite
graphs, SIAM J. Comput., 2 (1973), pp. 225-231.

[K55] H.W. KUHN, The Hungarian method for the assignment problem, Naval Res. Logist.
Quart., 2 (1955), pp. 83-97.

[K56] , Variants of the Hungarian method for assignment problems, Nval Res. Logist.
Quart., 3 (1956), pp. 253-258.

ILl E.L. LAWLER, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and
Winston, New York, 1976.

[OA] J.B. ORLIN AND R.K. AHUJA, New scaling algorithms for the assignment and minimum
cycle mean problems, Sloan Working Paper No. 2019-88, Sloan School of Management,
Mass. Inst. of Technology, Cambridge, MA, 1988.

[PSI C.H. PAPADIMITRIOU AND K. STEIGLITZ, Combinatorial Optimization: Algorithms
and Complexity, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1982.

[Tard] t. TARDOS, A strongly polynomial minimum cost circulation algorithm, Combinatorica,
5 (1985), pp. 247-255.

[Trj] R.E. TARJAN, Data Structures and Network Algorithms, CBMS NSF Regional Con-
ference Series 44, Society for Industrial and Applied Mathematics, Philadelphia, PA,
1983.

[W] R.A. WAGNER, A shortest path algorithm for edge-sparse graphs, J. Assoc. Comput.
Mach., 23 (1976), pp. 50-57.

[GoT86]

[GoT87a]

[GoT87b]



SIAM J. COMPUT.
Vol. 18, No. 5, pp. 1037-1047, October 1989

()1989 Society for Industrial and Applied Mathematics

012

A NEW BASE CHANGE ALGORITHM FOR PERMUTATION
GROUPS *
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Abstract. The computation of a strong generating set for a permutation group acting on a set
of n points is the fundamental operation that underlies most of the algorithms in computational

group theory. Sims gave a change of basis algorithm that transforms a strong generating set relative
to one ordering of into a strong generating set relative to a different ordering. Base change is
crucial for many of the important algorithms that have been implemented in the Cayley system, and
is also important for many applications of computational group theory to combinatorial and search
problems. Sims’s base change has worst-case time O(nb). The main result of this paper is a new

change of basis algorithm that has worst-case time O(n3).

Key words, base change, permutation group, algorithm
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1. Introduction. Let G be a permutation group acting on a set Ft, and let
1, r2,..., n be an ordering of the points of Ft. Define G(i) to be the subgroup of

G consisting of all elements of G that fix each of the points 1, 2,"’, i-1, 1

_
_< n.

The point stabilizer sequence for G relative to is the chain of subgroups

G- G(1) _D G(2) _... _
G(n-l)

_
G(n) {e}.

A set S of generators for G is said to be a strong generating set for G relative to r, if

G() ( G()),

i.e., those generators in S that fix rl, 71"2,"" ", 71"i--1 generate G(i).
The computation of a strong generating set for G relative to an ordering r is the

fundamental operation that underlies many important algorithms in computational
group theory. Sims [11] developed the first algorithm for constructing a strong gener-
ating set, using the Schreier vector data structure for storing the resulting generators.
Sims also gave an efficient change of basis algorithm that transforms a strong gen-
erating set relative to one ordering of into a strong generating set relative to a
different ordering. Butler and Lam [5] have shown that Sims’s base change algorithm
has worst-case time O(n5). This paper presents a change of basis algorithm that has
worst-case time O(n3).

Base change is crucial for an efficient application of Sims’s backtracking method
for performing fundamental group computations. This method underlies many of the
algorithms implemented in the Cayley system [6] and is also important for applications
of computational group theory to combinatorial and search problems [3], [5], [10].
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under grant number DCR-8603293.

College of Computer Science, Northeastern University, 360 Huntington Avenue, Boston, Mas-
sachusetts 02115.

:Department of Computer Science, Indiana University, 101 Lindley Hall, Bloomington, Indiana
47405.

1037



1038 C. A. BROWN L. FINKELSTEIN AND P. W. PURDOM JR.

Sims’s method involves a systematic search through the elements of G in order to
compute a subgroup H of G satisfying a certain property (such as centralizing an
element of G). If any subgroup K of H is known in advance, or is computed in the
course of the search, the algorithm uses K to prune the search space for G. In order
to do the pruning efficiently, it is necessary to be able to rapidly compute Kr, the
pointwise stabilizer in K of an arbitrary subset F of t [4]. With an efficient change
of basis algorithm, strong generators for K relative to an ordering of gt for which F
forms a prefix can be computed, and so generators for Kr are readily available.

Our base change algorithm is also useful for the pointwise stabilizer problem.
Recently, Babai, Luks, and Seress [1] have described an O(n4(log(n)c)) algorithm for
obtaining a strong generating set for a permutation group. Their method requires
an initial ordering of the points to be compatible with an "extended structure tree"
determined by the action of the permutation group. Thus the Babai-Luks-Seress
algorithm can find the pointwise stabilizer for a set of points that are the leftmost
consecutive leaves of the structure tree. As they state, the method can be extended to
obtain the pointwise stabilizer of an arbitrary subset of gt within the same asymptotic
worst-case time. However, a simple alternative for the general pointwise stabilizer
problem is to use a structure tree to obtain a strong generating set in O(n4(log(n)c))
time, and then use our change of basis algorithm to obtain a strong generating set
relative to a suitable reordering of the points in time O(n3).

Our change of basis algorithm uses the labeled branching data structure to rep-
resent a strong generating set for a permutation group. This data structure was
introduced by Jerrum [8] as a compact way of (implicitly) storing a coset table for the
point stabilizer chain of subgroups relative to an ordering r. The labeled branching
for G requires the storage of at most n- 1 permutations and can be used to compute
a coset representative for G(i+1) in G(i) with a single permutation multiplication. The
permutations in the labeled branching for G also constitute a set of strong generators
for G relative to r. A labeled branching occupies O(n2) storage, versus the O(n3)
storage required for the Schreier vector method, and can be computed directly in
O(n5) time using an algorithm described by Jerrum [8]. (See also [7] for a description
of an efficient implementation of this algorithm.) Alternatively, a labeled branching
for G relative to r can easily be computed in O(n3) time once a strong generating set
for G relative to r is known.

Let B be a labeled branching for G relative to an ordering r rl, r2,..., r,. The
key step in our algorithm is a fast method for constructing a labeled branching B for
G relative to a new ordering 71"1, 7rr--1,71"s, 7rr, T’r-t-1,’’’, T’s--1,71"s+1,""", 7rn, where
r < s. This step, which amounts to a "right cyclic shift" of the points 7r,..., ;r, can
be performed in O(n2) time. The ordering 7rl, 7r2,..., 7rn can be transformed into an
arbitrary ordering ;r, r, , rn by performing at most n- 1 such shifts, giving a total
time of O(n3). (There are some applications where a fast algorithm for a single cyclic
right shift is of direct interest [3].) In Sims’s original formulation, the key .step is to
use an elegant trick to get a strong generating set for G relative to a new ordering of
the form 7rl,..., ;ri_l, 7ri+, ;ri,..., 71"n without performing any "sifting" operations. It
then takes O(n2) transpositions to reach the final ordering. Our method generalizes
Sims’s trick for transpositions to a right cyclic shift, still without requiring any sifting
operations.

2. Labeled branchings. Let permutation group G act on t {1,2,...,n},
and let 7r rl, 7r2, ..., 71"n be an ordering of the points of Ft. A branching on t relative
to 7r is a directed forest in which each edge has the form (Tri, 7rj) for < j. A branching
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B is said to be a labeled branching for G relative to r if each edge (i, rj) is labeled
by a permutation (ij so that the following properties hold:

(i) aij E G() and moves ri to rj, i.e., k for 1

_
k < and 7 j.

(ii) The set of edge labels of B generates G.
A labeled branching B is said to be complete if the following additional property holds"

(iii) If rk is in the G(i) orbit of ri, then there is a directed path in B from ri to
71"k.

Criterion (iii) ensures that the edge labels of B form a strong generating set for
G relative to the ordering r.

Labeled branchings can be implemented as an array of structures using O(n2)
storage. Although we have described the labeled branching in terms of the edge labels
a, the actual permutations stored in the branching data structure are products of
the edge labels. Let rr be the root of the connected component of B containing j.
Associate with each node a node label T(j), where T(j) is the product of the edge labels
from the root rr to j if r j, and is the identity if r j. Since T(j) -1 moves

j to its root r, we may recover the label for edge (ri, rj), aij, as rij T(i)-17(j).
Thus, the node labels are an implicit way of storing the edge labels, as they allow
an edge label to be recovered at the cost of one permutation multiply. Furthermore,
if there is a path from k to rj in B, then T(k)--IT(j) is the product of the edge
labels along the path from rk to rj. This means that coset representatives can also
be recovered from the data structure at the cost of one multiply, as opposed to O(n)
multiplies if edge labels were stored.

In addition to the T field, each node rj of B has a parent field, where parent(j) k
if (k, rj) is an edge, and -1 (a value less than any point) otherwise. When a constant
factor of time is more important than a constant factor of space, one should also store
v(j) -1. For some applications, it is useful to keep a list of the children for each node.

The main operation on a labeled branching is "sifting" a permutation. This is the
key step in all algorithms for finding a strong generating set. The basic idea behind
sifting is to see if a given permutation g can be written in the form g g,_ lgn-2 gl,

where gi is an element of a fixed set U(i) of coset representatives for G(i+1) in G(i),
1 _< _< n- 1. If g cannot be written in this form, then there exists an index such
that g gg1-1 -1 where gj U(J), for 1 < j < i- 1 gP G(i), and there"gi-l
does not exist a path in B from to j ig’. Sift then attempts to create a new edge
(i, j) with edge label g’. If indegree(j) O, then this can be done directly. However,
if indegree(j) 1, then care must be taken to preserve both the branching property
as well as "connectivity" and "generational" properties already built into the current
branching (see [8] and [2, Prop. 8.1, 8.2]).

Jerrum proved that a complete labeled branching for a permutation group can
be computed in O(n5) time using O(n) storage. The basic idea of the algorithm is
to sift into an empty labeled branching generators for G, and then to sift in "Schreier
generators" for G(i+1), 1, n-2, successively. Schreier generators for G(i+1) can
be built from a set of generators for G(i) and a set of coset representatives for G(i+1) in
G(i) that are available from the branching and were entered in the previous iteration.
Knuth [9] also has an O(n5) time algorithm for computing a strong generating set,
but his algorithm requires O(n3) storage.

3. The base change algorithm. Let B be a labeled branching for G with
respect to the ordering
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let ft {1,2,...,n}, and let

71" 71"1 7rr--1,7rs, 7rr, 7rr+l, T’s-1,7rs+l, 7rn

forr<i<s)for 1 < < r, s < < n, and rr rs, r(i.e., zri = r,
Permutation r’ is obtained from r by a cyclic shift of values (the values between r
and s). In this case, the labeled branching B’ with respect to r’ is said to be obtained
from B by a cyclic shift of base points. We describe a function Cycle-node, which
transforms B to

The function Cycle-node has as input the labeled branching B for G relative to
r and a new ordering r’ obtained from r by a cyclic shift of values. It returns a
labeled branching ’ for G relative to r’. We start with a trivial labeled branching
B’ and build B’ into a complete labeled branching for G with respect to r’ from the
leaves to the root. In the course of building B’, it is convenient to store the edge label

to its parent (i.e.,connecting rj r aj) in the 7 field. After all the appropriate edge
labels have been constructed, we restore the T fields to their original purpose in O(n2

time. We do this to avoid the necessity of constantly updating the - fields as new
connections are made. Since we are building B from leaves to the root, we always

is the current root of a subtree ofintroduce new edges of the form (r, ’j) where rj
If we used the standard interpretation of -, then we would have to update the - fields
of each descendant r of r each time we added an edge, and this takes O(n2) time.
In order to compensate for not using the standard interpretation of -, we maintain an

is the root of thearray root of length n with the property that if root[j], then ri
subtree containing rj.

Let Gab...c be the subgroup of G that fixes the points a, b,..., c of ft. We denote
G() G1..._1, the subgroup that fixes the first i- 1 points, rl,...,r-i and

A() r/a(i) and A’(the orbit of point ri in G() G’() G,..._I r are

used for the transformed points. We use primes for distinguishing between node fields
of B and

Before performing Cycle-node, we initialize B’ to the empty branching and set
root[i] i, 1 <_ <_ n. Set the fields of nodes s + 1,..., n of B’ to reflect the fact that
rj rj’ forj in the range s+l,...,n. For eachj in the range froms+lton, if
r is the parent of rj and s + 1 _< i, we set parent’(j) i, -’(j) -(i)-l-(j), and
root[j] root[i]. If/< s + 1, then -’(j), parent’(j), and root[j] are unmodified from
their initial values. After this step is completed, B’ is a labeled branching for G’
relative to r’, subject to adjusting the 7 fields.

The next step is the crucial one. We successively fill in the edge labels of/3’ that
emanate from rj as j goes from s to r. This requires computing

A’ (J) rj

Now, rj rj-1 for r < j _< s, and rr rs. Furthermore, for r < j _< s

and
G’(r) G(r).

Thus, for r < j _< s,
Gr ...rj_2rsA (J) 7rj_l
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and
G()A(r) r8

Since it is straightforward to compute A’(r), we concentrate on the case where r <
j _< s. For these values of j, A’(J) c_ A(J-1). It is easy to compute A(-I), so we
need a criterion for deciding whether a point of A(-) is in A’(). The following is
generalization of a result of Sims [11].

LEMMA 3.1. Let r < j <_ s and let rm 71_ t /(j--l) for some a G(J-1).
Then

7rm A (J) 7rs
-1 G(j)

7rs

Proof. Suppose that 71"m (J). Then 7rm 71"j_l for some / (J)

Grl...r_r. Now, a-1 fixes rj-1, and so /c-1 G(J). Furthermore, fixes
Thus,

7rsa- a- G()
7rs E 7rs

Conversely, suppose that rP
-1 a()E rs Let rP r for some fl G(J). Then

a G’() and
m -1 a

j- A (J)

as required.
In preparation for inserting the edge labels of B that emanate from } for r

j s, we construct a Boolean array orbit of length n where orbit[i] 1 if and only if

i (). Additionally, we construct an array cosetrep of length n where cosetrep[i]
is a permutation of G(s) that moves s to if orbit[i] 1, and cosetrep[i] is nil if
orbit[i] O.

forNow assume that we have inserted into B’ the edges that emanate from i,
r < j < s + 1, so that B is a labeled branching for G’(J+) relative to (subject
to adjusting the T fields). Further, assume that we have updated root and extended

G(J+I)orbit and cosetrep to reflect the fact that orbit and cosetrep are defined for s
We describe how to insert the edges of B’ that emanate from }.

The first step is to extend orbit and cosetrep for the orbit s This amounts
to throwing into the pool of generators for the previous orbit and coset calculations
those edge labels of B that move j. Each of these new generators must be applied
to each point currently in the orbit, and all generators for G(J) must then be applied
against all new points discovered. The total cost of updating orbit and cosetrep for

G()
r j s is thus equal to the cost of computing orbit and cosetrep for using
generators for G(r) available from B.

We now apply Lemma 3.1. Let F A(J-1). For each point m --1 F, we

use orbit to find out whether -1 a(j) If it is, we then find q such that m
to a node of B that isand check whether root[q] q. We only want to connect j

root of a subtree. Thus if is not a root, we move on to the next point of F, knowing
that the connection will eventually be made between and via the root of the
subtree containing . If is a root, we use cosetrep to find , as in Lemma 3.1, so

’ We now set v’(q)G’ and hence jthat for a (J), m j-1,
parent’(q) j. Furthermore, we set root[q] j and modify root so that if root[i] q
then set root[i] j. After examining all points of F, B will be a labeled branching
for G’ (J).

We continue decrementing j and constructing B in this way until j r. Since
G()A’() for j r we extend orbit and cosetrep as before, but this time we do
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not require the use of Lemma 3.1. We simply check each point T’m E /(r) to see if its
corresponding value 7r is a root of B’ or not. If it is, then we use cosetrep to find an
element 3’ E G(r) G’(r) that moves 7r to r. We then install a new edge from 7dr to

r and update both 13’ and root as is done above.

At this point, B’ is a labeled branching for G’() relative to r’. Since r ri for
1 <: _< r- 1, the remaining data for B’ may be filled in using a slight modification
of the procedure above. This time we may use the information stored in B instead of
relying on orbit and cosetrep. In particular, suppose that the data for B’ have been

such that <j For eachrm A()-{r} we check ifrentered for all nodes 7rj
is a root of B’. If it is, we set T’(q) T--l(i)7(m), parent’(q) i, and update root.
Once this is done, B’ is a labeled branching for G’(). We then continue decrementing
until i--- 1.

The final step in the process is to modify all the -’ fields so that -’(i) is the
product of the edge labels along the path from the root rr of the subtree containing

r’ to ri.’ This is easily done, starting from roots of subtrees of B and working down.

We now give a pseudocode version of Cycle-node. The work of Cycle-node is
performed by three main functions, which partition the work along the lines just
described. These are Cycle-node-bottom, Cycle-node-middle, and Cycle-node-top.
We present pseudocode for each function in sufficient detail to allow for a simple proof
of correctness and an analysis of the running time. It is assumed that arrays are
always passed by reference.

Cycle-node. Input Parameters: 13, r, r’, r and s, where B is a labeled branching
for G with respect to r, and r’ is a new ordering obtained from r by a cyclic shift
of values in the range r to s. Returned Value: A labeled branching B’ for G with

1 <i <r,respect to r’. Notation: r rl,...,rn, and r’ r,...,r where r r,
s < _< n, and r rs, r -r-l, r < _< s.

Set B’ to the identity branch on n points.
Set root so that each point is its own root.
Cycle-node-bottom(B, 13’, root, s) (enter data in B’ for nodes rs+1’ to rn, and update
root).
Cycle-node-middle(, ’, r, r’, root, r, s) (enter data in B’ for nodes r’ to r’, and
update root).
Cycle-node-top(B, ’, 7r, r’, root, r) (enter data in ’ for nodes r to %-1).’
(Complete B’ by modifying the 7’ fields for nodes r to r’ to reflect path products.)
For j -1 to n

set - parent’(j)
if - -1 then set -’(j) - "(i)-’(j).

Return(B’).
Cycle-node-bottom. Input Parameters: 13, 23’, root, s. Purpose: Modify g’ by
copying the edge labels from B for nodes 71s+1’ 71"n.’
For j s + 1 to n

let parent(j)
if (s < i) then

set parent’(j) - i, root[j] root[i] and -’(j) --l(i)-(j)
to ’).(in this case, T’(j) is an edge label from ri r

Cycle-node-middle. Input Parameters: 13, 13’, 7c, r’, root, r, s. Purpose: Build B’
for nodes r’ to r’ by implementing Lemma 3.1. Local Variables: orbit and cosetrep

G()are used to define 7r r _< j < s in the sense that orbit is an n-dimensional Boolean
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G(J)array with orbit[i] 1 if and only if ri E rs and cosetrep is an n-dimensional array
with cosetrep[i], an element of G(J) that moves r8 to r if orbit[i] 1; genlist is a list

G(J)of edge labels of B which generate G(J) and orbitlist is a list of points in r8

Initialize orbit, cosetrep, orbitlist, and genlist for rsa(8) using/3.
For j ,- s down to r + 1

set A A(J- 1) rj_la(-1) (this can be computed using/3)
for each rm E A

let rp r-l(m)(j-) (v-(j- 1)T(m) is the path product from j_ to rm)
if orbit[p]- 1 (rp e A(J-)), then

let r rm
to r in/3’)if q :/= j and r is a root of B then (connect rj

set -’(q)-- cosetrep[p]T-(j- 1)-(m)
(in Lemma 3.1,/3 cosetrep9] and a w-l(j 1)-(m))

forij+lton (update root)
if root[i] q, then set root[i] j

G( -1)(Extend orbit and cosetrep to rs .)
if j-2 is not a leaf (otherwise, the data for the orbit is unchanged), then

orbitlist, genlist)
update-orbit(B, r, orbit, cosetrep, genlist, orbitlist, s, j 2).

(Now orbit and cosetrep are defined for ra() Enter the data for node r.
G(,-)Set A r

For each rm A
let r rm
if root[q] q and q r (r is a root of B’), then

(Connect r to r.)
set T’(q) - cosetrep[m] (cosetrep[m] G(r) and moves r r to r, r)
forir+lton (update root)

if root[i]- q, then set root[i] r.

Cycle-node-top. Input Parameters: B,B, r,r, root, r. Purpose: Modify B by
inserting the data for nodes to rr-l"

Forir-1 tol do
set A -- A()
for each 7I’m t

let r m
if root[q] q, then

set T’(q) -- T--(i)v(m) and parent’(q)
for k - + 1 to n (update root)

if root[k] q, then set root[k] i.

We complete this part of the discussion by presenting pseudocode for the proce-
dure update-orbit in Cycle-node-middle.
Update-orbit. Input Parameters: 13, r, orbit, cosetrep, genlist, orbitlist, s, j. Return
value: The list (orbitlist, genlist). Purpose: Extend orbit, cosetrep, genlist, orbitlist

from sa(+l) to ra(). Local variables: A list newpoints for holding new points in the
orbit; a temporary list of points, pointlist; and a list newgens for holding the edge
labels of/3 in G(Y) that move

Set newpoints nil and newgens ,-- the edge labels of B in G(J) that move rj.
For each g newgens (apply each new generator against each old point)
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for each p E orbitlist
let 71"q 71"p

g

G(J)if orbit[q] : 1 (a new point in rs has been found), then
set orbit[q] -- 1, cosetrep[q] cosetrep[p] , g, and append q to new-
points.

(Append newgens to genlist and apply each generator in genlist to each point in
newpoints.)
While newpoints nil

append newpoints to orbitlist, set pointlist - newpoints and newpoints nil
for each g genlist (apply each generator against each old point)

for each p pointlist
let 7rq p

G(J)if orbit[q] : 1 (a new point in 7r has been found), then
set orbit[q] 1, cosetrep[q] cosetrep[p] , g, and append q to
newpoints.

Return( orbitlist, genlist).

4. Proof of correctness of the base change algorithm. In this section
we give a straightforward proof that base-change performs correctly, namely, that it
returns a labeled branching for G relative to the new ordering r’. This will follow
directly once we have established the same result for the procedure Cycle-node.

PROPOSITION 4.1. Let B be a labeled branching for G relative to the ordering
r and let 7r be a new ordering obtained from r by a cyclic shift of values. Then
Cycle-node(B, 7r, 7r) returns a labeled branching for G relative to r.

1 <i<r,s <iProof. Let r rl, ,rn, and r’ r,..., 7rn where 7% ri,

for l<j <n.n, and r’r r, 7% 7r_1, r < <_ s. In addition, let G’(J) G,...j_
Consider the state of the labeled branching 13’ created by Cycle-node just after

Cycle-node-top returns. We will prove by induction on for n down to 1 that if

/k’ ’G’(i)
rj (i) r

tothen there exists a path in B from % 7r)., and that the product of the edge labels
to Once this has been shown,from 7% to 7rj’ is an element of G’(i) that moves 7% rj.

it follows directly that the last step of Cycle-node creates a labeled branching for G
relative to r in which the v fields have the correct values.

The result is clearly true when n, so assume that < n and the result holds
for all k such that < k _< n. The entries for node 7% are set in one of the functions
Cycle-node-bottom, Cycle-node-middle, or Cycle-node-top. In all cases, we examine a
complete set of points that contains all possible candidates for rj A (i) This follows
from Lemma 3.1 in the case where r < j _< s and directly in the remaining cases. If

is currently a root of B. If so, thenrj is such a candidate, then we first check if
towe connect r to 7rj’ and label the edge by a permutation in G’ (i) that moves r r/.

Otherwise, we do nothing. To see why this works, assume that l root[j] < j, so that
in B Assume first that t. This could happen ifthere is a path from 7r to rj

is not a root of B at the end of the previous iteration, but its root r’m is connected to
and hence root updated before 7r is encountered But then by induction, there is

to through dm and the composition of the path productsa path product from 7%
to and is an element of G’(i) Otherwise,to 7r’m and 7r’m to rj moves 7% jfrom 7%

< , and we may invoke our inductive assumption to conclude that the path product
and lies in G’() But since r A’(i) and a E G’(i)(7 from 7r to 7rj moves 7r to rj
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it then follows that r} E A’(i) as well. Hence, we are certain of choosing r} as one of
to r with edge label p E G’(i) thatour candidates. When this occurs, we connect r

G’ (i) andmoves r to r}. But then per moves r to rj. Therefore, the result holds

for and hence for all nodes by induction. [-]

5. Analysis of the base change algorithm. The main result of this section
is an analysis of the running time for Cycle-node.

PROPOSITION 5.1. Cycle-node has running time O(n2).
Proof. We will first show that each of Cycle-node-bottom, Cycle-node-middle,

and Cycle-node-top have running time O(n2).
The running time for Cycle-node-bottom is dominated by at most n- s permu-

tation multiplies of the form T-l(i)-(j). Thus Cycle-node-bottom takes time O(n:).
The analysis of Cycle-node-middle is a little more complex. Let us first compute

the total cost for adding new edges and updating root. Each time we add a new edge,
it costs O(n) time to enter the data and O(n) time to update root. However, at most
O(n) edges can ever be entered since a labeled branching on n nodes has at most n- 1
edges. Thus the total cost incurred for adding new edges and updating root is O(n:).

Consider the cost of updating cosetrep and orbit. These data structures are
initialized for A(8) using the edge labels of/3 that lie in G(8). Each time we call

G(J-1)update-orbit as j goes from s down to r, we extend orbit and cosetrep to by
adding to the generators for G(J) those edge labels that move j-1. Each generator
is applied exactly once to each point in the orbit. Furthermore, the union of all
generators added incrementally yields a set of edge labels that generate G(r), and
hence has cardinality at most n- 1. Thus, the cumulative cost of all the calls to

G(r)
update-orbit is equal to the cost of building orbit and cosetrep for r and hence
is O(n2). Doing the orbit calculation in time O(n) is perhaps the most delicate
part of the algorithm. We considered several alternate ways of doing this part of the
calculation, but the alternate ways always resulted in larger running times.

We now incorporate these two observations into the analysis of Cycle-node-middle.
Consider the first "for" loop on j for j goes from s down to r + 1. The first step is
to compute A A(J-1) from B. This step takes O(n) time since it simply involves
determining all points in B that can be reached from j. For each point 71"m /, we

compute the image
r-l(m)T(j)

p--TrS

and check if
G()

7rp 7rs

G(J)This takes constant time. If p then we continue. Otherwise, we enter the
data for node where m. This takes a constant amount of time plus the
time to compute v(q) and update root. Thus the cost of each iteration of the for
loop on A is O(1) plus the cost of computing new edge labels and updating root each
time a new edge label is added. We can then summarize the total work on the for
loop on j as O((s r)n) + (the cost of ,adding new edge labels and updating root) +
(the cost of updating orbit and cosetrep) O(n2). Finally, consider the last for loop
on A used to fill in the edges of B which emanate from r. The orbit A has already
been computed through the process of updating orbit and cosetrep. As before, the
cost of executing this loop is O(1) per iteration plus the cost of adding new edge
labels and updating root. Combining this with the previous computation results in a
running time Cycle-node-middle of O(n2).
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Using the same reasoning, the running time for Cycle-node-top can be computed
to be O(n)+(the cost of adding new edge labels and updatingroot) O(n2). Finally,
the cost of completing B is dominated by O(n) permutation multiplies and hence is
O(n2). Since Cycle-node-bottom, Cycle-node-middle, Cycle-node-top, and the final
completion of B’ each have running times of O(n2), the same holds for Cycle-node
and the proof is completed. []

Since at most O(n) calls to Cycle-node are made by our base change algorithm,
we have the following result as a corollary.

COROLLARY 5.2. The base change algorithm runs in time O(n3).

6. Implementation issues. The pseudocode presented in 3 for Cycle-node
was designed to give a clean exposition of the algorithm and to facilitate the analysis
and proof of correctness. In this section, we indicate how a more complex version of
Cycle-node can avoid much of the duplication inherent in the earlier version. This
more complex version is the one we actually programmed.

The main difference in the new version of Cycle-node occurs after we have built
the labeled branching B for nodes 7r, 7rr+ ..., 7rn. The idea is to integrate the
information stored in B back into B and return the labeled branching for G relative
to 7r’ in B. There are two reasons for doing this. First, T’(i) 7"(i) and parent(i)
parent(i) for 1 < < r- 1, so the top of the branching is unchanged. Second, as r
increases, most of the edge labels in the new branching will emanate from nodes

most of the nodes of B at the end of Cycle-node-middle will be roots." 71"r_l; i.e.,
When the edges emanating from nodes with index less than r terminate in a root
with r _< q, then T(q) 7"(m) where rm r. Therefore -’(q) has already been
computed in B.

We briefly describe how we weave into B the knowledge gained from the structure
of B in order to produce the new branching. Consider the state of B at the time just
after the edge labels emanating from 7rr are inserted, and let 7 be a list of the roots

< r. We use a routine insert-roots to connect edges fromof B, excluding nodes
isarootofi<r to nodes j>r, whereTrjnodes 7ri 7ri, 7rj,

let 7rm and follow 7I’m backwards in B until we comeFor each 7rj 7, 7rj
to the first node 7ri, if any, such that < r. If such a node is not found, then 7rj
is a root in the new branching and we set 7(j) identity and parent(j) - -1.
Otherwise, we connect 7ri to r. Note that T-(i)T(m) is the path product from
7ri 7r to 7i’m 71" and so moves 7r to 7rj. Thus, T(j) +"- T(i)(T--l(i)T(m)) -(m).
By manipulation of pointers, the proper T value can be transferred from node m to
j in a single assignment, avoiding unnecessary copying. When insert-root returns,

is a root orsuch that either 7rthe node fields of/3 are complete for all nodes r
parent(i) < r. The fields for nodes that are children of roots in B can now be entered
in B in a straightforward manner.

An extra measure of efficiency can be obtained by recognizing situations where
the correct information is already stored in B and need not be copied from B. If,
at the end of Cycle-node-middle, a node 7rj > s is a root in B, then the - fields for
itself and its descendants are the same in the new branching as in the old, and so no
modifications need be considered for them. If 7rj is not a root in B, its parent in the
new branching is unchanged from that in B. If there is a component of B whose root
is greater than s, that component will never be affected by the base change algorithm
at all. If B is used only to update those parts of B that are changed, additional
savings result. These modifications do not affect the worst-case performance of the
algorithm, but they can greatly increase its speed in many practical situations where
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the base change affects only a few points of

REFERENCES

[1] L. BABAI, E. M. LUKS, AND A. SERESS, Fast management of permutation groups, in Proc.
29th IEEE Symposium on Foundations of Computer Science, IEEE Computer Society, Long
Beach, CA, 1988, pp. 272-282.

[2] C. A. BROWN, L. FINKELSTEIN, AND P. W. PURDOM, An efficient implementation of Jer-
rum’s algorithm, Tech. Report NU-CCS-87-19, Northeastern University, Boston, MA, 1987.

[3] , Backtrack searching in the presence of symmetry, in Proc. AAECC-6, Lecture Notes in
Computer Science, Springer-Verlag, Berlin, New York, to appear.

[4] G. BUTLER AND J. J. CANNON, Computing in permutation and matrix groups I: Normal
closure, commutator subgroups, series, Math. Comp., 39 (1982), pp. 663-670.

[5] G. BUTLER AND C. W. H. LAM, A general backtrack algorithm for the isomorphism problem
of combinatorial objects, J. Symbolic Comput., 1 (1985), pp. 363-382.

[6] J. J. CANNON, An introduction to the group theory language, Cayley, in Computational Group
Theory, M. D. Atkinson, ed., Academic Press, New York, 1984, pp. 145-184.

[7] G. D. COOPERMAN, L. A. FINKELSTEIN, AND P. W. PURDOM, Fast group membership
using a strong generating test .for permutation groups, in Computers and Mathematics, E.
Kaltofen and S. M. Watt, eds., Springer-Verlag, Berlin, New York, 1989, pp. 27-36.

[8] M. JERRUM, A compact representation for permutation groups, J. Algorithms, 7 (1986), pp.
60-78.

[9] D. E. KNUTH, Notes on efficient representation of perm groups, unpublished notes, 1980.
[10] J. LEON, Computing automorphism groups of combinatorial objects, in Computational Group

Theory, M. D. Atkinson, ed., Academic Press, New York, 1984, pp. 321-337.
[11] C. C. SIMS, Computation with permutation groups, in Proc. Second Symposium on Symbolic

and Algebraic Manipulation, S. R. Petrick, ed., Association for Computing Machinery, New
York, 1971, pp. 23-28.



SIAM J. COMPUT.
Vol. 18, No. 5, pp. 1048-1055, October 1989

1989 Society for Industrial and Applied Mathematics
013

RATIO ESTIMATORS ARE MAXIMUM-LIKELIHOOD
ESTIMATORS FOR NON-CONTEXT-FREE GRAMMARS*

KEITH HUMENIKi

Abstract. This paper shows that straightforward ratio estimators for the production proba-
bilities of non-context-free unambiguous probabilistic grammars are maximum-likelihood estimators.
These ratio estimates are obtained by analyzing the derivations of the strings in a random sample of
strings taken from the language derived by the grammar.

Key words, probabilistic grammars, ratio estimators, maximum-likelihood estimators, random
smnple, unambiguous grammar
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1. Introduction. The structure of most programming languages can be de-
scribed by context-free grammars. However, many other interesting questions re-
garding the actual usage of programming languages can only be answered by adding
the notion of probability to a language. One method of accomplishing this task is to
definc a probabilistic grammar by assigning probabilities to each production in the
grammar, G. Once this is done, the probability of a word in L(G) can be calculated

Often the grammar, G, and the language, L(G), are known, but the production
probabilities arc not. Humenik and Pinkham [4],[5] have shown that these production
probabilities can be estimated for context-free grammars, by taking a random sample
of strings from L(G) and parsing the strings to obtain the relative frequency with
which each production in G is used. The probabilities are then estimated by using
simple ratio estimators. A random sample of 40 or more strings yields excellent results.
Maryanski and Booth [6] have shown that these ratio estimators are the maximum-
likelihood estimates for the production probabilities in G. Chaudhuri and Rao [3]
havc shown that the true probabilities may be obtained as the limit of the estimates
inferred from an increasing sequence of randomly drawn samples from L(G).

Therc are many structures, however, that cannot be adequately described by
context-frec grammars. In this paper we review the notion of probabilistic grammars
that are not context-free and prove that ratio estimators remain maximum-likelihood
estimates of the production probabilities of an unambiguous non-context-free gram-
mar. This result is not surprising, since we would expect the frequency of production
use to provide much of the necessary information to estimate the production proba-
bilities.

2. Preliminaries. A probabilistic grammar (p-grammar) is a 5-tuple, G=(V,
VN, R, P, ), where Vr is a finite set of terminals; VN is a finite set of nonterminals;
R is a nat)t)ig (V Vr)*(V Vr)* x (VN Vr)*, where each element of R is
of the form (ti. ij, i=l,...,m, j=l,...,mi, and is called a production or rule;

* Re(:(iv(d t)y the editors October 26, 1987; accepted for publication (in revised form) January
3, 1989.

D(I)artm(nt of Computer Science, University of Maryland- BMtimore County, Baltimore,
Maryland 21228.
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(.1 E VN is the start symbol; and P is a set of production probabilities such that the
I)rot)ability asso(:iated with c,i --+/ij is Pij. The set R and, hence, the set P are finite.

ci is called the premise of the production c + j;/3j is called the consequence.
A probabilistic grammar in which all productions in R satisfy <_ij is called

a context-sensitive p-grammar (CSPG). A p-grammar that is not context-sensitive is
called an unrestricted p-grammar (UPG).

In this paper we shall assume that all p-grammars are unambiguous, using the
definition of Aho and Ullman [1]. That is, let G be an unrestricted p-grammar. Let D
be the set of all derivations of the form a, = w. That is, elements of D are sequences
of the form (/l,f12,""",/(;n), such that/1 O1, /n E V, and i-1 :::} /i, 1 _<

_
n.

Define a relation Ro on D by (/1,/2,""’,/3,)R0(’yl, /2,’’’, %) if and only if there
exists some between 1 and n such that

(1)/33 q,j for all 1 _< j _< n such that j - i.

(2) We can write /3-1 (51(52(53(54(55 and/+ (5ear/5 such that 2 --+ e and
54 - ’ are in R; and either/i (515(5354(55 and -y (5152(53r/(55, or conversely.

Let R be the smallest equivalence relation containing R0. Each equivalence class
of R represents the essentially similar derivations of a given sentence.

A p-grammar is unambiguous if each w in L(G) appears as the last component of
a derivation in one and only one equivalence class under R.

Example 1.
Let G be given by the following

S abC]aB
B ---+ bc
bC --,be

where the four productions have probabilities pll,pl2,p21, and pal, respectively. G1
is an ambiguous grammar, since the sequences (S, abC, abc) and (S, aB, abc) are in
two distinct equivalence classes.

Let G be given by
S aSBCIaBC

with probabilities pll and p12, respectively, and

P21 aB ab
p31 bB --+ bb
p41 :C/ ---+/?C

p51 bC ---, bc
p61 cC --+ c

Then Ge is an unambiguous grammar.
We shall assume herein that the probabilities associated with the productions of

R depend only on the deterministic properties of the grammar, G, and not upon the
sequence in which the productions are applied during the generation of a given string
of the language [2]. That is, the use of a production to expand a sentential form/3i
depends only on i itself and not upon how /3i was derived in G. We shall call a

grammar that has this property a Markov grammar.
We shall assume that all grammars are proper, that is
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Pij 1
j=l

for all i=l,...,m.
The probability of w E L(G) is given by the product of the production probabil-

ities associated with the productions used in the derivation of w. That is,

K

I-[
k=l

where K is the number of steps in the derivation of w and pk E P is the probability
of the production used at the kth step. Note that since G is unambiguous, there is
only one essentially distinct derivation of w, and this derivation can always be found,
since there are a finite number of productions in R.

A grammar that satisfies EwEL(G) P(w) 1 is called a consistent grammar. Not
every grammar is consistent.

A random sample, RS, of size M from L(G) is a multiset of M strings from
L(G), obtained by drawing a string from L(G) such that each string is equally likely
to be drawn. Thus a string is drawn randomly, its derivation is determined, and it is
replaced [3].

Example 2. For the grammar G2 in Example 1, the derivation of the string aibici
is given by

S i1 ai_ls(.Bc)i-1 ai(BC)i (i-i/2 aiBiCi

= aibli_lc i:1 aibiCi = aibicCi_l i=1 aibici.

(i-1)i/2. ..-1,. ,-IThen P(aibici)= pil-pp4 P21P31 P51P61
for 2 _< j _< 6, and P(aibici)= pil-pl. Note that

But if (72 is proper, then pj 1

P( h P12--’ai-ici" Pxlp12
1 Plli=1 i=1

so (72 is consistent.

3. Main result. Consider a probabilistic, unambiguous grammar, G (VT, VN,
R, P, c), and assume that we know everything except the values for the rule proba-
bilities P. Using the information in the sample RS, these values are to be estimated.
The sets R and P of G look like the following:

Pll P2 Plm

P21 P22 p2m

02 -’-+ /211
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Pm Pro2 Pmm,,

Partition R and P so that

R=R1UR2U...URm

and

P=PIUP.U’.’UPm

such that Ri and Pi are the rules and their associated probabilities that have as as

premise.
According to G, let nij be the nunber of times that rule vii with premise ci and

probability Pij is used in the parsing of the M strings of RS. This rule is Pij Ozi --> ij.
Also let N(cti) be the total number of times that an as production is used in the

parsing of the M strings of RS according to G.
THEOREM 1. The. maximum-likelihood estimate [ij of the rule probability pij P

(the probability of the production ci /ij) given RS is

Proof. Let xk L(G). Then, if G is unambiguous,

m mi

1-I II
i=lj=l

where pij P and Cijk is the number of times that production ci --* ij is used in
the derivation of xk.

Note. We are assuming that p(xk) is equal to the product of the probabilities of
the individual productions used in the derivation of xk.

Since the strings making up RS are statistically independent,

p( S)
k=l i=1j=1

fk

where fk is the nmnber of times that string Xk, k 1, 2,..., u appears in the sample.
Taking the log of both sides and collecting terms yields

l(,g(p(RS)) E f cij log(Pij)
k=l i=1 j=l ]fkcijk log(Pij

k=l i=1 ’=

u

E fkcijk,
k=l

and thus
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i=1 j=l

The maximum-likelihood estimate of the probabilities is obtained when

01ogp(RS)
O, 1,...,rn; j 1,...,mi.

Opij

However, let

Pi {Pil,Pi2,’",Pimi }
be one of the subsets of P. Since

E Piv 1
’--1

only mi- 1 of the elements of Pi can be specified independently. Therefore, for
1,2,...,mi 1,

OPiu OPiu
nij log(Pij) ni nim OPim.

Pi. Pim Opi.
i=1 "=

But

so

(1) n, nim
Pi, Pim

where g is a constant and 1, 2,..., mi 1. By the law of equal proportions,

ni, N(ai).g m=
But N(ai) is the total number of ai productions used in the generation of the M
strings of RS. Using (1) gives

$i-
N(ai)’

which yields the general form

rtij

Conclusion. Ratio estimators are maximum-likelihood estimators for unambigu-
ous grammars.

4. Examples and numerical results. This section provides two examples that
illustrate the application of the theorem in 3. Random samples are generated by using
a Pascal program to simulate the derivation of strings in the specific grammar. The
program uses a standard random number generator to produce random values, which
arc then used to select the appropriate production. Of course, for some strings within
the derivation only one production is applicable and is applied immediately.
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TABLE
G2 with M--40 and M=100.

Sample Actual values Estimated values
M=40 M=100

Pll P12 fll f12 fll
0.0000
0.0909
0.2857
0.4805
0.7701
0.8730
0.9895

1.0000
0 9091
0 7143
0 5195
0 2299
0 1270
0 0105

0.0099 0.9901
0.0991 0.9009
0.2424 0.7576
0.4624 0.5376
0.7590 0.2410
0.9063 0.0937
0.9902 0.0098

0.01 0.99
0.10 0.90
0.25 0.75
0.50 0.50
0.75 0.25
0.90 0.10
0.99 0.01

Example 3. Random samples consisting of 40 strings and 100 strings were gen-
erated using the grammar G2 given in Example 1. Table 1 shows the actual values
of Pll and p12 and the estimated values of pll and pie, /11 and 151., respectively.
Since G2 is proper, all other probabilities are equal to one and, hence, need not be
estimated. The estimates were calculated using maximum-likelihood ratio estimation.
Thus,/511 was calculated by dividing the total number of times that rule rll was used
in derivations of the M strings in RS by the total number of times that both rules in
R1 (i.e., rll and r12) were used to derive all strings in RS. That is,

nll + n12 nll + M’

since rtl2 1 for each string derived in G2. Similarly,

M
f12 1 f11.

nll -t- M

For example, random sample 2 with M=40 contained 36 occurrences of the string abe
and 4 occurrences of the string aebc. Hence,

4
11 0.0909.

4+40

Example 4. Random samples consisting of 40 strings and 100 strings were gener-
ated using the unambiguous UPG, Ga, given below:

Pll :S --* aS
P21 :aS --, aaS
p22 :aS aA
p31 aA abA
p41 bA bbA
p42 bA b

Table 2 shows the actual values of all production probabilities not equal to one (since
Ga is assmned to be proper) and the corresponding maximum-likelihood ratio esti-
mates for the random samples, with M=40. Data for random samples of 100 strings
is given in Table 3.

The percentage errors for random samples of size 40 range from 0 to 100 percent,
with the average percentage error equal to 24.63. For random samples of size 100,
percentage errors range from 0 to 96 percent, with the average error equal to 8.76.
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TABLE 2
with M=40.

Sample
p21

Actual values
p22 p41 P42

0.01 0.99 0.20 0.80
0.10 0.90 0.50 0.50
0.10 0.90 0.90 0.10
0.50 0.50 0.01 0.99
0.50 0.50 0.50 0.50
0.50 0.50 0.90 0.10
0.90 0.10 0.01 0.99
0.90 0.10 0.55 0.45
0.99 0.01 0.99 0.01

0.0000
0 1489
0 0698
0 5000
0 4366
0 4595
0 8773
0.9184
0.9869

Estimated values
/22 /41 /42

1.0000 0.2982 0.7018
0.8511 0.5604 0.4396
0.9302 0.9099 0.0901
0.5000 0.0000 1.0000
0.5634 0.4444 0.5556
0.5405 0.8936 0.1064
0.1227 0.0000 1.0000
0.0816 0.5294 0.4706
0.0131 0.9915 0.0085

TABLE 3
G3 with M=100.

Sample Actual values
p22 p4 p42

0.01 0.99 0.20 0.80
0.10 0.90 0.50 0.50
0.10 0.90 0.90 0.10
0.50 0.50 0.01 0.99
0.50 0.50 0.50 0.50
0.50 0.50 0.90 0.10
0.90 0.10 0.01 0.99
0.90 0.10 0.55 0.45
0.99 0.01 0.99 0.01

Estimated values

0.0099 0.9901 0.1935 0.8065
0.0991 0.9009 0.5305 0.4695
0.1597 0.8403 0.8924 0.1076
0.5192 0.4808 0.0099 0.9901
0.4444 0.5556 0.5192 0.4808
0.5146 0.4854 0.9136 0.0864
0.8973 0.1027 0.0196 0.9804
0.8957 0.1043 0.6154 0.3846
0.9900 0.0100 0.9903 0.0097

In general, the average error is skewed by large percentage errors in cases where the
actual production probabilities are small. Thus, a random sample of at least 100
strings is needed for reasonable estimates. The Law of Large Numbers tells us that
even larger sample sizes will provide better estimates, and this is indeed the case.

5. Conclusions. It has been shown that ratio estimators are maximum-likeli-
hood estimators for unambiguous probabilistic grammars. This result is a general-
ization of the proof for unambiguous context-free probabilistic grammars. The con-
clusion verifies the intuitive notion that the values of production probabilities can be
estimated by comparing the number of times each production is used to parse a given
sample of strings.

Several questions remain open. Statistical properties such as means and variances
have not been computed for the ratio estimators in the non-context-free case. The
author believes that this can be done using Markov chains to describe derivations.
Other open problems include the following:

(1) How does ambiguity affect the results obtained in this paper?
(2) Can this method be modified to estimate production probabilities that vary

in time?
(3) Given a random sample of strings, can production probability estimation be

combined with inference techniques to develop a method for inferring non-context-free
probabilistic grammars?
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Abstract. The class of preflow push algorithms recently introduced by Goldberg and Tarjan for solving
the maximum flow problem on a weighted digraph with n vertices and rn edges is studied. Goldberg and
Tarjan’s O(n3) time bound for the highest distance preflow push algorithm is improved to O(n2x/-), and
it is shown that this bound is tight by constructing a parametrized worst-case network. It is also shown that
the O(n3) time bound is tight for the FIFO preflow push algorithm, and the O(n2m) time bound is tight
for the LIFO preflow push algorithm. The maximal excess preflow push algorithm is then developed, and
it is shown that it performs O(n2x/) pushes and that this bound is tight. Based on this, the authors develop
a maximum flow algorithm for the synchronous distributed model of computation that uses O(n2x/-)
messages and O(n2) time, thereby improving upon the best previously known algorithms for this model.

Key words, distributed maximum flow algorithm, heuristics, maximum flow problem, parametrized
worst-case network, preflow push algorithms

AMS(MOS) subject classifications. 68Q25, 90B10, 68Q10

1. Introduction. The problem of finding a maximum flow in a network is one of
the most important problems in the area of combinatorial optimization. Besides having
many practical applications it is also closely related to theoretical topics such as graph
connectivity and matchings.

Dinic [DT0] has shown that the problem can be solved by repeatedly extracting
a layered subnetwork of the given network and solving the simpler problem of finding
a blocking flow for the layered subnetwork. All subsequent research has been directed
at developing faster algorithms for the blocking flow subproblem. Recently, Goldberg
[Go85] has introduced a new maximum flow algorithm, namely, the FIFO preflow
push algorithm that does away with the blocking flow subproblem. Goldberg’s approach
was later generalised by Goldberg and Tarjan [GT88]. They introduced a class of
algorithms called preflowpush algorithms. A preflow push algorithm consists of a general
scheme together with a rule for selecting a vertex having flow excess. Different
algorithms can be obtained by using different rules. A push step is applied to the
selected vertex. The most important attribute of a preflow push algorithm is the number
of push steps performed by it since this is what determines the time complexity of the
algorithm.

In this paper we are interested in studying preflow push algorithms. One of the
motivating factors is the intrinsic appeal of simple heuristics that lead to surprisingly
good performance. Indeed, a good deal of research in the area of algorithms has
focused on giving tight time bounds for algorithms based on simple heuristics that
solve important problems. We will give tight time bounds for several preflow push
algorithms. Another motivating factor is that, due to their simplicity, preflow push
algorithms are likely to dominate asymptotically faster algorithms for networks of
moderate size. Furthermore, preflow push algorithms are not dependent on centralized
resources and so work very well in distributed models of computation.
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In what follows, we will use n to denote the number of vertices of the network
for which the maximum flow has to be found, m to denote the number of (directed)
edges, and U to denote the largest absolute value of the edge capacities.

Goldberg and Tarjan [GT88] have shown that two of these algorithms, namely,
the FIFO preflow push algorithm and the highest distance preflow push algorithm,
perform O(n3) pushes and so achieve an O(n3) time bound.

We first show that the actual time bound for the highest distance preflow push
algorithm is O(n2x/-). Although this is O(n3) for dense graphs, it is O(n25) for sparse
graphs. Our analysis is based on ideas used previously by Cherkasky [Ch77] and Galil
[Ga80] to analyze their respective maximum flow algorithms. We then show that this
bound is tight by constructing a parametrized worst-case network. Given two numbers
n and m such that n is sufficiently large and m is greater than kn, where k is a constant,
this network has at most n vertices and m edges, and the highest distance preflow
push algorithm performs O(n2v/--) pushes on it. Our construction uses techniques
introduced by Galil [Ga81] to construct a parametrized worst-case network for many
of the earlier maximum flow algorithms. We also show that the bounds of O(/’/3) and
O(n2m) are tight for the FIFO and LIFO preflow push algorithms, respectively, by
constructing parametrized worst-case networks for these algorithms. We then develop
the maximal excess preflow push algorithm that combines the best features of the
FIFO preflow push algorithm and the highest distance preflow push algorithm. We
show that this algorithm performs O(n2v/-) pushes and we also construct a param-
etrized worst-case network on which this algorithm performs O(n2x/-) pushes.

The maximal excess preflow push algorithm leads us to a maximum flow algorithm
for the synchronous distributed model of computation that uses at most O(n2vr-)
messages and O(n2) time. This improves on the O(n3) messages and O(n:) time
algorithms of Awerbuch [Aw85b], Goldberg [Go85], and Goldberg and Tarjan [GT88].
Recently, Marberg and Gafni [MG87] have developed a maximum flow algorithm for
the asynchronous distributed model of computation that uses O(n2x/-) messages and
O(n2x/) time. Clearly, this gives an algorithm for the synchronous distributed model
of computation that uses O(n:v/--) messages and O(n2V’--) time. Although our dis-
tributed algorithm works only for the synchronous model, note that our time bound
is better than that of [MG87] for this model.

We mention other interesting results pertaining to preflow push algorithms.
Goldberg and Tarjan [GT88] have improved the FIFO preflow push algorithm to
O(nm log n2/m) by using the dynamic trees data structure. This is asymptotically the
fastest known algorithm. Later, Ahuja and Orlin [AO87] developed an O(nm+
n2 log U) algorithm that was based on the scaling technique. Subsequently, Ahuja,
Orlin, and Tarjan [AOT89] obtained an O(nm log (n/m(log U)1/2+ 2)) algorithm that
uses scaling and the dynamic trees data structure.

In 2 we describe preflow push algorithms following Goldberg [Go87] and
Goldberg and Tarjan [GT88], and give a few definitions. Section 3 has the O(n2v/-)
bound for the highest distance preflow push algorithm. Section 4 has the parametrized
worst-case network showing that this bound is tight. The 0(//3 time bound for the
FIFO preflow push algorithm and the O(n2m) time bound for the LIFO preflow push
algorithm are also shown to be tight in 4. Section 5 considers the maximal excess
preflow push algorithm. The synchronous distributed algorithm is developed in 6.
Section 7 has conclusions.

2. Preflow push algorithms. Let G(V, E) be a digraph with two distinguished
vertices, a source s and a sink t, and a positive real-valued capacity c(v, w) on every
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edge (v, w). (By an "edge" we mean a directed edge; so (v, w) is the directed edge
with tail-vertex v and head-vertex w.) For convenience define c(v, w)=0 if (v, w) is
not an edge. A flow on G is a real-valued functionf on vertex pairs having the following
three properties:

(2.1) Skew symmetry: f(v, w)= -f(w, v) for all vertex pairs v, w.

(2.2) Capacity constraint: f(v, w)<= c(v, w) for all vertex pairs v, w.

(2.3) Flow conservation: wf(V, w)=0 for every vertex v in V-{s, t}.
The value Ifl of a flow is the net flow into the sink, Yvf(v, t). The maximum flow

problem is that of finding a flow of maximum value.
A preflow push algorithm computes a maximum flow in a given network by

manipulating a preflow f on the network. A preflow f is a real-valued function on
vertex pairs satisfying (2.1) and (2.2) above, as well as the following weaker form of
(2.3):
(2.4) Nonnegativity constraint: ,uf(u, v)>-0 for every vertex v in V-{s}.

The flow excess e(v) of a vertex v is defined to be the net flow into v, uf(u, v).
A vertex v is said to be active if v is in V-{s, t} and e(v)> 0. The residual capacity
r(v, w) of a vertex pair (v, w) with respect to a preflow f is given by r(v, w)=
c(v, w)-f(v, w). The residual graph with respect to a preflow f has vertex set V and
has an edge (v, w) if and only if r(v, w)> 0.

A preflow push algorithm also maintains a valid distance labeling, where a valid
distance labeling d is a function from the vertices to the nonnegative integers, such
that d(s)= n, d (t)= 0, and d (v)-<_ d(w)+ 1 for every edge (v, w) in the residual graph.
The intent is that if d (v)< n then d (v) is a lower bound on the actual distance from
v to in the residual graph, and if d(v)>= n then d(v)-n is a lower bound on the
actual distance to s in the residual graph. In the latter case it will turn out that there
is no path from v to in the residual graph.

A valid distance labeling is called exact if d(v) equals the actual distance from
v to (or from v to s) in the residual graph for every vertex v with d(v)<n (or
d(v) >= n). Otherwise, the distance labeling is called approximate. The generic preflow
push algorithm given below uses an exact distance labeling. This is because the
worst-case networks given in 4 and 5 are constructed for preflow push algorithms
that use an exact distance labeling.

At each iteration of the generic algorithm an active vertex, say v, with (positive)
flow excess is selected, and its excess is sent closer to the sink by making use of the
distance labels of v and its neighbours in the residual graph. If the flow excess cannot
be sent to vertices with smaller distance labels, then the distance label of v is increased.
The algorithm terminates when every vertex in V-{s, t} has zero flow excess. An
outline of the generic algorithm follows.

BEGIN
preprocess: Let the initial preflowfbe equal to the edge capacity on each edge emanating
from the source and zero on all other edges. Let d(s)= n and compute d(v) for all
other vertices by doing a backward breadth-first search starting from t.
WHILE there is an active vertex v DO

BEGIN
select" Select an active vertex, say v, using a particular rule;
push: WHILE e(v)>0 and there is an edge (v, w) with d(v)=d(w)+l and
r(v, w)>0 DO

push on edge v, w):
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Send min {r(v, w), e(v)} units of flow from v to w and update e(v), e(w),
f(v, w), and f(w, v) accordingly;

IF there is no edge (v, w) with d (v) d (w) + 1 and r(v, w) > 0

THEN
BEGIN
relabel: Replace d(v) by min {1 + d(w)[r(v, w)> 0};
Propagate the relabel backward in the residual graph, i.e., if there is a vertex
u with d (u) d (v)+ 1 and v is the unique successor of u with distance label
d(v) then relabel u, and so on;
END;

END;
END.

Note that if the distance label d(v) of a vertex v becomes greater than n 1 after
a relabel step then there is no path from v to the sink in the residual graph. When this
happens the remaining flow excess at v is pushed back along shortest available paths
to the source.

The correctness and termination of the generic preflow push algorithm is proved
by using the max-flow min-cut theorem [FF56]. (The proofs of the lemmas in this
section can be found in [Go87] and [GT88].)

LEMMA 2.1. The algorithm maintains the invariant that d is a valid distance labeling.
LEMMA 2.2. Suppose that the algorithm terminates. Then the preflowfis a maximum

flOW.
The termination of the generic algorithm is shown by proving that the number of

push steps and relabel steps performed by the algorithm is finite. An edge (v, w) is
said to be saturated if r(v, w)=0, i.e., iff(v, w)= c(v, w), and an edge (v, w) is said
to be cleared iff(v, w) 0. A push on edge (v, w) is called a saturatingpush if r(v, w) 0
after the push, otherwise, the push is called a nonsaturating push. We say that a push
on edge (v, w) is a nonzeroing push if this is the first push on (v, w) after either v or
w has been relabeled.

LEMMA 2.3. For any vertex v, an application of a relabel step to v increases d v).
The number of relabel steps is at most 2n- 1 per vertex and at most 2n2 overall.

LEMMA 2.4. The number of saturating push operations on edges is at most 2nm.
The number of nonzeroing push operations on edges is at most 2nm. The number of
nonsaturating push operations on edges is at most 4n2m.

LEMMA 2.5. The generic algorithm terminates after O(n2m) push and relabel steps.
The generic algorithm can be implemented so that the total time spent in relabel

steps is O(nm) and the total time spent in saturating pushes is O(nm). Furthermore,
each nonsaturating push can be implemented in O(1) time. When we use Lemma 2.5,
it follows that any preflow push algorithm based on the generic algorithm runs in
O(nm) time.

Several specific algorithms can be obtained from the generic algorithm above
depending on the rule used in the select step.

The FIFO preflow push algorithm selects all active vertices in the round-robin
order. The algorithm maintains all active vertices in a FIFO queue. In the select step
it selects the vertex at the front of the queue and applies a push step to it; if this creates
flow excesses at any new vertices then these newly active vertices are added to the rear
of the queue. Goldberg [Go85] has proved the following lemma.

LEMMA 2.6. The FIFO preflow push algorithm performs O( n3) pushes, and hence
it runs in O(n3) time.
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In 4 we will show that the O(n3) bound is tight for the FIFO algorithm.
The highest distance preflow push algorithm selects a vertex having flow excess that

is furthest from the sink in each select step. In other words, if we let dmax
max {d(v)[e(v)>O} then a vertex v with d(v)’-dmax and e(v)>0 is selected.

In addition to the above two algorithms, Goldberg and Tarjan also suggested that
the scaling technique could be used with preflow push algorithms, and they mentioned
two other preflow push algorithms.

The maximum-value excess preflow push algorithm selects a vertex having the
maximum value of flow excess at each select step.

The LIFO preflow push algorithm maintains all active vertices in a stack and selects
a vertex for a select step according to the last-in first-out rule. In 4 we will show that
the naive bound of O(n2m) is tight for the LIFO algorithm.

Note that when a push step of the generic algorithm terminates (i.e., the inner
while loop in the outline above) then the last push, say on edge (v, w), may have been
a nonsaturating push. In this case, (v, w) becomes the current-edge of v. The importance
of the current-edge is that, the next time v is selected for a push step, the current-edge
is the first edge on which a push is done, provided that d (v) is still equal to d(w)+ 1.

It is easy to see that at every step of the algorithm the current-edges, at most one
edge emanating from each vertex, form a spanning forest of the residual graph. We
take each tree in the forest to be rooted at the unique vertex in the tree with minimum
distance label. A flow excess at vertex v is called a maximal excess if the subtree rooted
at v has no other flow excesses.

Occasionally we will regard a flow excess as a "physical entity" originated by
either a saturating push or a nonzeroing push. The reason for saying that a nonzeroing
push originates a new flow excess is as follows. Suppose a vertex v having flow excess
is relabeled and the next push step at v does not saturate any edge. Then we can
associate only a nonzeroing push with the resulting flow excess. Each flow excess is
identified (i.e., tagged) by the saturating push or nonzeroing push that originated it.
When two flow excesses coalesce the resulting flow excess is identified with the
constituent that was most recently pushed. We mention that the approach of regarding
a flow excess as a physical entity has been used before by Shiloach and Vishkin [SV82],
Goldberg [Go85], and others.

We also need the notion of a clock pulse. Consider an implementation of a preflow
push algorithm in the synchronous distributed computation model (this model is
described in 6). A clock pulse of a distributed preflow push algorithm consists of all
push steps that can be performed simultaneously. For example, during a clock pulse
of the distributed FIFO algorithm, a push step is simultaneously performed on each
active vertex, and during a clock pulse of the distributed highest distance algorithm,
a push step is simultaneously performed on each active vertex v that has d (v)= dma
The notion of a clock pulse carries over to a sequentaial preflow push algorithm as
follows. We assume that the algorithm maintains a set of active vertices called
SELECTED that is initially empty. At any select step, if the algorithm finds that the
set SELECTED is empty, then it uses the rule in the select step to simultaneously
insert as many active vertices as possible into the set. At each subsequent select step
the algorithm selects any vertex in SELECTED and deletes it from the set. Each pass
over the set SELECTED is said to be a clock pulse of the preflow push algorithm. The
notion of a clock pulse has been used before by Goldberg [Go85] and others.

In the following, we sometimes say that an edge has infinite capacity. This should
be interpreted as mU or more, where U is the largest absolute value of the edge
capacities.
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3. An O(/t2x/) bound for the highest distance preflow push algorithm. An example
network on which the highest distance preflow push algorithm is superior to the FIFO
preflow push algorithm may be constructed as follows (see Fig. I). The network consists
of a path of length n- 2 together with the source vertex s joined to alternate vertices
along the path by edges of unit capacity. The sink is located at the head of the path,
and each edge in the path has infinite capacity. The FIFO algorithm performs O(n2)
pushes on this network since it does O(n) pushes per clock pulse and there are O(n)
clock pulses. The highest distance algorithm performs only O(n) pushes since it does
only one push per clock pulse. The highest distance algorithm has the desirable feature
that it never pushes a nonmaximal flow excess, thereby saving on the total number of
pushes.

FIG. 1. Example network on which the highest distance algorithm performs (R)( n) pushes and the FIFO
algorithm performs 19(n2) pushes.

To determine the number of nonsaturating pushes performed by the highest
distance preflow push algorithm, we divide the computation into phases. A phase
consists of all pushes that occur between two consecutive relabel steps. Note that
during a phase the flow excesses that are most distant from the sink are pushed down
one level at a time. The O(n3) bound is easily obtained using the following observation.
Any vertex does at most one nonsaturating push per phase, and since there are O(n2)
phases, the total number of nonsaturating pushes is O(na).

At any step of the algorithm, let dmax be the distance of the furthest flow excess
from the sink. Note that the total increase in dmax over the whole algorithm sums to
O(n2) because each increase is caused by some vertex updating its distance label
during a relabel step. The length, 1, of phase i, is the difference between dma at the
start of the phase and dma at the end of the phase. Goldberg and Tarjan have shown
that the sum of the lengths of all phases Y 1 is O(n2). This follows because Y 1 is
just the total decrease in dmax over the whole algorithm, and hence is bounded by
O(n) plus the total increase in dmax.

We need the notion of originating edge of a maximal excess to improve the time
bound below O(n3). Consider any step of the algorithm. Starting from a maximal
excess at a vertex v, we can backtrace along a path of current-edges till we reach an
edge, say (x, y), such that the last push along (x, y) was either a saturating push or a
nonzeroing push. (If there is more than one such edge then an arbitrary choice can
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be made.) In other words, the last push on (x, y) originated a flow excess that is now
contained in the flow excess at v. The edge (x, y) is called the originating edge of the
flow excess at v. The path of current-edges from (x, y) to v is called a trajectory.

During a phase, each nonsaturating push leaves behind a current-edge. At the
end of the phase these current-edges constitute a forest, since each vertex has at most
one outgoing edge. We partition these current-edges among trajectories that are vertex
disjoint, except possibly for the end vertices of some trajectories. We shall account for
the nonsaturating pushes by the originating edges of these trajectories.

THEOREM 3.1. The highest distance preflow push algorithm performs at most
O(nEx/) nonsaturating pushes, and its time bound is O(n2vr-).

Proof We partition the nonsaturating pushes into two kinds of pushes and show
that over the whole algorithm there are O(n2v/-) pushes of each kind.

The nonsaturating pushes that occur along a trajectory within a distace of n/x/-
from the originating edge of the trajectory are called short trajectory pushes, and the
remaining pushes that occur along a trajectory at a distance greater than n/x/- from
the originating edge are called long trajectory pushes.

It is easily seen that over the whole algorithm there are O(nEv/) short trajectory
pushes because each trajectory starts with either a saturating push or a nonzeroing
push andover the whole algorithm the total number ofsaturating pushes and nonzeroing
pushes is O(nm).

The long trajectory pushes are accounted for as follows. Observe that during any
phase the trajectories are vertex disjoint and hence the number of "long" trajectories
(i.e., longer than n/x/-) is at most qr. Thus the number of long trajectory pushes in
a phase of length li is at most x/-li. Summed over all phases this is O(n2x/).

The algorithm maintains all vertices having flow excess in a data structure so that
it can easily select the highest distance vertex. This can be done at a cost of O(1) per
selected vertex by using a list based buckets data structure. The theorem follows.

4. Parametrized worst-case networks for the FIFO, LIFO, and highest distance
preflow push algorithms. Let n and m be two given numbers such that n is sufficiently
large and m is greater than 5n. We construct a worst-case network having at most n
vertices and m edges on which the FIFO algorithm performs O(n3) pushes. We also
sketch how this network may be modified to obtain a worst-case network having at
most n vertices and m edges on which the LIFO algorithm performs O(n2m) pushes.
Then we construct a worst-case network having at most n vertices and m edges on
which the highest distance algorithm performs O(n2x/) pushes.

We will construct the worst-case networks by using gadgets A, B, C, D, F, and
G. Each of these gadgets is a one-input one-output gadget, i.e., each gadget has one
input vertex and one output vertex. When we draw a figure to illustrate a gadget (Figs.
2-7) then the input vertex of the gadget is the vertex adjacent to s and the output
vertex is the vertex adjacent to t. Note that vertices s and do not belong to the gadget.

Each finite capacity edge that we use in a gadget or in a network is a directed
edge, i.e., if edge (v, w) has finite capacity then the vertex pair (w, v) has zero capacity.
The direction of a finite capacity edge belonging to a gadget is given by the direction
in which that edge is traversed by a shortest path from the input vertex of the gadget
to the output vertex through that edge. Each infinite capacity edge (i.e., an edge of
capacity at least mU) that we use is an undirected edge, i.e., it represents a pair of
oppositely-oriented directed edges, both of which have infinite capacity. If the capacity
of an edge is not shown in a figure then that edge has infinite capacity. The direction
of a finite capacity edge belonging to a gadget may not be shown in a figure; the
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(b)

FIG. 2. (a) Gadget A. (b) Gadget A being used by the highest distance algorithm to send a sequence of
L/2 flow excesses into G’.
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FIG. 3. (a) Gadget B. (b) Gadget B being used by the highest distance algorithm to send a sequence of
WL/2 flow excesses into G’.
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e=deg

FIG. 4. Gadget C. The distance label of input vertex u increases by lc each time a flow excess of value
cape is pushed in at u.

W paths

FIG. 5. Gadget D. WL nonsaturating pushes occur in the gadget each time a flow excess of value c"W is

pushed in at p.
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,(R)

FIG. 6. Gadget F. Suppose a large flow excess enters the gadget, then leaves it only after a delay of 2L
clock pulses.

FIG. 7. Gadget G. Suppose a large flow excess enters the gadget, then leaves it only after a delay of 2L
clock pulses, and this can be repeated a total of L/2 times.
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direction of such an edge is given by the above convention. We define the outdegree
of a vertex v to be the number of finite capacity edges with tail-vertex v.

Gadgets A and B are used only in the worst-case network for the highest distance
algorithm, and gadgets F and G are used only in the worst-case network for the
maximal excess algorithm ( 5). The values of the parameters used in the gadgets and
in the networks are fixed later.

Gadget A (Fig. 2(a)) is a path with L/2 finite capacity edges that have telescoping
edge capacities. Suppose the highest distance algorithm is run on the network in Fig.
2(b); then a relabel step occurs whenever flow is pushed into an edge of capacity ic,

<- <-_ L/2; it can be seen that a sequence of L/2 flow excesses is sent into subnetwork
Gr"

Putting together W copies of gadget A, we get gadget B (Fig. 3(a)). Suppose the
highest distance algorithm is run on the network in Fig. 3(b); then a sequence of WL/2
flow excesses is sent into subnetwork G’.

Gadget C (Fig. 4) contains an infinite capacity path of length/c (degc- 1) and an
input vertex u. There are deg edges, each of capacity cap., emanating from u. The
head-vertices of the edges emanating from u lie in the path, and the head-vertices of
two consecutive edges are located at a distance of l apart. If a sequence of flow
excesses, each of value cap, is pushed into u then the distance of u from the sink
increases in jumps of l.

Gadget D (Fig. 5) contains W vertex disjoint paths, where each path has length
L + 1. The first edge in each path has capacity c" and the remaining edges have infinite
capacity. If a flow excess of value e"W is pushed into vertex p, it gives rise to WL
nonsaturating pushes on the collection of paths.

Gadget F is shown in Fig. 6. It consists of two vertices a and b, and L vertex
disjoint paths between a and b. Each path is of length three. The middle edge in each
path has unit capacity while the other two edges in each path have infinite capacity.

Gadget G (Fig. 7) is constructed as follows. Let {xl, x2,’’’, xL} be a set of L
vertices and let {yl, Y2," ", YL/2} be a set of L/2 vertices. A complete bipartite graph
is constructed on the vertex partition {Xl, x2,"’, xL} and {Yl, Y2,’’’, YL/2}. Each
edge in the bipartite graph has unit capacity and is directed from xi to Yr. The input
vertex a of gadget G is joined to all the vertices {x, x2,’’’, x} by infinite capacity
edges. A path of infinite residual capacity is constructed on the vertices
{y, Y2,’’’, Y1/2} such that there is a distance of s between two consecutive vertices
yi and Yi+, _-< < L/2, in the path. For convenience, we will refer to the output vertex
of gadget G as b (instead of y).

When we describe the working of a preflow push algorithm on a network that
contains a particular gadget, then we also use the name of that gadget to denote a
shortest path from the input vertex of the gadget to the output vertex at a particular
step in the running of the algorithm. For example, "Gadget C" initially denotes a
path of length one, but after the first edge emanating from the input vertex u is
saturated, "Gadget C" denotes a path of length 1 + lc.

Recall that each push step performed by a preflow push algorithm, either moves
some flow closer to the sink or moves some flow closer to the source. The latter kind
of push step occurs when the distance label of the selected vertex, say v, is greater
than n, i.e., all paths leading from v to the sink have been saturated. When we describe
the working of a preflow push algorithm on a network, we will completely ignore the
pushes that move some flow closer to the source.

For some of the networks described below, we will see that the sequence of steps
performed by a particular preflow push algorithm running on the network can be
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partitioned into a number of periods such that the sequence of steps constituting the
first period is similar to the sequence of steps constituting the second period, and so
on. This allows us to describe the working of that algorithm on the network just by
describing the sequence of steps that occur in the first period and by specifying the
total number of periods.

In each of the networks that we construct for either the FIFO algorithm or the
maximal excess algorithm, there is only one edge emanating from the source, and this
edge has a sufficiently large finite capacity M. When we describe the working of the
FIFO algorithm or the maximal excess algorithm on one of these networks, then we
will see that, at each step of the algorithm, there is one flow excess whose value is
greater than M/2. We will refer to this as "the large flow excess," and, for expository
reasons, we will regard it as the same flow excess moving through the network.

4.1. Parametrized worst-case networks for the FIFO and LIFO algorithms. First
consider the network in Fig. 8 on which the FIFO algorithm performs O(n2) pushes.

L

P

FIG. 8. Network on which the FIFO algorithm performs O(n2) pushes. The parameters are L n/4 and
W=n/4.

This network contains two sets of vertices X={x,x2,...,Xw} and Y=
{Yl, Y2,’’’, Yw} with W vertices each. For every i, l_-<i_-< W, vertex xi has a unit-
capacity directed edge (xi, y) to the corresponding vertex y. Note that these edges
induce a bipartite graph G’(X, Y, E’). Each vertex in X is joined to a new vertex q
by an infinite capacity edge, and each vertex in Y is joined to a new vertex r by an
infinite capacity edge. There is an infinite capacity edge from r to a new vertex z, and
z is joined to the sink by a path P of length L with infinite residual capacity.

When the FIFO algorithm is run on this network it first creates a single large flow
excess (with value M) at vertex q. The large flow excess then moves from q to vertex
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X and performs a saturating push on edge (xl, Yl), thus creating a unit-capacity flow
excess at Yl. (Actually, the large flow excess could move to any vertex xi and create
a unit-capacity flow excess at Yi, but the exact order in which the large flow excess
visits the vertices in X does not matter.) The FIFO algorithm then pushes the unit-
capacity flow excess at Yl to the sink along the path ylrzPlt and this requires L+ 1
nonsaturating pushes. Meanwhile, the large flow excess moves from Xl to x2 through
vertex q, and then performs a saturating push on edge (x2,y2), thus creating a
unit-capacity flow excess at Y2. Again the FIFO algorithm requires L+ 1 pushes to
move the unit-capacity flow excess from y to the sink. In this manner, the large flow
excess visits the vertices Xl, x2, Xw, in sequence and saturates all the edges (xi, yi)
1 =< -< W, in the bipartite graph, thus creating a unit-capacity flow excess at each vertex
y. The FIFO algorithm requites L+ 1 pushes to move each unit-capacity flow excess
to the sink.

It follows that the FIFO algorithm performs W(L+ 1)= 19(WL) pushes on this
network. Taking W n/4 and L n/4, we see that the FIFO algorithm performs t9(n 2)
pushes on this network.

Let us briefly consider the LIFO preflow push algorithm. It can be seen that the
LIFO algorithm also works as described above on the network in Fig. 8, and hence it
performs 19(n) pushes. The number of pushes performed by the LIFO algorithm can
be increased to 19(nm) by modifying the network in Fig. 8 as follows. We replace the
bipartite graph G’(X, Y, E’) by the complete bipartite graph G"(X, Y, E"). Each edge
in G"(X, Y, E") has unit capacity and is directed from x to y. Also, we take IxI- YI
w x/-/4. It can be seen that the LIFO algorithm performs 19(Lm)= 19(nm) pushes
on this network (by taking L= n/4). This concludes the discussion on the LIFO
algorithm.

Note that in the network in Fig. 8 a single large flow excess is used to create W
unit-capacity flow excesses by saturating all the edges (x, y) of the bipartite graph.
(The FIFO algorithm then performs O(L) 19(n) pushes on each of these unit-capacity
flow excesses.) The essential idea for obtaining a worst-case network on which the
FIFO algorithm performs 19(n 3) pushes is as follows. We clear the edges in the bipartite
graph and then use it again to create W unit-capacity flow excesses. This process of
creating W unit-capacity flow excesses and then clearing the bipartite graph is repeated
a total of (R)(n) times. We first give an intuitive sketch of how this is done and give
the details later (see Figs. 9(a)-(d)). Note that a path P3 between q and z of length
seven has been added to the network in Fig. 8. After all the edges (x, y) in the bipartite
graph have been saturated, the FIFO algorithm moves the large flow excess to vertex
r (Fig. 9(b)). When the large flow excess reaches r, it finds that a shortest path from
r to the sink is a path ryixqP3zPt. Hence, the large flow excess visits the vertices
y, y,"’, yw, in sequence and pushes back one unit of flow on each of the edges
(y, Xl) (y, x2),..., (Yw, Xw) (Fig. 9(c)). This achieves the aim of clearing the edges
in the bipartite graph. After this, the FIFO algorithm moves the large flow excess back
to q (Fig. 9(0)).

The construction of the complete worst-case network is somewhat complicated
because we have to add four copies C1, C2, C3, and C4 of gadget C and several paths
to the network in Fig. 8 to ensure that the large flow excess indeed moves as shown
in Fig. 9. We will construct the complete network in four steps and at each step we
will indicate the function of the newly added component of the network.

The network in Fig. 10 is obtained from the network in Fig. 8 by replacing the
edges (r, z) and (z, r) by gadget C1 and by adding a path P3 between q and z of length
seven. The input vertex and output vertex of gadget C coincide with r and z,
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(a) (b)

,(R)
L(R)

(c) (d)

FIG. 9. (a) A large flow excess saturates the edges (x, y), (x2, Y2),’" (Xw, Yw) and creates a unit-

capacity flow excess at each ofy Y2, Yw. (b) After saturating edge (x,,., y,,.) a large flow excess moves to

vertex r. (c) A large flow excess clears the edges in the bipartite graph by pushing back one unit offlow on each

of the edges (y, x), (Y2, x2),""", (Yw, xw). (d) After clearing edge (Yw, Xw), a large flow excess moves back
to vertex q.

respectively. The parameters of gadget C1 are lc l’, cape W IX YI, and deg,.
n/A, where l’ and A are constants whose values are given later. When the FIFO
algorithm is run on the network in Fig. 10, consider the step when the bipartite graph
has been saturated and W units of flow have been sent into vertex r. At the next push
step, the first edge in gadget C1 gets saturated and the distance from r to the sink
increases from L+ to L+ + l’. Gadget C is needed because when the large flow
excess reaches r (see Fig. 9(b)), it should find that a path ryixiqP3zPt is shorter than
the path r(gadget C)zP]t, and this can be ensured by taking l’ to be sufficiently large.

The network in Fig. 11 is obtained from the network in Fig. 10 by adding a path
P2 between q and r of length six, and inserting gadget C2 into this path such that the
input vertex u of gadget Cz coincides with the neighbour of r in Pe. The output vertex
of gadget C coincides with z and the parameters of gadget C2 are l l’, cap,, and
deg= n/A. Note that the initial distance label of uz equals the initial distance label
of r. The path P2 has infinite residual capacity. The path P is used to move the large
flow excess to r as follows. After the large flow excess saturates edge (Xw, Yw) (Fig.
9(a)), it finds that the shortest path from Xw to is the path Xwq’" u (gadget C:)zPt
and so it moves to vertex u2. After reaching u, the large flow excess saturates the first
edge of gadget C thereby increasing the distance label of u2 by l’. After this, the large
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E]C,. 0. Step in construction Qf worst-case network for the FIFO alorithm. Oadet and path
have been added to the network in Fig. 8.

flow excess finds that a shortest path from u2 to the sink is a path u2ryixiqP3zPlt and
so it moves to r. Thus the movement ofthe large flow excess shown in Fig. 9(b) is realized.

The network in Fig. 12 is obtained from the network in Fig. 11 by replacing path
P3 by the union of path P and gadget C3. P has length six and has infinite residual
capacity; the last vertex of P; coincides with the input vertex of gadget C3. The output
vertex of gadget C3 coincides with z and the parameters of gadget C3 are lc l’,
capt. W and degc n/A. Path P and gadget C3 are needed to realize the movement
of the large flow excess shown in Figs. 9(c)-(d).

Last, the network in Fig. 13 is obtained from the network in Fig. 12 by adding a
path P4 between r and q of length six and inserting gadget C4 into this path such that
the input vertex u4 of gadget C4 coincides with the neighbour of q in P4. The path P4
has infinite residual capacity. The output vertex of gadget C4 is joined to z by a path
P5 of length six with infinite residual capacity. The parameters of gadget C4 are l l’,
cap= W and degc n/A. The path P4 is used to move the large flow excess back to
q as follows. After the large flow excess saturates edge (yw, Xw) (Fig. 9(c)), it can be
seen that the distance label of u4 equals the distance label of q, and the shortest path
from Yw to is the path ywr’’" u4 (gadget C4)PszPlt. Hence, the large flow excess
moves to vertex u4 and saturates the first edge of gadget C4, thereby increasing the
distance label of u4 by l’. Eventually, the large flow excess reaches q and finds that a
shortest path from q to the sink is a path qxiyir(gadget C1)zPt. Thus the movement
of the large flow excess shown in Fig. 9(d) is realized.
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P2

GadgetC’2 JL --
P1 L

FIG. 11. Step 2 in construction of worst-case network for the FIFO algorithm. Gadget C and path P2
have been added to the network in Fig. 10.

The above sequence of steps (shown in Figs. 9(a)-(d)) constitutes one period of
the FIFO algorithm running on the network in Fig. 13. The second period of the
algorithm proceeds similarly. Note that in each period the FIFO algorithm performs
0(WL) nonsaturating pushes. In each period, one edge in each of the gadgets C1,
Ca, and C4 gets saturated. Hence, the number of periods over the whole algorithm
equals the outdegree of the input vertex in any of these four gadgets, and this equals
n/A.

We take the parameters to be W n/4, L n/4, l’- 20, and A 320. The capacity
of the edge emanating from s is taken to be M 4( W4-1)n/A. This gives us Theorem
4.1.

THEOREM 4.1. There is a parametrized worst-case network on which the FIFO
preflow push algorithm performs (R)(n 3) pushes.

A similar construction for the LIFO algorithm gives us Theorem 4.2.
THEOREM 4.2. There is a parametrized worst-case network on which the LIFO

Preflow push algorithm performs O(n m) pushes.

4.2. A parametrized worst-case network for the highest distance algorithm. First,
consider the network in Fig. 14. This network contains two copies D1 and D2 of gadget
D and two copies C1 and C, of gadget C. The parameters for gadgets C and C are
taken to be lc l’, cape c’, and dego L/2, where l’ is a constant whose value is fixed
later. Let the neighbours of vertex P in gadget D be xl, x2,..., Xw, and let the
neighbours of vertex p in gadget D be yl,y,...,yw. We construct a complete
bipartite graph on the vertex partition (x, x,..., Xw) and (yl, y,..., yw) such that
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(R)

Gadget C Gadget C

L

Gadget C:

P1

FIG. 12. Step 3 in construction of worst-case network for the FIFO algorithm. Path P3 in the network in

Fig. 11 has been replaced by the union of gadget C and path P.

each edge in the bipartite graph is directed from xi to yj and has capacity equal to c".
Note that the gadget C1 is located 1’/2 levels higher (with respect to distance from the
sink) than gadget C2, and gadget D1 is located 1’/2 levels higher than gadget D2.

Consider the working of the highest distance algorithm on the network in Fig. 14.
Suppose a sequence of W flow excesses, each of value c"W, is pushed into vertex pl

then each of these flow excesses is routed through one of the vertices xi and gives rise
to WL nonsaturating pushes in gadget D2. This sequence of flow excesses causes the
first edge in gadget C2 to saturate (we take c’= "W2 for ensuring this) and thus raises
the level of gadget D2 by l’. Now, suppose a sequence of W flow excesses, each of
value c"W, is pushed into vertex P2. Again each of these gives rise to WL nonsaturating
pushes in gadget D. This process of alternately sending a sequence of flow excesses
into p and p2 can be repeated L/2 times, until the gadgets C1 and C2 are completely
saturated. The total number of nonsaturating pushes is 19((WL)). Later we will fix
the values of the parameters W and L such that WL 19(n); consequently, the total
number of nonsaturating pushes is O(n2).

Figure 15 shows a worst-case network on which the highest distance algorithm
performs 19(n 2) pushes. This network is obtained by adding two copies B and B of
gadget B to the network in Fig. 14. Note that gadget B is located one level higher
(with respect to distance from the sink) gadget B.

When the highest distance algorithm is run on this network, it first creates a large
flow excess at vertex g. The large flow excess then moves to vertex b2 and saturates
all the finite capacity edges emanating from b, thereby creating a flow excess of value
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Gadget C2

L

Gadget C:

P

FIG. 13. Parametrized worst-case network on which FIFO algorithm performs O(n3) pushes. Gadget C4
and paths P4 and P5 have been added to the network in Fig. 12. The input vertex in each of the gadgets C1,
C2, C3, and C4 has outdegree-n/A, where A-320. The parameters are L-n/4, W-n/4, /’-20, and the
capacity M > 4( W4-1 n/ A.

c(L+2)/2 at each neighbour of b2 in gadget B2. The remaining large flow excess at

b2 then moves along the path b2P2gpl b to b and saturates all the finite capacity edges
emanating from bl, thereby creating a flow excess of value c(L+ 2)/2 at each neighbour
of b in gadget B.

At the next select step of the highest distance algorithm, one of the neighbours
of b in gadget B, say vertex v, is selected. The next push step saturates the unique
outgoing edge from v and creates a flow excess with value cL/2 at the head-vertex of
this edge. Then v gets relabeled and the remaining flow excess at v, with value c, is
sent to vertex Pl. From pl, the flow excess is routed through one of the vertices xi and
gives rise to WL nonsaturating pushes in gadget D2 (we take c c"W for ensuring
this). Similarly, each remaining neighbour of b in gadget B sends a flow excess with
value c to vertex p, and each of these flow excesses gives rise to WL nonsaturating
pushes in gadget D2. After this, gadget B2 sends a sequence of W flow excesses, each
with value , to vertex P2, and each of these flow excesses gives rise to WL nonsaturating
pushes in gadget D. This process of gadget B sending a sequence of W flow excesses
to p and then gadget B2 sending a sequence of W flow excesses to p2 is repeated a
total of L/2 times, until there are no more flow excesses left in gadgets B and B2.

Figure 16 shows a worst-case network on which the highest distance algorithm
performs (R)(n2v/-) pushes. It is obtained from the network in Fig. 15 by adding two
copies C3 and C4 of gadget C. These gadgets are added because after gadget B1 (or
B2) has sent WL/2 flow excesses into vertex p (or P2), all the finite capacity edges in
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FIG. 14. Suppose a sequence of Wflow excesses, each of value c"W, is pushed in at Pl, then each flow
excess causes WL nonsaturating pushes in Gadget O2. Finally, the current edge of vertex u2 is saturated and
the distance label of u2 increases by l’. The capacity c’= e"W2.

gadgets B1 and B2 and C and C2 become saturated. Gadgets C and C4 are needed
to reverse flow through gadgets B and Bz and C and C2 to clear all the finite capacity
edges in these gadgets. This allows us to reuse gadgets B and B2, and in fact, gadgets
B and B are used repeatedly a total of (R)(n/L) times.

When we fix the value of l’, it will turn out that the length of the longest path
from vertex g to vertex z in the network in Fig. 16 is less than 6L+6. We fix the
distance from the output vertex of gadget C4 to the sink to be 6L+6. The parameters
of gadgets C3 and C4 are taken to be lc 12L+ 12, cape 1, and degc W/12.

When the highest distance algorithm runs on the network in Fig. 16, it first performs
the same sequence of steps as the highest distance algorithm running on the network
in Fig. 15. Consider the situation at the end of this sequence of steps. All the flow
excess in the network has accumulated at vertex z to form a single large flow excess.
The next push step saturates the first edge of gadget C3. Hence, the distance label of
z increases by 12L+ 12 and now a path z(gadget B)b2p2g(gadget C4) becomes
a shortest path from z to the sink. It can be seen that the flow is then sent back through
gadgets B2, BI, Cz and Dz, and C1 and D1 to vertex g. Eventually, all the flow excess
in the network (except the flow excess at t) accumulates at vertex g to form a single
large flow excess. The next push step saturates the first edge of gadget C4. Hence, the
distance label of g increases by 12L+ 12 and now a path gpzbz(gadget Bz)z(gadget
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(R)

(R)

FIG. 15. Network on which the highest distance algorithm performs O(n2) pushes. Gadgets B and B
have been added to the network in Fig. 14. The parameters are L n/v/--, W v/-/8, and l’ 8. The capacities
are c" 4W2, c c" W, c’ c"W2, and M L+ 2) Wc.

C3)t becomes a shortest path from g to the sink. The sequence of steps from the start
of the algorithm to the push step that saturates the first edge in gadget C4 constitutes
the first period of the highest distance algorithm running on the network in Fig. 16.
The second period proceeds similarly. During each period the highest distance
algorithm saturates one edge in each of the gadgets C3 and C4. Consequently, the
number of periods equals the outdegree of vertex g (or z) and this equals W/12. When
we take the parameters of the network to be L n!x/-, W x/! 8, and l’= 8, it follows
that the highest distance algorithm performs (R)(n2) nonsaturating pushes on the
network in Fig. 16.

One aspect of the working of the highest distance algorithm on the network in
Fig. 16 remains to be discussed. At the beginning of the ith period, let fsumi denote
the sum of the values of the first W flow excesses that are sent into vertex p by gadget
B. Clearly, fsumi should be greater than or equal to the capacity of the first edge in
gadget C2. Note that during each period, one unit of flow is pushed to the sink through
each of gadgets C3 and Ca. Consequently, the value offsumi decreases by two in each
period, i.e., fsum =fsumi_-2, for i> 1. The worst-case network has been modified
to compensate for this. The modifications are as follows. Let 2’ be greater than 2W 12.
In gadget C2, there is one more edge, with capacity 3’ or more, emanating from the
input vertex u2, i.e., degc L/2 + for gadget C; the capacity of one edge (xi, y) is
increased by TW; and the capacity of one edge emanating from vertex b is increased
by y. The capacity of the edge emanating from s is taken to be M cW(L+ 2)+ y.
We do not go into further details, but it can be seen that the working of the highest
distance algorithm remains essentially as explained above. This gives us the following
theorem.
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Gadget

Gadget

FIG. 16. Parametrized worst-case network on which the highest distance algorithm performs O(n2v/-)
pushes. Gadgets C3 and Ca have been added to the network in Fig. 15 and in gadget C2 there is one more edge
emanatingfrom u2. The parameters are L n/vr-, W v/--/8, and l’= 8. The capacities are c" =4W2, c c"W,
c’--c"W2, 3,>2W/12, and M=(L+2)Wc+3,.

THEOREM 4.3. There is a parametrized worst-case network on which the highest
distance preflow push algorithm performs 19( nEv/-) pushes.

5. The maximal excess preflow push algorithm. Note that the highest distance
algorithm and the FIFO algorithm are able to improve on the naive bound of O(n2m)
for preflow push algorithms because they effectively exploit the mechanism of coalesc-
ing flow excesses. In this section we investigate how far the idea of coalescing flow
excesses can be carried. Another motivation is to obtain an algorithm that is more
suited to the distributed computation model than the highest distance algorithm.

The flow excesses can be coalesced together by pushing as many flow excesses as
possible in the round-robin order while still retaining the desirable feature of the
highest distance algorithm, namely, a nonmaximal excess is never pushed. This suggests
that all active vertices v with maximal excesses (i.e., the current-edge subtree rooted
at v contains no other flow excesses) should be selected in the round-robin order. The
resulting algorithm is called the maximal excess preflow push algorithm.

There are two ways in which a maximal excess located at a vertex v becomes
nonmaximal. The first is that some flow excess is pushed into the current-edge subtree
rooted at v thereby causing the flow excess at v to become nonmaximal. Second,
consider two maximal flow excesses that are moving down the current-edge tree. The
one that reaches their nearest common ancestor earlier ceases to be a maximal excess.
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Clearly, the maximal excess algorithm requires additional data structure overheads for
detecting the above occurrences. We do not consider these overheads in detail but are
primarily interested in the number of nonsaturating pushes performed by this algorithm.

The analysis given in Theorem 3.1 does not apply to the maximal excess algorithm
because one vertex may do several nonsaturating pushes during a single phase (recall
that a phase consists of all pushes between two consecutive relabel steps). However,
we can still obtain an O(nZv/-) bound on the number of pushes by using an approach
similar to that in Theorem 3.1.

THEOREM 5.1. The maximal excess preflow push algorithm performs at most

O( n2/-) nonsaturating pushes.
Proof We partition the nonsaturating pushes into short trajectory pushes and

long trajectory pushes, as in the proof of Theorem 3.1. It is easily seen that over the
whole algorithm there are O(n2-) short trajectory pushes.

The number of long trajectory pushes is shown to be O(nZx/) as follows. We
assume that the algorithm operates in clock pulses, where during one clock pulse push
steps are simultaneously performed on all maximal excesses. (Note that if the algorithm
is implemented using a FIFO queue then a clock pulse corresponds to one pass over
the queue.) It is easily seen that there are O(n2) clock pulses over the whole algorithm
because during each clock pulse dmax (defined in 2) either decreases by one or
increases, and the total decrease in dmax over the whole algorithm is O(n) and likewise
for the total increase in dmax.

Now we make the crucial observation that at any clock pulse the trajectories of
all maximal excesses are vertex disjoint; otherwise, if the trajectories of two flow
excesses overlap then either the two flow excesses have coalesced or one of the flow
excesses is nonmaximal. It follows that at any clock pulse the number of long trajectory
pushes is at most because the number of maximal excesses having long trajectories
(i.e., longer than n/-) is at most /-. Hence, over the whole algorithm the number
of long trajectory pushes is O(n/-). The theorem follows.

5.1. A parametrized worst-case network for the maximal excess algorithm. Let n
and m be two given numbers such that n is sufficiently large and m is greater than
140n. We construct a worst-case network having at most n vertices and m edges on
which the maximal excess algorithm performs (R)(n2x/) pushes. This worst-case
network is similar to the worst-case network for the highest distance preflow push
algorithm except that instead of using gadgets B1 and Bz to create flow excesses in
gadgets D1 and D, we take a different approach that uses W-1 copies of gadget F,
and two copies of gadget G, and some additional paths. W and L are parameters
whose values will be fixed later such that WL (R)(n).

The gadgets D, C, F, and G are described in 4. In the following, when we use
a copy of gadget D we first delete the vertex p; this will not be mentioned explicitly.

We can use k copies of gadget F to construct a network on which the maximal
excess algorithm performs (R)((k + 1) n) nonsaturating pushes. Figure 17 illustrates this
construction for k 1. The network in Fig. 17 contains a copy D1 of gadget D, a copy
F of gadget F, and two new vertices x and x2. Each of the edges (xi, yj), 1 <=iN 2,
1 <=j <= W, has unit capacity. The vertex a of gadget F is joined to Xl by an edge and
is joined to x2 by a path of length four, and the vertex bl of gadget F is joined to
vertex yl by an edge.

The detailed working of the maximal excess algorithm on this network is as follows.
A large flow excess is created at vertex x. Then the large flow excess performs saturating
pushes on the edges (x, y), (x, Y2)," ", (X, Yw), thereby creating unit-capacity flow
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()
M

FIG. 17. Network with one copy of gadget F on which the maximal excess algorithm performs 0(2 WL)
pushes. This construction can be extended to give a network with k copies of gadget F on which the maximal
excess algorithm performs (R)((k + l) WL) pushes.

excesses at each of the vertices Yl, Y2,"" ", Yw. The maximal excess algorithm then
pushes these unit-capacity flow excesses to the sink and this gives rise to (R)(WL) 6)(n)
nonsaturating pushes in gadget D. The large flow excess at x should be moved to

x2 but it should reach x2 only after 6)(n) nonsaturating pushes have occurred in gadget
D1, i.e., only after all the unit-capacity flow excesses in gadget D have reached the
sink. (Actually, when the large flow excess reaches x2 the unit-capacity flow excess
created at y is still in gadget D; however, 6)(n) nonsaturating pushes would have
occurred in gadget D1 since the other unit-capacity flow excesses would have reached
the sink.) In other words, there should be a delay of at least L clock pulses before the
large flow excess reaches x2.

Gadget F is used to accomplish this delay. It can be seen that the large flow
excess leaves gadget F2L clock pulses after entering the gadget because it saturates
each of the unit-capacity edges in the gadget.

After the large flow excess reaches x2 it again creates a unit-capacity flow excess
at each of the vertices Yl, Y2, ",Yw, and this gives rise to another 6)(n) nonsaturating
pushes in gadget D. This completes the discussion on Fig. 17.

It can be seen that by adding vertices x3,x4,’",Xw, edges (x,y) 3_-< iN W,
<=j <= W, and W-2 more copies F2, , Fw-1 of gadget F to the network in Fig. 17

and connecting gadget Fi to vertices xi, X+l, and Yi, we obtain a network on which
the maximal excess algorithm performs 6)(Wn) nonsaturating pushes.

The network in Fig. 18 contains two copies D1 and O2 of gadget D and W-1
copies F, F2,’’’, Fw-1 of gadget F, and these gadgets are connected together as
shown in Fig. 18. Note that gadget D2 is located I’/2 levels higher (with respect to
distance from the sink) than gadget D, where l’ is a constant whose value is fixed
later. A complete bipartite graph is created on the vertex partition {xl, x,..., Xw}
and {y, Y2," ", Yw} (i.e., the "tail-vertices of paths" in gadget D2 and the "tail-vertices
of paths" in gadget D) by adding unit-capacity edges (xi, y), for all 1 <=iN W and
1 <=j <= W. Also, a path P’ between Xw and y of length six and a path P" between yw
and x of length six are added to the network. Both P’ and P" have infinite residual
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FIG. 18. Network on which the maximal excess algorithm performs (R)((W) WL) pushes. Edges (xi, y)
have been omitted for clarity. Path P’ P") and gadget F’ F") are needed to move the large flow excess from
Xw to y (from Yw back to x). The lengths ofpaths P and P2 are L-2 and L-2/1’/2.

capacity. Gadget F’, a copy of gadget F, is inserted into path P’ such that vertex a’
of gadget F’ coincides with the neighbour of yl in P’; similarly, gadget F" is inserted
into path P". The output vertex b’ of gadget F’ and the output vertex b" of gadget F"
are joined to vertex z by paths P1 and P2 having lengths L-2 and L-2/!’/2,
respectively. The path lengths have been fixed such that d(a’) (the initial distance
label of a’) equals d(yl) and d(a") equals d(xl). Also, each finite capacity edge
emanating from u and from u2 has capacity equal to W2+ (W-1)L.

When the maximal excess algorithm runs on this network, it moves the large flow
excess to each of the vertices Xl, x2,’" ", Xw, in sequence, and for each vertex xi the
algorithm performs O(n) nonsaturating pushes in gadget D. After moving the large
flow excess to Xw and saturating the edges (xw, y)," ", (Xw, yw), the maximal excess
algorithm finds that a shortest path from Xw to the sink is a path Xw’" a’ (gadget
F’)b’PlZt, and so it moves the large flow excess from Xw along the path P’ to gadget
F’. The large flow excess is delayed in gadget F’ for 2L clock pulses since it saturates
each of the unit-capacity edges in gadget F’. Consider the step of the algorithm when
all the unit-capacity edges in gadget F’ have been saturated. All the flow excesses in
gadget D have reached the sink before this step, and also the edge (Ul, z) has been
saturated. Hence, the maximal excess algorithm finds that a shortest path from a’ to
the sink is a path a’ylxi(gadget DE)U2"’’zI, and so it moves the large flow excess
to y.

The large flow excess then saturates the edges (yl, xl),..., (y, Xw) and creates
unit-capacity flow excesses at vertices xl, x2,"’, Xw, thereby giving rise to (R)(n)
nonsaturating pushes in gadget D2. The maximal excess algorithm then moves the
large flow excess to each of the vertices Y2,"’, Yw, in sequence and for each yi the
algorithm performs O(n) nonsaturating pushes in gadget Oz.
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After moving the large flow excess to Yw and saturating the edges
(yw, xl),’", (yw, Xw), the maximal excess algorithm moves the large flow excess from

Yw along the path P" to gadget F". The large flow excess is then delayed in gadget F"
for 2L clock pulses since it saturates each of the unit-capacity edges in gadget F".
Finally, the large flow excess reaches vertex xl. Before this step of the algorithm all
flow excesses in gadget D2 have reached the sink, and also the edge, with capacity
W2 + W- 1) L, emanating from u have been saturated.

Let us call the above sequence of steps a macro-step, i.e., when the maximal excess
algorithm runs on the network in Fig. 18, it first performs a macro-step. Note that the
maximal excess algorithm performs (R)(2n W) nonsaturating pushes during a macro-step.

The network in Fig. 19 is obtained from the network in Fig. 18 by adding two
copies C1 and C of gadget C and replacing gadgets F’ and F" by two copies G’ and
G" of gadget G. The parameters for gadgets C and C2 are taken to be lc l’,
cape W2+ (W-1)L, and degc L/2. For both gadgets G’ and G", the parameter lg
is taken to be l’. The output vertices b’ and b" of gadgets G’ and G" are joined to z
by paths P and P of lengths L- and L- 1 + 1’/2, respectively. Note that gadget C2
is located 1’/2 levels higher (with respect to distance from the sink) than gadget C,
and gadget D is located 1’/2 levels higher than gadget D.

When the maximal excess algorithm runs on the network in Fig. 19, it first performs
a macro-step. This constitutes one period of the maximal excess algorithm running on
the network in Fig. 19. The second period proceeds similarly. Note that during the ith
period the maximal excess algorithm saturates one edge in each of the gadgets C1 and
C2 and also the algorithm saturates all the unit-capacity edges entering vertex Y’i in
gadget G’ and all the unit-capacity edges entering vertex y: in gadget G" (recall the

Gadget Dz
pO

Gadget D

FIG. 19. Network on which the maximal excess algorithm performs (R)(n z) pushes. Gadgets C and C2
have been added to the network in Fig. 18, and gadgets F’ and F" have been replaced by gadgets G’ and G".
Edges (xi, Y.i) have been omittedfor clarity. The parameters are W /-/64, L= 8n/vc-, and l’= 20, and the
capacity is M > 2 WL(W+ L). The lengths ofpaths P and Pz are L- and L- + 1’/2.
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description of gadget G in 4). It can be seen that the maximal excess algorithm
performs L/2 periods, and so it performs 19(nwL)= 19(n2) pushes when it runs on the
network in Fig. 19.

The 19(n2,,/-) worst-case network for the maximal excess algorithm is shown in
Fig. 20. This network is obtained from the network in Fig. 19 by adding two copies
C3 and C4 of gadget C, and a path P3 between the input vertex a" of gadget G" and
vertex z. The gadgets C3 and C4 perform the same function as the gadgets C3 and C4
in the worst-case network for the highest distance algorithm ( 4). Consider any shortest
path from g to.z that contains the longest path through gadget C2; when we fix the
value of l’ it will turn out that the length of such a path is less than 11L. We fix the
distance from the output vertex of gadget C4 to the sink to be 11L. The parameters of
gadgets C3 and C4 are taken to be lc 22L, cape 1, and deg W/22. The path P3
is needed to move the large flow excess to vertex z (this is discussed below); P3 has
length L(1 + 1’/2) + 2-1’/2 and is longer than any longest path from a" to z through
gadget G". Note that the path between g and xl has length four and the path between
g and y has length six.

Gadget

Gadget Dz

Gadget D

Gadget C3

FIG. 20. Parametrized worst-case network on which the maximal excess algorithm performs O(n2x/-)
pushes. Gadgets C and C and path P3 have been added to the network in Fig. 19. Edges (xi, Yi) have been
omittedfor clarity. The parameters are W= x//64, L 8n/v/-, l’= 20, and the capacity is M > 2 WL( W+ L).
The lengths ofpaths P, P2, and P3 are L-1, L-1 + 1’/2, and L(1 + I’/2)+ 2-I’/2.
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When the maximal excess algorithm runs on the network in Fig. 20, it first performs
the same sequence of steps as the maximal excess algorithm running on the network
in Fig. 19. At the end of this sequence of steps, all the finite capacity edges in gadgets
C1, C2, G’, and G" have been saturated, and the large flow excess is at the input
vertex a" of gadget G". Next, the large flow excess moves along path P3 to z, and when
it reaches z, all the flow excess in the network is located at z. The next push step
saturates the first edge of gadget C3. Hence, the distance label of z increases by 22L
and now the path z(gadget C1)(gadget D1)yl"’" g(gadget C4)’’" becomes the
shortest path from z to the sink. It can be seen that the flow is then sent back through
gadgets C and D1, C and D2, P1 and G’, P2 and G", and P3 to vertex g. Eventually,
all the flow excess in the network (except the flow excess at t) accumulates at vertex
g to form a single large flow excess. The next push step saturates the first edge of
gadget C4. Hence, the distance label of g increases by 22L and now a path
g’.. xyl(gadget D)(gadget C)z(gadget C3)t becomes a shortest path from g to the
sink. The sequence of steps from the start of the algorithm to the push step that
saturates the first edge in gadget C4 constitutes the first period of the maximal excess
algorithm running on the network in Fig. 20. The second period proceeds similarly.
During each period the maximal excess algorithm saturates one edge in each of the
gadgets C3 and C4. Consequently, the number of periods equals the outdegree of
vertex g (or z) and this equals W/22. We take the parameters of the network to be
L 8n/x/-, W x/-/64, and l’= 20, and the capacity of the edge emanating from s
to be M> 2WL(W+L). It follows that the maximal excess algorithm performs
6)(nZx/-) nonsaturating pushes on the network in Fig. 20. This gives us the following
theorem.

THEOREM 5.2. There is a parameterized worst-case network on which the maximal
excess preflow push algorithm performs 6)( n2v/-) pushes.

6. A distributed maximum flow algorithm. In this section, we develop a maximum
flow algorithm for the synchronous distributed model of computation that uses at most
O(n2x/) messages and O(n2) time. This is a multiprocessor model with no shared
memory. The graph underlying the network is realized as a processor network with
one processor located at each vertex and all interprocessor communication occurs
along the (hi-directional) edges of the graph. The processors are synchronized. The
time required by each processor for its local computations is assumed to be negligible.
The resource bounds of interest are the number of messages used by the algorithm
and the total time taken (i.e., the number of clock pulses used). We will only use
messages of length O((log n)+(log U)) bits.

The distributed maximum flow algorithm is based on the proof of Theorem 5.1.
A push message is a message used by the algorithm to indicate the pushing of flow
along some edge. Each flow excess keeps track of its originating edge and the distance
it has moved since leaving the originating edge. A flow excess moves freely as long as
its distance from its originating edge does not exceed n/x/-.

Recall from Theorem 5.1 that, at each clock pulse, the number of long trajectory
pushes (i.e., a nonsaturating push that occurs along a trajectory at a distance greater
than n/v/- from the originating edge of the trajectory) is at most because the
long trajectories are vertex disjoint and so there are at most maximal excesses that
have long trajectories. To ensure that long trajectories in the distributed algorithm are
vertex disjoint, each flow excess moves in stages. During stage a flow excess moves
for a distance of at most (2in/x/-), i.e., it undergoes at most (2in/x/-) nonsaturating
pushes. When it has moved this distance, it stops and checks whether its trajectory is
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overlapped by the trajectory of some other flow excess. For this purpose, it sends a
probe message backward along its trajectory all the way to its originating edge. The
originating edge echoes back the probe message along the trajectory to the flow excess.
Upon receiving the echoed probe message the flow excess enters stage + 1 and resumes
its movement. Of course, if a probe message is intercepted by a different flow excess,
then the probe message is immediately destroyed.

THEOREM 6.1. The above synchronous distributed algorithm for the maximum flow
problem uses at most O(nEx/) messages and O(n2) time.

Proof. First, consider the number of clock pulses used by the distributed algorithm.
Let us call a flow excess dead if it is waiting for its echoed probe message and its
probe message has been intercepted by a different flow excess and destroyed; otherwise,
the flow excess is called alive. Suppose the distributed algorithm maintains approximate
distance labels and does lazy updates of the distance labels, i.e., a vertex v updates
its distance label only immediately after a push step at v fails to reduce e(v) to zero.
Then a flow excess that is alive at a particular clock pulse was either alive at the
preceding clock pulse or it was originated by another alive flow excess at the preceding
clock pulse. Let us introduce a token into the distributed algorithm; the intention is
that, at each clock pulse of the algorithm, the token is held by either an active vertex
or by s or by t. Initially, the token is held by an active neighbour of s. At each clock
pulse, the token is passed nondeterministically as follows. Suppose the token is held
by a vertex v; then either the token is passed to a neighbour w of v such that a push
is done on the edge (v, w) or the token continues to be held by v provided e(v) remains
greater than zero. It can be shown (using induction on the number of clock pulses)
that there exists a token passing sequence such that the token is held by an alive flow
excess at each clock pulse, and just before the algorithm terminates, the token is held
by a flow excess that moves last. For this token passing sequence, it can be shown that
the total distance moved by the token is O(n2), and the time required by the token to
move a distance L is at most 5L. It follows that the number of clock pulses is O(n).
The proof that the number of clock pulses for the distributed algorithm with exact
distance labels is O(n2) is left to the interested reader.

Now consider the number of messages used by the algorithm. The number of
push messages and probe messages used in stage zero and stage one, summed over
all flow excesses originating in the algorithm, is at most (2nm(lln/V-)), which is
O(n2x/-).

CLAIM. The number of stage push messages at each clock pulse, summed over
all i, i> 1, is O(/-).

The O(n/-) bound on the number of messages would follow from the claim,
because the total number of clock pulses is O(n 2) and the number of probe messages
is at most four times the number of push messages.

The essential idea for proving the claim is as follows. At each clock pulse, we
associate with each stage i, i> 1, push message a subpath of its trajectory having at
least (2 -2)n/v/- vertices such that for distinct stage push messages the associated
subpaths are vertex disjoint.

Let fl and f2 be two flow excesses such that they give rise to two stage i, i> 1,
push messages that are transmitted at the same clock pulse. Suppose that the trajectories
of fl and f2 overlap, since otherwise there is nothing to prove. Assume that f was
originated earlier. Clearly, at any vertex v common to both trajectories, the (echoed)
probe message that initiates stage for f precedes the push message for f2. Let tv be
the time at which the probe message for f going toward f passes through v, and let
dv be the distance from v to the originating edge off.
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It can be seen that stage for f comes to an end at most ((2i-1)n/-)-dv+
(2in/,,/-) clock pulses after tv. Similarly, stage for f2 can start only 2(2- 1)n//-
clock pulses after tv. Thus dv is at most n/v/-- since stage push messages for f and

f2 are transmitted at the same clock pulse.
Let Pl denote fl’s trajectory at the end of stage (i-1), and likewise for P2. It can

be seen that the suffix of p obtained by deleting fl’s trajectory at the end of stage zero
is vertex disjoint from the similar suffix of P2. Hence, the number of stage i, > 1, push
messages transmitted at any clock pulse is at most v/-/(2-2), and the claim
follows.

7. Conclusions. We have shown that the highest distance preflow push algorithm
improves upon the O(r/3) time bound and have examined several rules for selecting
an active vertex in order to apply a push step to it.

We briefly consider the data structure required for implementing the maximal
excess preflow push algorithm. The basic operation in this algorithm is to select an
active vertex v such that the current-edge subtree rooted at v contains no other flow
excesses. The basic operation corresponds to a nearest common ancestor query in a
tree that changes in a "structured" way with respect to the distance labeling d. An
O(log n) amortized time bound can be shown for the basic operation using the
(self-adjusting) dynamic trees data structure [Ta83]. However, it is not clear that this
is the most efficient data structure for this problem.

Recently, Ahuja and Orlin [AO87] have developed an O(nm + n2 log U) preflow
push algorithm based on a novel use of the scaling technique. Their algorithm has
(1 +log U) stages. They do not exploit the mechanism of coalescing flow excesses.
Rather, they control the coalescing and thereby restrict the value of the maximum flow
excess that can be formed in stage to U/2. At each stage, their algorithm moves
only large enough flow excesses, by doing "restrained greedy" pushes. Subsequently,
Safer [Sa88] has given an O(nm+ n2 log U) message and an O(n log U) time dis-
tributed algorithm that was based on the above scaling algorithm.

Our work raises some questions. Note that every push on an edge is "greedy,"
i.e., as much flow as possible is pushed along it. Is there any advantage in doing
"restrained greedy" pushes ? Another possibility is to study heuristics for choosing the
next outgoing edge during a push step. It is an open question whether the naive bound
of O(n2m) is tight for Goldberg and Tarjan’s maximum-value excess preflow push
algorithm. Our O(n2v/--) messages and O(n2) time synchronous distributed algorithm
does not seem to lead to an asynchronous distributed algorithm with comparable
resource bounds. The straightforward approach of using Awerbuch’s synchronizer
[Aw85a] does not work because the synchronizer itself requires O(n3) messages.

Finally, we comment on the performance of the highest distance preflow push
algorithm in computational experiments. The performance ofthe basic algorithm (given
in 2) on random networks deteriorates due to the high overheads arising from too
many relabel steps. Consider a network such that ISI is (R)(n), where S denotes the set
of vertices on the source side of the unique s-t min-cut closest to s. Clearly, the
highest distance algorithm (given in 2) performs (R)(n 2) relabel steps on this network.
Although this is not significant for worst-case networks (since the algorithm performs
at least nm push steps on such networks), it does become significant on the average.
Hence, an actual implementation should use some strategy to reduce the number of
relabel steps. One way is to maintain approximate distance labels and to do periodical
updates of the distance labels (in addition to the updates done in the relabel steps)
by performing a breadth first search starting from the sink [Go87]. Another way is to
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maintain the number of vertices n(k) with distance labels equal to k; whenever n(k)
becomes zero for any k then all vertices with distance labels greater than k are
disconnected from the sink, and so the algorithm avoids selecting these vertices until
a maximum preflow to the sink has been found [AO87].
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POLYNOMIAL SPACE COUNTING PROBLEMS*

RICHARD E. LADNER?

Abstract. The classes of functions PSPACI and PSPACE that are analogous to the class P are
defined. Functions in $PSPACE count the number of accepting computations of a nondeterministic
polynomial space bounded Turing machine, and functions in PSPACF_, count the number of accepting
computations of nondeterministic polynomial space bounded Turing machines that on each computation
path make at most a polynomial number of nondeterministic choices. In contrast to what is known about
P, exact characterizations ofboth PSPACE and PSPACE are found. In particular, PSPACF_, FPSPACF_,

(the class of functions computable in polynomial space) and PSPACE FPSPACE(poly) (the class of
functions computable in polynomial space with output length bounded by a polynomial). Both gPSPACE

and PSPACE can be characterized by counting problems related to alternating Turing machines. Both
PSPACE and PSPACE have natural complete functions. It is an easy observation that FP_P
PSPACE, where FP is the class of functions computable in polynomial time. Relativization to oracles is
considered, as are approximation techniques for obtaining a better understanding of whether either of the
above inclusions is proper.

Key words, computational complexity, polynomial space, alternating polynomial time, counting
problems

AMS(MOS) subject classification. 68

1. Introduction. In this paper we consider counting problems that arise in non
deterministic polynomial space bounded (NPSPACt) computations and in alternating
polynomial time bounded (APTIME) computations. For example, the class of functions
PSPACI, is defined byf:* -> N PSPACI if and only if there is a nondeterministic
Turing machine M that runs in polynomial space with the property that f(x) equals
the number of accepting computation paths of M on input x. (N is the set of natural
numbers, {0, 1,2,... }.) We assume that our polynomial space bounded Turing
machines, both deterministic and nondeterministic always halt, avoiding the possibility
that f(x) is infinite. Similarly, we define the class of functions fAPTIMt, by f
$APTIME if and only if there is an alternating Turing machine M that runs in
polynomial time with the property that f(x) equals the number of accepting computa-
tion trees of M on input x. Finally, define FPSPACI, to be the class of functions
computable in polynomial space. It is worth noting that our FPSPACF_, functions
output only binary strings that represent members of N in a natural way. The order
of output, high- or low-order bits first, does not matter because if f6 FPSPACF_, then
g FPSPACE, where g(x)=f(x)n(g(x) is the reversal of f(x)) for all x. One main
result of this paper is the following theorem.

TIJEOREM 1. fPSPACF_, $APTIMF FPSPACtL
This exact characterization of counting problems in polynomial space contrasts

with our current knowledge about P defined by Valiant [10], [11]. The class SP is
defined as the class of counting problems in NP, that is, f6 P if and only if there is
a nondeterministic Turing machine M that runs in polynomial time with the property
that f(x) equals the number of accepting computation paths of M on input x. Although
SP is defined in a simple way in terms of NTIMt Turing machines it does not
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seem that, in general, functions in P are computable using an oracle in the polynomial
time hierarchy. In fact, it is has been conjectured that complete functions in SP are
not computable in polynomial time using an oracle in the polynomial time hierarchy.
The best upper bound on P is that it is contained in FPSPACE. However, it has been
shown by Stockmeyer that every function in P can be approximated by a function
in FA’, the class of functions computable in polynomial time using an oracle from
2;’ [8]. Currently, we do not have any good characterization of P. One purpose of
this paper is to try to gain more insight into P.

Because some functions in PSPACE have exponential length and all functions
in P must have polynomial length, it is a simple observation that

P # PSPACE.
This inequality is a little artificial, leading us to consider restrictions of SPSPACE that
might give us a more interesting comparison between P and counting problems in
polynomial space. Define the class of functions PSPACE2 by f6 PSPACE if and
only if there is a nondeterministic Turing machine M that runs in polynomial space
and that makes only-a polynomial number of nondeterministic moves (while making
potentially exponentially many moves) with the property that f(x) equals the number
of accepting computation paths of M on input x. With this restriction the length of
f(x) is bounded by a polynomial in Ixl. Clearly, P

_
PSPACE and equality is not

out of the question. However, PSPACE has some nice characterizations, which leads
us to question the possibility that P PSPACE.

Let APTIME be the class of functions f such that there is an APTIME Turing
machine M with the property that f(x) equals the number of equivalence classes of
accepting computation trees of M on input x, where two accepting computation trees
are equivalent if the initial sequence of existential moves from the initial configuration
to the first universal configuration is the same for both. At first glance, the
class APTIME appears to be a bit bizarre. However, it turns out to be the natural
counting class for alternating computations that corresponds to PSPACE. Define
FPSPACE(poly) to be the class of functions that is computable in polynomial space
and whose outputs are bounded in length by a polynomial. We can characterize
PSPACE in Theorem 2.

THEOREM 2. PSPACE APTIME FPSPACE (poly).
We define the notion of polynomial-time reducibility between counting problems

that make it possible to compare one counting problem to another even though the
counting problems may be functions that are exponential in length. We say that a
function f is reducible to a function g in polynomial time (f <- P g) if there is function
h that is computable in polynomial time such that for all x,f(x)= g(h(x)). A function
k is complete for a class of functions C if (i) k C and (ii) for allf C,f <-P k. There
are natural counting problems that are complete for each of PSPACE and PSPACE.
For example, let NFA be the counting problem defined as follows: if M is a
nondeterministic finite automaton, then NFA(M) equals the number of input strings
not accepted by M. In case the number of input strings not accepted by M is infinite,
define NFA(M) equal to k s2"-1 + 1, where s is the number of input symbols of M
and q is the number of states in M. The reason for this choice is that if the number
of strings not accepted by M is finite, then the number of such nonaccepted strings
must be <k. Then,

NFA is complete for PSPACE.
Another example is QBF, which is defined as follows. Let A=BxiVx23x3...

PSPACE is pronounced "natural p space."
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Qx,,B(x, X2,’’" Xm) be a quantified Boolean formula. Then QBF(A) equals the
number of Xl’S such that A is true. We have

QBF is complete for PSPACE.
There are more natural complete problems that we describe later in the paper. Complete
problems give us some information about the difficulty of P. For example, it can be
shown that QBF .P if and only if P PSPACE.

Let FP be the class of functions computable in polynomial time. The inclusions

FP
_

P
_

PSPACE

are clear, and these inclusions relativize to an arbitrary oracle. It is an open question
whether or not one or both of the inclusions are reversible. Using the techniques of
Baker, Gill, and Solovay [1] we can construct computable oracles A, B, and C such
that FPa PSPACEA, FPR #PR, and pC# PSPACE c. These results indicate
that more information about these inclusions may be very difficult to come by.

Stockmeyer has shown that functions in P can be approximated by functions
computable using an oracle in the polynomial hierarchy [8]. We give a generalization
of this result to a class of counting problems defined by APTIME Turing machines
with a bounded number of alternations. On the other hand, it is a fairly easy observation
that if the functions in PSPACE can be approximated using an oracle in the polynomial
hierarchy, then PSPACE is included in the polynomial hierarchy. This is some evidence
that PSPACE is harder than P.

In 2 we will clarify the definitions we have made so far and make new ones that
will be used later in the paper. In 3 we give proofs of Theorems 1 and 2. In 4 we
describe some complete problems and describe how they are useful. In 5 we examine
some relativized counting problems. Finally, in 6 we discuss approximating counting
problems.

2. Definitions. Our model of computation is the usual Turing machine. All our
Turing machines will either be polynomial time or space bounded. As such, we can
assume that our space bounded Turing machines always halt without looping. If the
Turing machine has output, then the output is printed on a one-way, write-only output
tape, and whatever space bound is put on the Turing machine does not apply to the
output tape. Thus, if M is a PSPACE Turing machine that computes a function f,
then If(x)[ can be as long as 2 Ixlk for some k. For uniformity we assume that the output
of a PSPACE Turing machine is a binary representation of a natural number (N
{0, 1, 2, }). Recall that FPSPACE is the class of functions computable in polynomial
space and FPSPACE (poly) are those f FPSPACE with the property that there is a
constant k such that If(x) <-Ix[ k for all x. We assume that readers are familiar with
the polynomial-time hierarchy, ElP, EP, [7]. We will also want to consider functions
computable in polynomial time FP, and functions computable in polynomial time
using an oracle in the polynomial-time hierarchy. Define FA’ to be the class of
functions computable in polynomial time using an oracle in ;’-l. By definition
FP= FAP1.

If M is a NPSPACE Turing machine and if x is an input, then there may be
many different computations of M that can lead to the acceptance of x. Define (M, x)
to be the number of distinct accepting computation paths of M on input x. Naturally,
if M does not accept x, then (M, x)=0 and vice versa. Define PSPACE to be the
class of functions f such that there is a NPSPACE Turing machine M where f(x)=
$(M, x). Note that functions in kPSPACE can be exponential in length. A natural
restriction that limits the length of function in $ PSPACE is to allow only a polynomial
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number of nondeterministic moves on any accepting path. Hence, we have the following
definition. PSPACE is the class of functions f such that there is a NPSPACE Turing
machine M that makes only a polynomial number of nondeterministic moves on any
computation path and f(x)=$(M, x). The machine M may still make exponentially
many moves on input x, but only a polynomial number of them are nondeterministic,
when a choice can be made between alternatives.

We will assume that the reader is familiar with alternating Turing machines [4].
If M is an alternating Turing machine and x is an input, then an accepting computation
tree is a tree labeled with configurations satisfying the following conditions: (i) the
root is labeled with the initial configuration; (ii) each nonleaf labeled with a universal
configuration has a child labeled for each successive configuration; (iii) each nonleaf
labeled with an existential configuration has exactly one child, which is labeled with
a successive configuration; and (iv) all the leaves are labeled with accepting configur-
ation. Define (M, x) to be the number of accepting computation trees of M on input
x. Further define (M, x) to be the number of equivalence classes of accepting computa-
tion trees, where two accepting computation trees are equivalent if the paths from the
initial configuration to the first universal configuration are the same in both. Note that
(M, x) can have length exponential in Ixl while (M, x) can only have length poly-
nomial in

Define :APTIME to be the class of functions f such that there is an APTIME
Turing machine M such that f(x)=(M, x). Further define APTIME to be the class
of functions f such that there is an APTIME Turing machine M with f(x) (M, x).
By limiting the number of alternations we can, in a natural way, also define Z’ and
E’. Note that
and E2 , but for all k > 2, E’ E’. This latter fact follows simply from that
fact that some functions in E" are exponential in length for each k > 2.

3. Equivalence of function classes. In this section we sketch the proof of
Theorem 1:

PSPACE APTIME FPSPACE.

We begin by showing $PSPACE
_
APTIME. A variation of the standard simulation

of a nondeterministic Turing machine that runs in space s(n) by an alternating Turing
machine that runs in time s(n) [4] has the property that the number of accepting
computation paths of the nondeterministic machine equals the number of accepting
computation trees of the alternating machine. Let M be a NPSPACE Turing machine
and let x be an input to M of length n. Without changing the number of accepting
paths of M on x, we can pad all computations so they are all the same length 2)

for some polynomial p(n); we can also assume there is a unique accepting configuration.
Consider the following alternating algorithm, reach(C, D, k), which accepts if and
only if configuration D is reachable from configuration C in exactly 2 steps.

definition reach C, D, k):
begin

if k 0 then if D is reachable from C in one step then accept else reject else
V E [reach(C, E, k- 1)/ reach(E, D, k- 1)]

end.

The notation VE means existentially choose a configuration E. The notation A is a
binary operator meaning universally choose one of its operands. It can be shown by
induction on k that the number of computation paths from C to D of length exactly
2 equals the number of accepting computation trees of reach(C, D, k). The alternating
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algorithm that simulates M on input x is simply the call reach(init, acc, p(n)), where
init is the initial configuration of M on input x and acc is the unique accepting
configuration. Hence, the number of accepting computations of M on input x equals
the number of accepting computation trees of reach(init, acc, p(n)).

To show that FPSPACE _PSPACE, let f FPSPACE; let M be a PSPACE
Turing machine that computes f We define a NPSPACE machine M’ with the property
that (M’, x)=f(x) for all inputs x. Let x be fixed. We define a PSPACE subroutine
bit(i) that returns the ith bit of f(x), where bit(O) is the lowest-order bit. We can
assume without loss of generality that there are m 2 Ixlk bits in f(x). Iff(x) is actually
a small number, then there will be a large number of O’s as trailing bits. We define a
nondeterministic recursive procedure, check(i), which has the property that fcheck(i)
bit(i) + 2 check(i + 1), where fcheck(i) refers to the number of accepting paths of
check(i). Hence, check(O)--f(x). The machine M’ simply runs check(O).

definition check(i):
begin

if i> m then reject else
if bit(i) 0 then check( + 1) v check( + 1)
else (bit(i) 1) accept v check( + 1) v check( + 1)

end.

To complete the proof, we show $APTIME FPSPACE. Let M be an alternating
Turing machine that runs in polynomial time and let x be an input. Consider the full
computation of tree T of M on input x. Unlike an accepting computation tree, each
existential node in T may have more than one child, one child for each choice that
can be made. (M, x) can be computed, not in polynomial space, in the following
way. Construct T and label each node in T with a number starting with the leaves of
T. An accepting leaf is labeled with a one and a rejecting leaf is labeled with a zero.
If a universal node has k children labeled al,’’’ak, respectively, then label the
universal node with H k

i=1 ai. If an existential node has k children labeled a,. ., ak,

respectively, then label the existential node with ki= a. The number labeled at the
root is (M, x).

There are two difficulties in trying to do this calculation of (M, x) within
polynomial space. The first is that the tree T requires exponential space to store it all,
and the second is that the numbers labeled on the nodes of the tree can be exponentially
long. Both these difficulties can be overcome by realizing that the whole tree and the
number labels do not all have to be written down at once and that arithmetic on
exponentially long numbers can be done in polynomial space. To be more specific, if
C is a configuration, define number(C) to be the number of accepting subtrees of M
on input x when M is started in configuration C. We can define a recursive procedure
bit(i, C) that is the value of the ith bit of number(C). Roughly, bit is defined recursively
by:

definition bit(i, C):
begin

if C is accepting then if 0 then return 1 else return 0 else
if C is rejecting then return 0 else
if C is universal with children D,..., Dk then

return the ith bit of product(number(D1),..., number(D,)) else
if C is existential with children D,..., D then

return the ith bit of sum(number(D),..., number(D))
end.
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It is well known that there are procedures for product and sum that on inputs of length
m run in log m space. This can be seen by taking standard logarithmic depth circuits
for product and sum (see [6]) and converting them to logarithmic space Turing machines
using a result of Borodin [3]. To compute the ith bit ofproduct(number(D1)," ., num-
ber(Dk)), run the logarithmic space Turing machine for product without actually writing
any of the output. Keep a count of the number of output symbols that have been
produced so far. When the count reaches i, the ith bit is produced. While product is
running it may request a bit from its input. At that point a recursive call to bit is made.
The full arguments ofproduct are never written down all at once. A similar computation
for sum can be made. The depth of recursion is bounded by the height of the
computation tree, which is polynomial in Ix I. The amount of space needed at each
level of recursion is logarithmic in the length of number(C), which again is polynomial
in Ix[. Hence, the computation of bit(i, C) can be done in polynomial space. Clearly,
the number of accepting subtrees of M on input x can be output by successive calls
to bit(i, init), where init is the initial configuration.

The proof of Theorem 2,

PSPACE APTIME FPSPACE (poly ),

is a bit simpler than the result we have just proven.
We begin by showing that PSPACE APTIME. Let M be a PSPACE Turing

machine that makes at most a polynomial number of nondeterministic moves in a
computation. There is a PSPACE. Turing machine M’ that takes two inputs x and y
with the property that the number of accepting computations of M on input y is
exactly the number of distinct x’s such that M’ accents the pair (x, y). Furthermore,
the length of x is bounded by a polynomial. Essentially, M’ on input (x, y) simulates
M on input y except when M reaches a nondeterministic move. The ith nondeterminis-
tic move is then determined by the ith character of x. By the standard alternating time
theorem [4] M’ can be simulated by an APTIME Turing machine M" that begins in
a universal configuration. Now, consider the alternating machine M’" that on input y
first existentially guesses an x, then runs M" on the input (x, y). We have $(M, y)=
(M’",y).

To show FPSPACE(poly)_PSPACE we can use the same nondeterministic
procedure check used to prove FPSPACE c_ fPSPACE. In the case that the function
is polynomial length bounded, the nondeterministic procedure cheek makes only a
polynomial number of nondeterministic moves on any computation path.

Finally, to show that APTIME
_
FPSPACE(poly) let M be an APTIME Turing

machine. We define a new PSPACE machine M’ that takes pairs (x, y) as input. On
input (x, y), M’ simulates the initial existential moves of M on input y with these
moves determined by the characters of x, reaching a configuration C of M. That is, if
M can make at most d moves from an existential configuration, then x e { 1, 2, , d}*.
Initially, M’ sets a pointer to the first character of x. For each initial existential move
of M, M’ makes the move determined by the current character of x pointed to and
moves the pointer one character to the right. If C is existential and x is exhausted, or
C is universal and x is not yet exhausted, then M’ rejects. Otherwise, a deterministic
polynomial space simulation of the alternating machine M on input y starting in
configuration C is used to discover if C is the root of an accepting computation tree
of M on input y. If so, M’ accepts (x, y). From M’ we construct a Turing machine
M" that computes (M, y). The Turing machine M" simply counts the number of x’s
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such that M’ accepts (x, y). The number of such x’s is bounded in length by a polynomial
in lYl-

4. Complete functions. We would like to be able to classify the hardest problems
in PSPACE and PSPACE in a way similar to the way that the NP-complete problems
are classified as the hardest problems in NP. To this end we define a generalization
of the Karp reducibility [5] that extends it to a relation between functions. We say
that f is reducible to g in polynomial time (f-<eg) if there is function h that is
computable in polynomial time such that for all x,f(x) g(h(x)). It is easy to see that
_<e is a reflexive and transitive relation between functions. If C is any of the classes
of functions we have talked about so far, FP,P,E,E,PSPACE, or
PSPACE, g C and f _-< P g then f C also. Define a function k to be complete for a
class of functions C if (i) k C and (ii) for all f C,f <-P k.

Since some functions in PSPACE are exponential in length, it is a trivial
observation that PSPACE cannot equal any of FP, P,EP, eel’, or PSPACE, each
ofwhich contains only polynomial length bounded functions. But it is not inconceivable
that PSPACE E’ for some k > 2. The following proposition relates the complexity
of complete functions in PSPACE to whether kE=PSPACE for some k.

PROPOSITION 3. Let f be complete for gPSPACE. Then, fE if and only if
E PSPACE.

Functions in PSPACE are bounded in length by a polynomial so there is some
chance that PSPACE could equal one of FP, P, or Z’ for some k. Knowing the
complexity of complete functions in PSPACE enables us to better characterize the
class PSPACE, and perhaps even P.

PROPOSITION 4. Let f be complete for PSPACE.
(1) f FP if and only if FP PSPACE,
(2) f P if and only if P [qPSPACE,
(3) f ’[ if and only if tqPSPAC:E, for k >= 2.
It is worth noting that iffis complete for PSPACE andf FP, then P PSPACE.
The first complete counting functions we consider are derived from the QBF

(quantified Boolean formulas) problem first considered by Stockmeyer and Meyer [9].
A quantified Boolean formula is one of the form

A :lx Vx2 :qX Qx,B(x, x2," ", x,,),
where X is a vector of Boolean variables for _-< i_-< m, B is a Boolean formula, and
Q- V if m is even and Q- ::1 if m is odd. If A is true, then its truth can be verified
by constructing a verifying tree, the root of which is labeled with a truth assignment
for x. The root has 2 Ix21 children, one for each possible truth assignment of x2. Each
child of the root has exactly one child labeled with a truth assignment for x3. This
process is carried on until all the variables are assigned. Thus, each leaf corresponds
to an assignment of all the variables. For each leaf in the verifying tree the formula
B must be true for the assignment associated with the leaf. Define $QBF to be the
function that is defined by QBF(A)-the number of verifying trees for A. We can
also define QBF(A) the number of xl’s such that there is a verifying tree for A with
root labeled x.

THEOREM 5. (1) QBF is complete for PSPACE,
(2) QBF is complete for PSPACE.
The key idea in the proof of part (1) of Theorem 5 is that given a NPSPACE

Turing machine M and an input x a quantified Boolean formula A can be constructed
in polynomial time with the property that $(M, x)=$QBF(A). This will demonstrate
that the function f is defined by f(x) =(M, x) satisfies f <-P QBF. The construction
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is a modification of the construction that shows QBF is complete for PSPACE [9].
To begin with, let us describe the more standard construction and explain why it does
not work to get our result. We then modify the construction to get it to work.

Let M be a NPSPACE Turing machine and let x be an input of length n. We
can assume that on input x, M makes exactly 2Pn) moves on every computation path
before halting, where p(n) is a polynomial. A configuration of M on input x can be
represented by a bit vector u of length q(n) for some polynomial q(n). We define a
quantified Boolean formula reachk(u,, v,) that has 2q(n) free variables u, v and has
the meaning "the configuration represented by v is reachable from the configuration
represente0 by uk in exactly 2k moves of M." For k > 0, define

reachk(u, v)= 3zg Vuk-1,

(u_, u A V_I :-- z) V (U_, :-- zg A V_ V) reachk_, (uk_,, v_,) ].

In this context u-=v means that u and v are pointwise equivalent. For k=
O, reacho(uo, Vo) is a quantifier-free formula expressing that Vo follows from Uo in exactly
one move of M. The formula for reach(u,, v) can be easily rewritten so that all the
quantifiers are leading quantifiers instead of embedded in the formula. Let c and d
be specific bit vectors representing configurations of M. Unfortunately, the number of
verifying trees of reach,(c, d) is in general larger than the number of computation
paths of length 2 from the configuration represented by c to the one represented by
d. This is because in the definition of reach,(u,, v) if-[(u_ u ^ v_l z_) v

(u_l zk ^ v-i vk)], then the body of reach,(u,, v,) is true no matter what the values
are of the rest of the variables. To overcome this difficulty we modify the formula to
completely determine the values of the existentially quantified variables in all cases.
To do this we define a formula reachl that has free variables
Uo, , u, v0, , vk, z, , z. If k 0, then reach 1 reachk. If k > 0, then

reach , u,_ =- u, ^ v,_ z v u_ =- z, ^ v_ v reach
_

[[(u_, u v_, z) v (u_, z v_, v)] A-’: ziO].

In this context 0 represents the constant zero vector of length q(n). Now reachk with
free variables u, v is defined by

reach(u,, v)= 3z u_, vk_ 3z_ Vu_2, Vk-2" ::Z Vblo, V0 reach l.

With this definition of reaehk it can be shown that if c and d are bit vectors representing
configurations, then the number of verifying trees of reach,(c, d) equals the number
of computation paths of length 2 from the configuration represented by c to the one
represented by d. Hence if init is the initial configuration and acc is the accepting
configuration, then the formula reach,n)(init, ace) has the number of verifying trees
equal to the number of accepting computations of M on input x. Furthermore, the
formula reach,n)(init, ace) can be produced in time polynomial in n.

Part (2) of Theorem 5 can be shown using some of the ideas in the proof of
PSPACE APTIME combined with the construction just given. Let M be a PSPACE
Turing machine that makes at most a polynomial number of nondeterministic moves
in a computation. There is a PSPACE Turing machine M’ that takes two inputs x and
y with the property that the number of accepting computations of M on input y is
exactly the number x’s such that M’ accepts the pair (x, y). Furthermore, we can
assume that for any y, if (x, y) and (x2, y) are accepted by M’, then IXll Ixzl, Ixll is
bounded by a polynomial, and Xl is a binary string. From the machine M’ we can
construct reachl just as before. In this case, for a particular input y to M there are
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many inputs (x, y) to M’. Let init(x) be the representation of the initial configuration
corresponding to (x, y). Consider the following formula:

::Ix Vw reachp(,(init(x), ace),

where M’ runs in time 2P(") and w is a dummy Boolean variable. The number of x’s
such that there is a verifying tree for (1) is exactly the number of accepting computation
paths of M on input y.

It is worth mentioning a couple of other functions that are complete for PSPACE.
If M is a nondeterministic finite automaton, then NFA(M) is the number of strings
not accepted by M if the number of strings not accepted by M is finite and PSPACE
s2"-1 + 1 (where s is the number of symbols in the input alphabet and q is the number
of states of M) otherwise. The number s2’-1+ is chosen to be just larger than an
upper bound on the number of strings which could be in the finite complement of a
set accepted by a nondeterministic finite automaton with s input symbols and q states.
If E is a regular expression, then RE(E) is the number of strings not in the language
defined by E if the number of string not in the language defined by E is finite and
RE(E) s2’-+ 1 (where s is the number of symbols in the alphabet of E and is
the length of E) otherwise. The number s2’-1+ 1 is chosen to be just larger than an
upper bound on the number of strings which could be in the finite complement of a
language defined by a regular expression with s alphabet symbols and length /. Both
NFA and RE are complete for PSPACE. It would be interesting to find more
natural functions that are complete for either PSPACE or PSPACE.

5. Relativization. A good characterization of the complexity of SP is not known.
We do have some interesting characterizations of PSPACE but for all we know
PSPACE FP. The following inclusions are all we know for sure:

P PSPACE.FP
_

P ,.P, 2 -- --This sequence of inclusions also relativizes to any oracle so we have

Fpa pA ,,A
_
,P,A PSPACEA.

In the definition of PSPACEA we only allow strings of polynomial length to be written
on the oracle tape. This makes the comparisons between the different classes of functions
more fair. The following theorem gives the possible relationships between FP, P, and
PSPACE.

THEOREM 6. There are computable oracles A, B, and C such that:
FPAA PSPACEA,

(2) FPu # pB,
(3) pC # PSPACE c.
This result indicates it may be very difficult to separate FP from P and P from

PSPACE.
To show part (1) of Theorem 6, let A be any PSPACE-complete set. Suppose

fPSPACEA. Since A is a member of PSPACE, it can be easily seen that f
FPSPACE(poly). The language L= {(x, i, b)lith bit off(x) is b} is clearly a member
of PSPACE. Since A is complete for PSPACE, L is polynomial time reducible to A.
Hence, f FPA because, given x, the bits off(x) are encoded in the set L which can
be computed in polynomial time using the set A as an oracle.

Part (2) ofTheorem 6 holds for any B such that pU # Npu [1]. Suppose FP =P.
Let M be a NPTIME oracle Turing machine that accepts L using oracle B. Let f be
the function in Pn defined by M. Thus, f is also a member of FP by assumption.



1096 RICHARD E. LADNER

To check if x L in polynomial time, compute f(x) in polynomial time using the oracle
B. We have x L if and only if f(x) > 0. Hence, P NP.

Part (3) of Theorem 6 holds for any C such that NPc PSPACE c. Such sets C
exist from the results of Baker and Selman [2] and Yao [12]. Suppose $pc=

PSPACE c. Let M be a PSPACE oracle Turing machine which accepts L using oracle
C. Letfbe the function in PSPACEc defined by M thinking ofM as a nondeterminis-
tic machine. By assumption, f pC. Let M’ be the NPTIME oracle Turing machine
which on oracle C defines f The machine M’ also accepts the set L. Hence, NPc=
PSPACE c.

The proof technique of parts (2) and (3) of Theorem 6 combined with the result
of Yao that the polynomial hierarchy can be separated using an oracle [12] can be
used to show Theorem 7.

THEOREM 7. There is an oracle A such that
FpA .I,A C .’Ac "C PSPACEA.

The notation X = Y means that X is a proper subset of Y.

6. Approximation. Stockmeyer has shown that functions in P can be approxi-
mated by functions in the polynomial hierarchy, namely by functions by FA’ [8]. This
result can be generalized to functions in Z’. We say that f is approximated by g if
there is a constant c >-1 such that for all x,f(x)/c <- g(x) <- cf(x).

THEOREM 8. For k >-2, every function in ,i can be approximated by a function
in FAPk+l

A complete proof of Theorem 8 will not be given here since it follows immediately
from an observation about a proof of Stockmeyer [8, Thm. 3.1, p. 858]. In Stockmeyer’s
proof a predicate of the form z AccM(x), meaning "z is an accepting computation
of M on input x," must be evaluated. In this context M is a NPTIME Turing machine
so that this predicate can be checked in polynomial time. In our context this predicate
would mean that "z is an initial sequence of configurations, the last of which is a
universal configuration and all but the last of which are existential configurations, in
an accepting computation tree of M on input x." In our context M is an APTIME
Turing machine that starts in an existential configuration and makes at most k-1
alternations before halting. That is, M is a machine that defines a member of the class

P
ExaminingZ’. Hence, in our context the predicate z ACCM(X) is computable in I-[k_

Stockmeyer’s proof, we find this observation guarantees that a function in FA’+ can
approximate a function in Z’.

Finally it is easy to show that functions in PSPACE are approximated by functions
in the polynomial hierarchy if and only if PSPACE is contained in the polynomial
hierarchy. To see this note that if {0, 1}-valued function f is approximated by g, then
g essentially exactly computes f This is evidence that the functions in PSPACE are
harder to compute than those in P or in Z’ for any k.
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Abstract. A machine model in which load operations can be performed in parallel with arithmetic
operations by two separate functional units is considered. For this model, the evaluation of a set of expression
trees is discussed. A dynamic programming algorithm for producing an approximate solution is described
and analyzed. For binary trees its worse-case cost is at most min (1.091, + (2 log n)/n) times the optimal cost.

Key words, scheduling algorithms, code generation, parallel functional units
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1. Introduction. Optimal code generation for arithmetic expressions is the subject
of many theoretical studies. In most previous papers the underlying machine model
was assumed to be sequential. For sequential machines, linear algorithms have been
designed that produce optimal code given a set of expression trees [N67], IRe69],
[SU70]. Via dynamic programming wide classes of such machines may be handled
[AJ76]. By contrast, generating optimal code for directed acyclic graphs is intractable
[AJUa77], [BS76].

Modern computers are no longer sequential. Their design usually includes a certain
degree of parallelism, most commonly by offering a number of functional units that
may operate simultaneouslymsome units handle memory access while others manipu-
late (in registers) the data thus retrieved (for example, [Ru78]). We assume a machine
model in which memory operations can be performed in parallel with arithmetic
operations by two separate functional units. The parallelism of this kind appears in
many existing computers, beginning with processors of RISC architecture [H84] to
today’s supercomputers, such as Cray-1 [Ru78] and Fujitsu VP-200 [HB84].

Allowing parallelism in a machine model introduces additional complications into
code generation problems. In their seminal work [AJ76] Aho and Johnson proved that
for a wide range of sequential machines an optimal evaluation of an expression tree
can always be chosen from a class of normalform evaluations. This observation allowed
them to use a linear time dynamic programming algorithm to provide an optimal
solution to certain code generation problems. It turns out that for the proposed model
of a parallel machine the Normal Form Theorem of [AJ76] does not hold, i.e., in an
optimal evaluation of an expression tree it may be necessary to oscillate back and
forth during the evaluation of various subtrees of certain expression trees.

This oscillatory phenomena was first investigated in [AJUb77] for sequential
machines with multiregister operations, leaving open the questions of the existence of
a polynomial time optimal algorithm and an efficient approximation algorithm. We
continue in this direction learning more about the properties of bouncing (oscillating)
evaluations. In a previous work [BJPR85], an efficient algorithm was developed to
optimally schedule the operations of a forest of expression trees assuming that the
number of registers in the parallel machine is unbounded. In this paper we consider

* Received by the editors July 20, 1987; accepted for publication (in revised form) December 28, 1988.
t IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598. This work was done
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a more realistic model in which the number of registers is finite, but is sufficiently large
to allow generating code with no stores.

As in [AJUb77], in this work the question of existence of a polynomial time
optimal algorithm is not answered. Our main result is an approximation algorithm
that schedules some of the load operations of a binary expression forest in parallel
with the arithmetic operations so that the completion time is at most 9.1 percent worse
than the optimal. The proposed algorithm is an extension of the dynamic programming
scheme of Aho and Johnson [AJ76] making it suitable to our parallel machine.
Performing tedious analysis of bouncing evaluations, we prove that for binary trees,
if the difference between the completion time of the evaluation order generated by the
algorithm and the shortest schedule is d then the expression tree must have at least
2d vertices. This observation leads to the result that the ratio between the completion
time of the generated and the shortest schedule tends to 1 as the size of the tree grows.
Moreover, when a given expression tree has a small number of vertices (n =< 16), or
the number of unary arithmetic operations in a tree is at most three, or a machine has
only four registers or fewer, the proposed algorithm turns to be optimal. The algorithm
can be implemented in such a way that its time complexity is bounded by
O(n min (log n, R)), where R is the number of machine registers.

The rest of the paper is organized as follows. In 2 we define the machine model,
describe how an expression tree is computed on such machines, and present the
dynamic programming scheme. In 3-6 we perform full analysis of the algorithm.
Then we conclude with the extensions and open problems. Note that to shorten the
paper, some of the proofs are omitted; however, the reader is referred to [BJR87] for
the full version of the paper.

2. Preliminaries.
2.1. The machine model. Our machine has R general purpose registers rl," , rR

and an unbounded number ofmemory cells mernl, mem2, . It supports the following
operations, the execution times of which are all equal (in 7 a generalization is
considered):

(1) Load operation: (memi)())
(2) Store operation: (ri) (memj)
(3) Unary arithmetic operation: A((ri))
(4) Binary arithmetic operation: A((ri), ())) (r).

The major parallel feature of the machine is that it can execute a load operation
concurrently with an arithmetic operation. The only restriction on the registers par-
ticipating in parallel instructions is that the result of the arithmetic operation should
be directed to a register different from that of the load operation. As was mentioned
in the Introduction, we assume that the given expression forests can be computed
without storing intermediate results.

2.2. Computation forests and their evaluation. Following [AJ76] and [SU70], com-
putations are represented by rooted forests. An example of a forest with one tree is
given in Fig. 1. Throughout the paper we will use the tree of Fig. 1 as a running example.

The leaves L(F) of a computation forest F represent load operations, and the
internal vertices A(F) represent arithmetic operations. Let I(F)=IL(F) [, a(F)=
IA(F)I, n(F)= I(F)+ a(F). In the rest of the paper we use the following notation.
Capital letters denote aggregates (sequences, evaluations, trees, forests), while lower
case letters usually denote simple objects. A capital letter with a subscript denotes a
particular element of an aggregate (a vertex of a tree, an operation of an evaluation,
etc.) while an aggregate with a superscript designates an instance of this aggregate.
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FIG. 1. An expression tree for ((a+b)x(c+d)+ 1/abs(e))x(1/abs(f+g)).

However, we denote by F the subtree of F rooted at u. Also, let lv I(F), a a(F),
and n n(F,).

A sequential evaluation S S,..., S, of a forest F is a linear ordering of the
vertices of F such that if i<j then Si and Sj obey the precedence relation:

For example, S= 1-17 (i is a shorthand for ui and i-j stands for i, i+ 1,... ,j) is a
legal evaluation of the tree of Fig. 1. Si is the element of F computed (or loaded into
memory) at time slot i. The competion time c(S) of S is IS] n(F). Let S and S2 be
two sequential evaluations of disjoint forests. The concatenation S SIlS= of S and
S= is simply a sequential evaluation S resulting from placing the first element of S=

and for all Is’l < <after the last element of S 1. Formally, for all 1 _-< _-< ISI, S S,
Is’l + Is=l, Si S2i-[sll

A parallel evaluation PQ PQ1,’", PQIPQI of a forest F is a sequence of pairs
PQi (Pi, qi) where Pi L(F) {NOP} (NOP stands for No OPeration) and qi

A(F) {NOP}. If Pi # NOP then Pi is loaded into memory at time slot i; otherwise
is an empty load slot. Similarly, if qi # NOP then qi is computed at time slot i; otherwise

is an empty arithmetic slot. If both Pi NOP and qi NOP then is an empty slot.
Thus, in the parallel evaluation pQ1 of Fig. 2, time slots 7, 8, 10-13 are empty load
slots while time slots 1, 2, 4 are empty arithmetic slots. For. every i<j, PQi and PQj
obey the precedence relations:

qi # NOP- p, qj F,,.
For a parallel evaluation PQ, the completion time c(PQ)= PQI.

The width pi(E) of an evaluation E (sequential or parallel) of a forest F at time

slot is the number of useful intermediate results (registers) of E which are available
at time slot i. An intermediate result is useful at time slot if the vertex representing
it is either a root or a vertex that has already been computed at time slot i, and its
parent has not been computed at time slot i. The width p(E) of an evaluation E
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FIG. 2. Six parallel evaluations of the tree of Fig. 1.

17

(sequential or parallel) of a forest F is the maximal value of pi(E) for all i. In Fig. 2,
pi(PQ1) 1 for i=1, 13; pi(pQ1) =2 for i=2,3, 10-12; and pi(PQ1)=3 for 4<-i<=9.
Therefore, p(PQ) 3.

Any sequential evaluation may be viewed as a parallel evaluation of the same
width by mapping every load operation p into a pair (p, NOP) and every arithmetic
operation q into a pair (NOP, q). The other direction is also true: Given a parallel
evaluation PQ, it can be transformed without increasing the width into a sequential
evaluation by breaking every pair PQ (p, q) for which pi # NOP and qi # NOP into
two pairs (NOP, q)(pi, NOP) and then deleting all the NOPs from all pairs to yield
a sequential evaluation. Transforming the parallel evaluation PQ of Fig. 2 into a
sequential, we obtain the sequential evaluation 1-6, 8, 7, 12, 9-11, 13-17.

Let E and E’ be two (sequential or parallel) evaluations of a forest F. E and E’
are compatible if the subsequences of load operations and the subsequences of arith-
metic operations of E and E’ are identical. For a given forest F let

p min (E)=min[p(E’)lE’ is an evaluation of F that is compatible with El.
E’

Also, let

tz(F)=min[p(E)lE is an evaluation of F].

In other words, p min (E) is the minimal number of registers sufficient to compute F
in an order compatible with E, and/z(F) is the minimal number of registers sufficient
to compute F. In Fig. 2, p min (pQ1) 3, p min (pQs) =4, while p min (pQ6) 5. For
the tree T of Fig. 1, /x 3. In the sequel, we will apply/z to a fixed tree T and use
the following shorthand: /z =/x (T) and/x =/x (T).

2.3. The DP scheme. For the sequential case, the problem of finding an evaluation
of minimum completion time is trivial, while the problem of finding an evaluation of
minimum width is of interest. This problem has been solved efficiently by the labelling
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algorithm of Sethi and Ullman [SU70]. Their algorithm labels the vertices of an
expression tree with a minimal number of registers needed to compute the subtrees
rooted at these vertices without store operations. In the following lemma we formalize
their result without proof.

LEMMA 2.1. Let T be a binary tree rooted at root. Then

tltx rootistheonlyvertexofT,

/x root has one child u,

[.min(max(/xu,/xw+l),max(/xu+l,/xw)) root has two children u and w.

Before we start the discussion on parallel machines, we present a generic scheme
derived from the dynamic programming algorithm of Aho and Johnson [AJ76]. For
every vertex v of the input tree T the scheme computes Sv[ 1], , Sv[R ]. If T cannot
be computed with r registers, then S[ r] A, where A denotes the undefined evaluation
sequence. Let A IS A and S IA A for every evaluation sequence S. Also, let F be a
real-valued function defined over the set ofevaluations (sequential or parallel) including
the undefined evaluation sequence, so that F(S)= if and only if S A.

THE DP SCHEME.
Visit the vertices of the tree in postorder. For every vertex v rio;
if v is a leaf then

for every 1 -<_ r =< R rio S[ r] (v)
else if v has one child u then

for every 1 _-< r -_< R lo S[ r] Su[ r]l(v)
else/*v has two children */ begin

let u, w be the children of v;
Sv[1] =A;
for every 2 _-< r _-< R

El: if F(Su[r]lSw[r- 1]](v)) > F(Sw[r]JSu[r- 1]l(v)) then S[r] Sw[r]]S,[r-
else S[r] S,[r]lSw[r- 1]l(v);

end;

All the decisions concerning the order of evaluation (line L1 in the DP scheme) depend
on F. Given a specific function f, DPI will stand for the algorithm obtained from the
DP scheme by substituting f for F. In particular, consider DPp and apply it to an input
tree T. Let r be the smallest integer for which Sroot[r] # A. Then r =/x [AJ76]. For the
tree of Fig. 1, DPp yields Soot[r] =A for r= 1,2 and Soot[r] 1-17 for r->_3.

In the following theorem we state the correctness of the DP scheme. Notice that
the proof (omitted here) is independent of F, and the only property that F must have
is: F(S)= oo if and only if S A.

THEOREM 2.2. Let T be a binary tree and let v be a vertex of T.
(i) If S[r] A, then p(S[r]) <= r.
(ii) For all r >= Ix, Sroot[ r] A.
In the following section a mapping P is developed that maps sequential to parallel

evaluations whose width is bounded by r. IPI is a function that, given a sequential
computation S, finds the parallel completion time of Pr(S). Assume that DPIp,. has
been applied to a tree T. PR(Sroot[R]) will be shown to be either undefined or use at
most R registers. In addition it will be shown to be an efficient parallel evaluation that
approximates the optimal one quite well.

2.4. From sequential to parallel evalution sequences. To develop the theory of
parallel evaluations, let P(S) be a shortest parallel evaluation of F compatible with
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a sequential evaluation S that computes F such that p(Pr(S)) -< r. If no such evaluation
exists, as r< p min (S), then Pr(S) =A. To fully describe Pr(S) let L and A be the
subsequences of S that consist of all the load and all the arithmetic operations of S,
respectively.

THE Pr TRANSFORMATION.
i:-1;
j:=l;
PQ:=( );
while -<ILl or j -< IAI do

if ILl <i then for k :=j to IAI do PQ :- PQ, (NOP, Ak)
else if IAI <j then for k := to ILl do begin

if p PQ r then return (A);
PQ :- PQ, (Lk, NOP);

end
else if Li FA, then

if p (PQ) r then return(A)
else do begin
PQ :- PQ, (Li, NOP);
i:= i+1;

end
L1: else if p (PQ, (L, A)) -< r then begin

PQ :- PQ, L, Ag);
i:=i+1;
j:=j+l;

end
else begin
PQ := PQ, (NOP, Aj);
j:=j+l;

end;
return(PQ);

Consider the evaluation S 1-17 of the tree of Fig. 1. Then P(S), P2(S)= A, P3(S)=
PQ, and for r=>4, Pr(S) PQ2 where PQ and pQ2 appear in Fig. 2. Given a sequential
evaluation S, Pr(S) is a shortest parallel evaluation compatible with S with the width
less than or equal to r. We state that in the following lemma.

LEMMA 2.3. Let PQ be a parallel evaluation of a forest F that is compatible with a
sequential evaluation S. Then IPo(o(s)I-< IPQI.

In 3, additional properties of P are derived.

2.5. The analysis of the algorithmmAn overview. The rest of the paper is devoted
to the analysis of DPIp,.I. The DP scheme and the P transformation described above
are all we need to implement DPIp,.I. However, in order to analyze the algorithm,
several new concepts must be defined:

(1) In 2.6, we define a class of canonical (sequential and parallel) evaluations.
Informally, in canonical evaluations the arithmetic operations are scheduled as soon
as possible after their operands have been computed. The evaluations produced by
the DP scheme are always canonical. Also, we prove that an optimal evaluation can
always be found among canonical evaluations. Therefore, in the rest of the paper, we
restrict ourselves to considering canonical evaluations only.
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(2) In 3, several properties of parallel (canonical) evaluations are developed
that enable us to define the concatenation of parallel evaluations. Intuitively, this
concatenation operator allows to compute IP(SIS2)I from IP(S)I and IPr_I(S2)I in
constant time. By employing the concatenation operator, the DPI,,. algorithm is transfor-
med into a dynamic programming algorithm (DPA) whose time complexity is linear.
DPA is easier to analyze.

(3) Section 4 is devoted to the analysis of DPA. To this end, a subclass of canonical
evaluations, called normalform (or simply normal) evaluations is defined. Evaluations
produced by the DP scheme are always normal, and we prove that DPA produces
shortest normal parallel evaluations.

(4) It turns out that certain trees do not have normal optimal evaluations. In 5,
we consider bouncing (nonnormal) evaluations and develop the conditions under which
optimal evaluations necessarily bounce. Using these conditions, we prove that DPA
is optimal when the number of registers is at most four and the number of vertices is
at most 16.

(5) Finally, by performing elaborate analysis of DPA, we show in 6 that the
evaluations produced by DPA can be worse than the optimal by at most a factor of 1.091.

2.6. Canonical evaluations. Let S be a sequential evaluation of a forest F. Let
Sjl’’Sjl and Sil’’’Sia be the load and the arithmetic operations of S, respectively.
For every =< k-< l, having Sjk in a register enables a (possible empty) sequence Bk of
arithmetic operations to be carried out that could not be computed without it. The
canonical evaluation derived from S is (Sj,)IBII ](Sj,)IB I. S is a canonical evaluation
if it is identical to the canonical evaluation derived from S. Clearly, the canonical
evaluation derived from S obeys the precedence constraints of F. Note that canonical
evaluations are fully determined by the order among the load operations. Also, note
that the arithmetic operations in a sequential evaluation S need not occupy the same
positions in the canonical evaluation derived from it.

LEMMA 2.4. Let S be the canonical evaluation derived from S. Then p(S)<-_
p(S).

Consider the evaluation S 1, 2, 4-6, 3, 7-17 of the tree of Fig. 1 that has p(S) =4.
The canonical evaluation S derived from S is given by 1-17 and p(S)= 3. Also, by
Lemma 2.4, for every canonical evaluation S, p min (S) p(S).

The notion of canonical evaluations may be extended to parallel evaluations. Let
PQ (P, q) "’’(PlPQI, qlPQI) be a parallel evaluation of a forest F. Let P pj,...p,
and Q= qil’"qi,, be the non-NOP elements .of PQ. As in the case of sequential
evaluations, for every 1 <= k <-l, having pjk in a register enables a (possibly empty)
sequence Bk of arithmetic operations to be carried out that could not be computed
without it. The concatenation B B! B of B’, , B is a linear ordering of A(F).
Let B B,. , Ba. The canonical parallel evaluation PQ derivedfrom PQ is obtained
from PQ by replacing qih. with Bk for 1 <= k-< a. We see that the arithmetic operations
are permuted, but they occupy the same time slots (unlike the situation in the sequential
case). The next lemma shows that canonical parallel evaluations fulfill the precedence
relations.

LEMMA 2.5..Let PQ be a parallel evaluation of a forest F. Then so is the canonical
evaluation PQ derived from PQ.

In 3, we show that for every parallel evaluation PQ compatible with a sequential
evaluation S, there exists a parallel evaluation PQ’, compatible with the canonical
evaluation S derived from S, such that c(PQ’)<=c(PQ) and p(PQ’)<=p(PQ). Since
PQ’ is canonical, we will be interested only in canonical parallel evaluations.
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3. Properties of parallel evaluations.
3.1. Basic properties. A binary arithmetic operation reduces by one the number

of useful intermediate results in a parallel evaluation PQ while a unary arithmetic
operation does not change it. Thus, if Pi NOP and qi is a unary operation then
pi(PQ)= pi_(PQ)+ 1 while if qi is binary then p(PQ)= pi_(PQ).

A time slot is identified as a load (arithmetic) hole if in time slot no load
(arithmetic) operation is performed, while load (arithmetic) operations occur both
before and after i. Consider the evaluation pQ1 of Fig. 2. The time slots 7 and 8 are
empty load holes while time slot 4 is an empty arithmetic hole.

Intuitively, the Pr procedure tries to execute the load and arithmetic operations
of S as soon as possible without violating the precedence and the register constraints.
Certain properties ofthe resultant parallel evaluations are derived from this observation.
First, note that PQ has no empty slots. The following lemmas give additional properties
of Pr.

LEMMA 3.1. Let S be a sequential evaluation ofa binaryforest Fand let PQ Pr(S)
A. Then, all the load holes of PQ are occupied by unary arithmetic operations.

For example, consider evaluation PQI of Fig. 2. The only empty load holes of
PQ are at time slots 7 and 8, and they are occupied by unary arithmetic operations
that compute vertices 9 and 10 of the tree, respectively.

For sequential machines, Pi does not have to be a monotonic function of i; it
increases as a result of several consecutive load operations and decreases when several
binary arithmetic operations are performed in a row. This also may be true for parallel
evaluations. However, if we concentrate on parallel evaluations generated by the Pr
procedure, then pi is a convex function of i. This is because if Pi > Pi+ then a load
operation could be scheduled at time slot + 1. Only when all the load operations have
been scheduled may pi decrease, but then it cannot increase again. Formally we get
the following.

LEMMA 3.2. Let the last load operation of an PQ Pr(S) be at time slot i. Then,
p,(PQ) <=" <- pi(PQ) >= pi+,(PQ) >="" plpoI(PQ).

COROLLARY 3.3. Let S be a sequential evaluation of a binary forest F with k trees,
and let PQ P(S). The number of binary arithmetic operations performed after the last
load operation of PQ is p(PQ)-k. (However, there may be a few more unary
operations.)

LEMMA 3.4. Let PQ- P(S), as above. Let the last arithmetic hole ofPQ be at time
slot i, and the first load hole at time slot j. Then, j > i.

The following lemma shows that the order of evaluation S of F determines the
completion time of Pr(S), independently of r (as long as r => p min (S)).

LEMMA 3.5. Let S be a sequential evaluation ofa forest F, and let r, r2>= p min (S).
Then IP,(S)I- IPr2(S)I. [-]

Consider the tree T of Fig. 1. Computing T in the natural order S 1-17, results
in P(S)--PQ and P4(S)--PQ where pQ1 and PQ2 appear in Fig. 2. Note that
c(PQ 1) c(nO) 13.

COROLLARY 3.6. Let PQ be a parallel evaluation compatible with a sequential
evaluation S. Let S be the canonical evaluation derived from S. Then

(i) [P()(S) =< [PQ[.
(ii) p(P()(S)) <= p(PO).
Let S be a sequential (canonical) evaluation of a binary forest F. We define a

(canonical) p-efficient evaluation PQ compatible with S to be P(s)(S). As a con-
sequence of Corollary 3.6, in the rest of the paper we consider canonical p-efficient
evaluations only.
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3.2. Consecutive evaluations. Let S be a sequential evaluation of a binary forest
F and let PQ Pr(S). An evaluation PQ’ that is identical to PQ, except that it has no
arithmetic holes, is called r-consecutive evaluation. By Lemmas 3.2 and 3.4, we can
iteratively delay all the arithmetic operations prior to the last arithmetic hole and leave
all other operations in their original place to transform every parallel evaluation resulted
from the Pr procedure into an r-consecutive evaluation of the same width and comple-
tion time. Let P*r(S) denote the r-consecutive evaluation obtained from Pr(S) in this
fashion. Then, p(P*(S))= p(Pr(S)), and IP*(s)I--IPr(S)l. For example, pQ3 of Fig.
2 is a 3-consecutive evaluation that corresponds to pQl= P3(S) where S 1-17. Also,
pQ4 is a 4-consecutive evaluation that corresponds to POe= P4(S). Since for all S and
for every r>-p min (S), IP*(S)I=IPr(S)I, the properties of the algorithm DPIP.,. are
identical to those of DPIp,.I.

Given a parallel evaluation PQ and a sufficiently large r (e.g., r> [PQI), an
r-consecutive evaluation PQ’ compatible with PQ will have no load holes. Such an
evaluation PQ’ is called w-consecutive, or simply consecutive. Thus, pQ4 shown in Fig.
2 is the consecutive evaluation of the tree of Fig. compatible with S 1-17.

In line L1, the DPlP.,. algorithm computes IP*r(S[r]lSw[r-1]l(v))l to make a
decision concerning the order of evaluation. It turns out that IP*r(S[r]lSw[r- 1][(v))l
can be computed directly from IPr*(S[ r])l and IPr*-l(Sw[r- ])1 rather than by applying
Pr* to S,[r][Sw[r-1]l(v). Since, by Lemma 3.5, the cost of r-consecutive evaluations
is independent of how large r can be, we can use P* rather than Pr* and compute
IP(S,[r][Sw[r-1]l(v))l from [P(S,[r])[ and ]P(Sw[r-1])l. In the sequel, some
properties of consecutive evaluations are developed. Then, using the concatenation of
consecutive evaluations that will be defined, we develop a linear algorithm called DPA
derived from the DPlP.l algorithm. DPA is easier to analyze than DPIp.,.I.

Let F be a forest of k trees. Let PQ be a consecutive evaluation of F. A consecutive
evaluation PQ is presented pictorially in Fig. 3(a). It is characterized by the following
parameters:

(1) c IPQI is the completion time of PQ;
(2) h is the head--the number of load operations that take place before the first

arithmetic operation. Note that h is equal to the number of empty arithmetic slots in
PQ. Using a a(F) we get

(1) h =c-a;

(3) is the tail--the number of arithmetic operations that take place after the
last load operation. Note that is equal to the number of empty load slots in PQ.
Using l(F) we get

(2) t=c-L

(a) [b)

(c) (d)

FIG. 3. Pictorial presentation and concatenation of consecutive evaluations.
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The c, h, parameters are a convenient, partial characterization of consecutive evalu-
ations. To completely characterize consecutive evaluations that compute a forest F,
both S and F are needed. In the sequel we present the c, h, parameters of a consecutive
evaluation PQ as a triple (c, h, t). For example, the consecutive evaluation of a single
load operation is characterized by (1, 1, 0), while a single arithmetic operation is
characterized by (1, O, 1). Also, we assume that if PQ A then c

Since we assumed that there are no arithmetic leaves in expression trees, at least
one load operation must be performed before a first arithmetic operation can be carried
out. Therefore, in the rest of the paper we assume that h => 1.

Below some key properties of the c, h, parameters are derived. Let PQ be a
consecutive evaluation which computes a forest F with k trees.

COROLLARY 3.7. h(PQ) <= p(PQ).
COROLLARY 3.8. t(PQ) >- p(PQ)- k.
Another important concept is that of a balance. The balance of a consecutive

evaluation PQ is defined by

(3) b=t-h.

Substituting (1) and (2) into (3) we get b a-1. Therefore, all forests with load
operations and a arithmetic operations have the same balance.

Let T be a binary tree. Since the number of arithmetic operations in T is at least
one less than the number of load operations a- >- -1. Therefore, for every binary
tree T, b-> u-1. Moreover, if T is a full binary tree (all the internal vertices of T have
exactly two children) then a l-1, and b =-1.

Let PQ and PQ2 be two consecutive evaluations compatible with sequential
evaluations S and S2 of F and F2, respectively. The concatenation pQ1,2__ pQllpQ
of pQ1 and PQ2 is defined as the consecutive evaluation of Ft.J F compatible with
S]S. pQ,2 is obtained by shifting pQ2 toward pQ1, until either the load operations
meet, as in Fig. 3(b) (and then shifting the arithmetic operations of pQ1 to the right
until they meet the arithmetic operations of PQ; see Fig. 3(c)), or until the arithmetic
operations meet (and then shifting the load operations of pQ2 to the left until they
meet the load operations of pQ1; see Fig. 3(d)). It turns out that to compute the c, h,
and parameters of pQ1,2 only the c, h and parameters of pQ1 and pQ2 are needed.

We use the concatenation operator defined above to present the following linear
version of the DPIP.I algorithm (DPA). Note that all the decisions in the DPA algorithm
(line L1 below) are based solely on the c, h, and parameters of consecutive evaluations.

THE DPA ALGORITHM.
Visit the vertices of the tree in postorder. For every vertex v do;
if v is a leaf then

for every 1 _<- r_-< R do PQ[r] ((v, NOP))
else if v has one child u then

for every _-< r-< R do PQ[r] PQ,[r]I((NOP v))
else/* v has two children */ begin

let u, w be the children of v;
PQ[1] A;
for every 2_-< r-<_ R do

LI: if c(PQ,[r]lPQw[r- 1]]((NOP, v))) > c(PQw[r]lPQ,[r- 1]]((NOP, v)))
then PQ[r] PQw[r]IPQ,[r- 1]]((NOP, v))
else PQ[r] PQ,[r]IPQw[r- 1]]((NOP, v))

end;
It can be shown that the concatenation of two consecutive evaluations can be computed
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in a constant time. Therefore, the complexity of DPA is linear in nR since every vertex
is visited only once, and the time spent there is bounded by O(R). Moreover, for large
values of R (R => log n), DPA can be implemented in such a way that its complexity
is bounded by O(n min (log n, R)). An example that shows how DPA processes the
tree of Fig. 1 is shown in the Appendix.

4. Properties of DPA.
4.1. Properties of the concatenation operation. Below, certain properties of the

concatenation of parallel consecutive evaluations are derived. The proofs of Lemmas
4.1-4.3 are essentially the same as those of [BJPR85] and are omitted here.

Let pQi, i= 1, 2,... be arbitrary consecutive evaluations with (ci, hi, bi) para-
meters. Also, let bi ti- hi. Since b a- l, we get

(4) bl,2 bl + b:z.
LEMMA 4.1. Let pQ1,2_, pQ1] pQ2. Then

(5) h1,2 max (hi, h2- b).

The following lemma shows that the concatenation operator is associative. This
will allow us to omit parenthesis where convenient.

LEMMA 4.2. (the associativity property). (PQI[PQ2)IPQ3=
Lemma 4.3 below shows that if some subevaluation in the middle of a larger

evaluation is locally improved, then the total cost may only decrease.
LEMA 4.3 (the monotonicity property). If b2 b4 and h2 <= h4 then h ,z,3 <=

h 1,4,3"

4.2. Normal form evaluations. A sequential canonical evaluation S of a tree T
may be viewed as a visiting sequence of the vertices of T. S is a normalform evaluation
(or simply normal evaluation) if for every v T all the vertices of T are visited in a
row such that v is the last one to be visited. A parallel evaluation is normal if it is
compatible with a sequential normal evaluation S. For example, in Fig. 2, pQ1 and
pQ5 are normal, while pQ6 is not normal. Note that normal evaluations are always
canonical. Also note that for all v and r, PQ[r] is either normal or undefined.

THEOREM 4.4. PQroo,[r] has the shortest completion time among all normal evalu-
ations that use at most r registers.

Proof The proof is by induction on n TI.
Basis. For a tree with one vertex the theorem trivially holds.
Induction hypothesis. Assume that for all trees with less than n vertices the theorem

holds.
Induction step. Let T be a tree with n vertices rooted at root.
Case 1. Root has one immediate descendant u. By the induction hypothesis,

PQu[r] has the smallest completion time among all normal evaluations of Tu that use
at most r registers. Therefore, so does PQroot[r] PQu[r]I((NOP, v)).

Case 2. Root has two immediate descendants u and w. Consider the set of all
normal evaluations of T that use at most r registers. They can be divided into two
disjoint subsets Su’w and Sw’u, depending on the order in which they compute T. The
evaluations of S"’w compute Tu first, while the evaluations of Sw’u compute Tw first.
Let PQ PQUlPQWI((NOP v)) be an arbitrary evaluation in Su’w that uses at most r
registers. PQ cannot use more than r registers. Therefore, by the induction hypothesis,
c(PQ,[r]) <- c(PQU). Similarly, pQw cannot use more than r-1 registers. Again, by
the induction hypothesis, c(PQw[ r 1]) <- c(pQw). By Lemma 4.3,

c(PQ,[r][PQw[r- 1])<_- c(PQ,[r][PQw) <- c(PQ"IPQW).
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Therefore, PQ,[r]IPQw[r-1]I((NOP, v)) has the smallest cost among all the
evaluations in Su’w. Similarly all the evaluations in Sw’u have their completion
time bounded below by c(PQw[r]lPQu[r-1][((NOP, v))). Since c( PQroot[ r])
min (c(PQ,[r]IPQw[r-1]I((NOP, v))), c(PQw[r][PQ[r-1]I((NOP, v)))), the
theorem follows.

The following lemma proves that (PQroot[r]) is a nonincreasing function of r,
i.e., by increasing the number of registers it is possible only to reduce the completion
time of the evaluation produced by DPA. Using (1) we can prove this result by showing
that h(PQroot[r]) never increases when r increases.

LEMMA 4.5. Let T be a binary tree rooted at root. For every r >-2, h(PQroot[r])
h(PQroot[r-1]).

Proof The proof is by induction on n
Bases. For a tree with one vertex and for r>-2, h(PQroo,[r]), h(PQroo,[r- 1])-- 1.

Therefore, the lemma trivially holds.
Induction hypothesis. Assume that for all trees with less than n vertices and for

every r >- 2, h (PQroot[ r]) <-- h (PQroot[ r 1 ]).
Induction step. Let T be a tree with n vertices.
Case 1. Root has one immediate descendant u. For every r>_-1, h(PQroot[r])=

h(PQ,[r]l((NOP, root)). Therefore, for every r_->2, h(PQroot[r])=h(PQ,[r]), and
h(PQoo,[r-1])=h(PQ,[r-1]). By the induction hypothesis, for every r_->2,
h(PQ[r])<-_ h(PQ,[r- 1]). Therefore, for every r>_-2, h(PQoot[r]) h(PQoo[r- 1]).

Case 2. Root has two immediate descendants u and w. For r 2, the lemma holds
as h(PQroo,[2])<-_h(PQoo,[1])=. Therefore, assume that r_->3. By the induction
hypothesis,

for all r>_-2: h(PQu[r])<-_h(PQ,[r-1])

and

for all r=>2: h(PQw[r])<-_h(PQw[r-1]).

Therefore, by (5),

h(PQu[r- 1]IPQw[r-2]]((NOP, root)))= max (h(PQu[r-1]), h(PQw[r-2])- b,)

_-> max (h(PQu[r]), h(PQw[r- 1])- bu)

h(PQu[r]]PQw[r- 1]I((NOP, root))).

Similarly,

h(PQw[r- ]IPQ[r- 2]I((NOP, root))) >- h(PQw[ r]IPQ,[ r 1 ]I((NOP, root))).

Substitution of these inequalities in the condition of line L1 of DPA yields

h(PQroo,[r]) min (h(PQ,[r]lPQw[r- 1]I((NOP, root))),

h(PQw[r]lPQ,[r- 1]]((NOP, root))))

_-<min (h(PQu[r- 1]IPQw[r-2]]((NOP, root))),

h(PQw[r- 1]IPQ,[r-2]I((NOP, root))))

h(PQroo,[r- 1]). [3
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The following lemma proves that DPA finds the minimal completion time (optimal)
evaluation for a full binary tree--a tree in which all the internal vertices have exactly
two children.

LEMMA 4.6. Let T be a full binary tree rooted at root. For every r>-_iz,
h (PQroot[ r])

Proof. Consider the consecutive evaluation P@oo,[tz] of T. By Theorem 2.2,
PQoo,[l] A, and p(PQroo,[ix])<=tx. Therefore, p(PQ,.oot[U])=u. Let and j be the
time slots in which the first arithmetic operation and the last load operation of PQroo[tz
are performed. Clearly, pi-l( PQroo,[U ]) h( PQroot[Ix ]) By Lemma 3.3,, p( PQroot[tz ])
p(PQroo,[tz]). But, since all the arithmetic operations of T are binary, for all iN k<=j,
Pk(PQroo,[l]) Pi-l(PQroot[tz]). Therefore,/x h(PQoo,[tz]).

For r>/x, by Lemma 4.5, h(PQoot[r])<= h( PQroo,[tx ]). If for some r, h(PQoo,[r])<
h(PQroot[t.]) then the same argument shows that p(PQroo,[r])< tx, contradicting the
definition of/x. Therefore, for every r >= tx, h(PQroo,[tx])= Ix.

LEMMA 4.7. Let v be a binary vertex with two children u and w. If h(PQ[tx])
h(PQu[/zu]), h(PQw[tXw]), then T is a full binary tree.

Proof Without loss of generality, we assume that/xu >-

Case 1. tx, tXw. By Lemma 2.1,/z =/xu + =/Xw + 1. By line L1 of DPA,
(6) h(PQ[]) <- h(PQ[tx][PQw[tx- l]) =max (h(PQ,[lz]), h(PQw[l- l])- b).

By Lemma 4.5, h(PQ[tx + 1])_-< h(PQ[I]). Therefore, h(PQ[tz]) > h(PQ[tx]).
Since /x-I =/Xw, h(PQ[txo])> h(PQw[tx-l]). Therefore, b=-l. Similarly, bw
-1. Thus, T is a full binary tree.

Case 2. tz > tXw.
We claim that this case cannot happen. Consider (6) again. By Lemma 2.1,

Therefore, h(PQo[lx])>h(PQ[lx]). Also, since /x-l_->/Xw, by Lemma 4.5,
h(PQ[tx])> h(PQw[tx,-l]). Therefore, bu=-l, and T is a full binary tree. By
Lemma 4.6, h(PQ[tz])-Iz. Also, by Theorem 2.2(i), p(PQw[tz-l])<-_l-I
/z 1, and by Corollary 3.7, h(PQw[tZ 1]) -</x 1. Therefore, by (6), h(PQ[i])
/x, which would imply h(PQ[tx]) <-_ h(PQ[txu]) contradicting the assumption of the
lemma. 1-1

Let bop and uop be the number of binary and unary arithmetic operations of T,
respectively. The following lemma establishes an upper bound on/ as a function of bop.

LEMMA 4.8. bop >-_ 2 tx--1 1.

Proof. The proof is by induction on n ITI.
Basis. For a tree with one vertex bop 0, and/x 1, and the lemma holds.
Induction hypothesis. Assume that for all trees with less than n vertices the lemma

holds.
Induction step. Let T be a tree with n vertices rooted at root.
Case 1. Root has one immediate descendant u. By the induction hypothesis,

bop, >- 2u"-l- 1.

Since bop =bop, and by Lemma 2.1,/x- ,, the lemma holds.
Case 2. Root has two immediate descendants u and w. By the induction hypothesis,

bop, >- 2 ’,,- and bopw >- 2’’- 1.

Without loss of generality we assume that /,->/Xw. If/z, >/Xw then, by Lemma 2.1,
/z =/x. Therefore, bop >bop,2’’-1- 1 2-- 1. If/, =/Zw then, by Lemma 2.1,
/z =/.tu + 1. Since bop bop, + bopw + 1, we apply the induction hypothesis twice to get
bop >- 2 ’’-1 q- 2 -’-1 1. By/x, =/Zw =/x 1, we get bop >= 2",, 1 2"-- 1.

COROLLARY 4.9. h(PQroot[I,X]) < [log (n- uop+ 1)].
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Proof For arbitrary binary trees (n uop+ 1)/2 bop+ 1. Thus, by Lemma 4.8,

L og (n uop+ L og 2(bop+ 1)J _-> IX.

By Corollary 3.7, h(PQroo,[ix])<= Ix, and the statement is proved.
COROLLARY 4.10. a >_- 2 h(’, ])-1 + uop 1.
Proof Since a bop+ uop, by Lemma 4.8, a _->2"-1+ uop-1. By Corollary 3.7,

h(PQroo,[ix])<= Ix, and the statement is proved.

5. Bouncing evaluations. In 4 we have discussed the properties of normal evalu-
ations, and have proved that DPA finds a normal parallel evaluation of minimum
completion time. In this section we discuss arbitrary canonical p-efficient evaluations.
By Corollary 3.6, no other parallel evaluations need be considered. In the sequel,
whenever we mention sequential or parallel evaluations, we mean canonical sequential
evaluations or canonical parallel p-efficient evaluations. Also, in the rest of the paper
we use the following shorthand" h(S)=h(P*(S)), t( S) t(P(S) ), and b(S)=
b(P*(S)). We start with some properties of p.

5.1. Properties of p. Let S be a sequential evaluation of a binary tree T, and let
S and S2 be subevaluations of S such that S Sl $2. In the following lemmas we
relate p(S) and p(S) to p(S).

LEMMA 5.1. Let S S S2, and let k be the number ofuseful results computed by S.
(i) p(S), p(S2) < p(S).
(ii) If the results computed by S are not used in S2 then p(S)=

max (p(Sl), p(S2) + k).
Proof (i) p(S) max,_<_ils’l pi(S) <= p(S) p(S). Similarly, p(S2) <_-

maxls,l<i__<ls pi(S) <= p(S). Therefore, (i) holds.
(ii) During the computation of S2, k registers hold the results computed by S.

Since they are not used in S2, maxts,l<i<_lS pi(S)-" p(S2)+ k, and (ii) follows.
LEMMA 5.2. Let S Sl S2, and let k be the number of useful results computed by

S (some of them may be used in $2). Then h(S2) <_-p(S)-k.
Proof Let PQ Pp(s)(S). Consider the time slot of PQ at which the last arithmetic

operation of S is performed. Let the number of the load operations of S2 that have
been performed no later than be h’, and let the number of the arithmetic operations
of S2 be a.

CLAIM. h’ => h (S2).
Proof of Claim. Assume, by contradiction, that h’< h(S2). Consider the parallel

evaluation pQ2 that is compatible with S2 in which all the operations are executed
exactly in the same time slots as in PQ except that the first h’ loads are consecutive
at time slot 1, 2, , h’ of pQ2. pQ2 is a legal parallel evaluation, and IPQ21 h’-}- a <
h(sa)+a=IP*(S2)I. This contradicts Lemma 3.5, and the claim follows.

Now consider PQ again. At the end of slot i, k registers hold the results of S,
and h’ registers are loaded with elements needed to compute S2. Therefore, h’+ k-<
p(PQ). Since PQ is a p-efficient evaluation p(PQ) p(S), and the lemma follows.

5.2. Properties of bouncing sequential evaluations. Let S be a sequential evaluation
of a binary tree 7". If S is not a normal evaluation then there exists at least one subtree
T of T such that S starts to evaluate it, and without finishing the computation bounces
to a disjoint subtree Tu of 7". In this case we say that S bounces at v, and v is a bouncing
operation. An operation computing v T is normal in S if for every u T, the vertices
of T, are visited by S in a row and u is the last one to be visited. Note that if v T
is a bouncing operation of S then all the ancestors of v in T are not normal, but they
are not necessarily bouncing. For example, consider the sequential evaluation S 8-10,
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12-16, 1-7, 11, 17 of the tree of Fig. 1 that is compatible with pQ6 of Fig. 2. In S, v7,

Vlo, and v16. are normal, Vll is bouncing, while v17 is neither normal nor bouncing.
Also, note that all the operations that compute the leaves of a tree (load operations)
are normal. If v has one child u then v is executed immediately after u in every
canonical evaluation of T. In this case v is a normal operation if and only if u is
normal. On the other hand, if v has two children u and w then there exist canonical
evaluations in which u and w are normal while v is bouncing.

Let v be a bouncing operation of a sequential evaluation S whose children are
normal. Then v has two children u and w. Assume that u is computed first, then v is
executed immediately after w. Projecting S on the vertices of Tu and Tw yields
subevaluations S and S2 of S, respectively. Let the vertices of T computed between
S and S2, belong to some subforest F of T. We say that Tu, Tw and F are induced
by v and S. Note that the operations of F may use some of the results that are
computed in S before Tu, but since S is a canonical evaluation, for each such operation
at least one of its two operands must be computed after T,. In the following lemma,
certain properties of T,, T, and F are derived.

LEMMA 5.3. Let S be a sequential evaluation of a tree T. Let v be a bouncing
operation of S whose children are normal, and let T,, Tw and F be induced by v and S.
Let S be the projection of S on the vertices of T,. Also, let m and k be the number of
useful results that are computed by S before Tu and Tw, respectively. Let S’ be a sequential
evaluation of T that is identical to S except that F is computed after v. Let S" be the
sequential evaluation of T that is identical to S except that F is computed before T,.

(i) If k >= m + l, then p(S’) <= p(S).
(ii) If k < m + 1, then p(S") <- p(S).
(iii) If p(S")<-p(S)-k+ 1, then p(S")<-p(S).

Proof (i) pi(S’) may be greater than pi(S) only in time slots in which T, v, and F
are computed. Since T,, T, and v construct a single subtree of T, during the computa-
tion of F the number of useful results in S and in S’ is identical. Since k >-m + 1,
during the computation of T and v the number of useful results in S’ is not greater
than that in S.

(ii) Consider the part of $" that computes F and Tu. During the computation
of F the width cannot increase since Tu is computed after F in S", while in S it is
computed before F, and its result occupies one additional register. When T, is
computed in S, m registers hold previously computed results, while when Tu is
computed in S", only k- registers hold previously computed results. Since m > k- 1,
(ii) holds.

(iii) As in (ii), during the computation of F the width cannot increase since T,
is computed after F in S", while in S it is computed before F, and its result occupies
one additional register. When T, is computed in S", k-1 registers hold previously
computed results. By the assumption, p(S")<-p(S)-k + 1. Therefore, by Lemma 5.1,
(ii), (iii) holds. [3

5.3. Properties of optimal parallel evaluations. The notion of bouncing evaluations
can be extended to parallel evaluations. A parallel evaluation PQ of T is bouncing if
it is compatible with a sequential bouncing evaluation S of T. This definition is proper
since we are dealing with canonical evaluations only, and there is exactly one sequential
canonical evaluation compatible with a parallel canonical evaluation.

Next let us develop some properties of optimal evaluations and derive the condi-
tions under which a optiml evaluation may not be normal. Without loss of generality
we consider only optimal bouncing p-efficient evaluations with a minimal number of
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bouncing operations. Let PQ be such an optimal evaluation of a binary tree T compatible
with a sequential evaluation S. Let T be a subtree of T normal in $. Let S be the
projection of S on the vertices of T. Consider the parallel evaluation PQ[p(S)]
generated by DPA for T. By Theorem 2.2, p(PQ[p(S)]) <- p(S), and by Theorem
4.4, IPQ[p(S)][<-_IP*(S) I. Therefore, we can assume that for every vc T, if v is
normal in S, then T is computed in S in the same Order of evaluation as the one
generated by DPA.

To analyze bouncing evaluations, we permute them so as to get normal evaluations
without increasing the number of registers used, and then assess the ratio between the
completion time of the resultant normal evaluation and the completion time of the
optimal bouncing evaluation.

LEMMA 5.4. Let PQ be an optimal evaluation of a binary tree T compatible with a
sequential evaluation S. Let v be a bouncing operation of S whose children are normal,
and let Tu, Tw, and F be induced by v and S. Also, let rn and k be the number of useful
results computed by S before Tu and Tw, respectively, and assume that k >- rn + 1. Let S1,
S2, and S be the projection of S on the vertices of T,, Tw, and F, respectively, and let
pQ, pQ2, and pQ3 be the corresponding compatible consecutive evaluations.

(i) bl, b3 and hi < h3 < h2.
(ii) Let S be the prefix of S computed before F. Then p(S)<=p(S)-l.
(iii) p(S2) <= p(S)- 1, p(S3) =< p(S)- 1.

Proof Let S’ be a sequential evaluation of T identical to S except that F is
computed after v. Since v is a normal operation in S’, the number ofbouncing operations
of S’ is strictly smaller than that of S. Let PQ’ be a p-efficient evaluation compatible
with S’. By Lemma 5.3(i), p(S’)<-p(S). We will use the fact that IPQ’I > IPQ[, since
otherwise PQ could not have been an optimal evaluation with a minimal number of
bouncing operations. Let pQ4__ pQ21((NOP v)). Therefore, ha--- h2 and b4 b2 + 1.

Proof of (i) We compare q,3.4 with c.4,3. By Lemma 3.5, IPZ(S)l=lPQI and
IP*(S’)I-IPQ’I. By Lemma 4.3, if Cl,4,3 C1,3,4 then IP*(s’)l<-lP*(s)l and therefore,
IPQ’] <- IPQI. Since this is impossible we assume that c,3,4 < Cl,4,3, i.e., hi,3,4 < hi,4, By
(5), this leads to h3,4 < h4,

CLAIM 1. h < ha.
Proofof Claim 1. Since Tw is a binary tree, b2 -> -1. Therefore, b4 -> 0, and by (5),

h4, max (h4, h b4) =< max (h4, h3).

Also, by (5),

h3,4 max (h3, h4 b3).

If h -> h4 then

h4,3 -< h3 -< max (h3, h4 b3) h3,4,

contradicting h3,4 < h4,3, and Claim is proved.
CLAIM 2. b3-> 1.

Proof of Claim 2. If b -< 0 then h3,4 max (h3, h4 b3)
max (h4, h3)--h4. This leads to a contradiction to h3,4 < h4,3. Therefore, Claim 2 is
proved.

CLAIM 3. b => and h < h3.
Proof of Claim 3. The proof is by case analysis.
Case 3.1. p(S) > p(S) k + 1.

We show that this leads to a contradiction. By Corollary 3.8, t>=p(S)-l>=
p(S)-k + 1. Let S be the prefix of S that ends just before v. Then, by Lemma 5.1(i),
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p() <= p(S). Also by applying Lemma 5.2 to , h2 <- p() k <= p(S) k. Consider again
the evaluation PQ’. By Lemma 5.3(i), p(S’)<= p(S). By (5),

hl,4,3 max (hi, h4- bl, h3 b b4).
Since h4-bl=h2+h-tl<-(p(S)-k)+hl-(p(S)-k+l)=h-I and b4=>0, we get
h,4,3 =< max (hi, h3 bl). Also by (5),

hl,3,4 max (hi, h3-bx, h4-bl-b3)>=max (h, h3-b).
Thus, h,4,3=<hl,3,4. By Lemmas 4.3 and 3.5, this leads to PQ’]<=IPQ[, which is
impossible.

Case 3.2. p(S’) <= p(S) k + 1.
By (5),

hl,3 max (hi, h b) and h3,1 max (h3, hi b3).
By Claim 2, b3 -> 1. Therefore, h3, =< max (h3, hi). If h => h then h3,1 h -< hi,3. Also,
if b -<_ 0 then hi,3 >= max (hi, h3) h3,1. In either case this leads to h3,1 N h,3. Consider
a sequential evaluation S" that is identical to S except that F is computed before T.
S" has less bouncing operations than S. Let PQ" be the p-efficient evaluation compatible
with S". By Lemma 5.3(ii), p(S")<-p(S). Since h3,1 -<h,3, by Lemmas 4.3 and 3.5,
[PQ"[ <-[PQI which is impossible. This completes the proof of Claim 3. [3

Combining this with hz-h4, (i) is proved.
Proofof (ii) By contradiction, assume that p(S) p(S). Let PQ v*(S). We will

show that this implies h(-P--O[PQ4[pQ3)<-h(-fi--Q[PQ3[pQ4), leading to [PQ’[<-_[PQ[.
By (5),

h(PQ[PQ3[PQ4) =max (h (ff0Q), h3- b(ff--Q), h4- b(QQ) b3)
_>-max (h(PQ), h3- b(PQ))

and

h (-QI PO4]PO3) =max (h(ff-Q), h4- b PQ), h3 PQ b4).

By Lemma 5.1(i) and (ii), p(PO)<-_p(S)-l. Therefore, by Corollary 3.7, h4=h <-
p(S)- 1. By Corollary 3.8, t(PQ) >- p(S)- 1. Thus, h4 b(PQ) h4- t(P) h- h(PQ) <=
h(ff-Q). Therefore, h(POIPO41PQ3) =max (h(ff-Q), h3-b(PQ)-b4). Since b4 b+ 1_->

O, h(PQ[PQ4IPQ3) <-_ h(-Q[PQalpQ4).
Proofof (iii). Since u is not used in S3, by Lemma 5.1(i) and (ii), p(S3) -< p(S) 1.

Also, since the results of F are not used in Tw, p(S2) =< p(S)- 1. [3

THEOREM 5.5. DPA produces an optimal evaluation for T if one of the following
conditions is fulfilled"

(i) The number uop of unary arithmetic operations is at most three.
(ii) The number R of machine registers is at most four.
(iii) T has at most 16 vertices.

Proof (i) Let PQ be an optimal parallel evaluation of a tree T compatible with
a sequential evaluation S having a minimal number ofbouncing operations. By Theorem
4.4, we can assume that the number of bouncing operations in PQ is greater than zero.
Let v be the leftmost bouncing operation of PQ, and let u and w be the normal children
of v. Let T,, Tw, and F be induced by v and S. Let the number of useful results
computed in F be k. Let the projection of S on the vertices of T,, Tw, and F be S,
S2, and S3, respectively, and let PQ, PQ, and pQ3 be the corresponding compatible
consecutive evaluations. Since v is the leftmost bouncing operation of PQ, all the
operations of F are normal, and therefore, we can apply Lemma 5.4(i) to PQ to get

bl, b3 >- 1 and hi < h3 < h2.
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As bl, b3 1, Tu and F must have at least two unary operations each. These unary
operations are also unary in T. Therefore, uop >= 4.

(ii) By h2 > h3 > hi => 1, h3--- 2 and h2 => 3. By applying Lemma 5.2 to SllS and
S2, we get

ha<= p((S’IS)IS=) k- 1.

Applying Lemma 5.1(i) twice we get p(S)>= p((SIlS3)ISa). Combining with k => 1 and
h2 => 3, we get p(S)->_ 5, i.e., at least five registers are needed to compute S.

(iii) Since u and w are normal in S, pQl= pQ[p(S1)] and PQ= PQw[p(S2)].
By Corollary 4.9,

h(PQ’) <- [log(n,-uop,+l)j and h(pQ2) <- [log(nw-uopw+l)j.

As uop, => 2 and hi --> 1, we get n, => 3. Also, since h => 3, nw UOpw + 1 _-> 8. Therefore,
nw --> 7. Since h3 => 2 and b3--> 1, t3 -> 3. Therefore, there are at least two loads and three
arithmetic operations in pQ3. Thus, n(F) => 5. Taking into account v and the root of
T (which is different than v as F and T are disjoint), we get n >_- 17.

We see that PQ has one bouncing operation only if uop>-_4, R_-__ 5, and n-> 17.
Otherwise there are no bouncing operations, and by Theorem 4.4, DPA yields an
optimal schedule. [3

The bounds on n, uop and R proved in Theorem 5.5 are tight. Consider, fnr
example, the tree T of Fig. 1, It has n 17 and uop 4. The normal evaluation of T
computed by DPA for r >-4 is pQ5 of Fig. 2 and its completion time is 12. pQ6 of Fig,
2 is an optimal evaluation of T, its completion time is 11 and the number of registers
that it uses is five.

LEMMA 5.6. Let PQ be an optimal evaluation ofT that is compatible with a sequential
evaluation S. Let T’ be a full binary subtree of T. Then, T’ is normal in PQ.

Proof By contradiction, assume that T’ is not normal in PQ. Let v be the leftmost
bouncing operation of T’. Then, the children of v are normal. Let Tu, Tw, and F be
induced by v and S. Also, let m and k be the number of useful results computed by
S before Tu and Tw, respectively.

Case 1. k>-_m+l.

Then, we can apply Lemma 5.4(i) and get bl=> 1. Thus, uopu => 2, but this is
impossible since T’ is a full binary tree.

Case 2. k<m+l.
Let S and S be the projection of S on the vertices of Tu and Fv, respectively,

and let pQ1 and pQ3 be the corresponding compatible consecutive evaluations.
CLAIM 1. b3--- 1.

Proof of Claim 1. Let s be the number of results computed in S before Tu and
used in F. Thus, F generates k- -(m s) useful results. Since the balance of every
tree in F is at least -1, we get b3>=(-1)(k-l-(m-s))=m-s-k+l. Since S is
canonical, for each result computed before Tu and used in F a unary operation is
generated in F. Since there are s such results, we get b ---m- k + = 1.

Now we complete the proof of Case 2. Consider a sequential evaluation S" that
is identical to S except that F is computed before T,. Since v is normal in S", the
number of bouncing operations of S" is strictly smaller than that of S. By Lemma
5.3(iii), p(S")<= p(S). Let PQ" be the p-efficient evaluation that is compatible with S".
We will use the fact that IPQ"]> IPQI, since otherwise PQ could, not have been an
optimal evaluation with a minimal number of bouncing operations. By (5),

hi, max (hi, h3 bl) and h3,1 max (h3, hi b3).
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By Claim 1, b >- 1. Therefore, h3,1 -< max (h3, hi). If bl -< 0 then hi,3 => max (hi, h3) -> h3,1.
However, if h3, < h, then by Lemmas 4.3 and 3.5, IPQ"I <--IPQI, which is impossible.
Therefore, ,b >= 1. Thus, uop, >= 2, but this is impossible since T’ is a full binary tree. [-I

Let T be a fixed binary tree, let v T, and let To= T. By iteratively deleting the
vertices parent(v)= v, v2,"’, root on the path from v to the root of T, we create
subtrees T1, T2, of T in addition to To (some of these trees may be empty). We
denote the forest composed of T, T-, by F(v). Let S be a sequential evaluation
of T, => 0, and assume that for i-> 1, S is normal, while So may contain bouncing
operations. For a given sequential evaluation S, let f(S) be the set of all possible
evaluations of the form SlSl[(vl)[S2l(v2)[... I(root). Note that if SO is a normal
evaluation of T, then all S fI(S) are normal. Applying Lemma 5.1(ii) several times,
we get

(7) p(S) max (p(S), 1 +max p(S’)).

Since for every tree 7" there exists a normal evaluation that computes T with no more
than/x registers (Theorem 2.2), there exists S’ fI(S) such that

(8) p(S’)- max (p(S), 1 + max ix(X)).
XF(v)

Let PQ’= P*(S). Since P*(S’)= P(S5IP*(S)I(NOP, v)l... I(NOP, oot), by (5),

(9) h(S’) max (ho, max (h+-b,)).
i_>0

Note that for all i, b, _-> b.
LEMMA 5.7. Let PQ be an optimal evaluation of T having a minimal number of

bouncing operations, and let S be a compatible sequential evaluation. Let v T be a
normal vertex in S, and let S be the projection of S on the vertices of T. If there exists
a bouncing operation in S that is executed later than v, then there exists a normal evaluation
(S) such that p() <= p(S).
Proof Applying Lemma 5.1 twice we show that p(S)<= p(S). Therefore, by (8),

to prove the lemma it suffices to show that for every tree X F(v), ix(X) <= p(S) 1.
Assume, by contradiction, that there exists a tree T, F(v) such that tx,>=p(S). By
Lemma 2.1, /z >_-/z,, implying/x, =< p(S). Therefore, we assume that/z, p(S).

Let SO be the projection of S on the vertices of T,. By (8), there exists a-sequential
evaluation S’ f(S) such that

p(S’)=max (p(S), + max /x(X)).
XF(u)

Let PQ’ be the p-efficient evaluation compatible with S’. We wish to prove the following:
(i) The number of bouncing operations in S’ is strictly smaller than that of S.
(ii) p(S’) p(S).
(iii) IP(S’)I IP*(S)[.

Since, by Lemma 3.5, ]P(S’) --< [P*(S)I implies that [PQ’I <-IPQI, this will contradict
the assumption that PQ is an optimal evaluation with a minimal number of bouncing
operations.

Proof of (i). First note that the only bouncing operations of S’ are those of So

and that u does not bounce. Furthermore, all the operations of SO that are bouncing
in S’, are also bouncing in S. Therefore, if u is bouncing in S then (i) follows. If u is
not bouncing in S then, by Lemma 5.1, T is the first subtree of T computed by S.
Therefore, T is computed in S later than T. Since there exists a bouncing operation
in S computed later than T, there exists a bouncing operation computed later than
T. Since this operation is not bouncing in S’, (i) follows.
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Proof of (ii). Since p(S) p( S), we only have to prove that for all X F(u),
tz(X) p(S) 1. If, by contradiction, there exists Tw F(u) such that/Zw p(S), then
T must contain two disjoint subtrees T, and Tw such that/z, =/Zw p(S). By Lemma
2.1, this leads to/z _>-/z + 1 p(S)+ 1, which is impossible.

Proof of (iii). Let be the earliest time slot in which some Si T, is computed.
(If $1 T, then i= 1.) Let q= S.1,...,
is empty.) Note that = S, S_.

CLAIM 1. p(S)
Proof of Claim 1. As /z, =p(S), p(S) cannot be larger than /z,. Assume, by

contradiction, that p(S)</z,. By the choice of i, S computes a (possible empty) part
of T,. Since p(S) =/z, and p(q)</z,, there exists j-> such that pj(S0)=/z,. In time
slot i, Si T, is computed. Therefore, by Lemma 5.1(ii), there exists j>i such that
pj(S)--u + 1, which is impossible.

CLAIM 2. p(_S) <
Proof of Claim 2. If p(_S)= , then since Si T, is computed, by Lemma 5.1(ii),

there exists j > such that p(S) =/z, + 1, which is impossible, l-I
CLAIM 3. h(S) >- h(S).
Proof of Claim 3. Since is a prefix of S, by (5), h(S) >-_ h(). Also, P*(S)

P(.q)[P*(_S). Therefore, by (5),

h(S) max (h(), h(_S)- b(q)) max (h(), h(_S)- t()+ h()).
By Claim 1, p(S) =/z,. Therefore, by Corollary 3.8, t(S) >_- p(S)- 1 =/, 1. By Claim
2, p(_S) </z,. Therefore, by Corollary 3.7, h(_S) _-< p(_S) <_-/z, 1. Therefore, h(_S) _-< t(S)
yielding h (S) h(), and Claim 3 follows. I3

Now we complete the proof of (iii). Let S be the projection of S’ on the vertices
of T F(u). Since S’ (S), S’ has the form S[SI[(u)[S2[ [(root). Therefore,

P*(S’) P*(S)IP*(S)IP*(S1)[(NOP ui)lP*(S2)[ I(NOP, root).

Note that, by the associativity property of concatenation (Lemma 4.2), the parentheses
are not needed here. Let hi--h(Si),
p(Si). By the choice of S’, p(S) tz(T). As in (ii) above, for every subtree X F(,u),
tz(X)<=p(S)-l. Therefore, for all i->l, hi<-p(S)-l. Also, by Corollary 3.8, to_>-
p(S) 1 p(S)- 1. By (5),

ho,1 max (ho, h bo) max (ho, hi to + ho).

Since to_-> hi, ho,1 ho. Also, since p(S[S) p(S), by Corollary 3.8, to,1 >= p(S)- 1.
We can continue this argument with S]S and u and iteratively with the rest of S’ to
show that h(S’)= ho. Since, by Claim 3, h(S) >- ho, we get h(S’)<= h(S), and (iii) is
proved. 13

LEMMA 5.8. For v T let S be a normal evaluation of Tv. Then there exists a normal
evaluation S’ 1(S) of T such that p( S’) <= max (p(S), 1 +/z).

Proof By (8), there exists S’ (S) such that

p(S’) max (p(S) + max /(X)).
XF(v)

Since for every X F(v), /(X)_-</z, the lemma holds. 13

6. Worse-ease analysis of DPA. As proved in 5, DPA does not always find
optimal evaluations. Let T be a fixed binary tree rooted at root, and assume that DPA
is not optimal for T. Let PQ be a fixed optimal p-efficient evaluation of T that has a
minimal number (greater than zero) of bouncing operations, and let S be a compatible
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sequential evaluation. Let copt IPQ[ and hopt h(S). Also, let cdpa c(PQroo,[p(S)])
and hdpa h(PQroo,[p(S)]). In this section we derive upper bounds on

(10) B cdpa hdpa +_._____a
1 +

hdpa hopt
copt hopt + a hopt + a

6.1. Proof of 1.091 bound. It follows from (10) that if we increase hdpa, or decrease
hopt, or decrease a, an upper bound for B is obtained. By Lemma 4.5, hdpa<-_
h(PQroo,[]). Therefore, by Corollary 4.9, hdpa < [log (n-uop+ 1)J. Since DPA is
not optimal, we get hopt < hdpa. By Theorem 5.5 this implies that uop => 4. Therefore,
hdpa < log n,’and a (n + uop- 1)/2> n/2. Substituting into (10) and using hopt >= 1,
we get

log n + n/2 2 log n
B< < +--------

l+n/2 n

It follows that as n grows, B converges to one. To analyze (10) more precisely, let
hmax maxo h(PQ[lz]). By definition, hmax >= h(PQroo,[p(S)]) hdpa.

LEMMA 6.1. hmax >= hdpa + 1.

Proof. By contradiction, assume that hmax hdpa. Let v be the leftmost bouncing
operation of S. Let Tu, Tw, and F be induced by v and S. Let the projection of S on
the vertices of Tu and Tw be S and Sw, respectively. Let PQ= P(S) and pQw_
P*(SW). By Lemma 5.4(i), bu---1 and hu <= hw-2. Since we can assume that every
normal subtree of T is computed in S in the order of evaluation determined by DPA,
hw hmax hdpa. Therefore, h, <= hdpa- 2. By Lemma 5.7, there exists a sequential
evaluation S’ 12(Su) such that p(S’)<=p(S). Since S is a normal evaluation of Tu,
S’ is a normal evaluation of T. Let S be the projection of S’ on the vertices of T F(u),
and let PQg= P(S). Since S is a normal evaluation, hihmax. By (9), using
ho h <= hdpa 2, b, -___ b ->_ 1, and h <-- hmax hdpa, we get h (S’) <- hdpa 1. Since
p(S’) <= p(S), this contradicts Theorem 4.4 and completes the proof.

Consider the vertex v of T at which h(PQ[lz])= hmax. We say that T is a
maximal subtree of T if there does not exists a vertex w Tv other than v such that
h(PQw[lXw]) hmax. By Lemma 4.7, a maximal subtree of T is a full binary tree. Thus,
by Lemma 5.6, maximal subtrees of T are normal in S. In the sequel we denote maximal
subtrees by TMAX. In the next lemma we establish the lower bound on the number
a of the arithmetic operations of T as a function of hmax.

LEMMA 6.2. a >-_ 2 hmax-1 + 6.
Proof Let TMAX be a maximal subtree of T. Then, by Lemma 4.7, TMAX is a

full binary tree. Also, by Corollary 4.10, a(TMAX) >= 2 hmax-1- 1. Let v be the leftmost
bouncing operation of S. Let Tu, Tw, and F be induced by v and S. Note that by
Lemma 5.6, v. TMAX since v is bouncing. Also, the root of T cannot belong to
TMAX as T cannot be a full binary tree. Let the projection of S on the vertices of
T, Tw, and F be S, S2, and S3, respectively. Let PQ= P(S), pQ2= p(s2), and
pQ3= p.(S3). By Lemma 5.4(i), b, b3>_-1 and hz> h3> h. Therefore, h3_->2 and
hz>3= Since b >= 1, a,>2.= By Corollary 4.10, he=>3 implies a>3= Since h3>2= and
b3 ->- 1, t3 ->- 3. Therefore, a (F) -> 3. Since TMAX may belong to either T,, Tw, or F,
taking into account v and the root of T, we get

a >- a( TmaX) + au + aw + a(F) + 2- max au, aw, a(F) >-_ 2h’x- + 6.

By substituting the result of Lemma 6.2 into (10) we obtain

(11) B <-_ 1 +(hdpa- hopt)/(hopt + 2hm"x-1 +6).
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Assume that hmax >= hdpa +2. B achieves the largest value when hmax hdpa +2.
Substituting this into (11) results in

B_<I+
hdpa hopt

hopt + 2 hdpa+ nt- 6

where the maximum value of B is 1.087 when hopt 1 and hdpa 3. In what follows
we assume that hmax hdpa + 1, and thus (11) reduces to

(12) B=<I+
hdpa hopt

hopt + 2 hdpa _lt_ 6"

Assume that hopt _-> 2. The largest value of B is achieved for hopt 2. Substituting this
into (12), we obtain

B_<I+
hdpa -2
2 hdpa .31_ 8

and B is bounded by 1.083. Therefore, hereafter we assume that hopt 1. Substituting
this into (12), we obtain

B_<_I+
hdpa-
2 hdpa .31_ 7

For hdpa => 6 and hdpa 2, B <= 1.091. Therefore, in the sequel we can assume 3 <- hdpa <=
5. We summarize the assumptions that will be used in the rest of this section"

(A1) hopt 1.

(A2) hmax hdpa + 1.

(A3) 3 _-< hdpa <- 5.

LEMMA 6.3. Let u T be a normal vertex in S. Let S be the projection ofS on the
vertices of Tu. If S has at least one bouncing operation computed after u and h(S")<-_
hdpa 1 then b, <- 1.

Proof Assume, by contradiction, that such vertex u exists, but bu _-> 2. Since there
is at least one bouncing operation in S performed after u, by Lemma 5.7, there exists
a normal sequential evaluation S’ f(S") such that p(S’)<-_ p(S). By (9), using ho
h (S) <- hdpa 1, b. _-> b => 2 and hi <- hmax hdpa + we get h (S’) < hdpa 1 contra-
dicting Theorem 4.4. [3

LEMMA 6.4. Let TMAX be a maximal subtree of T. If TMAX is computed in S
before the leftmost bouncing operation then"

(i) uop >= 6.
(ii) p(S) >= 3 + Ix(TMAX).
(iii) There exist two disjoint subtrees Tx and Ty of T computed before TMAX such

that"
(a) bx, by= l.
(b) Let S and Sy be the projection ofS on the vertices ofT and Ty, respectively.

Then h (S), h (Sy) <- hdpa 1.

Proof TMAX cannot be the first tree to be computed in S since otherwise,
hopt >-_ hmax would contradict assumption (A1). Let S be the prefix of S ending just
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before TMAX. Let SMAX be the projection of S on the vertices of TMAX.
h(P*oo(g)IP*(SMAX)) <= hopt 1. However, by (5), h(P*oo(g)[P*(SMAX)) >=
h(SMAX) b(S), leading to => hmax- b(S). Therefore, b(S) >= hmax- 1 ->_ 3. Thus,
there are at least four unary operators before TMAX in S. Let these unary operators
be ul, u2," and assume that they appear in the same order as in S. For every vertex

ui there exists a unique subtree T of T rooted at root such that u T and parent(root)
k be the subsequence of T1, T2,is not scheduled before TMAX. Let 1, 2,. ,

i _Ssuch that b(i)> 0. Let q be the projection of S on and let be the prefix of S
that ends just before .

CLAIM 1. 1 and 2 exist and b(l) b(2) 1.

Proofof Claim 1. We repeat the following argument for j 1 and j 2. If h (J) _-<

hdpa-1 then the claim follows from Lemma 6.3. Otherwise, h(J)-> hdpa. Since by
(A3), hdpa>-3, cannot be a prefix of S. Therefore, _S is not empty. By (5),
h(P(S_ )IP()) >-_ h() b(_S). (A1) implies

(13) 1 >- h() b(S_ ) >-_ hdpa b(_S).

Since l is the leftmost tree with positive balance and _S precedes p1, b(_S 1) 0, and
a contradiction to (A3) is obtained. Therefore, b() 1. Now we can plug b(_S2)
b(l) 1 into (13) to obtain a contradiction to (A3). Therefore, b(2) 1. [3

Note that and 2 fulfill the conditions of (iii), and therefore, this proves (iii).
CLAIM 2. 3 exists.
Proof of Claim 2. By Claim 1, and - contribute a total balance of 2. Since

b(S) =>3, a third tree of positive balance must exist. [3

Now we complete the proof of (i) and (ii). Since P, P, and 3 are disjoint trees
with positive balance, each has two unary operations, proving (i). Also, at least three
registers must hold the results computed those trees before TMAX is computed, proving
(ii). [3

LEMMA 6.5. Let TMAXbe a maximal subtree ofT. IfB > 1.091 then tz tz( TMAX).
Proof. Assume, by contradiction, that/x >/z(TMAX). Then, by Lemma 2.1, there

exists at least one subtree Tx of T that is disjoint of TMAX and such that /zx >-
tx(TMAX). By Lemma 4.8, bop(TMAX), bopx >= 2(TMAX)-I- 1. Since by Lemma 4.7,
TMAX is a full binary tree, by Lemma 4.6, hmax=lx(TMAX). Also, by (A2),
hmax hdpa + 1. Therefore, bop(TMAX), bop >= 2 hdpa 1. We proceed by case
analyses.

Case 1. hdpa =3. By (10), to achieve B> 1.091 we need a_-<20, bop(TMAX),
bop >_-7. Let v be the leftmost bouncing operation of S. Since by Lemma 4.7, TMAX
is a full binary tree, v : TMAX. If TMAX is computed before v then by Lemma 6.4(i),
uop >- 6, leading to a >- 21. Therefore, we may assume that TMAX is computed after v.

Let Tu, Tw, and F be induced by v and S. Let S1, S, and S be the projection
of S on the vertices of Tu, Tw, and Fv, respectively. Let pQl= p(s1), pQ= p(s2),
and pQ3= p(s3). Since bl, b3-> 1, we get uop,->2 and uop(F)_->2. Since the root
of T belongs neither to TMAX nor Tx, we get

(14) a >- bop(TMAX) + bopx + 1 + uop, + uop(F) >-_ 19.

We want to show that T has at least two more arithmetic vertices, contradicting a =< 20.
First, consider a(F). By Lemma 5.4(i), h < h and b3 => 1. Therefore, h3->2 and t3->3,
implying a(F)>-3. Second, consider aw. Using Lemma 5.4(i) again we get h2->3 and
by Corollary 4.10, aw -> 3.

CLAIM 1. V T.
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Proof of Claim 1. Otherwise, v is not counted in the above 19 vertices, and we
have 20 vertices already. Since aw => 3 and TMAX is computed after v, w T,. But
then only two operations of F have been counted in (14). Since a(F) _>-3, we would
get a >- 21. [3

CLAIM 2. F is a subforest of Tx.
Proof of Claim 2. By Claim 1, F cannot contain T,. Therefore, we have to show

that Tx and F cannot be disjoint. If they are disjoint, then by a(F) => 3, one of the
vertices of F is not counted in (14), and we get a=>20. However, T now contains
three disjoint subforests, Tx, TMAX and F. The root of T can combine at most two
of them, and we need at least one additional vertex that has not been counted before
to build a single tree out of Tx, TMAX, and F, proving Claim 2. [3

Consider F(u). It consists of at least three trees, namely, Tw, F, and TMAX.
Therefore, there are at least three binary vertices of T that do not belong to any of
the trees of F(u). By Lemma 5.7, there exists a normal evaluation S’ f(S1) such that
p(s’)<=p(s).

CLAIM 3. Let Ty F(u) be such that TMAX is not a subtree of Ty. Then/Xy < hmax.
Proof of Claim 3. Otherwise, by Lemma 4.8, bopy-> 7. Therefore, counting three

for the binary vertices of T that belong to the path from u to the root of T, we get
a >- bopy + bop(TMAX) + 3 + uop + uop F >- 21. [3

Now we complete the proof of Case 1. Remember that Tx and TMAX are disjoint.
By Claim 1, v T, and therefore, u T. Since S’ starts by evaluating T, the computa-
tion of T, in S’ is completed before TMAX even starts. By Claim 1, v T, and by
Claim 2, F is a subforest of T. Therefore, bx => b + b(F) >- 2. Also, since by Lemma
5.4(i), hi < h3 < h<= hmax, by (A2), we get h <= hdpa- 1. Also, by Claim 3, for every
Ty F(u) other than the one containing TMAX, tXy <= hmax-1- hdpa. Therefore, by
Corollary 3.7, for every evaluation Sy of Ty, h(Sy) <=tZy <= hdpa. Summarizing the
information needed to apply (9), we get the following:

(a) For Tu, h, <-_ hdpa 1.
(b) For every Tie F(u) such that TMAX is not a subtree of Ti, hi<= hdpa, and

b,_l => bu >- 1.
(c) For T F(u) such that TMAX is a subtree of T, h <= hmax hdpa + 1, and

b,_,>-b>-b,+b(F)>=2.
Thus, we can apply (9) and get h(S’)<= hdpa-1, contradicting Theorem 4.4.

Case 2. hdpa 4. By (10), to achieve B > 1.091 we need a =< 31. Since bop(TMAX),
bop, >= 15, and by Theorem 5.5, uop _->4, we get a->34, a contradiction.

Case 3. hdpa 5. By (10), to achieve B > 1.091 we need a =< 42. Since bop(TMAX),
bop >= 31, we get a => 62, a contradiction. [3

Since by Lemma 4.7, TMAX is a full binary tree, by Lemma 4.6, /x(TMAX)=
hmax. Therefore, if more than one maximal subtree of T would exist then, by Lemma
2.1,/z _-> hmax + tx(TMAX)+ contradicting Lemma 6.5. Therefore, we can make
the following additional assumptions:

(A4)
(A5)

has a unique maximal tree, denoted TMAX.
tx (TMAX).

LEMMA 6.6. Let v be the leftmost bouncing operation of S. Let T,, Tw, and F be
induced by v and S. Assume that TMAX and T, are disjoint. There exists a subtree T
of T with the following properties:

(i) Tx is computed in S before v.
(ii) T and TMAX are disjoint.
(iii) T and Tu are disjoint.
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(iv) bx_->l.
Let S be the projection of S on the vertices of T"

(v) p(S) <= p(S) 1.
(vi) h(S) <-_ hdpa 1.

Proof. Let S 1, S2, and S be the projection of S on the vertices of Tu, Tw, and
Fv, respectively. Let PQI P(S1), pQ2 p(se), and pQ3 p.(S3). By Lemma 5.4(i),
bl, b > and h < h3 < h2. Since h <= hmax, (A2) implies hi --< hdpa 1.

Case 1. TMAX is computed in S after v.
By (A4), Tw cannot be maximal, and therefore, h2 < hmax. By (A2), ha <- h2-1 <-

hmax-2-hdpa- 1. F is a forest with one or more trees. Since b --b(F) >-1, at
least one of these trees has positive balance. Let x F be the leftmost vertex of S
such that b _-> 1. Part (iv) holds by the construction. Also, since x F, (i), (ii), and
(iii) hold. Since, by Lemma 5.4(iii), p(S) <= p(S)-1, (v) holds. To prove (vi) let S be
the (possibly empty) prefix of S that is computed before T. By the choice of T,
b(S)<=O. By (5), we get

hdpa 1 ->_ ha >- max (h(S), h(S) -b(S))>= h(S).

Therefore, (vi) holds.
Case 2. TMAX is computed in S before v.
By Lemmas 5.4(i) and 6.3, bl 1. By Lemma 6.4(iii), there exist two disjoint

subtrees Tx and Ty of T satisfying (i), (ii), (iv), and (vi). They cannot both be subtrees
of Tu since b 1. Therefore, at least one of them satisfies (iii). Let this subtree be Tx.
Since T, is computed in S before v, it may be computed in S before F, or x Fv, or
x Tw. By Lemma 5.4(ii) and (iii), in either case p(S) p(S)- 1. Therefore, (v) holds,
and we are done.

THEORE 6.7. B cdpa/copt <= 1.091.
Proof Assume, by contradiction, that B > 1.091. Let v be the leftmost bouncing

operation of S. Let T, Tw, and F be induced by v and S. Let S" and S be the
projection of S on the vertices of T, and Tw, respectively. Let PQ"= P*(S) and
pQw= p(sw). By Lemma 5.4(i), b,->_ 1 and hw-1 >
hdpa- 1. By (A4), T has a unique maximal subtree TMAX.

CLAI 1. TMAX and T, are disjoint.
Proof of Claim 1. Otherwise, TMAX is a subtree of Tu. By Lemma 5.7, there

exists a normal evaluation S’ f(S") such that p(S’) <= p(S). Summarizing the informa-
tion needed to apply (9), we get the following:

(a) h <- hdpa -1.
(b) By (A4), no T F(u) is maximal. Therefore, by (A2), h <-hmax-1 hdpa.

Also, b,_, >= bu -> 1. Therefore, we can apply (9) and get h(S’) <= hdpa 1, contradicting
Theorem 4.4.

Let Ty F(u) be a subtree of T such that TMAX is a subtree of Ty. Let z
parent(y), and let s be the second child of z. There exists a subtree T of T that satisfies
conditions (i)-(vi) of Lemma 6.6. Let the projection of S on the vertices of T be Sx.

Case 1. x Tz.
Subcase 1.1. x T.. Since T is disjoint of T,, b, >- 1 and b >- 1, bs --> 2. By Lemma

5.7, there exists a normal evaluation S’2(S) such that p(S’)<-p(S). In S’, Ts is
completed before TMAX starts. Again, summarizing the information needed to apply
(9), we get the following:
(a) h, <- hdpa 1.

(b) For every Tie F(u), T Ty, by (A2) and (A4), h<=hmax-1 hdpa, and
b_,>-b, >- 1.
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(c) Let Ty Ti. Then hi <- hmax hdpa + 1, and bi_ bs ->- bu + bx ->- 2.
Therefore, we can apply (9) and get h(S’)<-hdpa- 1, contradicting Theorem 4.4.
Subcase 1.2. x Ty. By (A5),/zy =/x(TMAX). Let us apply Lemma 5.8 to T. It

follows that there exists a normal evaluation S of T that computes Tx first by S
such that p(S)_-<max (p(SX), +/xy). If TMAX is computed in S before v then, by
Lemma 6.4(ii), p(S) >= 3 + Ix(TMAX). Otherwise, p(S) >- 2+ Ix(TMAX), since by
Lemma 6.6(i) both T, and T, are computed in S before v and therefore, before TMAX.
Therefore, 1 +/x -<_ p(S) 1. By Lemma 6.6(v), p(S) -<_ p(S) 1. Together, we get
p(S) <- p(S)-1. By (8), there exists a normal evaluation S’ (S) such that

p(S’) max (p(S"), 1 + max /z(X)).
XF(u)

However, we would like to make a stronger assumption on the evaluation of T in S’,
namely, that it is identical to S. Then we get

p(S’) max (p(S"), +p(SY), + max /x(X)).
XF(u),X g: Ty

By Lemma 5.7, p(S") and +maxx:(,),xer.,./x(X) are both bounded by p(S). Since
p(Sy) <_- p(S)- 1, we get p(S’) _<- p(S).

CLAIM 2. h(Sy) <-- hdpa.
Proof of Claim 2. Note that Sy computes first Tx by S and then proceeds with

the rest of Ty. Let S (Sx) be a s,equential evaluation of T whose projection on Ty
is Sy. Let S be the projection of S on the vertices of Tie F(x). By Lemma 6.6(vi),
h(S) <- hdpa 1. Also, by Lemma 6.6(iv), b _-> 1. Since for every S h(Si) < hmax
hdpa + 1, using (9), we get h()_<- hdpa. However, since Sy is a prefix of , h(SY)
h S) <= hdpa.

Now we complete the proof of Subcase 1.2. Summarizing the information needed
to apply (9), we get the following:

(a) hu <= hdpa -1.
(b) Since TMAX is a unique maximal subtree of T and by Claim 2, for every

T F(u), hi <= hmax- hdpa.
(c) b_,>-b,>-l.

Therefore, we can apply (9) and get h(S’)<= hdpa-1, contradicting Theorem 4.4.
Case 2. x

_
Tz. x Cannot be an ancestor of z since by the choice of x, Tx, and

TMAX are disjoint and TMAX is a subtree of Tz. Let T, F(x) be the subtree that
contains z. By (A5), /x- tx(TMAX). Let us apply Lemma 5.8 to T. It follows that
there exists a normal evaluation S’ of T that computes Tu first by S" and p(S’)<=
max (p(SU), +/x,). If TMAX is computed in S before v then, by Lemma 6.4(ii),
p(S) >= 3 + tx( TMAX). Otherwise, p(S) >= 2 + tx( TMAX) since by Lemma 6.6(i), both
T and T are computed in S before v and therefore, before TMAX. Therefore,
1 + IXt <- p(S) 1. By Lemma 5.4(ii), p(S) <-_ p(S)- 1. Together, we get p(St) p(S) 1.
By (8), there exists a normal evaluation S’ (S) such that

p(S’)=max (p(S), 1 + max /z(X)).
XF(x)

However, as in Subcase 1.2, we would like to make a stronger assumption on the
evaluation of Tt in S’, namely, that it is identical to S t. Then we get

p(S’) max (p(S’), + p(St), + max / (X)).
XF(x),Xr,
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By Lemma 5.7, p(Sx) and 1 +maxxF(x).xT,/x(X) are both bounded by p(S). Since
p(S’) <-_ p(S) 1, we get p(S’) <- p(S). Also, note that, by Lemma 6.6(vi), h <- hdpa 1.

CIAM 3. h(S’) <= hdpa.
Proof of Claim 3. Note that S first computes Tu by S and then proceeds with

the rest of T,. Let f(S") be a s,equential evaluation of T whose projection on T,
is S’. Let S be the projection of S on the vertices of Tie F(u). By Lemma 5.4(i),
h(Su) <= hdfla 1, and bu _-> 1. Since for every S i, h(S <-_ hmax hdpa + 1, using (9),
we get h(S) <= hdpa. However, since S’ is a prefix of S, h(S’) <= h(’) <- hdpa.

Now we complete the proof of Case 2. Summarizing the information needed to
apply (9), we get the following:

(a) h, <- hdpa 1.
(b) Since TMAX is a unique maximal subtree of T and by Claim 3, for every

T F(x), hi <= hmax- 1 hdpa.
(c) b,,_l>-b>- l.

Therefore, we can apply (9) and get h(S’) <= hdpa 1, contradicting Theorem 4.4. [3

6.2. A worse-case example. In 6.1, we proved that B =< 1.091. Actually, for the
tree of Fig. 1, B 1.091. For five registers or more, the optimal evaluation of this tree
is pQ6 of Fig. 2 with c 11, while c( PQroot[ r]) 12 for r >-4.

6.3. An e-approximation scheme. Since B- as n-, we can develop an e-

approximation algorithm--given e, design an algorithm that finds a schedule that is
worse than the optimal by at most B-< + e. The idea is straightforward: apply some
exhaustive algorithm to find optimal schedule for trees with at most n vertices, and
use DPA for larger trees. Formally, given e, let n be the solution of n 2 n-/2. Since

B _-< + 2 log n_
ne

we get B<=l+e. For example, for e =0.1, n= 144, and for e =0.01, n =224.

7. Extensions and open problems. Our results can be extended in a number of
ways, but they also leave a few problems open for further research.

7.1. Larger arity. Every operation of our machine model has at most two operands,
and therefore, only binary trees have been considered. Obviously, the machine model
may be extended to allow larger arity of the expression trees. The DP scheme can be
easily extended to nonbinary trees as suggested in [AJ76]. In the extended DP scheme
at each internal vertex v all possible orders of computations of the subtrees rooted at
the children of v should be considered and a minimal cost evaluation chosen. The
complexity of this algorithm is still linear in n, but the amount of work performed at
each vertex is exponential in the maximum allowed arity. The question is, how to
extend the approximation techniques developed in this paper to nonbinary trees. It
turns out that the generalization of our algorithm may yield schedules that are worse
than the optimal by d time units even for trees with only O(d) vertices.

7.2. Arbitrary execution times. We can relax our restriction that the execution
time of memory access is equal to that of the arithmetic operations. Let r be the
number of machine cycles required for memory access, and r2 be the elapsed time of
every arithmetic operation. The P transformation of 2.4 can be upgraded to accommo-
date unequal execution times of machine operations. Arbitrary execution times of
operations affect the approximation results derived in 6. If 7"2 > 7"1 then all the resfilts
are valid, and it is even possible to decrease the worse-case ratio of the completion
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times of the schedule generated by DPA and the shortest schedule. Moreover, for
binary trees if ’2 => 2’1 then the algorithm becomes optimal since in this case optimal
evaluations can always be found among normal form evaluations. By contrast, if ’1 > ’2
then it has an effect similar to that of larger arity ( 7.1).

7.3. Store operations. Throughout the previous sections we have assumed that it
is always possible to compute the given expression tree using R machine registers.
Clearly, this assumption does not always holds.

DPA can be extended to a minimal store algorithm (MS) by producing store
operations only when needed. Such a treatment of store operations is not general
enough as in the dynamic programming algorithm of [AJ76]. It is quite similar to the
approach proposed in SU70] that leads to an optimal algorithm for a class of sequential
machines.

In our case, the MS algorithm works fine when the cost of a store operation is
significantly larger than the cost of the other operations. However, if a store operation
takes about the same time as the other operations, then a new phenomenon arises.
Sometimes it is preferable to perform a store operation even if it is not absolutely
necessary so as to increase the parallelism between arithmetic and memory operations.

For example, consider the tree of Fig. 4. It can be computed using four registers.
Since the minimal number of registers needed to compute T2 without a store is four,
T2 must be computed first. Then, the cost is 16. But if T1 is computed first and a store
operation is used after the completion of T, the cost is reduced to 15. As a consequence
of the last observation, more work concerning store operations is needed.

7.4. Different register allocation assumptions. Different classes ofmachines impose
different restrictions on the use of registers. In our machine model, we only assumed
that when an arithmetic operation is performed in parallel with a load, results of these

A

A A A A

L L L L L L

T1
FIG. 4. The tree demonstrating the store phenomenon.
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two parallel instructions are stored in different registers. Additional constraints on the
structure of the machine registers may invalidate our results.

A simple refinement of our machine model is to assume that the register released
by a binary arithmetic operation at time slot cannot be used by a load operation
performed in the same time slot. The earliest time that this register can be used again
is time slot + 1. The main effect of this additional requirement is that an evaluation
PQ of width p may use p + 1 registers on such machine, i.e., one register more than
previously. Still when we allow a number registers r => p(PQ)+ 1, the completion time
of PQ is the same on both machine models. It can be shown that when the optimal
evaluation is bouncing, the number of registers needed by an optimal evaluation is
greater than the minimal width of the best normal form evaluation. Therefore, the
approximation results of 6 remain valid.

7.5. e-approximation algorithms. In 6 we have shown how an e-approximation
algorithm can be obtained from DPA using the enumeration on the trees with n =< n.
Clearly, this approach is not practical since even to achieve e 0.01 the enumeration
should be performed on the trees with n 2224. Another e-approximation scheme
may be developed by keeping several candidates for each PQ[r]. Analyzing such a
scheme is probably a nontrivial job.

7.6. The complexity of the optimal algorithm. This is the major question that
remains open.

Appendix. Example for the DPA algorithm. The following example illustrates how
DPA processes the vertices of the expression tree of Fig. 1. Let R 5. We organize
the results computed by DPA in Tables 1 and 2. The entry in the row vi and in the
column PO[j] of Table 1 is the (c, h, t) triple corresponding to POi[j] where instead
of (, , ) we use a single . The entry in the row vi and in the column S[j] of
Table 2 is the evaluation Si[j] that is compatible with PQi[j].

TABLE
The c, h, and parameters computed by DPA for the tree of Fig. 1.

Vertex PQ[ PQ[2 PQ[3 PQ[4 PQ[5

v, (1, l, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0)
v2 (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0)
/’)3 O0 (3, 2, 1) (3, 2, 1) (3, 2, 1) (3, 2, 1)
/’)4 (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0)
v (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0)
/2 0(3 (3, 2, 1) (3, 2, 1) (3, 2, 1) (3, 2, 1)
/)7 O0 O0 (6,3,2) (6,3,2) (6,3,2)
vs (1, 1, O) (1, 1, O) (1, 1, O) (1, 1, O) (1, 1, O)
v9 (2, 1, 1) (2, 1, 1) (2, 1, 1) (2, 1, 1) (2, 1, 1)
V,o (3, 1, 2) (3, 1, 2) (3, 1, 2) (3, 1, 2) (3, 1, 2)
Vl 120 (X) (9,3,4) (8,2,3) (8,2,3)
v,2 (1, 1, O) (1, 1, O) (1, 1, O) (1, 1, O) (1, 1, O)
Vl3 (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0)
v14 ee (3, 2, 1) (3, 2, 1) (3, 2, 1) (3, 2, 1)
v5 cc (4, 2, 2) (4, 2, 2) (4, 2, 2) (4, 2, 2)
/-)16 (30 (5, 2, 3) (5, 2, 3) (5, 2, 3) (5, 2, 3)
v: c (13, 3, 6) (12, 2, 5) (12, 2, 5)
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TABLE 2
The sequential version of the evaluations computed by DPA for the tree of Fig. 1.

Vertex S[1] S[2] S[3] S[41 S[5]

V (1) (1) (1) (1) (1)
v2 (2) (2) (2) (2) (2)
V A (1-3) (1-3) (1-3) (1-3)
V (4) (4) (4) (4) (4)
v (5) (5) (5) (5) (5)
06 a (4-6) (4-6) (4-6) (4-6)
v7 A a (1-7) (1-7) (1-7)
v (8) (8) (8) (8) (8)
V (8, 9) (8, 9) (8, 9) (8, 9) (8, 9)
Vo (8-10) (8-10) (8-10) (8-10) (8-10)
Vll A A (1-11) (8-10, 1-7, 11) (8-10, 1-7, 11)
v,2 (12) (12) (12) (12) (12)
V13 (13) (13) (13) (13) (13)
014 A (12-14) (12-14) (12-14) (12-14)
v,s A (12-15) (12-15) (12-15) (12-15)
v6 A (12-16) (12-16) (12-16) (12-16)
v7 A A (1-17) (8-10, 1-7, 11-17) (8-10, 1-7, 11-17)
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COMPUTING SIMPLE CIRCUITS FROM A SET OF
LINE SEGMENTS IS NP-COMPLETE*

DAVID RAPPAPORT’

Abstract. Given a collection of line segments in the plane, the segments are connected by their endpoints
to construct a simple circuit. (A simple circuit is the boundary of a simple polygon.) However, there are
collections of line segments where this cannot be done. In this note it is proved that deciding whether a set
of line segments admits a simple circuit is NP-complete. The NP-completeness proof relies on the fact that
line segments may intersect at their endpoints. Deciding whether a set of horizontal line segments can be
connected with horizontal and vertical line segments to construct an orthogonal simple circuit is also shown
to be NP-complete.

Key words. NP-complete problem, Hamiltonian path, Euclidean travelling salesman problem,
computational geometry, line segments

AMS(MOS) subject classifications. 68Q15, 68U05

1. Introduction. A natural generalization of the problem of finding simple circuits
from a set of points is the problem of finding a simple circuit from a set of line
segments. In general a set of line segments does not necessarily admit a simple circuit.
An example of a set of line segments that does not admit a simple circuit is given in
Fig. 1. An interesting question is when do a set of line segments admit a simple circuit?

FIG.

The task of obtaining a simple circuit from a set of points is a recurring theme
that appears in a variety of applications. In network routing problems the tour of
shortest Euclidean distance that begins and ends at a common site and visits all other
sites exactly once is a simple circuit. This is the Euclidean travelling salesman problem
and is known to be NP-hard [3]-[5]. Simple circuits have also been used in the area
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of pattern recognition for extracting perceptual information from sparse data [2], [7],
[9], [16], [17]. Surprisingly, the problem of computing simple circuits from a set of
line segments has not received much attention.

Given a collection of sites on a plane and the requirement that certain sites are
visited in a prescribed order, the task of finding a shortest tour reduces to finding
shortest tours from a set of line segments, or chains of line segments. If, in addition,
edges in the tour that cross greatly increases the cost of the tour (because bridges or
tunnels are required) then we are interested in finding a shortest tour with few crossings.
In the extreme this reduces to deciding if a set of line segments, or chains of line
segments, admits a simple circuit. In the context of pattern recognition, meaningful
perceptual information may be obtained from a collection of line segments, or chains
of line segments, by computing a minimal set of disjoint simple circuits. Again, in the
extreme this problem reduces to deciding if a set of line segments admits one simple
circuit.

In [13] it has been shown that, if the set of line segments are constrained so that
every segment has at least one of its endpoints on the convex hull of the segments, an
O(n log n) algorithm can be used to determine whether the set admits a simple circuit.
Furthermore, we can deliver simple circuits, and optimize over the area and the
perimeter of the polygons constructed, in the same time bound. Other special cases of
the problem of obtaining a simple circuit from a set of line segments are discussed in
[1], [12].

In this note it is shown that to determine whether a set of segments admits a
simple circuit is NP-complete. After preliminary definitions a reduction is given to a
variant of this problem. In this variant we are given a set of orthogonal line segments
and are asked whether we can construct a simple circuit whose edges are orthogonal
to the coordinate axes. After proving that the orthogonal simple circuit problem is
NP-complete we show that the simple circuit problem is NP-complete. A detail in the
proof requires that some of the segments intersect at their endpoints.

2. Preliminaries. A simple circuit is a sequence of edges, eo, el,’", ek-1, such
that for all O<-_i<k, ei and e(i/l)mod k intersect at their endpoints, and no other
intersections between edges occur. A simple circuit is the boundary of a simple polygon.
Let S be a set of line segments in the plane. We require that the segments be properly
disjoint, that is, no segments intersect in their interiors; however, we permit segments
of S to intersect at their endpoints. If a set A can be found such that S kJ A is a simple
circuit of IS] + IAI edges, then we say that S admits a simple circuit and A is a set of
augmenting segments. To obtain a set of augmenting segments, we begin by considering
a set of segments as candidates. We say that two points see each other, if the line
segment between them does not intersect any segment. Since we are looking for crossing
free circuits it is natural to choose as candidates connections of endpoints of segments
that see each other.

An orthogonal simple circuit is a simple circuit whose edges are orthogonal to the
coordinate axes. One can say two points orthogonally see each other, if they agree in
one of their coordinates and they see each other.

It will be shown that the following problem is NP-complete.

SIMPLE CIRCUIT (SC).
Instance. A set of line segments S.
Question. Does S admit a simple circuit?
To simplify the presentation first it will be shown that the following more structured

problem is NP-complete.
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ORTHOGONAL SIMPLE CIRCUIT (OSC).
Instance. A set of line segments S orthogonal with respect to the coordinate axes.
Question. Does S admit an orthogonal simple circuit?

3. Orthogonal simple circuits is NP-complete. In this section it will be shown that
the orthogonal simple circuit problem (OSC) is NPocomplete. The following problem
is known to be NP-complete [3].

HAMILTONIAN PATH IN PLANAR CUBIC GRAPHS (HPPCG).
Instance. A planar cubic (all vertices are of degree three) graph G--(V, E).
Question. Is there a Hamiltonian path in G?
The idea behind the transformation of HPPCG to OSC is to build modules out

of collections of line segments. Given a planar cubic graph G, the collection of modules
M(G) is constructed. Each module ma will uniquely represent a vertex a of G. The
edges of the graph will be simulated by a subset of the candidates of the collection of
modules. The remainder of this section leads to the conclusion that a Hamiltonian
path exists in a planar cubic graph, if and only if the set of corresponding modules
admits an orthogonal simple circuit.

To construct modules corresponding to vertices we first compute a rectilinear
planar layout of the graph. This layout maps vertices to horizontal line segments and
maps edges to vertical line segments, such that all the endpoints of segments are at
positive integer coordinates. Two horizontal segments are intersected by the endpoints
of a vertical segment, if and only if the corresponding vertices are adjacent in the
graph. Figure 2 shows a straight line drawing of a planar cubic graph with its rectilinear
planar layout,

2 3

7 8

3

FIG. 2

In [14] it has been shown that a rectilinear planar layout can be computed for
planar graphs with n vertices in O(n) time. The height of the layout of this algorithm
is guaranteed to be at most n, and the width at most F, where F is the number of faces
in the graph. In cubic graphs F n/2+2, by Euler’s relation. For details regarding
the algorithm used to obtain rectilinear planar layouts, refer to [14].

Given a planar cubic graph G= (V, E), a configuration of modules can be
constructed in polynomial time. In Fig. 3, we show a configuration of modules
corresponding to the graph in Fig. 2. For completeness we give a procedure to construct
such a configuration of modules.
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L 3 __I I,
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FIG. 3

PROCEDURE CONSTRUCT MODULES.
(1) Obtain a rectilinear planar layout of G.
(2) for each vertex , in G do steps 2.0, 2.1, and 2.2

(2.0) Let (xt, y), (Xr, y) denote the coordinates of the horizontal line segment
h that corresponds to ,. Every vertex in G is of degree three. Therefore,
there are three vertical segments intersecting h. Denote their intersection
points as (x, y), (x2, y), and (x3, y).

if xt is the top endpoint of its vertical line segment
then topi - true else topi <- false.

(2.1) Construct an axis parallel outer rectangle with corners, (6xl, 4y),
(6(xr + 1)- 1, 4y + 3) and an axis parallel inner rectangle with corners,
(6x,+ 1, 4y+ 1), (6(x + 1)-2, 4y +2).

(2.2) for i<-1 to 3 do
if top is true then

Place a gap of width one at (6x + 2, 47) of the outer rectangle and
at (6x / 2, 4y + 1) of the inner rectangle.

else
Place a gap of width one at (6x + 2, 4y + 3) of the outer rectangle
and at (6X h-2, 4y+ 2) of the inner rectangle. [3

Denote the gaps found in the outer and inner frames of the modules as outer and
inner doors, respectively. The endpoints at the extremes of these gaps will be referred
to as left and right doorjambs. An inner and outer door pair will be referred to collectively
as a DOOR. If the edge (a, b) is in G, then a door of module ma faces a door of module
tnb. We say that these doors are neighbours. By a logical extension, modules rna and
rnb are also termed as neighbours, if their doors are neighbours. Denote an alternating
sequence of vertices and edges beginning and ending at a vertex, such that each edge
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intersects its neighbouring edge at a vertex and no two edges intersect except at their
endpoints, as a polygonal chain. Observe that the topology of every module is the same.
Every module consists of three polygonal chains beginning and ending at outer
doorjambs, and three polygonal chains beginning and ending at inner doorjambs.

Suppose there is a Hamiltonian path in the graph G. For notational simplicity
assume that the sequence of vertices 1, 2,. ., n corresponds to the Hamiltonian path.
For every edge, (i, i+ 1), 1,. ., n- 1, in the Hamiltonian path, we link the module
mi to module mi+. Since the vertices and i+ 1 are neighbours in G, then mi and
m+ have neighbouring doors. We will use the following terminology to describe how
modules are linked. We say a door is augmented if there are augmenting segments
using both of its doorjambs. Denote a gate as an augmenting segment with endpoints
on the left and right doorjambs of the same door. Denote an egress as a pair of
augmenting segments linking the left and right outer doorjambs of neighbouring doors.
Denote an ingress as a pair of augmenting segments linking the left and right doorjambs
of an outer door to an inner door. See Fig. 4.

PROCEDURE LINK.
(1) Augment a DOOR of m not a neighbour of m2 with an ingress, and augment

another DOOR of m not a neighbour of m2 with two gates. These choices can
be made arbitrarily.

(2) for i<--2 to n do steps 2.0, 2.1, and 2.2
(2.0) use an egress to augment the neighbouring outer doors of m and m_.
(2.1) augment the corresponding inner doors of m and mi_ with gates.
(2.2) if < n then

augment the DOOR of m not a neighbour of m+ or m_ with an
ingress

else
augment a DOOR of m. not a neighbour of m._ with an ingress.

(3) Augment the remaining unaugmented DOOR of m. with two gates.

It should be clear that the procedure LINK has a linear worst-case running time.
We now show that LINK produces an orthogonal simple circuit.

ingress

gates
egress --

FIG. 4

LEMMA 1. Given an ordering of the modules M( G) corresponding to a Hamiltonian
path in the graph G, procedure LINK produces an orthogonal simple circuit.

Proof Procedure LINK maintains the loop invariant that before and after every
iteration of step (2) the modules m to m and the added augmenting segments form
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two disjoint polygonal chains. One chain begins at the inner right doorjamb and ends
at the corresponding right outer doorjamb of a DOOR of module mi. The other polygonal
chain begins and ends at the left opposing inner and outer doorjambs of the same
DOOR. See Fig. 5. After step (2) terminates (and n) we have two polygonal chains
using all of the segments in M(G). These chains are joined to complete the simple
circuit in step (3).

It remains to show that every orthogonal simple circuit in M((3) can be used to
obtain a Hamiltonian path in G in polynomial time. We denote a sequence of
neighbouring modules, ml, m2," ran, augmented using procedure LINK as a path
of modules. We will show that every orthogonal simple circuit that can be obtained
from M(G) is a path of modules.

Let us examine the ways in which a module can be linked to its neighbouring
module with augmenting segments. A first step is to establish for each module a list
of candidates, that is, line segments joining doorjambs that orthogonally see each
other. In Fig. 6, a module is shown with its entire set of candidates drawn in dashed
lines. The following lemma exhibits a crucial property of two neighbouring modules.

--1
One chain starts

["-" 5 and ends

FIG. 5

’7’
i==..

x y
FIG. 6
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LEMMA 2. If tWO neighbouring modules are joined by a single augmenting segment,
then an orthogonal simple circuit cannot be obtained in the collection of modules.

Proof First observe that all DOORS of modules have a similar structure. There are
cases where there are two DOORS that are in the same vertical column. This is the case
that will be argued. In the simpler case (for example, the unlabeled door in Fig. 6) a

similar but simpler argument can be used. Referring to Fig. 6, assume we have the
augmenting segment (7, x). The edge (8, 6) is forced, because we are assuming there
is only one augmenting segment between modules. Now 5 can only be connected to
3, causing a disjoint circuit. This rules out the possibility of obtaining a single orthogonal
simple circuit. Assume instead that we have augmenting segment (8, y). This forces
(7, 5) and (6, 4), which forces (3, 1). But this causes a disjoint circuit. Therefore,
neighbouring modules are joined with two augmenting segments, in every orthogonal
simple circuit.

We have established that at each door, modules are joined with two augmenting
segments. Therefore, saying two modules are connected, refers to linking the modules
with an egress. It should be clear that the corresponding inner doorjambs must also
be joined with gates, because these doorjambs do not orthogonally see any alternate
points. Another required fact is Lemma 3.

LEMMA 3. A module can be connected to at most two of its neighbours.
Proof Assume that a module is connected to three of its neighbours. This leaves

the inner frame disconnected from the rest of the segments of the module and isolated
from all other modules.

It should now be clear that the internal structure in each module forces each door
to have two augmenting segments connecting each neighbour, and it forces each module
to be connected to at most two of its neighbours. It is obvious that every module must
be connected to at least one other module in every orthogonal simple circuit. Let the
circuit degree of a module denote the number of neighbours a module is connected to
in an orthogonal simple circuit. Clearly the circuit degree of a module can only be
one or two.

LEMMA 4. Every orthogonal simple circuit from a collection of modules is a path of
modules.

Proof We cannot have an odd number of modules with circuit degree one. To
see this, first obtain the total sum r of all circuit degrees. If there is an odd number
of modules of circuit degree one, then o- is odd. But o- must always be even, since
counts each module connection twice.

Suppose there are four or more modules with circuit degree one. Since each
module can have circuit degree at most two, r is at most 2(n-4) +4. As in graphs,
if the sum of the degrees is less than 2n (less than n edges), then the graph must
have disconnected components. Similarly, with r less than 2n there must be some
disconnected modules.

Suppose there are no modules of circuit degree one. Therefore, all modules are
of circuit degree two. It has been shown that a path of modules is a simple circuit. If
all modules are of circuit degree two, then we have the equivalent of a path of modules
that is connected at its endpoints (module m is connected to m) (or two or more
such circuits of modules). This is topologically equivalent to taking a simple circuit,
breaking it into two disjoint paths, and connecting each path to itself, thus creating
two disjoint circuits.

We have exhausted the possibilities, therefore, every orthogonal simple circuit
must be a path of modules.

Finally, the preceding lemmas lead to the following conclusion.
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THEOREM. OSC is NP-complete.
Proof It is routine to show that OSC is in NP. If we are given a set of orthogonal

segments with a set of augmenting segments, then the existence of a simple orthogonal
circuit can be checked in linear time. We have shown that given a planar cubic graph
G, we can construct a collection of modules M(G), such that there is a Hamiltonian
path in G, if and only if there is an orthogonal simple circuit in M(G). Therefore
OSC is NP-complete. [3

In the reduction that has just been given there are segments that intersect at their
endpoints. It is not hard to convert the collection of modules into a set of disjoint
horizontal segments. Simply remove the vertical edges of each module and place each
module on a row of its own. Modules with these changes are shown in Fig. 7. By
examination we can see that all the vertical segments that were removed are now forced
in the new layout of horizontal segments.

It is worth noting at this point that a remarkably similar problem has a polynomial
time solution. Suppose we are given a set of orthogonal line segments and we wish to
determine if the segments admit an alternating orthogonal simple circuit. This restricts
the resulting orthogonal simple circuit to having edges that alternate between horizontal
and vertical. An algorithm due to O’Rourke [8] used to decide whether there is an

alternating orthogonal simple circuit in a set of points that can be applied in a
straightforward manner. This algorithm returns an orthogonal simple circuit, if it exists,
in O(n log n) time. Furthermore, it is shown that if an alternating orthogonal simple

FG. 7
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circuit exists, then it is unique. Concerning (not necessarily alternating) orthogonal
simple circuits of points, this problem has been shown to be NP-complete [11], [12].

4. Simple circuit is NP-complete. In this section it will be shown that the OSC
problem, for a set of modules obtained from an instance of HPPCG, polynomially
transforms to SC. Following the strategy taken in the previous section, we will build
a collection of modules out of line segments. As a distinguishing feature we will denote
the modules described in this section as SC modules, and those of the previous section
as OSC modules.

SC modules are constructed in much the same way as OSC modules. Each module
has an inner and outer rectangular frame with doors on the inner and outer frames.
Shown in Fig. 8 is a collection of SC modules corresponding to OSC modules in Fig.
3, and ultimately to the graph in Fig. 2. In SC modules greater care must be taken to
limit the visibility of the doorjambs. For this reason the doors are recessed. A possible
solution is to let each door in an SC module be one unit wide, in a recessed three-unit
enclosure that is two units deep. See Fig. 8. This limits the field of view of any doorjamb
to a 45 angle. Let D be the distance between the top of the lowest module and the
bottom of the highest module. If h is the total number of rows in the rectilinear planar
layout (h is bounded by n, the number of vertices in G), and each module is w units
wide (SC modules are constructed with a width of 10 units), with a one-unit space
between rows of modules, then D=(h-2)(w+ 1)+ 1. DOORS are spaced so that the
distance between them is at least D. The limited field of view ensures that a doorjamb
can only see doorjambs of its neighbour. Another feature found in SC modules, and
not in OSC modules, is the obstacle that runs the length of every module. These
obstacles ensure that the visibility between inner and outer doorjambs remains local.
The details concerning the construction of SC modules are omitted, as they are quite
tedious, but given the above informal description it is a routine matter to construct
the SC modules in O(n) time.

A correspondence between the candidates of an OSC module and an SC module
will be established. Since there are some candidates (endpoints that see each other)
in SC modules that do not exist in OSC modules, it will be necessary to introduce the
notion of a useful candidate. A candidate is useful if it can eventually appear as an
augmenting segment. As will be shown, there are some candidates in SC modules that
are not useful. However, all useful candidates in SC modules correspond exactly to
the useful candidates of an OSC module.

Referring to Fig. 8, there are candidates in OSC modules that cross. For example
the candidates (5, 8) and (6, 7). It will be shown that all these crossing candidates are
not useful. Since the candidates found at every door of every module are equivalent,
it is sufficient to examine a single door. Referring to Fig. 8, the inclusion of (5, 8)
forces (6, 7), a crossing. Similarly (6, 7) forces (5, 8), a crossing. Therefore, (6, 7) and
(5, 8) can never be augmenting segments. Including (7, y) forces either (8, x), (8, 6),
or (8, 5). With (8, x) we get a crossing, with (8, 6) we isolate 5, and (8, 5)= (5, 8) has
been shown to be forbidden. As is the case for (7, y), (8, x) can never appear in a
simple circuit. Therefore, (5, 8), (6, 7), (7, y), and (8, x) cannot be augmenting segments.

We can now conclude that the list of useful candidates in OSC modules is identical
to those in SC modules. It is not hard to see that OSC modules are topologically
equivalent to SC modules. Therefore we have the following theorem.

THEOREM. There is an orthogonal simple circuit in OSC modules ifand only if there
is a simple circuit in the corresponding SC modules.

The main result of the paper can now be proved.
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THEOREM. SC is NP-complete.
Proof It is routine to verify that SC is in NP. Given an instance of HPPCG, the

graph G, we can construct a set of SC modules M(G), so that there is a simple circuit
from M(G) if and only if there is a Hamiltonian path in G. Therefore SC is NP-
complete.

In the previous section it has been shown that OSC modules can be built from
individual disjoint line segments. This does not appear to be the case for the SC
modules described here. It remains an open problem to determine if SC is NP-complete
even if we insist that the closed intervals of the segments are disjoint.

Observe that all the segments used in this reduction for SC are orthogonal.
Therefore, SC is NP-complete for orthogonal segments.

5. Discussion. It has been shown that deciding whether a set of line segments
admits a simple circuit is NP-complete. It is somewhat annoying that the result requires
that some of the line segments must intersect at their boundaries. It would be more
satisfying if this restriction could be removed. The reduction used in this paper is to
a problem that is not far removed from a geometric setting. Using the rectilinear planar
layout of planar cubic graphs is the major conceptual step of the result. Perhaps what
is needed to prove a stronger result is a reduction to a more "primitive" NP-complete
problem. A common approach used in other geometric NP-complete and NP-hard
results has been to reduce the problem to the Planar 3-SAT problem [6], [10], [15].
It may be that this strategy would bear fruit in realizing an NP-completeness proof
for disjoint segments. On the other hand, it may be (this appears to be the more exciting
outcome) that the problem is not NP-complete at all and a polynomial solution exists!

Acknowledgments. I thank David Avis and Rafe Wenger for reading and comment-
ing on earlier drafts of this paper.
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THE TWO-PROCESSOR SCHEDULING PROBLEM IS IN RANDOM NC*

UMESH V. VAZIRANIt AND VIJAY V. VAZIRANI

Abstract. An efficient parallel algorithm (RNC2) for the two-processor scheduling problem is presented.
An interesting feature of this algorithm is that it finds a highest-level-first schedule: such a schedule defines
a lexicographically first solution to this problem in a natural way. A key ingredient of the algorithm is a
generalization of a theorem of Tutte which establishes a one-to-one correspondence between the bases of
the Tutte matrix of a graph and the sets of matched nodes in maximum matchings in the graph.

Key words, scheduling, matching, parallel algorithms, randomized algorithms, basis of a matrix
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1. Introduction. We present an efficient parallel RNC2 algorithm for the following
well-studied problem. Schedule n unit length jobs subject to given precedence con-
straints on two identical processors so as to minimize the finish time. Our algorithm
uses O(n:M(n)) processors, where M(n) is the number of arithmetic operations
required to multiply two n n matrices.

There are close connections between two-processor scheduling and matching. The
first polynomial time sequential algorithm for two processor scheduling relied on this
connection [FKN], and in fact, techniques for finding matchings in parallel play an
important role in the algorithm presented in this paper. The recent parallel matching
algorithms [KUW], [MVV] are based on an algebraic connection established by a
theorem of Tutte [Tu]. We present a generalization of this theorem, establishing a
one-to-one correspondence between the bases of the Tutte matrix of a graph and the
sets of matched nodes in maximum matchings in the graph. This yields an RNC:
algorithm for computing the lexicographically largest such node-set. This subroutine
is central to the parallel scheduling algorithm. The generalization is also of independent
interest, and has been used in [MVV] to obtain an RNC2 algorithm for maximum
vertex-weighted matching.

The parallel scheduling algorithm finds a special type of schedule called a highest-
level-first (HLF) schedule; a basic theorem of Gabow [Gall, [Ga2] establishes the
optimality of such a schedule. In 5 we show that HLF schedules are "well behaved"
by proving two new properties of such schedules. Using these properties, the task of
computing an HLF schedule is shown to be reducible to parallel invocations of the
lexicographically first node-set subroutine.

It is pointed out in 4 that an HLF schedule is the lexicographically first schedule
under a certain natural ordering on the jobs. In general, the parallel complexity of a
problem is very sensitive to whether an arbitrary solution is acceptable or whether the
lexicographically first solution is sought. Two important cases illustrate this point:
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maximal independent set and depth-first search. The problems of finding the
lexicographically first maximal independent set or the lexicographically first depth-first
search tree are P-complete. Nevertheless, if an arbitrary solution is acceptable, in each
case fast parallel algorithms exist. In the case of the maximum matching problem, fast
parallel algorithms are known when an arbitrary solution suffices, but the parallel
complexity of finding the lexicographically first maximum matching is still unresolved.
Using the connection between two-processor scheduling and matching, the parallel
algorithm presented in this paper can be interpreted as an algorithm for computing
lexicographically first matchings for incomparability graphs under a certain natural
ordering on the edges.

The algorithm presented here is randomized in the Las Vegas sense: it always
produces the correct answer, but the guarantee on the running time is probabilistic.
A preliminary report on this algorithm has appeared in [VV]. Subsequently, Helmboldt
and Mayr [HM] have devised an algorithm that avoids the use of randomization. Their
algorithm runs in O(log2 n) time and uses O(nTL2) processors, where L is the length
of the optimal schedule. Their algorithm shares some common features with ours; the
proof of correctness of their algorithm relies on the "well-behavedness" properties of
HLF schedules that are implicitly assumed in their paper, and explicitly proved here.

There is extensive literature on the two-processor scheduling problem (see [LR]
for a general reference). We will use results from [FKN], ]Gall, and [Ga2].

2. Connection with matchings. We denote the set ofjobs by V, and the precedence
relations among the jobs by a directed acyclic graph G(V, E).

DEFINITION. A schedule is a sequence of sets S,..., St that partition V, with
ISi[ <-2 and such that if x precedes y, x Si, and y Sj then i<j. The length of the
schedule is t.

It is useful to associate a compatibility graph H(V, E’) with the given precedence
graph G( V, E). H( V, E’) is an undirected graph with an edge between a pair of vertices
x an’d y if they are compatible, i.e., there is no directed path from x to y or y to x in
G. The following theorem gives the fundamental relationship between matchings and
schedules.

THEOREM 1 (Fujii, Kasami, and Ninomiya [FKN]). For G andHas defined above,
the pairedjobs in any optimal schedulefor Gform a maximum matching in H. Moreover,
any maximum matching in H can be transformed into an optimal schedulefor G, leaving
the set of unpaired jobs unchanged.

Note that not all maximum matchings in H correspond to valid schedules for G;
for a maximum matching to correspond to a valid schedule, it should be possible to
linearly order the pairs so that all precedence constraints are satisfied. The content of
the above theorem of [FKN] is a sequential procedure to transform any maximum
matching into a valid schedule without changing the set of unpaired jobs.

The connection between matchings and schedules goes further. In 5 we show
that the lexicographically first maximum matching (under a natural ordering on the
edges of H) always corresponds to an optimal schedule. The parallel algorithm
presented in this paper finds an optimal schedule by constructing precisely such a
lexicographically first matching.

3. The algebraic connection. The results of this section are of independent interest;
in this section, we will let G(V, E) denote an undirected graph, with IV] n.

DEFINITION. The determinant of matrix A will be denoted by det (A), and its
(i, j)th entry will be denoted by aij. The adjacency matrix D of graph G( V, E) is given
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by

1 if(v/, vj) E,
diJ= 0 otherwise.

The Tutte matrix A of graph G(V, E) is given by

ao

xij if(v/, v) E and i>j,

-xi if (Vi, Vj) E and <j,

0 otherwise.

THEOREM 2 (Tutte [Tu]). Let A be the Tutte matrix of a graph G( V, E). Then,
det (A) 0 if and only if there exists a perfect matching in G.

The following is a natural generalization of Tutte’s theorem to maximum
matchings.

THEOREM 3 (LovS.sz [LP]). Let A be the Tutte matrix of a graph G( V, E), and let
m be the number of edges in a maximum matching in G. Then, rank (A)= 2m.

Rabin and Vazirani [RV] have given a simple proof of Theorem 3 using a theorem
of Fr6benius [Ko, p. 144] stated below. We use their approach to give a further
generalization below.

DEFINITION. The node-set of a maximum matching M is an n-dimensional 0/1
vector whose ith component is if and only if vertex vi is matched in M. Let n denote
the lexicographically first such node-set.

Notation. We represent a basis of an n n matrix A as an n-dimensional 0/1
vector, whose ith component is one if and only if the ith row of A is in the basis.
Given n-dimensional vectors u, v, Auv is the submatrix of A obtained by choosing
rows corresponding to indices having l’s in u, and columns corresponding to indices
having l’s in v. Similarly, Gu is the subgraph of G induced on vertices corresponding
to indices having l’s in u. We will denote the number of l’s in u by # u.

THEOREM 4 (Fr/Sbenius [Ko, p. 144]). Let B be an n by n skew-symmetric matrix.
Let u, v be n-dimensional vectors such that # u- # v rank B). Then

det (B..). det (Bye) (-1) *u det (Bu)2.

THEOREM 5. Let A be the Tutte matrix of a graph G( V, E ). A vector w {0, 1} is
a basis ofA if and only if w is the node-set of a maximum matching in G.

Proof Let w be the node set of a maximum matching in G. Since Gw has a perfect
matching, by Tutte’s theorem det (Aww) O. Thus the rows of A indexed by w are
linearly independent. Moreover, by Theorem 3 rank (A)= # w. Thus w is a basis of A.

Conversely, let w be a basis of A. Then, there is a vector v {0, 1} such that
v=w, and det(Aw)0. Since rank(A)=#w=v, by Fr6benius’ theorem
det (Aww) O. Now, by Tutte’s theorem Gw has a perfect matching, and by Theorem
3 this matching is a maximum matching in G. Hence w is the node-set of a maximum
matching in G. 13

COROLLARY. The lexicographically first basis ofA is n.
THEOREM 6. There is an RNC algorithm forfinding n. It requires (M(n) log2 n)

processors.
Proof Choose a random substitution S: set of variables in A- [1,..., 2n] to

obtain the matrix As. Certainly, any basis of As is a basis of A. Let w {0, 1}" be the
lexicographically first basis of A. Then, det (Aww) O. This is a nonvanishing polynomial
of degree at most n. Hence, by Schwartz’s theorem [Sc], the probability that this
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polynomial vanishes under the random substitution S is"

deg(det(aww)) <1Aww) =0] -<Pr [det s

2n 2
sTherefore, with probability at least , A has the same lexicographically first basis as

A. We now use the RNC2 algorithm of Borodin, van zur Gathen, and Hopcroft [BGH]
for finding the lexicographically first basis of A. For better processor efficiency, the
computations can be done over a finite field (see. [RV] for details). This requires
O(M(n) log n) processors, where M(n) is the number of arithmetic operations
required to multiply two n x n matrices.

4. Highest-level-first schedules. As before, let V be the set ofjobs to be scheduled,
and let G( V, E) be a directed acyclic graph that represents the precedence constraints
among the jobs.

DEFINITION. The level of a job is one plus the length of the longest directed path
in G starting at the job.

Note that all constraints go from higher (numbered) levels to lower levels, and
there are no constraints among jobs that are at the same level. Assume that the levels
are numbered L, L-1,. ., 1.

DEFINITION. A schedule is a level schedule if for every level i, there is at most
one job at level paired with a job at a lower level, say j. Such a pair (if it exists) is
called a jump, and the jump of level is said to be j. If all jobs at level are paired
with jobs at level or larger, then its jump is i, and if a job remains unpaired at level
i, then its jump is 0.

THeOReM 7 (Gabow [Gall). Any optimal schedule on a dag G(V, E) can be
transformed into a level schedule, without changing the set of unpaired jobs.

DEFINITION. The jump-sequence of a level schedule is an L-tuple
(PL, PL-1,""", Pl) where Pi is the jump of level i.

The lexicographic ordering on jump-sequences induces a partial ordering on level
schedules.

DEFINITION. A level schedule is highest-level-first (HLF) if its jump sequence is
lexicographically largest among all valid schedules for G.

Intuitively, such a schedule always jumps to the highest level possible. Moreover,
within this level, it jumps to a job that allows subsequent jumps to be highest possible.
The importance of such a schedule comes from the following theorem.

THeOReM 8 (Gabow [Gall). Any highest-level-first schedule on a dag G(V, E) is

optimal.
Remark. Let us assign to each edge in the compatibility graph the ordered pair

(h, l) where h is the level of the higher endpoint of the edge and is the level of the
lower endpoint. Assign priorities to the edges by comparing the associated ordered
pair; note that edges that run between the same levels have the same priority. Now
matchings can be compared lexicographically in the obvious manner. It is easy to
check that the paired jobs of any HLF schedule form a lexicographically highest
matching in this sense.

5. Further connections between matchings and HLF schedules. In this section we
prove two new properties of HLF schedules; these properties show that HLF schedules
are "well behaved," and are essential to proving the correctness of the parallel
algorithm. The first property (proved in Theorem 9) states that HLF schedules leave
unpaired jobs at the lowest possible levels. The second (proved in Theorem 10) states
that restricting an HLF schedule to jobs at levels or greater yields an HLF schedule
for the resulting dag.
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DEFINITION. The coarse-jump-sequence of a level schedule S is an L-dimensional
0/1 vector (sL" s) such that si is 0 if and only if S leaves a job unpaired on level
i. Note that if S is a level schedule with jump sequence (pL,. , Pl), its coarse-jump-
sequence is given by si 0 if and only if Pi 0.

DEFINITION. The level-set of a maximum matching M in H is an L-dimensional
0/1 vector whose ith component is 0 if and only if there is an unmatched vertex at
level i. Let In denote the lexicographically largest level-set. Recall that nH is the
lexicographically first node-set of a maximum matching in H.

THEOREM 9. The coarse-jump-sequence of an HLF schedule is lexicographically
greater than or equal to the coarse-jump-sequence of any level schedule on G.

Proof The proof is by contradiction. Suppose S is an HLF schedule on G with
coarse-jump-sequence s, and T is a level schedule whose coarse-jump-sequence is
lexicographically larger than s. Let be the highest level at which and s differ; then
S has an unpaired job at level and T does not. Let k be the number of unpaired
jobs in T at levels lower than i, and the number of unpaired jobs in T at levels higher
than i.

Obtain a new dag G’ from G as follows. Add k new jobs at the first level; put in
precedence constraints from each job at level or higher to each new job. Let S’ be
an HLF schedule on G’. Note that any level schedule for G when restricted to levels
or higher (including jumps from these levels to lower levels) is valid for G’, and vice

versa. Since S and S’ are HLF in G and G’, respectively, their jump sequences must
agree on level _-> i. Therefore S’ has at least l+ 1 unpaired jobs. On the other hand, T
can be modified into a schedule for G’ with only unpaired jobs. This contradicts the
optimality of S’.

LEMMA 1. The HLF coarse-jump-sequence in G is the same as 1n.
Proof Let M be a maximum matching in H whose level-set is IH. By Theorems

1 and 7 there is a level schedule for G having the same unpaired vertices as M, and
therefore its coarse-jump-sequence is also l,. The lemma now follows from Theorem 9.

Computing the HLF unpaired jobs in G has no.w been reduced to finding In. In
Lemma 2 we will reduce this to finding no, for which an RNC2 algorithm has been
given in 3. Note that if a maximum matching M achieves node-set nil, then M leaves
at most one vertex unmatched at each level. It is therefore straightforward to obtain
the level-set of M.

LEMMA 2. Pick any ordering > on the vertices ofH such that if level (x) is higher
than level (y) then x > y. Under this ordering, the level-set of any maximum matching
M achieving node-set nH is H.

Proof Let M be a maximum matching achieving node-set nH for this ordering,
and let N be a maximum matching with level-set 1/4. Since both matchings are maximum,
the symmetric difference of M and N contains even cycles and even length paths.
Each even length path must have its endpoints at the same level, otherwise we could
improve either M or N. Hence M and N have their unmatched nodes at the same
levels. [3

DEFNrrON. Let G( V, E) be a dag, partitioned into L levels. For 1 =< =< L, define
Gi to be the dag induced on vertices belonging to levels L, L- 1, , i. For convenience,
we number the levels of Gi as L, L-l,..., i.

THEOREM 10. Let the HLF jump-sequence for G be (p, pt-, , P). Then, for
1 <= <= L, the HLF jump-sequence for G is (q, q_, , qi), where

{ Po fPJ >= i,
q

otherwise.



TWO-PROCESSOR SCHEDULING IN RNC 1145

We follow the method of Gabow for modifying schedules. First we introduce the
relevant definitions and lemmas from [Gal].

DEFINITION. A k-schedule is a level schedule for levels L,..., k and nodes in
lower levels jumped from these levels. (A k-schedule is just a prefix of a complete
schedule.)

DEFINITION. Let S be a k-schedule, with level (x) > level (y). Say that y is x-ready
in S if x does not precede y, and all predecessors of y below level (x) are jumped
from above level (x).

Let M be an HLF k-schedule, and let O be a k-schedule that is HLF up to level
k+l.

LEMMA 3 (Gabow [Gal]). If (x, y) is a jump in 0 with level (x)> k, then y is

x-ready in M.
DEFINITION. A chain consists of nodes xi, 1 _-< _-< c + 1, and yi, 0_-< _-< c for c _-> 1,

where
(1) (x, y) is a jump in O, for 1 _-< -<_ c.
(2) (yi, x+2) is a jump in M, for 0_-< -<_ c- 1.
(3) level (x) level (Yi-1), for 1 _-< -< c+ 1.

Adapting Theorem 2.1 of [Gal] to our setting, we obtain Lemma 4.
LEMMA 4 (Gabow [Gal ]). LetMand 0 be as above; consider a chain with level (xl)

as high as possible, and with c maximal with level (Xc+l)>-- k. Let Xl be paired with u in
M and Yo be paired with Xo in O; clearly, level (u)- level (Yo)= level (Xo)- level (xl).

(1) If there is nojumpfrom Xc+ in O, then 0 can be modified into a valid k-schedule
by replacing (xi, Yi) by (Yi-1, Xi+l) for 1 to c, and by replacing (Xo, yo) and (Xc+l, y+l)
with (Xo, Xl) and (Y+I, Y).

(2) If there is no jumpfrom y in M, then M can be modified into a valid k-schedule
by replacing (yi-1, Xi+l) with (xi, yi) for i= 1 to c, and by replacing (u, x) and (v, yc)
with (u, Yo) and (v, x+).

(3) level (x+)= level (y)= k, and (x+, Yc+l) is a jump in 0 and (y, x+2) is a
jump in M. Then 0 can be modified into a valid k-schedule, by replacing (x, yi) with
(y-l, X+l) for 1 to c + 1, and by replacing (Xo, Yo) with (Xo, x).

Proofof Theorem 10. Let S’ be an HLF schedule for G, and let (r/, rL-1,""", r)
be its jump-sequence. Assume for contradiction that (rL, r_,..., ri) is larger than
(q, q/_, , q). Let k be the highest level where the two jump-sequences differ.

Choose k-schedules M and O for G(V, E):
(1) M has jump sequence (p, pl-, , Pk).
(2) O has jump sequence (pL, , p+l, r, , rk).
(3) j is as small as possible.
(4) Among pairs of k-schedules satisfying (1), (2), and (3), M and O have the

largest number of common jumps.
If j k then O has a larger jump-sequence than M, thus contradicting the fact

that M is HLF. Otherwise, pick jumps (Xl, Yl) in O and (Yo, x2) in M, with level (xl)
level (Yo) as high as possible, and (xl, Yl) (Yo, x2). Let these jumps be the start of a
chain as defined above with c maximal. We first prove that level (x)_->j. Assume for
contradiction that level (xc)<j. Let level (Xd)>j> level (Xd+l)----> k _-> i. Let x be the job
that jumps from level j in M. By Lemma 3, Xd+l is yd+l-ready in M, and therefore
x-ready in M. Thus M can be modified by jumping x to Yd-, thus contradicting the
fact that M is HLF.

Now let M’ and O’ denote j-schedules corresponding to M and O, respectively.
Then M’ and 0’ satisfy the conditions of Lemma 4. Therefore either M’ or O’ can be
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modified (according to which of the three cases applies to the chain defined above)
to increase the number of common jumps or to make O’ jump to level p from level
j. The new pair of j-schedules can be extended to k-schedules, thus contradicting
condition (3) or condition (4) above.

COROLLARY. max {i:jth component of the HLFjump-sequencefor G is nonzero}
P.

Say that a jump-sequence is realizable if there is a level schedule for G with this
jump-sequence. Given a jump-sequence, we show how to construct a graph K V’, E’)
which has a perfect matching if and only if the jump-sequence is realizable, and if so
each perfect matching reveals the set of jumps of one such schedule.

V’--VU VU... V, where L is the number of levels in G, and the V/’s are
disjoint from each other and from V.

Let l(i) denote the number of vertices at level i;
Let k(i)= number of levels that jump to level i;
If 0 <jump (i) < i, then V[ l(i) k(i) 1, and otherwise V[ l(i) k(i).
(x, y) E’ if either
(1) x, y V, with level (x) and level (y) =L jump (i) =L 0 <j < i, and x is not

a predecessor of y (these will be called the type 1 edges), or
(2) x V, with level (x) i, and y V/ (these will be called the type 2 edges).
LEMMA 5. H has a perfect matching if and only if the given jump sequence is

realizable. Moreover type edges in the perfect matching are a valid realization of the
jump sequence (with the exception ofjumps to level 0).

Proof If the jump sequence is realizable, then H has the following perfect
matching. Match a type 1 edge only if it is a jump. This leaves exactly the correct
number of vertices at level to be matched with vertices in V/.

We prove that the type 1 edges in the perfect matching realize the jump sequence
by induction on L. This is true for the Lth level by the choice of IVL[. Removing V
and the Lth level of V, we obtain a graph with L-1 partitions, and the proof follows
by induction.

6. The parallel algorithm. Procedure COARSE-JUMP-SEQUENCE below com-
putes the coarse-jump-consequence of an HLF schedule for the given directed graph
G(V,E). Procedure JUMP-SEQUENCE computes the HLF jump-sequence for
G( V, E). Procedure JUMPS computes the jumps for some HLF schedule for G( V, E).
Once the jumps are known, it is an easy matter to pair up the remaining jobs to get
an HLF schedule.

PROCEDURE COARSE-JUMP-SEQUENCE.
1. In parallel topologically sort G to assign levels.
2. Assign distinct numbers to the vertices of G, with v > w if level (v)>

level (w).
3. Obtain the compatibility graph H.
4. In parallel compute n, (under the above numbering).
5. Compute 1, from n, and output it.

end.

PROCEDURE JUMP-SEQUENCE.
For j 1 to L do in parallel:

Find the HLF coarse-jump-sequence for Gj.
end;
For j 1 to L do in parallel:
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jump (j)=max {i:i <=j ^jth component of the HLF coarse-jump-sequence for
G is one}.
output jump (j);

end;
end procedure;

PROCEDURE JUMPS [G].
Compute the HLF jump-sequence for G;
Construct an undirected graph K for this jump sequence as in Lemma 6.
Find a perfect matching in H;
Output the type 1 edges in the perfect matching.

end procedure;

TrEOREM 11. There is an RNC2 algorithm that finds an optimal two-processor
schedule (in particular, an HLF schedule) in a dag G(V, E).

Proof The correctness of procedure COARSE-JUMP-SEQUENCE follows from
Theorem 9 and Lemmas and 2; the correctness of procedure JUMP-SEQUENCE
follows from the corollary to Theorem 10. The correctness of procedure JUMPS follows
from Lemma 5. Procedure JUMPS determines the set of jumps of an HLF schedule
(except the jumps to level 0). Now, if a level has an even number of jobs remaining,
they can be paired off, and if it has an odd number of jobs remaining, one job will
remain unpaired. The jobs can also be assigned appropriate time slots.

Each of the procedures can be implemented in RNC2, yielding an RNC2 algorithm
overall. Two computations require the most number of processors: computing the
ranks of n matrices in parallel, and finding a perfect matching. The second task
dominates the first, since in the first task, the computations can be done modulo a
prime, as elaborated in [RV] (see Theorem 6). The graph H in which a perfect matching
is found has O(n) vertices and O(n2) edges. This requires O(n2M(N)) processors
using the matching algorithm of [MVV] that uses the matrix inversion algorithm of
[Pa]. Here M(n) denotes the number of arithmetic operations required to multiply
two n x n matrices. The current best bound for M(n) is O(n2"376) [CW]. [-]

Using [FKN] and the RNC2 algorithm of Karlott [Ka] for upper-bounding the
size of maximum matching in a graph, we get an RNC2 algorithm for upper-bounding
the length of the optimal schedule. By running this algorithm and the scheduling
algorithm in parallel, until they agree on the size of the optimal sequence, we get the
following corollary.

COROLLARY. There is a Las Vegas parallel algorithm that in expected time O(log n)
finds an optimal schedule in a dag G(V, E). It runs on O(nM(n)) processors.

7. Discussion. An important issue left open in this paper is whether two-processor
scheduling is in (deterministic) NC. Helmboldt and Mayr [HM] have resolved this
question affirmatively. This result, together with the NC algorithm for transitively
directing a comparability graph, yields a NC algorithm for constructing a maximum
matching in an incomparability graph [KVV]. Both the parallel algorithm presented
here as well as that due to Helmboldt and Mayr suffer from a large processor
complexitythe parallel algorithm of this paper uses O(n45) processors, and
Helmboldt and Mayr’s algorithm uses O(n7L) processors. On the other hand, the
problem can be solved sequentially in linear time [Ga2], [GT]. Improving the processor
efficiency of the parallel algorithm remains an open problem.

A long-standing open problem in scheduling theory is to resolve the complexity
of the k-processor scheduling problem, for fixed k, k >_- 3. We conjecture that in contrast
to the k 2 case, for k => 3, this problem is log-space hard for P.
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Finally, the problem of finding an HLF schedule may be stated as the problem
of finding the lexicographically largest maximum matching in an incomparability graph,
with a partial ordering on the edges given by the level numbers of their endpoints (see
the remark in 4). The general problem of finding the lexicographically first maximum
matching is open. Can some of the techniques of this paper be generalized to handle
this larger problem?
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APPROXIMATING THE PERMANENT*

MARK JERRUM? AND ALISTAIR SINCLAIR?

Abstract. A randomised approximation scheme for the permanent of a 0-1 matrix is presented. The
task of estimating a permanent is reduced to that of almost uniformly generating perfect matchings in a

graph; the latter is accomplished by simulating a Markov chain whose states are the matchings in the graph.
For a wide class of 0-1 matrices the approximation scheme is fully-polynomial, i.e., runs in time polynomial
in the size of the matrix and a parameter that controls the accuracy of the output. This class includes all
dense matrices (those that contain sufficiently many l’s) and almost all sparse matrices in some reasonable
probabilistic model for 0-1 matrices of given density.

For the approach sketched above to be computationally efficient, the Markov chain must be rapidly
mixing: informally, it must converge in a short time to its stationary distribution. A major portion of the
paper is devoted to demonstrating that the matchings chain is rapidly mixing, apparently the first such result
for a Markov chain with genuinely complex structure. The techniques used seem to have general applicability,
and are applied again in the paper to validate a fully-polynomial randomised approximation scheme for
the partition function of an arbitrary monomer-dimer system.

Key words, permanent, perfect matchings, counting problems, random generation, Markov chains, rapid
mixing, monomer-dimer systems, statistical physics, simulated annealing
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1. Summary. The permanent of an n x n matrix Awith 0-1 entries aij is defined by
n--1

per (A) I-[ air,i),

where the sum is over all permutations r of In]= {0,..., n-1}. Evaluating per (A)
is equivalent to counting perfect matchings (1-factors) in the bipartite graph G=
U, V, E), where U V n and (i, j) E if and only if aij 1. The permanent function

arises naturally in a number of fields, including algebra, combinatorial enumeration,
and the physical sciences, and has been an object of study by mathematicians since
first appearing in 1812 in the work of Cauchy and Binet (see [26] for background).
Despite considerable effort, and in contrast with the syntactically very similar deter-
minant, no efficient procedure for computing this function is known.

Convincing evidence for the inherent intractability of the permanent was provided
in the late 1970s by Valiant [32], who demonstrated that it is complete for the class
4 P of enumeration problems, and thus as hard as counting any NP structures. Interest
has therefore recently turned to finding computationally feasible approximation
algorithms for this and other hard enumeration problems [18], [30]. To date, the best
approximation algorithm known for the permanent is due to Karmarkar et al. [17]
and has a runtime that grows exponentially with the input size.

The notion of approximation we will use in this paper is as follows. Let f be a
function from input strings to natural numbers. A fully-polynomial randomised approxi-
mation scheme (fpras) for f is a probabilistic algorithm that, when presented with a
string x and a real number e > 0, runs in time polynomial in Ixl and 1/e and outputs

Received by the editors October 6, 1988; accepted for publication January 10, 1989. A preliminary
version of this paper appeared in the Proceedings of the 20th ACM Symposium on Theory of Computing,
Chicago, May 1988, under the title "Conductance and the Rapid Mixing Property for Markov Chains: The
Approximation of the Permanent Resolved."

? Department ofComputer Science, University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JZ,
United Kingdom.
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a number that with high probability approximates f(x) within ratio 1 + e. For definite-
ness we take the phrase "with high probability" to mean with probability at least .
This may be boosted to 1- 6 for any desired 3 > 0 by running the algorithm O(lg 6-)
times and taking the median of the results 16, Lemma 6.1]. An fpras therefore embodies
a strong notion of effective approximation.

A promising approach to finding an fpras for the permanent was recently proposed
by Broder [8], who reduces the problem of approximately counting perfect matchings
in a graph to that of generating them randomly from an almost uniform distribution.
The latter problem is then amenable to the following dynamic stochastic technique.
Given a graph G, construct a Markov chain whose states correspond to perfect and
"near-perfect" matchings in G and which converges to a stationary distribution that
is uniform over the states. Transitions in the chain correspond to simple local perturba-
tions of the structures. Then, provided convergence is fast enough, we can generate
matchings almost uniformly by simulating the chain for a small number of steps and
outputting the structure corresponding to the final state.

When applying this technique, we are faced with the thorny problem of proving
that a given Markov chain is rapidly mixing, i.e., that after a short period of evolution
the distribution of the final state is essentially independent of the initial state. "Short"
here means bounded by a polynomial in the input size. Since the state space itself may
be exponentially large, rapid mixing is a strong property: the chain must typically be
close to stationarity after visiting only a very small fraction of the space.

Recent work on the rate of convergence of Markov chains has focused on stochastic
concepts such as coupling [1] and stopping times [3]. While these methods are
intuitively appealing and yield tight bounds for simple chains, the analysis involved
becomes extremely complicated for more interesting processes that lack a high degree
of symmetry. Using a complex coupling argument, Broder [8] claimed that the perfect
matchings chain above is rapidly mixing provided the bipartite graph is dense, i.e., has
minimum vertex degree at least n/2. This immediately implies the existence of an fpras
for the dense permanent. However, the coupling proof is hard to penetrate; more
seriously, as was first observed by Mihail [25], it contains a fundamental error that is
apparently not correctable. As a result Broder has withdrawn his proof (see the erratum
to [8]).

In this paper we propose a completely different approach to analysing the rate
of convergence of Markov chains that is based on a structural property of the underlying
weighted graph. Under fairly general conditions, a finite ergodic Markov chain is
rapidly mixing if and only if the conductance of its underlying graph is not too small.
This characterisation, discussed in detail in a companion paper [29], is related to recent
work by Alon [4] and Alon and Milman [5] on eigenvalues and expander graphs.

While similar characterisations of rapid mixing have been noted by other authors
(see, e.g., [2], [22]), they have been of little practical value because independent
estimates of the conductance have proved elusive for nontrivial chains. Using a novel
method of analysis, we are able to derive a lower bound on the conductance of Brocler’s
perfect matchings chain under the same density assumption, thus verifying that it is
indeed rapidly mixing. This is the first rapid mixing result we know of for a Markov
chain with nontrivial structure. The existence of an fpras for the dense permanent is
therefore established.

Reductions from approximate counting to almost uniform generation similar to
that mentioned above for perfect matchings also hold for the large class of combinatorial

For nonnegative real numbers a, 8, e, we say that 8 approximates a within ratio + e if a(1 + e)- _-< 8
a(l+e).
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structures that are self-reducible [16], [29]. Consequently, the Markov chain approach
is potentially a powerful general method for obtaining approximation algorithms for
hard combinatorial enumeration problems.

In fact, Markov chain simulation is a rather useful algorithmic tool with a variety
of computational applications. Perhaps the most familiar of these are to be found in
the field of statistical physics, where a physical system is typically modelled by a set
of combinatorial structures, or configurations, each of which has an associated weight
depending on its energy. Most interesting properties of the model can be computed
from the partition function, which is just the sum of the weights of the configurations.
An fpras for this function may usually be obtained with the aid of a generator that
selects configurations with probabilities roughly proportional to their weights. This
suggests looking for a Markov chain on configurations with the appropriate (nonuni-
form) stationary distribution. Such chains are in fact the basis of the ubiquitous Monte
Carlo method of Metropolis et al. [6] that is extensively used among other things to
estimate the expectation of certain operators on configurations under the weighted
distribution.

In such applications efficiency again depends crucially on the rate of convergence
of the Markov chain. Significantly, our proof technique for rapid mixing seems to
generalise easily to other interesting chains. We substantiate this claim here by consider-
ing a Metropolis-style process for monomer-dimer systems [14], which are a model of
physical systems involving diatomic molecules. In this case configurations correspond
to matchings (independent sets of edges of any size) in a given weighted graph, and
the weight of a configuration is the product of its edge weights. Using our earlier
method of analysis, we are able to show that this Markov chain is rapidly mixing under
very general conditions. As a result we deduce the existence of an fpras for the
monomer-dimer partition function. This includes as a special case an fpras for the
: P-complete problem of counting all matchings in an arbitrary graph.

The monomer-dimer chain also provides valuable new insight into our original
problem of approximating the permanent. Most notably, by appending suitably chosen
weights to the edges of the input graph we can use the chain to obtain a more elegant
approximation scheme for counting perfect matchings. The scheme is immediately
seen to be fully-polynomial if and only if the number of "near-perfect" matchings in
the graph does not exceed the number of perfect matchings by more than a polynomial
factor. This turns out to be rather a weak condition: it is satisfied not only by all dense
graphs but also, in a sense that we will make precise later, by almost every bipartite
graph that contains a perfect matching. Moreover, we present an efficient randomised
algorithm for testing the condition for an arbitrary graph, allowing pathological
examples to be recognised reliably.

A further byproduct of our work on the monomer-dimer process is the following.
Consider the problem of finding a maximum cardinality matching in a given graph.
The Markov chain above may be viewed as an application of the search heuristic
known as simulated annealing [21] to this optimisation problem. Suppose the maximum
cardinality of a matching is rn and let e > 0 be fixed. Then our results readily imply
that, with a suitable choice of edge weights (or equivalently, "temperature"), the search
finds a matching of size at least (1- e)m in polynomial time with high probability.
This represents a considerable simplification of a recent result of Sasaki and Hajek [27].

The remainder ofthe paper is structured as follows. In 2 we state our characterisa-
tion of rapid mixing in terms of conductance for a broad class of Markov chains, and
illustrate by means of a simple example our technique for obtaining lower bounds on
the conductance. Section 3 is devoted to a proof that Broder’s method does indeed
yield an fpras for the dense permanent. In 4 we discuss the Markov chain for
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monomer-dimer systems and derive an fpras for the partition function. Other applica-
tions of this chain, including the improved algorithm for the permanent, appear in 5.
Section 6 deals with the approximation of the permanent of a randomly selected 0-1
matrix of given density. Finally, in 7 we list a few open problems.

2. Markov chains and rapid mixing. In this section we establish some general
machinery for reasoning about the nonasymptotic behavior of Markov chains which
will play a central role throughout the paper. We assume a nodding acquaintance with
the elementary theory of finite Markov chains in discrete time. (For more information
the reader is referred to [20].)

Let (X,),=o be a time-homogeneous Markov chain with finite state space 3f and
transition matrix P=(Pq)i,sx. (All chains in this paper are assumed to be of this
form.) If the chain is ergodic we let or= (rri)ix denote its stationary distribution, the
unique vector satisfying rP--r and i 7ri 1. In this case, if the chain is allowed to
evolve for steps from any initial state the distribution of its final state approaches
as t--> oe. Necessary and sufficient conditions for ergodicity are that the chain is (a)
irreducible, i.e., any state can be reached from any other in some number of steps; and
(b) aperiodic, i.e., gcd {s: is reachable from j in s steps} 1 for all i,j 2f.

As explained in the previous section, our intention is to use simulation of an
ergodic chain as a means of sampling elements of the state space from a distribution
close to . We shall always assume that individual transitions can be simulated at low
cost. From the point of view of efficiency, our major concern is therefore the rate at
which the chain approaches stationarity. As a time-dependent measure of deviation
from the limit, we define the relative pointwise distance (r.p.d.) after steps by

A(t) max
IpI!

"Ac "ITj

where pi is the t-step transition probability from state to state j. Thus A(t) gives
the largest relative difference between the distribution of the state at time and ax,
maximised over initial states i. Our aim is to establish conditions under which the
chain is rapidly mixing, in the sense that A(t) tends to zero fast as a function of t.

An ergodic Markov chain is said to be time-reversible if it satisfies the detailed
balance condition

1 poTri Pjil’j V i, j .
Analysis of time-reversible Markov chains is simplified by the following observation.

LEMMA 2.1. Suppose (Xt) is an ergodic Markov chain with finite state space A; and
transition matrix P. Let Tri)ix be any vector satisfying the detailed balance condition
(1) and the norrnalisation condition Y 7r 1. Then the Markov chain (Xt) is time-

reversible and r is its (unique) stationary distribution. I-I
We may naturally identify a time-reversible chain with an underlying weighted

graph as follows. The vertices of the graph are the states of the chain, and for each
(not necessarily distinct) pair i,j 3c with po>0 there is an edge (i, j) of weight
wij PijTri pir. For convenience we set Wij 0 for all pairs of states i, j between which
no transition is possible. Note that this graph uniquely specifies the Markov chain.

As in [29], we define the conductance of a time-reversible chain with underlying
graph H by

(2) O(H) =min
EiS,jS Wij
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where the minimisation is over all subsets S of states with 0<YisTri-<1/2. Note that
the quotient in (2) is just the conditional probability that the stationary process escapes
from S in a single step, given that it is initially in S. The conductance in some sense
measures the rate at which the process can flow around the state space, so we might
expect it to be connected with the rate of convergence of the chain. In fact, by relating
(H) to the second eigenvalue of the transition matrix that governs the transient

behaviour of the chain, it is possible to obtain the following result. A proof can be
found in [29].

THEOREM 2.2. Let H be the underlying graph of a time-reversible ergodic Markov
chain in which mini p, >- 1/2, and let 7rmi mini 7ri be the minimum stationary state probabil-
ity. Then the r.p.d, of the chain is bounded by

A(t)-- (1-(n)2/2)t.
3Tmin

The following immediate corollary is useful. Define the function -: +-* N by

’(e)-min{tN:A(t’)<--e for all t’>=t}.

COROLLARY 2.3. With the notation of Theorem 2.2, we have

2
37"mi’(e) < .2(In +lne

(H

Theorem 2.2 allows us to investigate the rate of convergence of a time-reversible
chain by examining the structure of its underlying graph: convergence will usually be
rapid if the conductance is not too small. In our applications we will always be dealing
with families of Markov chains C(x) indexed by problem instances x. (Thus x might
be a graph and C(x) some Markov chain on the set of matchings in the graph.) Let
.(x) denote the function - above for the chain (x). Then the rapid mixing property
referred to informally earlier requires that ’(x)(e) should be bounded above by a
polynomial in the input size Ixl and lg e -. This means that the number of steps
required to achieve some specified sampling accuracy increases only polynomially with
the problem size. As is clear from Corollary 2.3, rapid mixing will usually follow from
a lower bound of the form 1/poly(lxl) on the conductance . In this and subsequent
sections, we show how to derive such bounds for several interesting chains. Other
examples are given in [29].

Remarks. (a) The condition minp, =>1/2 is a technical device that simplifies the
statement of the theorem by damping oscillatory or "near-periodic" behaviour [29].
Note that an arbitrary Markov chain can be modified to make the condition hold
simply by replacing P by 1/2(I + P), where ! is the I1 I1 identity matrix. This operation
leaves the stationary distribution unchanged and merely reduces the conductance by
a factor of .1 (In fact, we have just added a self-loop probability of to each state’, for
the purposes of practical implementation the waiting time at each state may be simulated
more efficiently by a separate random process.)

(b) Theorem 2.2 has a converse stating that, under the same assumptions, A(t)
(1-2(H))’ [28]. Hence we effectively have a characterisation of rapid mixing for a
large class of time-reversible chains in terms of the graph-theoretic quantity .

(c) Similar relationships between subdominant eigenvalues of graphs and their
structural properties have appeared in the work of Alon [4] and Alon and Milman
[5]. The significance of Alon’s result as a sufficient condition for rapid mixing for
certain Markov chains has been noted by several authors; in particular, Aldous [2]
states a restricted version of Theorem 2.2 for random walks on regular graphs. Our
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conductance op is a weighted edge analogue of the magnification studied in [4], [2]
and gives a cleaner and more natural formulation of this connection. Very recently,
Lawler and Sokal [22] have independently discovered a characterisation similar to
ours but in a rather more general context.

As it stands, the rapid mixing criterion of Theorem 2.2 is essentially only of
theoretical interest. To turn it into a useful practical tool, we need to develop some
technology for estimating the conductance of the underlying graphs of natural Markov
chains. This we now do with the aid of a simple example.

For a positive integer n, let B(n) {0, 1} denote the set of bit vectors of length
n. Consider the family of Markov chains 3//C(n) with state space B(n) and transitions
as follows. In any state v=(Vo,"’,vn_l), select i{0,...,n-1} uniformly at
random and flip the value of the bit vi. To eliminate periodicity, remain at v with
probability .

C(n) is obviously irreducible and aperiodic, and hence ergodic. Using Lemma
2.1, it is easily verified that (n) is time-reversible and that its stationary distribution
is uniform over B(n). The conditions of Theorem 2.2 are satisfied, so the rate of
convergence of C(n) depends on the conductance of its underlying graph H(n). In
H(n), two states are adjacent if and only if they differ in at most one bit. Thus H(n)
is just the n-dimensional hypercube, each nonloop edge having weight (2nN) -1, where
N=IB(n)[ is the number of states.

PROPOSVrON 2.4. The conductance of H(n) satisfies (H(n)) > 1/2n.
Before presenting the proof of Proposition 2.4, which is the main point of this

example, let us note that it implies rapid mixing for the family of chains C(n). By
Corollary 2.3 the number of simulation steps required to achieve an r.p.d, of e is
O(n2(n+ln e-)), which is polynomially bounded in n and lg e -1. Thus an algorithm
that simulates (n) from some arbitrary initial state constitutes an efficient almost
uniform sampling procedure for bit strings of length n. (Of course, there are more
direct ways of doing this!)

Proof of Proposition 2.4. From the definition (2) we may write

[cut
rain(3) (H(n))

2n o<lsl__<u/2 IS
where for each S

_
B(n), cut (S) denotes the set of cut edges in H(n) defined by S.

Our argument hinges on the following observation. Suppose it is possible to specify
a canonical simple path in H(n) between each ordered pair of distinct states in such
a way that no oriented edge of H(n) is contained in more than bN of the paths. If S
is any subset of states with O<]S]<-N/2, then the number of paths which cross the
cut from S to its complement is clearly

ISI(N-ISI) >- ISIN/2.

Thus for any such S the number of cut edges must be at least ISIN/2bN ISI/2b, and
so from (3) we have

(4) P(H(n)) >-.
4nb

To get a lower bound on (H n )) it therefore suffices to define a collection of canonical
paths in H(n) that are "sufficiently edge disjoint," as measured by the parameter b.

We now proceed to define a suitable set of paths. Let u (ui) n-i:0 and v=(vi) --’i:o
be distinct elements of B(n), and i <... < il be the positions in which u and v differ.
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Then for =<j =< l, the jth edge of the canonical path from u to v corresponds to a
transition in which the ijth bit is flipped from uii to vii.

Consider now an arbitrary transition of c(n) (or, equivalently, an oriented
edge of H(n)); our aim is to bound the number of paths that contain t. Suppose that
takes state w (wi) to state w’= (wl) by flipping the value of wk, and let P(t) denote

the set of paths containing t, viewed as ordered pairs of states. Ra.ther than counting
elements of P(t) directly, we will set up an injective mapping from P(t) into the state
space B(n); this will yield an upper bound on the ratio b appearing in (4).

The mapping o’,: P(t)--> B(n) is defined as follows. Given an ordered pair (u, v)
P(t), set cr,(u, v) (si), where

0 <- ink,
Si

vi, k<i<n.

Thus o-,(u, v) agrees with u on the first k+ bits and with v on the remainder. Note
that we can express this definition more succinctly as r,(u, v)= u@v w’, where @
denotes bitwise exclusive-or.

We claim that cr,(u, v) is an unambiguous encoding of the endpoints u and v, so
that o-, is indeed injective. To see this, simply note that

{ O<i<k,Si, O<i<k, Wi,
/gi /’)i

Wi, k < < n, si, k < < n.

Hence u and v may be recovered from knowledge of and o-,(u, v), so or, is injective.
It follows immediately that IP(t)[ _-< N; in fact, since all vectors (si) in the range of r,
satisfy Sk Wk, we have the slightly stronger result that IP(t)l <- N/2. Since was chosen
arbitrarily, the number of paths traversing any oriented edge cannot exceed N/2. Thus
we may set b 1/2 in inequality (4) and deduce the desired bound on the conductance
(H(n)).

Remark. The bound of Proposition 2.4 is tight. To see this, let S be the subset of
B(n) consisting of all vectors with first bit 0 and note that Icut (S)]/ISI 1. Hence
(H(n))=l/2n.

Some observations on the above proof are in order here. The idea of path counting
is quite general and has been used before in the literature to investigate the connectivity
properties of various graphs in other contexts (see e.g., [31], in which the hypercube
is also studied). The novelty of our proof lies in the use of the injective mapping
technique to bound the number of paths which traverse an edge. This is not actually
necessary in this simple example as the paths could have been counted explicitly. The
point is that in more complex cases the states of the chain will be less trivial structures,
such as matchings in a graph, and we will have no useful information about their
numbermindeed, this is what we will ultimately be trying to compute. It is then crucial
to be able to bound the maximum number of paths through any edge in terms of the
number of states without explicit knowledge of these quantities. This is precisely what
the injective mapping technique achieves. As we will see presently, it turns out to be
rather generally applicable.

Other simple Markov chains may be analysed in a similar fashion [28]. Examples
of rapidly mixing families include random walks on n-dimensional cubes of side d
and a host of "card-shuffling" processes whose state space is the set of permutations
of n objects and whose transitions correspond to some natural shuffling scheme. These
and similar processes have been extensively studied using other methods such as
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coupling, stopping times, and group representation theory (see [1], [3], [10] for a

variety of examples). The time bounds obtained by these methods are generally rather
tighter than ours and can often be shown to be optimal. However, the full power of
our approach will become apparent in the sequel where it will permit the analysis of
highly irregular chains with only a little additional effort. Most significantly, such
chains have seemingly not proved amenable to analysis by any of the other established
methods.

3. Approximating the permanent. In this section we consider Broder’s method for
approximating the permanent of a square 0-1 matrix, as sketched in 1. Our main
result is that the method yields an fpras for a large class of matrices, including all
those that are sufficiently dense. Thus Broder’s principal claim in [8] turns out to be
true despite the fallacious coupling argument given there.

We will work with the perfect matching formulation of the permanent as described
in 1. Let G=(U,V,E) be a bipartite graph with U=V={0,...,n-1}, and for
k let Mk(G) denote the set of matchings of size k in G. Thus Mn(G) is the set of
perfect matchings in G and its cardinality is equal to the permanent of the n n 0-1
matrix associated with G. We assume throughout this section that Mn (G) is nonempty:
it is well known that this property can be tested in polynomial time [11].

The method is based on the observation that an fpras for IMn(G)I can be construc-
ted easily given an efficient procedure for sampling perfect and "near-perfect" match-
ings in G almost uniformly at random. First we must say more precisely what we mean
by such a procedure. Let A/" be the set M(G)U M_t(G). An almost uniform generator
for N is a probabilistic algorithm that, when presented with G and a positive real bias
e, outputs an element of N such that the probability of each element appearing
approximates IA/’[ - within ratio + e. The generator is fully polynomial (f.p.) if it runs
in time bounded by a polynomial in n and lg e -1. (Generators for combinatorial
structures are discussed in a more general framework in [16], [28], [29].) Actually,
since all the generators we construct in this paper are based on rapidly mixing Markov
chains, it should be clear that they embody effective procedures for sampling structures
from a given distribution under any reasonable definition.

We call the bipartite graph G dense if its minimum vertex degree is at least n/2.
It is shown in [8] that the problem of counting perfect matchings in dense graphs is
no easier than counting them in general graphs, and hence is #P-complete. The
following result is also proved in [8], and formalises the reduction from approximate
counting to almost uniform generation in the case of dense graphs.

THEOREM 3.1 (Broder). Suppose that, for all dense bipartite graphs G, there exists
an fp. almost uniform generator for Mn(G) M,_(G). Then there exists an fpras for
M, (G)] for all such graphs G. [3

Broder investigates the generation problem using a family of ergodic Markov
chains d//{C6pm(G) with state space dV=Mn(G)LJMn_I(G) and uniform stationary
distribution, in which transitions are made by adding and/or deleting edges locally.
We now give a slightly modified definition of ,ff/C-pm(G). View E as a subset of U V
and matchings in G as subsets of E. If A, B E and e E then AB denotes the
symmetric difference of A and B, while A+ e and A-e denote the sets A U {e}, A\{e},
respectively. Transitions in d//{pm(G are specified as follows. In any state M ;V,
choose an edge e (u, v) E uniformly at random and then

(i) If MM,(G) and eM, move to state M’=M-e (Type transition);
(ii) If M M,_I(G) and u, v are unmatched in M, move to M’= M+ e (Type

2 transition);
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(iii) If M Mn-I(G), u is matched to w in M and v is unmatched in M, move
to M’= (M+ e)-(u, w); symmetrically, if v is matched to w and u is unmatched,
move to M’ M + e) w, v) Type 0 transition);

(iv) In all other cases, do nothing.
We again eliminate periodicity by introducing an additional self-loop probability of
for each state, i.e., with probability 1/2 the process does not select a random edge as
above but simply remains at M.

Using Lemma 2.1, it is a simple matter to check that /Cpm(G is ergodic and
time-reversible with uniform stationary distribution. What is not at all obvious is that
the family of chains is rapidly mixing. This surprising fact is a consequence of the
following theorem.

THEOREM 3.2. Let G be dense and H be the underlying graph of the Markov chain
Cgpm(G). Then (H) _-> 1/12n6.

We shall prove the theorem in a moment after examining its implications.
COROLLARY 3.3. There exists an fp. almost uniform generator for Mn(G)U

M,_I( G) in all dense bipartite graphs G.
Proof On input (G, e), the generator deterministically constructs an initial state

of u//C-pm(G) and then simulates the chain for some number T=> z(e/2) of steps,
outputting the final state. (Assuming as we may that e <_- 1, an r.p.d, of e/2 guarantees
a bias of at most e.) To see that the generator is f.p., note that for any G individual
steps of ,/C-pm(G can be simulated, and a perfect matching to serve as initial state
found, in polynomial time. Moreover, since -1

"/7"mi [,Jf[ is certainly bounded above by
2"2, Theorem 3.2 and Corollary 2.3 imply that ’(e/2)<_-poly (n, lg e-l), so T need only
be this large. Hence the overall runtime is bounded as required. [3

Combining this with Theorem 3.1 immediately yields the following Corollary.
COROLLARY 3.4. There exists an fpras for IMp(G)] in all dense bipartite graphs G,

and hence for the permanent of all dense square O-1 matrices. [3

We return now to the proof of the key result above.
Proof of Theorem 3.2. As in (3) the conductance is given by

Icut (S)]
min(S) (H)

21EIo<lslll/ Isl
where again cut (S) denotes the set of cut edges in H defined by S. We will proceed
as in the proof of Proposition 2.4 by defining a set of canonical paths in H. If no
transition occurs in more than b]N[ of these, by analogy with (4) we will have the bound

1
(6) (H)>->--4blE1-4bn 2"

We begin by specifying, for each M N, canonical paths to and from a unique "closest"
perfect matching M Mn (G) as follows, where u U and v V denote the unmatched
vertices (if any) of M"

(i) If M M,(G) then M M and the path is empty;
(ii) If MMn_1(G) and (u,v)E, then M=M+e and the path consists of a

single Type 2 transition;
(iii) If M Mn_I(G) and (u, v) E, fix some (u’, v’) m such that (u, v’), (u’, v)

E" note that at least one such edge must exist by the density assumption on G. Then
M (M- (u’, v’))+ (u, v’)+ (u’, v), and we specify one of the two possible paths of
length two from M to M, involving a Type 0 transition followed by a Type 2 transition.

The canonical path from M to M consists of the same edges of H traversed in
the opposite direction.
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For future reference, we observe that no perfect matching is involved in too many
canonical paths of the above form: for M Mn(G) define the set

Y{(M) {M’ 6 : M’= M}.

Then, since each matching in Y{(M) has at least n-2 edges in common with M, it is
easy to see that JY{(M)J <- 8 2. Note that the sets Y(M) partition , implying that

I1 <- nZlMn (G)I. It is also worth noting that this is the only point in the proof at which
the bipartite structure of G is used: we will have more to say about this later (see
remark (d) below).

Next we define a canonical path in H between an ordered pair /, F of perfect
matchings (refer to Fig. l(a)). To do this, we first assume a fixed ordering of all even
cycles of G, and distinguish in each cycle a start vertex in U. Now consider the
symmetric difference I@ F; we may write this as a sequence C,. ., Cr of disjoint
even cycles, each of length at least four, where the indices respect the above ordering.
The path from I to F involves unwinding each of the cycles C,. , Cr in turn in the
following way. Suppose the cycle Ci has start vertex Uo and consists of the sequence
of distinct vertices (Uo, Vo, u, v,..., ul, vl), where (uj, vj) I for 0<-j<=l and the
remaining edges are in F. Then the first step in the unwinding of Ci is a Type 1
transition that removes the edge (u0, Vo). This is followed by a sequence of Type 0
transitions, the jth of which replaces the edge (u, v) by (u, v_). The unwinding is
completed by a Type 2 transition that adds the edge (Uo, v).

Finally, the canonical path between any pair of matchings /, F is defined as
the concatenation of three segments as follows:

initialsegment" follow the canonical path from I to I,
main segment: follow the canonical path from I to F,
final segment" follow the canonical path from F to F.

Now consider an arbitrary oriented edge of H, corresponding to a transition in
the Markov chain. We aim to establish an upper bound of the form bl on the number
of canonical paths that contain this transition. Suppose first that occurs in the initial
segment of a path from I to F, where I, F . Then it is clear from the definition of
initial segment that the perfect matching I is uniquely determined by t. But we have
already seen that [Y{()l--< n2. Since I Y{([), the number of paths that contain in
their initial segment is thus at most rtzldg’l. A symmetrical argument shows that the
number of paths containing in their final segment is similarly bounded.

To handle the main segments of the paths, we make use of the injective mapping
technique seen in the proof of Proposition 2.4. This will obviate the need for any
explicit counting of structures in 2, which is crucial here (cf. the discussion following
the proof of Proposition 2.4). Let be a transition from M to M’, where M, M’
are distinct, and denote by P(t) the set of ordered pairs (/, F) of perfect matchings
such that is contained in the canonical path from I to F. We proceed to define, for
each pair (I, F) P(t), an encoding or,(/, F) from which I and F can be uniquely
reconstructed. The intention is that, if C,..., Cr is the ordered sequence of cycles
in I@ F, and is traversed during the unwinding of Ci, then the encoding should agree
with I on C,..., Ci_ and on that portion of Cg that has already been unwound,
and with F elsewhere.

With this in mind, consider the set S I@F@ (M M’). Since I F
_
M M’

___
I F and III FI M t_J M’ n, elementary set theory tells us that ]S[ n. Further-
more, suppose that some vertex u is adjacent to two edges in S. Then both these edges
necessarily lie in I@ F, which in turn implies that neither edge lies in M U M’. Hence
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I:

M;

start vertex of cycle

\/ \/

/\/\ /\ /\
\/ \/ \/

FIG. l(a). A transition on the canonical path from I to F.

.___, \o
FIG. l(b). The corresponding encoding o3(/, F).

the vertex u must be unmatched in M U M’. From the form of the transitions, however,
it is clear that M U M’ contains at most one such vertex u u,; moreover, this is the
case if and only if is a Type 0 transition, and u, must then be the start vertex of the
cycle currently being unwound. In this case, we denote by el.t the edge of I incident
with ut.

We are now in a position to define the encoding:

r,(I, F) {(IF(M u M’))- e,.,
I F(MU M’)

if is Type 0,
otherwise.

Figure l(b) illustrates this definition for a Type 0 transition. In view of the above
discussion, rt(/, F) is always a matching of cardinality at least n- 1, and hence an
element of N. It remains for us to show that I and F can be recovered from it.

First observe that IF can be recovered immediately using the relation

(cr,(I, F)(R)(M U M’))+ e,,,IF=
o-,(I,F)@(MUM’)

if is Type 0,
otherwise.

(Note that ei., is the unique edge that must be added to r,(I, F)(M U M’) to ensure
that I(R)F is a union of disjoint cycles.) Thus we may infer the ordered sequence
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C1,’", Cr of cycles to be unwound on the path from I to F. The cycle Ci that is
currently being unwound, together with its parity with respect to I and F, is then
determined by the transition t. The parity of all remaining cycles may be deduced from
M and the cycle ordering. Finally, the remaining portions of I and F may be recovered
using the fact that I F= M\(IF). Hence o’t(I, F) uniquely determines the pair
(I, F), so trt is an injective mapping from P(t) to .

The existence of trt ensures that IP(t)l<-_lJl for any transition t. Since also
[3{’(M)[-< n 2 for any perfect matching M, we see that is contained in the main segment
of at most n4[r paths. Combining this with the results for initial and final segments
derived earlier, we deduce that the maximum total number of paths that contain is
bounded by

To complete the proof we set b 3n4 in (6).
Remarks. (a) In his original paper [8], Broder claimed that the above rapid mixing

property holds under the same density assumption. However, as indicated in 1, his
proof based on coupling ideas is both complex and fundamentally flawed. The problem
is that the "coupling" defined in [8] is not, in fact, a coupling because one of the two
processes involved is not a faithful copy of ,/C-pm(G): this is explained in detail by
Mihail [25]. As a result Broder has withdrawn his proof (see the erratum to [8]). We
feel that this is compelling evidence ofthe unsuitability of coupling and related methods
for the analysis of Markov chains that lack a high degree of symmetry.

(b) A chain with larger conductance is obtained by modifying ff/C-pm(G slightly
so that transitions are effected by selecting a random vertex in V rather than a random
edge. This increases the transition probability in (5) from 1/21E to 1/2n, saving a
factor of n in the conductance bound.

(c) The f.p. almost uniform generator for M,(G) U M,_(G) may be adapted to
one for perfect matchings in dense graphs G, by repeatedly generating elements of
M,(G)U M,_(G) and outputting the first perfect matching which occurs. Since
IM,(G)I > n-zlv[ we should not have to wait too long, but if so some arbitrary perfect
matching may be output without affecting the bias too much. Among other things,
with appropriate choice of G this provides a way of generating certain natural restricted
classes of permutations that satisfy the density condition, such as displacements or
m6nage arrangements.

(d) So far we have concentrated exclusively on bipartite graphs because of their
connection with the permanent. The Markov chain ff/pm(G) can be applied without
essential modification to arbitrary graphs G. In fact, the only point at which we have
relied on the bipartite structure of G is in the definition of the sets Y{’(M) in the proof
of Theorem 3.2 and the bound on their size. Let G V, E) be an arbitrary graph with

VI 2n. As before, we assume that G contains a perfect matching. Call G dense if its
minimum vertex degree is at least n. This ensures that Y{’(M) for M M,(G) is still
well defined, and that lY{’(M)I <-2n 2. The rest of the proof carries through as before,
yielding b=8n4 and consequently (H)=> 1/64n 6. (This can again be improved if
transitions are implemented by random vertex selection.) Since a construction
analogous to that of Theorem 3.1 holds for general dense graphs, we have:

COROLLARY 3.5. There exists an fpras for [M,(G)I in arbitrary dense graphs.
We conclude this section by examining the role played in our results by the density

assumption. In the proof of Theorem 3.2 it was used to show that each element of
M_(G) is "close to" a perfect matching, so that near-perfect matchings could
effectively be ignored in the conductance argument. In fact, it is enough to know that
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the total number of near-perfect matchings is not too large. More specifically, the above
results hold under the considerably weaker assumption that

(7) M-,(G)I/IM(G)I q(n)

for some fixed polynomial q. (Recall that we are assuming IM, (G)I > 0.) This condition
will arise more naturally in the context of the improved algorithm of 5. Accordingly,
we only sketch the proof modifications necessary to extend the method of this section.
A fuller account can be found in [28].

First, it is not hard to see that the reduction of Theorem 3.1 still holds for graphs
G satisfying the weaker condition (7). (This fact relies on Theorem 5.1 of 5.) It is
therefore enough to generate elements of A;= M,(G)t_J M,_(G) using the Markov
chain J//Cpm(G): the only thing we have to check is that its conductance remains
bounded below by an inverse polynomial function of n. This is a consequence of the
following generalised version of Theorem 3.2.

THEOREM 3.6. For any graph G=(V, E) with Ivl=2n and IM.(G)I>0, the con-
ductanee of the underlying graph of J/[Cpm(G) is bounded below by

6IEI
Sketch of proof Let H be the underlying graph of ///(pm(G). The proof differs

from that of Theorem 3.2 in one or two details. First, we use a variant of the canonical
path counting argument in which only paths from perfect to near-perfect matchings
are considered. If these can be defined in such a way that no edge of H carries more
than blWI of them, then a little algebra yields (cf. (6))

(8) O(H)_>-( IM(G)I )16blEI
The paths themselves are similar to those between perfect matchings in the proof of
Theorem 3.2: if ! M(G) and F M,_(G), the symmetric difference IF consists
of a sequence C, , Cr of disjoint cycles as before, together with a single open path
O that is unwound in the obvious way after all the Ci.

Let be an arbitrary transition. The injective mapping technique can again be
used to bound the cardinality of the set P(t) of paths of the above kind that involve
t. For (I, F) P(t) the encoding r,(/, F) is defined exactly as before, and r, is again
injective. Now, however, we find that cr,(I, F)M,_(G)t_J M._2(G), as we get an
additional pair of unmatched vertices arising from the open path O. (Note that this
time the encoding takes us outside the state space.) Since o-, is injective we have

]P( t)] < ]U Un_2( G)] < I)
where the second inequality again appeals to Theorem 5.1. Thus we may take b
IM,-(G)I/IM,(G)I in (8), completing the proof of the theorem.

COROLLARY 3.7. Let q be any fixed polynomial. There exists an fpras for
in all 2n-vertex graphs G that satisfy IM,_(G)I/IM,(G)I<=q(n).

Our earlier results for dense graphs can be derived as a special case of Corollary
3.7 with q(n)= O(n2). Note that the density bound quoted is tight in the sense that it
is possible to construct, for any fixed 6 > 0, a sequence of (bipartite) graphs (G.) with
2n vertices and minimum vertex degree at least n/(2+3) such that the ratio
IM,_I(G,)I/IM,(G,)I is exponentially large.



Remark. Dagum et al. [9] have shown that the reduction from counting to
generation of Theorem 3.1 may be replaced by the following mechanism, with a small
increase in efficiency. In analogous fashion to ///pm(G), we may define for _-< k =< n
a Markov chain %k(G) whose states are k- and (k-1)-matchings in G. (Thus
%n(G) is just %vm(G).) By a simple extension of the proof of Theorem 3.6, whereby
multiple rather than unique canonical paths between states are counted, it can be
shown that each of the chains ?k(G) is rapidly mixing under the same condition
(7) on G. This allows the ratios IM(G)I/IM_(G)I to be estimated directly for each
k in turn. We do not dwell on this point here as we will present a more natural
algorithm in 5.

This concludes our discussion of perfect matchings for now. An alternative view
of all these results will emerge as a by-product of our work on a different problem in
the next section.

4. Monomer-dimer systems. This section is concerned with counting and generat-
ing at random all matchings (independent sets of edges) in a graph. Apart from their
inherent interest, these problems arise in the theory of statistical physics, a rich source
of combinatorial counting and generation problems.

A monomer-dimer system consists of a graph G (V,/), which is usually some
form of regular lattice, together with a positive weight on each edge. The vertices of
G represent physical sites, adjacent pairs of which may be occupied by diatomic
molecules or dimers. Configurations of the system correspond to arrangements of
dimers on the lattice in which no two dimers overlap, i.e., to matchings in G. In a
configuration consisting of fewer than VI/2 dimers, unoccupied sites are referred to
as monomers. Monomer-dimer systems have been extensively studied as models of
physical systems involving diatomic molecules. In the two-dimensional case they model
the adsorption of dimers on the surface of a crystal. Three-dimensional systems occur
in the theory of mixtures of molecules of different sizes and in the cell-cluster theory
of the liquid state. For further information, see [14] and the references given there.

For each edge e of G, the weight c(e) represents the relative probability of
occupation by a dimer. This will depend on the contribution of such a dimer to the
global energy of the system. Most thermodynamic properties of the system can be
deduced from knowledge of the partition function
(9) Z(G): E W(G,M)

MM,(G)

where M.(G) is the set of configurations (matchings in G) and W(G, M)= Helm
is the weight of the configuration M. Counting matchings, i.e., computing (9) in the
special case where all edge weights are unity, is a #P-complete problem even when
restricted to planar graphs [15], [33]. The main result of this section is that the more
general sum (9) can in fact be approximated efficiently for any weighted graph G.

We will proceed as in the previous section via a related random generation problem
for configurations. Since the sum in (9) is weighted, however, configurations should
be generated not uniformly but with probabilities proportional to their weights. In
fact, this problem is of interest in its own right as a means of estimating the expectation
of various physical operators on configurations by the so-called Monte Carlo method
[6].

The notion of an almost uniform generator can be generalised to the weighted
case in the obvious way. We will call a probabilistic algorithm an almost W-generator
for matchings if, given a graph G with positive edge weights and a positive real bias
e>0, it outputs a matching M in G with probability that approximates
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W(G, M)/Z(G) within ratio +e. As usual, the generator is f.p. if its runtime is
bounded by a polynomial in the size of the input G and in lg e -.

The problem of approximating the partition function (9) is reduced to the weighted
generation problem as follows. Let e=(u, v) be any edge of the weighted graph
G (V, E), G-the graph obtained by removing e from G, and G+ the graph obtained
by removing the vertices u and v together with all their incident edges. By partitioning
matchings in G into two sets according to whether they do or do not contain e, it is
readily seen that

(i) There is a (1-1)-correspondence between M,(G) and the disjoint union of
M,(G+) and M,(G-);

(ii) Z(G)=c(e)Z(G+)+Z(G-).
This suggests the following recursive procedure for estimating Z(G)"

(1) Using an almost W-generator, construct an independent sample of elements
of M,(G) as detailed below.

(2) For some edge e of G, let z+, z- denote the proportions of elements in the
sample that do and do not contain e, respectively. Note that these quantities estimate
c(e)Z(G+)/Z(G) and Z(G-)/Z(G), respectively.

(3) If z+>-_z -, recursively estimate Z(G+) and multiply the result by e(e)/z+;
otherwise, recursively estimate Z(G-) and multiply by 1/z-.
The procedure terminates when the input graph contains no edges. Note that the choice
of the larger ratio in step (3) maximises the accuracy of the method.

Some elementary but tedious statistics (see [16, Thm. 6.4]) confirms that, if the
bias in the generator is set to e/a]E[ for some constant a, the sample size required in
step (1) to ensure that the final answer approximates Z(G) within ratio 1 + e with
probability at least 1/4 is only O(]E]3e-2). We therefore have the following theorem.

THEOREM 4.1. Suppose there exists an fp. almost W-generatorfor matchings. Then
there exists an fpras for the partition function of monomer-dimer systems. D

Remark. The foregoing is an example of a more general reduction from approxi-
mate counting to random generation, justified in detail in [16], [28], that applies to
all structures that are self-reducible. Informally, this means that the set of structures
corresponding to any problem instance is in (1-1)-correspondence with the disjoint
union of sets corresponding to a few smaller problem instances (subproblems), In the
case of matchings this property is expressed in condition (i) above. Since we are dealing
here with weighted combinatorial sums, we need to supplement the definition of
self-reducibility by demanding that any sum can be computed easily given the sums
for its subproblems" condition (ii) states this for the monomer-dimer partition function.
This implies that the Markov chain approach to random generation studied in this
paper is potentially a powerful general method for approximating hard combinatorial
counting problems. (Note that in the previous section it was necessary to resort to the
specialised reduction provided by Theorem 3.1. The reason is that, while perfect
matchings are easily seen to be self-reducible in general, this property is apparently
destroyed when restrictions are placed on the input graph as in 3.) [3

Theorem 4.1 says that we will get an fpras for the monomer-dimer partition
function provided we can efficiently generate matchings with probabilities roughly
proportional to their weights. This we achieve by simulating a Markov chain in the
style of Metropolis et al. [6]. Given a graph G= (V, E) with positive edge weights
{c(e)’eE}, we consider the chain //Cmd(G with state space W=M,(G) and
transitions as follows. In any state M W, choose an edge e (u, v)6 E uniformly at
random and then

(i) If e M, move to M-e with probability 1/(1 +c(e)) (Type transition);
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(ii) If u and v are both unmatched in M, move to M+e with probability
c(e)/(1 +c(e)) (Type 2 transition);

(iii) If e’= (u, w) M for some w, and v is unmatched in M, move to (M + e) e’
with probability e(e)/(c(e)+c(e’)) (Type 0 transition);

(iv) In all other cases, do nothing.
As always, we simplify matters by adding a self-loop probability of 1/2 to each state. It
is then readily checked that Cma(G) is irreducible and aperiodic, and hence ergodic.
The stationary probability rrM of M M.(G) is easily seen, by Lemma 2.1, to be
proportional to its weight W(G, M)= l-IeM c(e), so simulation of the chain will yield
an f.p. almost W-generator for matchings provided the family ,////Cma(G is rapidly
mixing. Now ff/Cmd(G is clearly time-reversible by virtue of the detailed balance
condition (1), so we may again apply Theorem 2.2. The crucial fact is the following.

THEOREM 4.2. For a graph G (V, E) with positive edge weights {c(e)" e E}, the
conductance of the underlying graph of the Markov chain Cmd(G) is bounded below
by 1/(8IEI 2Cm), where Cma max 1, maxe c(e)}.

Proof Let H be the underlying graph of CCmd(G). The first step is to establish a
weighted version of the path counting argument that led to the bound (4). Suppose
that between each ordered pair (I, F) of distinct states we have a canonical path in
H, and let us associate with the path a weight rWF. Also, for any subset S of states define

Cs= rrM the capacity of S,
MeS

Fs-- 2 7"I’MPMM, the ergodic flow out of S.
MS,M’S

(PMM’ is the transition probability from M to M’.) Note that the conductance (H)
is just the minimum value of the ratio Fs/Cs over subsets S with 0 < Cs <--1/2. For any
such S, the aggregated weight of all paths crossing the cut from S to its complement
S in W is

tcut(S)

(10) 2 rWF CsC# >- --.IS,F

Now let be a transition from a state M to a state M’ M, and denote by P(t) the
set of all ordered pairs (I, F) whose canonical path contains t. Suppose it is known
that, for any such transition t, the aggregated weight of paths containing satisfies

(11) IF bwt
(I,F)eP(t)

where w, MPMM,= M’PM’M is the weight of the edge in H corresponding to t.
Taking (10) and (11) together, we have the following bound on the ergodic flow out
of S, where cut(S) denotes the set of transitions crossing the cut from S to S:

W, b-1 Z
tcut(S) (I,F) P(t)

IS,F

By definition, the conductance of H therefore satisfies

1
(12) (H)>=2b"
Our aim is thus to define a set of paths obeying a suitable bound b in (11).

To do this we generalise the proof of Theorem 3.2. Suppose there is an underlying
order on all simple paths in G and designate in each of them a start vertex, which must
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be an endpoint if the path is not a cycle but is arbitrary otherwise. For distinct I, F
we can write the symmetric difference I@F as a sequence Q1,’", Qr of disjoint
paths that respects the ordering. The canonical path from I to F involves unwinding
each of the Qi in turn as follows. There are two cases to consider:

Case i. Qi is not a cycle. Let Q consist of the sequence (Vo, vl, ., Vl) of vertices,
with Vo the start vertex. If (Vo, v) e F, perform a sequence ofType 0 transitions replacing
(V2j+l VZj+2 by (V2j Vzj+l for j=0, 1,. ., and finish with a single Type 2 transition
if is odd. If on the other hand (Vo, Vl)e/, begin with a Type 1 transition removing
(Vo, v) and proceed as before for the reduced path (Vl,. ", v).

Case ii. Q is a cycle. Let Q consist of the sequence (Vo, Vl," ", v2/+l) of vertices,
where Vo is the start vertex, l_-> 1 and (v2j, v2j+)e I for 0_<-j =< l, the remaining edges
belonging to F. Then the unwinding begins with a Type 1 transition to remove (Vo, v).
We are left with an open path O with endpoints Vo, Vl, one of which must be the start
vertex of O. Suppose Vk, k {0, 1}, is not the start vertex. Then we unwind O as in
Case (i) above but treating Vk as the start vertex. This trick serves to distinguish cycles
from open paths, as will prove convenient shortly.

Now let be a transition from M to M’# M. The next step is to define our
injective mapping tr,’P(t)- Yr. As in the proof of Theorem 3.2, we set or,(/, F) equal
to I F@ (M U M’), and remove the edge el,, of I adjacent to the start vertex of the
path currently being unwound if necessary: this is so if and only if the path is a cycle
and is Type 0. It is now easily seen that r,(I, F) consists of independent edges, and
so is an element of W’. The difference IF can be recovered from o-t(/, F) using the
relation

I@ F [ (cr,(I, F)(M U M’))+ e., if is Type 0 and the current path is a cycle;
or, (/, F) 03 M tO M’) otherwise.

Note that we can tell whether the current path is a cycle from the sense of unwinding.
Recovery of I and F themselves now follows as before from the path ordering. Hence
or, is injective.

Moreover, it should be clear that tr,(I, F) is very nearly the complement of M in
the union of I and F viewed as a multiset, so that the product 7TTTF is approximately
equal to 7T47TO.,(.F), giving us a handle on b in (11). We now make this precise.

CLAIM. For any (I, F) P( t), we have

(13) r,rz < 4IEI Cmax Wt’rl’o.t( l,F)

The claim will be proved in a moment. First note that it immediately yields the
desired bound b in (11), since for any transition we have

E r,’F < 4IEI Cmax Wt E 7To’,(,F < 41 EI CmaxWt2
I,F)e P( (1,F)e P(

where the second inequality follows from the fact that r, is injective. We may therefore
take b 41El 2

Cmax, which in light of (12) gives the conductance bound stated in the
theorem.

It remains only for us to prove the claim. We distinguish three cases"

Case i. is a Type 1 transition. Suppose M’ M e. Then or, (/, F) I@ F@ M,
so, viewed as multisets, M U r,(/, F) and I U F are equal. Hence we have

7TITTF 7TMTTO.t( I,F)

(wt/PMM’)TTO.t(I,F)
2IEI(1 + c(e))w,TT,,,F),

from which (13) follows.
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Case ii. is a Type 2 transition. This is handled by a symmetrical argument to
Case (i) above, with M replaced by M’.

Case iii. is a Type 0 transition. Suppose M’-(M + e)- e’, and consider the
multiset o’t(I, F)U M. This is equal to the multiset I U F except that the edge e, and
possibly also the edge ei, are absent from it. Assuming el, is absent, which happens
precisely when the current path is a cycle, we have

"z’i’u’z c e,, c e "z’M’rr, ,,F
c(et.t)c(e)(w,/p44,)’,(t,v)

2lElc(e,,,)(c(e)+ c(e’))w,’zr,(,.F),

again satisfying (13). If e,, is not absent, the argument is identical with the factor
c(e1.,) omitted.

This concludes the proof of the claim and the theorem. [3

COROLLARY 4.3. There exists an fp. almost W-generatorfor matchings in arbitrary
weighted graphs provided the edge weights are positive and presented in unary.

Proof Define Cmin min { 1, mine c(e)}. Then the minimum stationary state prob-
ability in md(G) is at least Cnin2--1elCnx, where n =IVI. The logarithm of this
quantity is at least -p([G[), where [GI is the size of the description of G and p is a
polynomial. Hence by Theorems 2.2 and 4.2, the Markov chains are rapidly mixing.
Simulation of ///Cmd(G is a simple matter, starting from the empty matching. [3

In view of Theorem 4.1, we may now state the main result of this section.
COROLLARY 4.4. There exists an fpras for the monomer-dimer partition function of

arbitrary weighted graphs with edge weights presented in unary. [3

COROLLARY 4.5. There exists an fpras for the number of matchings in arbitrary
graphs.

5. Some applications: The permanent revisited. As we have already mentioned, our
analysis of the monomer-dimer Markov chain CCmd(G) sheds new light on the results
of 3. In this section we will demonstrate that it yields a more natural approximation
algorithm for counting perfect matchings in 2n-vertex graphs G for which the ratio
IM,_I(G)I/IM,(G)I is polynomially bounded, and in addition allows this condition
to be probabilistically tested for an arbitrary graph in polynomial time. We will also
discuss an application of the chain to finding a maximum matching in a graph by
simulated annealing. The key to all these algorithms is the introduction of carefully
chosen edge weights.

The results of this section (and indeed Corollary 3.7 of 3) depend crucially on
the following property of matchings. As usual, let Mk(G) denote the set of k-matchings
in a graph G.

THEOREM 5.1. For any graph G, the sequence {IMk(G)I: k} is log-concave, i.e.,

Proof A proof that relies on machinery from complex analysis can be found in
Theorem 7,1 of [14] (see also [23, Exercise 8.5.10]). We present an elementary com-
binatorial proof that uses ideas seen elsewhere in this paper. Since log-concavity results
in combinatorics tend to be rather hard to come by, we believe the simpler proof to
be of independent interest.
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Let kN+. We may assume that [Mk+I(G)]>O, since the inequality is trivially
true otherwise. Define the sets A Mk+I(G) x Mk_I(G) and B Mk(G) x Mk(G). Our
aim is to show that

As in the proof of Theorem 4.2, the symmetric difference M@M’ of any two
matchings M, M’ in G consists of a set of disjoint simple paths (possibly closed) in
G. Let us call such a path an M-path if it contains one more edge of M than of M’;
an M’-path is defined similarly. Clearly, all other paths in MM’ contain equal
numbers of edges from M and M’. Now for any pair (M, M’) A, the number of
M-paths in MM’ must exceed the number of M’-paths by precisely two. We may
therefore partition A into disjoint classes {Ar:0< r <- k}, where

Ar={(M,M’)A’M@M contains r+l M-paths and r-1 M’-paths}.

Similarly, the sets {Br" 0 r <- k} with

Br={(M, M’)B’M@M’ contains r M-paths and r M’-paths}

partition B. The lemma will follow from the fact that [Ar[--< [Br[ for each r > 0.
Let us call a pair (L, L’) B,. reachable from (M, M’) Ar if and only ifLL’= M@

M’ and L is obtained from M by taking some M-path of MM’ and flipping the
parity of all its edges with respect to M and M’. (This is analogous to unwinding the
path in the proof of Theorem 4.2.) Clearly, the number of elements of Br reachable
from a given (M, M’) Ar is just the number of M-paths in MM’, namely r+ 1.
Conversely, any given element of B is reachable from precisely r elements of At.
Hence if IAr > 0 we have

[BrJ r+

completing the proof of the lemma. [3

Remark. In [14] the tight inequality

(k+l)(m-k+l)
k(m-k)

IM+I( G)J IMk_,( G)]

is proved, where m In and n is the number of vertices in G. The bound in our
proof can also be improved, but we will not labour this point here as simple log-
concavity is quite adequate for our purposes. V1

Note that Theorem 5.1 immediately implies the following:
COROLLARY 5.2. For a 2n-vertex graph G (V, E) with [Mn(G)I > 0, the ratio

G)l/IM ( G)l increases monotonically with k in the range 0 < k <- n; the maximum
value of the ratio is IMo_l(G)l/IM (G)l and the minimum value is [El -1. [3

Armed with log-concavity, let us sketch how an algorithm that generates matchings
from the weighted distribution of 4 may be used to estimate the number of perfect
matchings in a given unweighted 2n-vertex graph G (V, E). Write mk in place of
[Mk(G)I and assume that mn >0. The idea is to estimate the ratios mk+l/mk in turn
in a sequence of n stages for k=0,..., n-1. Since mo= 1, an approximation to mn
is then obtained as the product of the estimated ratios.

In stage k we could in principle estimate mk+l mk using an algorithm that generates
matchings in G uniformly: just observe the relative numbers of (k + 1)- and k-matchings
in an independent sample produced by the generator. However, a very large sample
may be necessary since these matchings might constitute only a tiny fraction of all
matchings in G. This difficulty can be overcome by adding to every edge of G a weight
Ck that is chosen so as to make the aggregated weight mkC of k-matchings maximal,
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i.e., at least as large as that of matchings of any other size. That such a weight exists
is a direct consequence of the log-concavity of the mi. To see this, take Ck mk-1/mk
and let G(ck) denote the graph G augmented with weight ck on every edge. (We will
not have available the exact value of mk-1/mk, but it will suffice to substitute the
estimate of this quantity obtained in the previous stage.) Then if pi is the probability
of being at an /-matching in the stationary distribution of the Markov chain
MCgmd(G(ck)), we have for i_-> k

(14) Pk mkC --i mj mk=
k-i i-k

c I] >-- mkrl 1
Pi mic j=k mj+l \ mk / \ mk

where the inequality comes from Corollary 5.2. An identical bound holds for i< k.
Since Y p 1, we conclude that Pk >- (n + 1) -1. Moreover, the probability of being at
a (k + 1)-matching satisfies

(15) Pk+ Pk Pk >= Pk"
mk mg mk m-i

Hence a lower bound of the form 1/poly(n) holds for Pk+l also, provided the ratio
m,_l/mn is polynomially bounded. These observations allow the ratio ink+l mk to be
estimated efficiently by sampling from the weighted distribution.

For the sampling itself we appeal to the Markov chain technique of 4. (The
algorithm is robust enough to cope with a small bias.) In view of Corollary 4.3, the
generator will be efficient provided the various edge weights used in the algorithm are
polynomially bounded. But each weight will be close to mk-1/mk for some k that by
Corollary 5.2 lies in the range [IE[ -1, m,_l/m,]. This ensures rapid convergence of the
Markov chain at all stages, provided again that m,-l/m, is polynomially bounded.

Notice how a polynomial bound on the ratio m,_l/m, plays a central role in the
efficient operation of this algorithm. For an arbitrary function q of the natural number
n, let us call a 2n-vertex graph G q-amenable if either

(i) IM.(G)I=0, or

(ii) IM.(G)I>0 and

From the above discussion, we might expect to get an fpras for counting perfect
matchings in q-amenable graphs for any fixed polynomial q.

The new approximation scheme for counting perfect matchings in q-amenable
graphs G is spelled out in detail in Fig. 2. In line (4), denotes the almost W-generator
for matchings described in 4, i.e., the call C(G(c),.) invokes a simulation of the
Markov chain //md(G(c)). The values of the sample size T and bias will depend
on n and the accuracy 0 < e <= specified for the final estimate, as described below.
The test in line (1) for the existence of a perfect matching may be implemented using
any standard polynomial time algorithm.

THEOREM 5.3. For an arbitrary polynomial q, the algorithm of Fig. 2 is an fpras for
]M,(G)] in all q-amenable 2n-vertex graphs G.

Proof In view of line (1), we need only consider graphs for which m, > 0. Line
(2) and the iterations of the for-loop correspond to the n stages of the computation
mentioned above. Let Ck+l be the value of the weight parameter c at the end of stage
k. We claim that, by making T a polynomial function of n and e -1 and setting e an
for a suitable constant a > 1, the following may be guaranteed:

((16) Vk Pr Ck+l approximates mk/mk+l within ratio +n >- 1-



APPROXIMATING ThE PERMANENT 1169

(1) if [M,,(G)[=0 then halt with output 0
else begin

(2) c :-IEI-’; :-IEI;
for k:=l to n-1 do begin

(3) if c > 2q(n) or c < (21El) -t then halt with output 0
else begin

(4) make T calls of the form
and let Y be the set of outputs;

(5) /k: T-’I Y fq Mk(O)l;
(6) if/ =0 or/+ =0 then halt with output 0
(7) else begin c := c///k+;/7 := FI/c end

end
end;

(8) halt with output/7
end

FIG. 2. Approximation scheme for counting perfect matchings.

This will imply that the product II output in line (8) approximates mn within ratio
(1 +e/2n) n-< +e with probability (1-1/4n2)n2>=3/4, as required. Moreover, the
runtime of the procedure is bounded by a polynomial in n and e -1. (Note in particular
that, by Corollary 4.3, the bounds on edge weights in line (3) ensure that each call to
q3 is bounded in this way.) Hence the procedure is indeed an fpras.

The proof of (16) is a straightforward induction on k, the technical details of
which are left to the reader. The important points to note are the following, assuming
that ck is a good estimate of mk_/m:

(i) In line (3), c will not violate the prescribed bounds because m_/m lies in
the range {IEI -, q(n)].

(ii) From (14) and (15), the probabilities p, pk+ of being at a k- and (k+ 1)-
matching in the stationary distribution of the Markov chain J/fma(G(c)) used in
stage k + are bounded below by a function of the form 1/poly(n). Hence the modest
sample size T in line (4) is enough to make the estimates/,// of these quantities
in line (5) good with high probability. (Note that the pathological cases of line (6) are
therefore very unlikely to occur.)

The assignment to c in line (7) therefore makes c/1 a good estimate of mk/m/
with high probability.

The algorithm of Theorem 5.3 is preferable to those described in 3 in several
respects. For a given input graph G, it makes use of a single Markov chain structure,
the only manipulations being simple scaling of transition probabilities. It avoids any
discussion of ad hoc processes with state space M(G) M_(G), whose transition
structure is not uniform over states. Moreover, the condition that the ratio
]Mn_(G)I/]Mn(G)] should be polynomially bounded (if IMp(G)] > 0) is seen to arise
directly from the log-concavity of the matching sequence.

Indeed, this condition seems to be a true characterisation of those graphs that
can be handled by the algorithm, or equivalently of those matrices whose permanent
we can efficiently approximate by this method. Since the condition is rather unfamiliar,
it deserves further investigation. One worthwhile activity is to come up with simpler
deterministic criteria that guarantee the condition holds. We have already seen one
such criterion in 3, namely that the graph is dense. Another criterion, due to Dagum
et al. [9], is that the graph is bipartite and contains an an-regular subgraph for some
real c > 0. However, as we will see in the next section, it turns out that the condition
is a rather weak one and is, in fact, satisfied by almost all (bipartite) graphs. In other
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words, there exists a fixed polynomial q such that almost every graph is q-amenable.
Thus of more practical interest is the problem of testing efficiently for any given graph
whether the condition holds. Such a test would enable us not only to approximate the
permanent in almost all cases, but also to reliably identify difficult instances.

We now present an efficient randomised algorithm that tests the condition in the
following strong probabilistic sense. Let q be a polynomial. When given as input a
2n-vertex graph G containing a perfect matching and a positive real 6 > 0, the algorithm

(i) Accepts with probability at least 1-6 if
(ii) Rejects with probability at least 1-6 if lMn_l(G)[/IM,(G)l>6q(n).

For intermediate values of the ratio, we do not care whether the algorithm accepts or
rejects. (The value 6 here is used for illustrative purposes only and may be replaced
by any fixed constant greater than 1.) Furthermore, the runtime of the algorithm will
be bounded by a polynomial in n and lg 6 -1.

Before presenting the algorithm we make precise its implications for counting
perfect matchings. Consider the following combined procedure, whose input is an
arbitrary 2n-vertex graph G:

(1) Using a standard polynomial time algorithm, test whether G contains a perfect
matching. If not, output 0 and halt.

(2) Apply the above randomised test for the condition [M,_I(G)[/IM(G) <- q(n),
having set an error probability 6 2-". If the algorithm rejects, output "Graph is not
q-amenable" and halt.

(3) Using the approximation scheme of Fig. 2 with q(n) replaced by 6q(n) (and
the test of line (1) omitted), estimate [M,(G)I and output the result.

This procedure will run in polynomial time for any desired polynomial q. There
are two ways in which it may produce a misleading result. With probability at most
it may falsely claim that the input graph G is not q-amenable. Or, again with probability
at most 6, it may output an unreliable approximation to [M,(G)[ obtained under the
false assumption that IM,_I(G)I/[M(G)[<=6q(n). Since 6 decreases exponentially
with n, the procedure will, with very high probability, produce a result that is not
misleading. This will either be a statement that G is not q-amenable, or a reliable
approximation of ]M,(G)I.

We now show how to construct the testing algorithm advertised above. It again
makes use of the weighted Markov chain generator q3 for matchings and is extremely
simple to describe:

(1) Make T calls of the form (G(2q(n)), 1/16), and let/ be the proportion of
perfect matchings among the outputs. T will depend on the input 6 as specified below.)

(2) If/->_3/8 accept, otherwise reject.
To see that this algorithm works, consider the stationary distribution of the Markov
chain md(G(2q(n))), and let p denote the probability of being at a perfect matching.
Writing as usual rnk in place of IMk(G) I, Corollary 5.2 implies that

mn i=t mi+l \ mn

for O<=k<=n. Hence in the case that m,_/m,<-_q(n) we have

rn,(2q(n))" 2"
=> 21, >-.(17) P Y=om(Zq(n)) 2k=o 2
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On the other hand, if mn-1/mn > 6q(n) we have

m,,(2q(n))" m,, 1
mn(2q(n)) + m_l(2q(n)) "-1 < mn + 3m 4"

An elementary statistical argument now shows that, by taking T c lg 6 -1 for a suitable
constant c, we can arrange for

_->1-6
Pr (/-> )

_-<6

if m,_l/m,<-q(n),
if m,_l/m,>6q(n).

The runtime of the algorithm is therefore bounded as required.
Remark. It is often desirable to be able to count matchings of any specified

cardinality in a given graph. In the context of the monomer-dimer systems of the
previous section, these correspond to configurations with a given number of dimers.
Obviously, the procedure of Fig. 2 may be modified so as to yield an fpras for IMk(G)I
in graphs G for which the ratio IMk_I(G)I/IMk(G)I is polynomially bounded. Such
graphs may again be identified efficiently using a minor variant of the above randomised
test. Note also that, under the same condition on G, we can easily adapt the algorithm
ofFig. 2toproduceanf.p. almostuniformgeneratorforMk(G)foranydesiredk. [3

We close this section with a slight digression. In recent years, a stochastic search
heuristic for combinatorial optimisation known as simulated annealing [21] has received
much attention. The basic idea is that a Markov chain explores a space of configurations
(feasible solutions), each of which has an associated cost or "energy." In the stationary
distribution of the chain, low cost solutions have large weight so the chain tends to
favour them asymptotically. By progressively reducing a "temperature" parameter, the
weights are scaled so as to accentuate the depths of the energy wells. (Thus the process
is not in general time-homogeneous.) While such a process is known to converge
asymptotically under fairly general conditions (see, e.g., [13], [24]), virtually nothing
useful is known about its rate of convergence when applied to nontrivial problems.

Consider the problem of finding a maximum cardinality matching in a graph G,
which is nontrivial in the sense that all known polynomial time algorithms for solving
it are far from simple. For any c_> we may take the Markov chain J//md(G(c)) as
the basis for a simulated annealing algorithm for this problem: maximum cardinality
matchings will certainly have maximum weight, and "temperature" may be reduced
by increasing the edge weight c.

In [27], Sasaki and Hajek study the performance of algorithms of this kind. In
particular, they prove a positive result of the following form.

THEOREM 5.4. Let e > 0 be any constant, G V, E) be an input graph, and ko the
maximum cardinality of a matching in G. Then a simulated annealing algorithm of the
above type, operated at a fixed temperature (which depends on G and e ), finds a matching
in G of cardinality at least (1-e)ko with high probability in polynomial time.

(In the same paper they also prove a strong negative result that says that no
simulated annealing algorithm in this or a fairly large related class can be relied on
to find a maximum cardinality matching in polynomial time with high probability.)

Sasaki and Hajek’s proof is lengthy and complex. In contrast, we offer the following
argument which rests directly on our earlier results.

Proof Define c 21El (1-)/. We claim that, in the stationary distribution of the
Markov chain J//md(G(ce)), the probability of being at a matching of size k=
[(1- e)ko] or more is greater than 1/2. Note that the theorem then follows at once" by
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Corollary 4.3 a polynomially bounded simulation of "ff//C-md(G(ce) suffices to ensure
that we visit a matching of size k or more with probability at least (say) z. This can
be boosted to 1- 3 by repeating the entire experiment O(lg 3 -1) times. (However, in
common with [27], our time bound increases exponentially with e-1.)

To justify the claim, note from Corollary 5.2 that

ko mj_ mk-1(18) mk-1 mko I]k>----j_- mj

(Here we are using the fact that mgo_-> 1.) But since j-matchings in G are subsets of E
of size j, there is also the crude upper bound mk_<--_lEI k-1. Hence from (18) we
conclude that

(19) mk_._____2. <= [EI,_)/ c
mk 2

A further application of Corollary 5.2 now shows that mi/mk <- (ce/2) k-i for 0_-< i-< k,
so the aggregated weight of matchings of size less than k is

< 2i-k mkc mkck
i--0 i:0

It is now immediate that the probability of being at a matching of size k or more is
at least , completing the proof.

Remark. Inequality (19) provides a polynomial upper bound on the ratio
so from our earlier observations we are able to count and generate matchings of any
cardinality up to (1- e)ko in arbitrary graphs which contain a ko-matching.

6. Random permanents. For any polynomial q, the algorithm presented in Fig. 2
of the previous section is an fpras for the number of perfect matchings in a q-amenable
graph G. For a bipartite graph G with 2n vertices, and q(n)= n 2, we have observed
a sufficient condition for q-amenability, namely that the minimum vertex degree of G
should be at least n/2. We have also observed that this result is the best possible, in
the sense that, for any 3 > 0, there exists a family of graphs of minimum vertex degree
at least n/(2+)for which [M,_(G)l/IM,(G)[=exp{f(n)}.

The aim of this section is to demonstrate that these counterexamples are patho-
logical, and that a randomly selected bipartite graph with given edge density--even
when that density is small--will almost surely be q-amenable for some suitably chosen
(fixed) polynomial q.

Let n be a positive integer, and p a real number in the interval (0, 1). We will
work with the probability space of bipartite graphs Gn,p constructed according to the
following random graph model. The vertex set of G,,p is U+ V where U= V=
{0, , n }, and each potential edge (i.e., element of U x V) is included in the edge
set of Gn,p independently and with probability p. (In the sequel, G,,p will always denote
a graph randomly selected according to this model.) We say that an event A in this
model occurs with overwhelming probability if 1-Pr (A)= O(n -k) for all integer k.
(The O-expression here is a function of n only, and is independent of p.)

The main result of the section (Theorem 6.4) is that for most values of p, and for
a suitably chosen (fixed) polynomial q, the graph Gn,p is q-amenable with overwhelming
probability. Thus, in probabilistic terms, the approximation scheme of Fig. 2 has very
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wide applicability. Recall also that the rare examples that the scheme cannot handle
reliably may be identified using the randomised test of the previous section. We
approach Theorem 6.4 via a sequence of three technical lemmas, the proofs of which
are deferred.

LEMMA 6.1. Let e >0 be a fixed constant, and let p<-(1-e)n- Inn. Then, with
overwhelming probability, Gn,p has no perfect matching.

Call a graph (k, m)-expanding [7, p. 327] if every k-subset of U is adjacent to at
least m vertices of V, and vice versa.

LEMMA 6.2. Let e>0 be a fixed constant, p>=(l +e)n- lnn, and ce=pn/lnln n.
Then, with overwhelming probability, G,,p is k, m + 1)-expanding for all integers k and
rn that satisfy the inequalities k >- In n/ln pn, m <= cek, and m <= n/2.

LEMMA 6.3. Let p >= n- In n. Then, with overwhelming probability, the maximum
vertex degree of Gn,p does not exceed pn In n.

THEOREM 6.4. Let e > 0 be a fixed constant, and let p lie outside the interval

((1 e)n- In n, (1 + e)n- In n).

Then, with overwhelming probability, the graph Gn,p is q-amenable for q(n)= n 1.
Proof Let A1 denote the event IM,(G,,p)I=O, and A2 the event

IM(O.,)I > 0 and IM-,(G,,,p)I/IM.(G.,p)I r/l.

The event that the graph G,,p is q-amenable is the disjunction of the events A1 and
A2. If p<-(1-e)n- ln n then, by Lemma 6.1, event A occurs with overwhelming
probability. So from now on we assume that p>=(1 +e)n- In n.

Let B be the event that G,,p is (k, rn + 1)-expanding for all k, m in the ranges
allowed in the statement of Lemma 6.2; let C be the event that the maximum degree
of G,,v does not exceed pn Inn. Suppose, as we will prove, that the event A2 is a
logical consequence of the events B, C, and A (the complement of A1), that is to say,
A2

_
B ("l C A1. Then, by elementary set theory, A A2 A (B fq C fq A)

_
(BfqC). Thus, Pr(AA2)>=Pr(BOC)>=I-Pr(B)-Pr(C). The theorem follows
from the estimates for Pr (B) and Pr (C) provided by Lemmas 6.2 and 6.3.

To complete the proof, we need to show that any graph G G,,v that satisfies B,
C, and A1 must also satisfy A2. Our strategy is to demonstrate that every (n-1)-
matching M in G can be extended to a perfect matching of G by augmentation along
a short alternating path. (An alternating path is a path in G whose edges lie alternately
inside and outside the matching M.) Since every (n- 1)-matching is "close to" some
perfect matching, the ratio of (n- 1)-matchings to perfect matchings cannot be very
large. (A similar technique was used in the proof of Theorem 3.2.)

So let M be any (n 1)-matching in G. For s U + V, T c U + V and a positive
Iiat( T) the set of vertices in T that can be reached from vertex sinteger, denote by s,

by an alternating path of length at most i. Set L=(1 + e(n))In n/lnpn, where e is a
positive real function that tends to zero (and that will be defined implicitly later in
the proof). We will prove that M can be extended to a perfect matching via a path of
length at most 8L.

Let u U, v V be the vertices of G that are left uncovered by M. Consider the
set -’2L-1 V) If v -’2L-1

alt (U, alt (u, V) then we are done, so assume the contrary. For any
1-’alt(U,in the range =<i< L, we have the inequality] 2i U)I> [F]t--’(u, V)]. To see this

]--2i-1note that -alt (u, V)] vertices in U can be reached from vertices in FZaft-(u, V) via a
single edge in M, and that these vertices do not include u, which can be reached by

11--,2i+1 2iIalt( U)I since G is assumed tothe null alternating path. Moreover, iX alt (U, V)l ’1 u,
contain a perfect matching. (This is the trivial direction of Hall’s Theorem.) Putting
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the inequalities together we obtain *alt (U, (U, V)[, and, by iteration,
Ir 2t-’(u, v)l e L.

We continue the process of computing lower bounds on Ft(u, g)[ for increasing
i, but now using the improved expansion factor provided by Lemma 6.2. (Note that
k=lr,-’(u, V)leL> n/lnpn, the threshold stipulated in the lemma.) For i L
we have alt (U, V)[ >min {a Ir2i-1

[Xal (u, V)[, [n/2]}, where a=pn/lnlnn. Thus,
[F-l(u, V)[ min {lF],-(u, V)la , In/2]}. Since

L { In n
a =exp (l+e(n))lnpn (ln pn -In In In n)} _>- n

for suitably chosen e(n)O, we deduce that [I"4/- V)[ >alt (U, In/2 ]. A symmetrical
argument gives [Faat-(v, U)I-> In/2]. Since some pair of vertices in F4,t-l(u, V) and

alt (V, U) must be connected by an edge of M, there must exist an augmenting path
for M of length not greater than 8L-1.

Finally, associate with each (n- 1)-matching M of G a perfect matching M that
is reachable from M via an augmenting path of length at most 8L- 1. For each perfect
matching PM,,(G), let Y{(P)={MM,,_(G)’M=P} be the set of (n-1)-
matchings associated with P; clearly, {Yg(P)’P M,(G)} is a partition of the set
M,_(G). To complete the proof, it is sufficient to show that the cardinality of Y{(P)
is bounded above by n 1, for sufficiently large n.

Let M be an element of ?7{(P). By definition, M can be reached from P by
unwinding an alternating path of length less than 8L. We can view the construction
of such an alternating path as a sequence of choices. First select one of the n vertices
of U as a starting point. Then, at each of at most 4L points during the tracing of the
path, namely, each time the path visits a vertex v in V, select one of at most pn Inn
possible next moves: either terminate the path at v, or extend it along one of the
pn In n- 1 free edges incident at v. (Recall that G has maximum degree pn In n, and
note that moves from U to V are forced.) Thus the number of possible augmenting
paths, and hence the cardinality of Y{(P), is bounded above by

n(pn In n)4L= n exp {4L(ln pn + In In n)} =_< n exp {SL In pn} n l+8(+e’(n)).

Since e(n)O as n-oe, the cardinality of 3’c(P) is bounded by n l for sufficiently
large n.

Remark. Neither event A1 nor A2 need, in isolation, occur with overwhelming
probability, only their disjunction. This can be demonstrated by setting p =/3n- In n,
where/3 is any constant greater than 1.

The condition on p in Theorem 6.4 is an unfortunate blemish. Alan Frieze [34]
has indicated that the condition can be dropped at the expense of a slight weakening
of the conclusion: q-amenability would now hold with probability tending to as n
tends to infinity, rather than with overwhelming probability.

We close the section by providing proofs of the three technical lemmas, using
standard techniques from the theory of random graphs.

Proof ofLemma 6.1. The probability that Gn,p has a perfect matching is certainly
less than the probability that no vertex in U is isolated (has degree zero) so it is enough
to bound the latter probability. Our calculations will make free use of the inequalities
1- t>=exp (-t- ) and 1- t_-<exp (-t), the first of which is valid for 0-<_ t<0.69, and
the second valid unconditionally [7, p. 5]. First consider the probability that a particular
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vertex u U is isolated"

Pr (u is isolated

>-_ exp {n(-p _p2)}

=exp {-(1- e) In n-n-11n n}

=n-(-)+o(n-).
Thus, the probability that no vertex in U is isolated is
exp {-n(1 __p)n} =<exp {-n + o(1)}.

Proof of Lemma 6.2. Denote by Akm the event that Gn,p is (k, m + 1)-expanding.
It is clearly enough to show that, for arbitrary k, rn satisfying the given inequalities,
the event Akin OCCurs with overwhelming probability. Furthermore, since Pr (Akm)
increases monotonically with k, it is sufficient to show that the event Ak,, occurs with
overwhelming probability for k and m satisfying In n/ln pn <-_ k <= [n/2a ], and m <-_ ak.

Let U’ be an arbitrary k-subset of U. The set of vertices in V which are adjacent
to U’ in Gn,p may be modelled as a sequence of n Bernoulli trials with success
probability q 1 (1 p) k. Thus the probability that U’ is adjacent to at most m vertices
in V is

E q 1 q)
t=O

and the probability Pr (Am) that G.,p fails to be (k, m + 1)-expanding is bounded
above by

(20)

By Chernoff’s bound [12, p. 18] and using the inequality

the failure probability (20) may be bounded as follows"

(21) pr(k,)<_exp{(n_m)ln(1-q)n On e_n}-------+ m In+ k In
n-m m

Since q= 1-(l-p), we have the relations 1-q<-exp(-pk) and q<_pk; employing
these in inequality (21), we obtain

pr(m)<_exp {_pk(n m)+(n_m) ln
n pkn+mln+kln

g/-m m

Further simplification, using the fact that In (n/(n- m))<-m/(n- m), yields

(22) Pr(Akm)<-_f(p,k,m)=exp -pk(n-m)+m l+ln +kln---

Our goal is to bound Pr (Akin) by maximising f(p, k, m) (viewed as a function of three
real variables) over the ranges p _-> (1 + e)n -11n n, ln n/ln pn <= k<= [n/2a ], and m <= ak.

By differentiating (22) with respect to m we discover that, with p, k fixed and n
sufficiently large, f(p, k, m) is an increasing function of m. (Indeed it is sufficient for
n to be greater than 15, guaranteeing m _pkn/ln In n <pkn.) Thus, in attempting to
boundf(p, k, m), it is enough to consider those triples (p, k, m) for which the inequality
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that governs m, namely m<-_ak, is actually an equality. Substituting k m/cr
m In In n/pn in (22), our task is now to bound

mlnlnnln epn2
pn m n i n

over feasible p, m. Now, for fixed m, the function fl decreases with p. (For this we
need the inequality rn <-pkn/ln In n.) So making the substitution p (1 + e)n- In n we
are further reduced to bounding the function

rnlnlnn lne(l+e)nlnn
(1 + e) Inn rn In In n J

over feasible m. The argument to the exponential is a convex function of m, so we can
bound f2(m) by considering its values at the extremes of m’s range. A lower bound
for m is given by the chain of inequalities

pkn
>__

pn ln n _>-( lnn )2_
olkm

lnlnn lnlnnlnpn \lnlnn] mmi

and an upper bound by

m ak _-< a _<- mma4

where we have used the known bounds on k and p, and assumed n sufficiently large.
Substituting these extreme values in the expression for fz(m), we obtain

f2(mmin) exp +------- In In n J’

{-
The former bound is the weaker and hence is the one that determines the overall bound
on f(p, k, m).

ProofofLemma 6.3. It is clearly enough to show that, with overwhelming probabil-
ity, the degree of an arbitrary vertex u U is bounded by pn In n. The set of vertices
adjacent to u may be modelled as a sequence of n Bernoulli trials with success
probability p. The probability that 6(u), the degree of u, exceeds m can be estimated
from Chernoff’s bound, using manipulations similar to those in the proof of Lemma 6.2"

Pr(8(u)>m)<-exp{(n-m)ln (1-p)n+rnn_m In

<-exp{-p(n-tn)+tn+tnln--}
<_-exp -m lnpn 1

(Clearly we may assume m < n.) Now, substituting pn Inn for m and noting p -> n -1 In n,
we obtain

Pr (8(u) > pn In n) -<exp {-(1 o(1)) In2 n In Inn},

which decays faster than the reciprocal of any polynomial in n.
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7. Miscellaneous remarks and open problems. (i) The existence of an fpras for the
unrestricted permanent remains an intriguing open question. Whereas the requirement
that the ratio ]M_I(G)]/[M,(G)] be polynomially bounded arises very naturally from
our methods, there seems to be no a priori reason to suspect that graphs that violate
this condition are particularly hard to handle. Perhaps an fpras of a different kind can
be found for graphs in which the ratio is large. Alternatively, it is conceivable that
counting perfect matchings approximately in general graphs is hard, in the sense that
the existence of an fpras for this problem would imply that NP RP. (Hardness results
of this kind for other structures appear in [16], [28].)

(ii) It would be interesting to know whether the ratio IMn-I(G)]/[M,(G)I is
polynomially bounded for other natural classes of graphs, immediately yielding an
fpras for the number of perfect matchings. For example, this question is pertinent for
families of regular lattices encountered in statistical physics. Much effort has been
expended on counting perfect matchings in such graphs, and an elegant exact solution
obtained for planar lattices (or indeed arbitrary planar graphs [19]). The three-
dimensional case, however, remains open even in approximate form.

(iii) From a practical point of view, it would be interesting to know whether the
conductance bounds we have derived can be significantly improved. We make no claim
of optimality here, preferring to concentrate on giving a clear exposition of the rapid
mixing property. The practical utility of our algorithms, however, is likely to depend
on rather tighter bounds being available.

Similar considerations apply to our methods for estimating the expectation of a
0-1 random variable under the stationary distribution of a Markov chain. We have
chosen to view the chain as a generator of independent samples, partly to simplify the
statistical concepts involved and partly because the random generation problems are
of interest in their own right. In contrast, Aldous [2] considers estimates derived by
observing a Markov chain continuously and formulates the definition of rapid mixing
directly in terms of the variance of such an estimate. This approach may lead to
increased efficiency.

(iv) A wider issue is the extent to which the techniques of this paper can be
applied to the analysis of natural Markov chains whose states are combinatorial
structures other than matchings. Since these chains are usually time-reversible, the
conductance characterisation of rapid mixing presented in 2 can in principle be
applied. We conjecture that this is possible in practice for other interesting chains,
and that the path counting technique developed in this paper is a promising general
approach for obtaining positive results. It is to be hoped that this will yield efficient
random generation and approximate counting procedures for further structures.
Moreover, it may lead to rigorous performance guarantees for Monte Carlo experiments
in statistical physics, and a demystification of currently fashionable stochastic optimisa-
tion techniques such as simulated annealing.

Acknowledgment. The authors thank Leslie Valiant for bringing reference [25] to
their attention.
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Abstract. A correction network C is introduced that can be added to an arbitrary N-input sorting net

in order to achieve single-fault toleraoce. Multiple (k) fault robustness is attained by adding C k. For
single-fault correction, C is proved to be asymptotically optimal.
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1. Introduction. The high integration density in VLSI technology has created an
increasing probability of fabrication faults. Therefore, although it is cheap to produce
large quantities of a single chip or wafer, only a small fraction of them can be expected
to function correctly. One way of increasing the yield is by designing fault-tolerant
algorithms.

Another aspect of fault tolerance is to increase the reliability of a chip. A useful
technique is to introduce redundant components in order to keep the whole system
reliable, even in the presence of several operating faults.

In this paper we present a method for adding a fault-correcting network to an
arbitrary sorting net. It is very simple and needs little in the way of additional hardware
and additional delay time. Furthermore, we will show that the number of additional
comparators and the number of additional delay stages is asymptotically optimal for
single-fault correction of arbitrary sorting nets.

The problem has already been investigated in [5]. The authors found a correction
mechanism for k faults in an N-network, consisting of only k(2N-3) additional
comparators. Unfortunately, the number of additional delay stages is k(2N-3), too.
Therefore, even a single-fault tolerant N-sorter has time complexity (R)(N).

In [4] a multiple half-fault tolerant N-sorter is presented. For N 2 it consists
of one block of the "balanced sorting network" [2], consisting of log N stages of N/2
comparators. The output of this block is recirculated back as input. If the block is
fault free, sorting requires log N passes through the network. If it is not fault free, the
number of necessary passes increases with the number of faulty comparators, but the
network can still sort. There are n pairs of "critical" comparators. The network fails
only if both comparators of such a pair are faulty.

2. Definitions. Let R denote the set of real numbers. An N-comparator (or com-
parator, if N is understood) is a pair [i:j], with 0=< i, j--- N- 1, j. Associate with
the N-comparator [i :j] the mapping from RN to R defined by

(Xo, Xl ," ", XN-1)[ :j] :-- (Xo, X ", XtN_l),

where x= Xp ifp {i, j}, xl min (xi, x) and xj max (xi, x). We call [i:j] a standard
comparator if <j.

An N-comparator stage (or comparator stage if N is understood) s is a set of r
N-comparators {[io:jo],[il:j],’’’,[ir-:j-l]}, where io,jo, il,jl,’’’,ir-l,jr- are
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pairwise distinct. The N-comparator stage s defines a mapping from RN to R N which
is the arbitrary sequential composition of the mappings associated with
[io :jo], [i, :jl],""", [it-1 :jr-lJ-

An N-network A is a sequence of N-comparator stages Sl, s2,"" ", sv. The N-
network A defines the mapping from RN to R N by successively applying the mappings
induced by sl s2, , sv. A standard N-network is an N-network consisting of standard
comparators only.

A vector x (Xo, Xl, XN-1) R is sorted, if and only if Xi_ X for 1 -<_ i-<_

N-1. An N-sorter A is an N-network that satisfies the following condition"

Vx RN: xA x’x’ is sorted.

What follows is a very useful tool in the studies of sorting networks.
ZERO ONE PRINCIPLE. Let A be an N-network. IfxA is sortedfor every x {0, 1} N,

then A is an N-sorter.
Proof See [3, 5.3.4, Thm. Z].
Using the Zero One Principle we can restrict our studies of sorting networks to

input vectors x {0, 1}s.
For x {0, 1}N the sorted version xs denotes the nondecreasing sequence consisting

of the same number of O’s and l’s as x:

xs :- xA for an arbitrary N-sorter A.

Figure 1 shows, for example, the 4-sorter {[0:1], [3:2]}, {[0:2],[1:3]},
{[0,1],[2:3]}, drawn as defined in [3, p. 222]: Comparators are drawn as vertical
arrows between horizontal data lines. Elements to be sorted travel through the network
from left to right, and whenever they meet a comparator they are compared and
possibly interchanged such that the larger element appears at the line of the arrow
head and the smaller one at the line of the arrow tail after passing the comparator.
They arrive at the right end of the network in nondecreasing order.

3. Fault model. A correct comparator performs a comparison-exchange as
depicted in Fig. 2a. We shall consider three different types of functional faults" Fig.
2b shows the full-fault, a comparator producing the maximum of its inputs instead of
the minimum and vice versa. The half-fault comparator (Fig. 2c) leaves the inputs
unchanged, and the x-fault (Fig. 2d) comparator exchanges the inputs independent of
their values. Each of these faults is assumed to be static, i.e., the comparator always
behaves in the same faulty way.

Of course, there are many other possible faults, as for example, dynamic faults,
stuck-at faults, technology-dependent faults such as stuck-open faults in CMOS, etc.
We do not want to discuss each of these fault types, but we are able to apply our
correction method to arbitrary faults, if the considered sorter enables us to bypass
faulty comparators.

FG. 1. The bitonic 4-sorter [1].
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(b) full-fault

x x x :i g

half-fault (d] x-fault

FIG. 2

Our aim is to find a solution for the half-fault correction problem. The reason for
choosing this specific fault type is the fact that the mapping of a half-fault comparator
is the identity (and thus it behaves like a simple storage cell). If we can locate the
faults in a given sorting network, we can apply the following technique" we can bypass
all of the faulty comparators by cutting out the comparator’s logic and by connecting
the input and the output lines, and we shall get a network that behaves exactly like
the original sorting net, where every fault (of arbitrary type) is replaced by a half-fault.
If we can add some half-fault correcting network (correcting an appropriate number
of half-faults), the result is a fault-free sorter.

Of course, this construction is particularly useful, especially if the additional
correction net is also allowed to contain faulty comparators, which can be bypassed
if necessary. The same construction is not possible with full-faults or x-faults instead
of half-faults, because the last stage of the resulting network could be faulty. In this
case, a full-fault as well as an x-fault produces unsorted output sequences, which
means that the network is not a correct sorter. In the remainder of the paper, a k-fault
N-sorter denotes a network obtained from an N-sorter by replacing k comparators
with half-fault comparators.

4. Lower bounds. Let C be an N-network that corrects any 1-fault N-sorter A’, i.e.,

xA’C xs for every x {0, }N.
In this section we will prove two lower bounds for C.

LEMMA 1. The number of comparators of C is I( N).
LEMMA 2. The number of comparator stages of C is l(log N).
The proofs follow.
PROPOSiTiON 1. For any i,j, 0<= <j <= N- 1 there is a 1 -fault N-sorterA satisfying

the following conditions for every x {0, 1 } N:
(Xs)p (xAl2)p for p {i, j},

(x)i=(xAb)2,

(x)2=(xA)i.
In other words, A’i2 sorts every x except the items on positions andj, which are exchanged.

Proof of Proposition 1. Take an arbitrary N-sorter S. If i<j, we define Ao S,
{[j" i]}, {[i:j]}. Ai2 is an N-sorter. Let A, be Ai2 with a half fault in the last comparator
[i’j]. Obviously, A satisfies the conditions of Proposition 1.
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Proof of Lemma 1. From Proposition 1 we know the N-network Aj for every j,
1-<j N-1. An N-network C correcting an arbitrary Aj must be able to move the
wrong item from position 0 to any position between 1 and N-1. Therefore, every
position must appear at least once in a comparator of C. Hence, C consists of at least
N/2 comparators.

Proof of Lemma 2. Again we consider the N-networks A for =<j-< N-1. The
correcting N-network C must be able to move the wrong item from position 0 to any
position between and N- 1. Since every comparator connects only two lines, at least
log N comparator stages are needed to obtain a path from position 0 to any other
position.

In 6, the N-network C is presented, correcting every 1-fault N-sorter. C meets
the lower bounds in the number of comparators and the number of comparator stages.

5. Symmetric networks. To simplify the proof of the Theorem in 7 we need some
more notations and a few lemmata.

For x (Xo, x, , xN_) {0, 1}N we define the complement

) :-- (0, ’1," -)N-1), -i := 1 XN_l_i, {0, 1,. , N 1}.

For a comparator [i’j] the complement is defined by

[i:j]=[N-l-j’N-l-i].

The complement s of a comparator stage s= {[io:jo], [i’jl],’"", [i_ :j_]} is
defined by g:= {io:jo], [ :j],’", [i_ :j_]} and the complement of an N-network
A= s, sz, ., Sp is A= g, gz, ., gp.

An Nnetwork A is called symmetric if and only if A A.
LZMMh 3. For x {0, }u and 0 <= i, j <-_ N the following equations hold"

(i) x,

(ii) [i :j] [i’j-I,

(iii) 2[j]=x[i:j].

Proof (i) and (ii) are obvious.
(iii) Consider the pth component of 2[i’j]"

(2[i’j])p ([N- 1-j’ N- 1-i])p 1-2.[N- l-j" N- 1- i]n_l_p.

Ifpi andp#j, wehave

1- 2[N l-j" N- 1- i]n_a_e 1- 2N_I_p Xp x[ "j]p.

If p i, we have

1-[N- l-j" N- 1 -i]l__p 1-max (N-1-2,
min (1 2-1-j, 1 2__i) min (xj, x) x[i’j]p.

If p =j, we have

-2.[N- 1 -j" N- 1- i]u_l_p= 1-min (2N__j,

=max (1 2u__j, -2-,-i)=max (x, xg) x[i :j]p.

Therefore, we know for every p, 0<_-p =< N-1,
(.[i :j])p x[i’j]p, which means Y.[iij] x[i :j].

LEMMA 4. For every N.network A and every x {0, 1}N" fi xA.
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Proof Induction on the total number m of comparators in A"
m=0: gA=:=x=xA;
m > 0" Assume Lemma 4 to be true for every N-network consisting of no

more than m- 1 comparators.
Let A consist of the comparators [il :jl], [i2:j2]," ", [irn’.jm]. Without loss of

generality, [ir "j,,] is the last stage of A. Define G to be the N-network obtained by
removing [im ".jm] from A. Then

XA XG[ im j,]= gG[ i, "jm] XG[ i., :j., ]= xG[ i, j, xA.

SYMMETRIC NETWORK LEMMA. For every symmetric N-network A and every
x {0, 1}, )-- xA.

Proof Definition of symmetric networks and Lemma 4. [-]

6. The correction network. Let n be an integer greater than and let N 2n. In
this section we shall define the N-network C that can be used for single half-fault
correction. We show that C consists of 2log N-1 comparator stages, and of
3.5N 2 log N 5 comparators.

DEFINITION. Let N 2n. The correcting N-network C is defined by

C:=s,sz,...,s2,_ with

s := {[2i" 2i+ 1]10=< i_--<2 "-- 1}

s :- {[2i 2i + 2-] 0 _--< _-< 2 "- 1 } U

{[N-l-(2Ji+2-’) N-1-2Ji]I0_<- i<-2"-- 1}

for 2<=j<-n-1

s := {[22"--’ 2"-J- 22"--1 i]11 -< -< 2-"+1-1} U

{[N 1 22"--’ N 1 -(22"-J-’ 22"--2)] 1 =< -< 2J-"+’ 1}

for n <=j <= 2n 3

s2,-2:= {[2i- 1"2i]11-<_ i-<_2"-’- 1}

szn_l := {[2i’2i+ 1110=< i-<2 "-’- 1}

As an example, Fig. 3 shows the network C for N-32 (n- 5).
To assure that C is well defined, we need to prove the following proposition.
PROPOSITION 2. For every re {1, 2,. , 2n 1} andfor all comparators [io:j0] and

[i :j] occurring in Sr, io, il, jo, jl are pairwise distinct.

Proof For stages 1, 2n-2, and 2n-1 the proposition is obviously true. For
2 =< p =< n 1 the comparators of the pth comparator stage are of the form

(*) [(2i)2P-"(2i+ 1)2 p-’] or

(*) [N-I-(2i+I)2P-’N-I-(2i)2 p-l] for0_-<i_-<2"-P-1.

For two different comparators of the form (*) the proposition is true. The same
holds for two comparators of the form (**). Now let [io’jo] be a (,) type comparator
and [i "j] a (**) type one. We have io Cjo as well as il Cj. Since io and jo are even,
whereas i and j are odd, they must be pairwise distinct. The same argument holds
for the pth comparator stage where n _-< p _-< 2n- 2, which completes the proof.
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FIG. 3. The correction N-network C for N 32.

Now we count the total number of comparators in C. The first stage consists of
2"- comparators. For 2- p -< n comparator stage p has 2 2 n-p comparators. For
n =<p =<2n-3 stage p consists of 2 * (2 p-n+ 1) comparators. Stages 2n-2 and 2n-1
have 2"--1 and 2"- comparators, respectively. Therefore, the total number of
comparators in C is

-1 2n -3

m=2’-+2 2’-P+2 (2P-+-l)+2-l-l+2’-=3.5,2’-2n-5.
p=2 p=n

Observe that C is a symmetric standard network. In particular each comparator
stage s of C is symmetric and so is every subnetwork s, s2, , sj, for =<j =< 2n 1.

7. Correction property of C. The Hamming distance of two N bit vectors x and
N-1

y is the number of bits in which they differ" D(x, y) == Ix,-y,I.
LMMn 5. Let x {0, 1} and let [i’j] be a standard comparator in an N-network.

Then D(x[ :j], x) <= D(x, x).
Proof See [5, Lem. 2].
LZMM 6. Let A’ be a k-fault N-sorter. Then for any x{0, 1}, D(xA’,xs)<=2k.
Proof See [5, Lem. 4].
TI-iOZM. Let x {0, 1}, with D(x, x) > O. For the correcting N-network C

(s, s,. , s2,-) the following relation holds" D(xC, x) <= D(x, x) -2.

Proof Let b be the number of 0’s in x, i.e., x 0 1 -. Since D(x, Xs) > 0, b must
be greater than 0 and smaller than N. We call the set of positions {0, 1,. ., b- 1} the
zero area, and the set {b, b + 1,..., N-1} the one area. A wrong is a 1 positioned
in the zero area and a wrong 0 a 0 in the one area.

If there is any comparator in C that compares a wrong 1 with a wrong 0, these
two elements change their positions and the Hamming distance to the sorted sequence
is reduced by two. Since the Hamming distance cannot be enlarged again by standard
comparators (Lemma 5), after passing the network C we would have D(xC, x)<=
D(x,x)-2.

Therefore, it is sufficient to construct a contradiction tO the following assumption"

(.) There is no wrong 1 compared with a wrong 0 in C.
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Let Po be the position of the first wrong 0 in x, i.e.,

Po=min{pc{b, b+l,..., N-1}lXp =0}.

We want to construct the sequence of positions Po, P1,’", P2,-2, which we shall
show to be the path of this 0 through the network C"

Let P,,-lP,-2"’’Po be the binary representation of Po, i.e.,
n--1

Po-- Pi 2i"
i=0

Since Po >- b, we can define the constant K"

K := max {j 0_-<j_-< n 1 and

Now we define the sequence of positions P"
n--1

for0=<j=<K, P:= pi2i"

i=j

for K + I <=j<-2n-K-2,

for 2n K 1 -<j _-< 2n 2,

P := P;

nl 2 )Pi >= b
i=j

4 := max {i {0, 1}[ P-I- 22"--j -> b},

P := P_I-dj 22"--.

dj is well defined because P_ >= b.
We need some observations concerning the P"

(1) For 0 =<j -< K, P is a multiple of 2J.
(2) For 0=<j =< K, P P_,-pj_,2j-’.

The definition of K implies

n--1 n--1

PK= Pi2->-b> p2i.
i=K i=K+I

Therefore, 0 <= PK -b < PK * 2K, which implies PK and

(3) 0<_-PK-b<2K.
For j 2n K 2 we have P; PK. From (1) we know that P is a multiple of 22"-z-J

For 2n-K- =<j_-<2n-2 we have

P PK di29-n--i
i=2n-K --1

n--1

2K Pi2i-K 22n-2-i * 2 di2j-i
i=K i=2n-K-1

=2’n-2-J , 2K-2n+2+J , pi2i-K-
i=K i=2n-K-1

Therefore, we know

(4)

di2J-i).
2n-K-2<_j<=2n-2

where < rnj < 2J-’+:

::1 integer rnj" P tnj 2 :"--.j,

because 0 < P mj 2"-- < 2".
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Now we want to prove that the sequence of positions P is the path of the first
wrong 0 through the network:

(5) j, O<=j<=2n-2: X(Sl,Sz," ,sj)=O.

Proof of (5) by induction on j.
j 0: By definition of Po we have Xv0 0.
j > 0: Assume x(s, s2,’’ ", sj-1)v._i 0. We have to consider three cases:
Case 1. <-j<= K; sj contains the comparator [P" P+2-1], because P is a

multiple of 2 (see (1)). Since P=P_-P_.2- (see (2)) and since
x(s, s2,’", sj_l)vj_,=0, at least one input into the comparator is 0. Therefore,
x(s, s, s) =O.

Case 2. K + 1 <=j -< 2N K 2; by the definition of C, for every comparator r" s]
in stage sj we know s-r> 2K. On the other hand, we know from (3) that 2: > P: -b.
Since Pv - P, this implies that a comparator of the form [r" P_] in s compares
an element from the zero area with a wrong 0 in position P_ in the one area. Assumption
(*) forces this element to be a 0, which implies x(s, s2,"" ", s) 0. If there is a
comparator of the form [P_l"s] in s, then the 0 remains in P and again we have
x(s,s,..., s),, 0.

Case 3. 2n-K-1 <=j<=2n-2; if dj=0, then P= P_ and P_-2"-2-J<b. If
there is a comparator Jr" P_] in s, then r < b and x(s,, s2, , S-l)r must be 0, due

22n-2-Jto assumption (,). Therefore, x(sl, s, s) v. 0. If dj 1, then P P-I
By (4), there is an integer mj-1, 1-<-mj-l-<2-"+ with P_l=m_,22"--
Therefore, in stage sj there is a comparator [P’P_], which implies that
x(s, s, ., s),., =0.

For 2n K 2 <=j =< 2n 2 we need an additional statement concerning the distance
of P from the zero area:

(6) Vj, 2n K 2 <-j <- 2n 2" 0-<Pj-b<22n--j.

Proof of (6) by induction on j.
j=2n-K-2" from (3) we know 0<_- P: -b<2v =2n-2-J.
j > 2n K 2: assume (6) to be true for j 1. P P_I d 2n-z- >= b. If d 0,

22n-2-jthen P P_ and _, < b. Thus we have 0 _-< P b -< 22n-2-j.
If d-- 1, then we know by induction hypothesis

Pj Pj-1 22n-J-2 < b + 22n-l-j 22n-2-j b + 22n-2-j.

This implies 0 =< P b -< 22n-2-j.

Equation (6), in particular, implies that for j 2n -2 holds 0 <_- P2n-2- b < 1, or
in other terms P2,-.2 b. From (5) we know x(sl, s2," , S2n-2)P2,,_2--O, and thus we get

(7) X(S1, $2," ", $2n_2) b --O.

Since the complement : consists of N-b O’s and b l’s, we get from equation (7)

)(S1, $2, $2n-2) N-b 0, and therefore, )’(S1 $2," ", $2n-2)N-I-(N-b)-- 1.

Because of the Symmetric Network Lemma, this is equivalent to

(8) X(SI, $2,’’" S2n_2)b_ 1,

since sl, $2,’’’, $2n-2 is a symmetric network.
Now (7) and (8) show that there is a 0 in position b and a in position b-1

after 2n-2 stages. Since in stage 2n-2 there are the comparators [2i-1:2i], they
would have been interchanged if b is even. Hence b must be odd. But then in stage
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s2n-1, there is a comparator [b-l:b]. This comparator compares a wrong with a
wrong 0, a contradiction to (,). D

COROLLARY. An N-sorter S is given. If in the network SC k at most k comparators
are replaced by half-fault comparators, then the resulting network is still an N-sorter.

Proof Let r be the number of comparators replaced in S. Then at most k-r
copies of C are faulty and at least r copies of C are fault free. Lemma 6 ensures that
for the network S’ obtained from S by replacing the r comparators the following
condition holds: D(xS’, x,) <= 2r.

By the theorem, each of the fault-free copies of C reduces the Hamming distance
by at least 2. Therefore, after passing the r fault-free copies, the sequence is sorted. [3

8. Conclusions. We have introduced an efficient way to achieve fault tolerance in
sorting networks. We have shown the asymptotic optimality of our method for single
half-fault correction. It is certainly of further interest to find lower bounds for
multiple half-fault correction and correction networks that meet these bounds.

9. Acknowledgments. We would like to thank the referees for helpful suggestions
and remarks.
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SOLUTION OF A DIVIDE-AND-CONQUER MAXIMIN RECURRENCE*

ZHIYUAN LI?$ AND EDWARD M. REINGOLD?

Abstract. The solution of the divide-and-conquer recurrence

M(n)= max (M(k)+M(n-k)+min(f(ic),f(n-lc)))

is found for a variety of functions f Asymptotic bounds on M(n) are found for arbitrary nondecreasing f,
and the exact form of M(n) is determined for f nondecreasing and weakly concave. As a corollary to the
asymptotic bounds, it is shown that M(n) remains linear even when f is almost linear. Among the exact
forms determined: For f(x)= Jig xJ, the solution is M(n)=(M(1)+ 1)n-Jig nJ- u(n) where u(n) is the
number of 1-bits in the binary representation of n. For f(x)=[lgx], the solution is M(n)=
M + n [-lg n 1, while forf(x) Jig (x + ], the solution is M n M + 2) n -[lg n u( n 1.

Key words, recurrence relations, divide and conquer, algorithmic analysis

AMS(MOS) subject classifications. 68Q25, 68R05, 05A20, 26A12

(1)

1. Introduction. Let M(n) be defined by the recurrence

M(n)= max (M(k)+M(n-k)+min (f(k),f(n-k))),
lk<n

with M(1) given. Divide-and-conquer recurrence relations of this type, for various
functions f, occur in a variety of problems in the analysis of algorithms. For instance,
the number of element interchanges in the worst case of quicksort (see, for example,
15] or 16]) is given by M(n) when f(x) x and M(1) 0; this M(n) counts the

worst-case number of interchanges used by quicksort in sorting n 1 elements, provided
we make the simplifying assumption that the element used for partitioning is always
interchanged to put it between the left and right parts of the array. The identical
recurrence relation describes the worst-case behavior of a certain permutation algorithm
(see [8]) and a merging process (see [14]).

The case f(x)= t0(log x) is well known. The recurrence (1) occurs, with such an
f, in the construction of binary search trees [6], [15], [16], in the finding of common
ancestors [10], and several computational-geometric problems [3], [5], [7], [9], [12],
[21]. M(n) is to(n) by an inductive argument [15], but the behavior of M(n) in this
case has not been investigated more precisely.

There is even a version of the recurrence (1) over trees. In this version, which
occurs in the analysis of a certain tree-drawing algorithm, the function f is the height
of the tree. See [18] or [22] for details.

Our purpose in this paper is to obtain precise solutions to the recurrence (1) under
a number of choices off These solutions will be instructive for several reasons. First,
the order-of-magnitude approximations conceal the precise behavior of the algorithms
being analyzed. Second, and most important, by giving a more precise analysis of (1),
we will discover that f(x)= to(log x) is a much stronger condition than is necessary
to guarantee that M(n) is linearmany f(x)=O(x/(logx)l+), e>0, will do. This
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means that the "merge steps" in the divide-and-conquer algorithms with this behavior
can use almost linear time without sacrificing the overall linearity of the algorithm.
Third, there is the challenge of explicitly solving a hard recurrence relation.

The published literature of exact solutions to (1) is scant--only the case f(x) x,
M(1) 0 has come under scrutiny. This case arises in the algorithmic problems outlined
above, and also in at least one combinatorial setting 11 ]. The solution turns out to be

n-1

M(n)= v(i)
i=1

where v(i) is the number of 1-bits in the binary representation of i. This M(n) has
been well studied; see [14] for a detailed discussion and [4] for an extensive analysis
of its asymptotic behavior.

Our analysis is aided considerably by the work of [2] on subadditive inequalities.
In this paper (and in 1]), the determination of the value of k giving the maximum in
(1) is given for some general classes of f In particular, [2] considers the cases of f
decreasing, f increasing and concave, and f increasing and convex. These cases, while
of obvious interest, do not help in determining the exact behavior of M(n) when f is
a step function. Of course, step functions such as [lg xJ, [lg (x + 1)], or [x/2J occur
often as the cost of the merge step in divide-and-conquer algorithms, but the results
of [2] do not apply to such functions. We will show how to handle many such cases.

To begin, we note that [2] observed that whenf is nonincreasing, a simple induction
on n verifies that M(n) riM(l) + (n 1)f(1). In the next section we treat the case in
whichf is nondecreasing and satisfies a certain concavity condition that is weak enough
to encompass many step functions of interest. Similarly, in 3 of this paper, we cover
the case in which f is nondecreasing and satisfies a certain weak convexity condition
that is less restrictive than general convexity. In these two sections, the main theorems
are reformulated versions of results in [2], rewritten with emphasis on the less restrictive
concavity/convexity condition. The corollaries show how these results apply to various
step functions of interest. Section 4 develops some general bounds for arbitrary
nondecreasing f Finally, we summarize these results and give some unresolved ques-
tions in 5.

2. The concave case.
DEFINITION. A real-valued function f(n) is concave if A2f(n) _--< 0 for all n _-> 0,

that is, if

f(n + 2) -f(n + 1) -<f(n + 1) -f(n) for all n _-> O.

THEOREM 1. Let M(n) be defined by the recurrence (1), where M(1) is given and

f is nondecreasing and satisfies the inequality

(2) f(2 m-’ +j) -f(2-’) <-- f( i) f( -j), <=j <= i/2 <= 2"-’.

Then M n satisfies

(3) M(2 + i) M(2m) + M(i) +f(i), -< =< 2m, m 0.

Proof The proof is by induction on n =2n+ i. First, observe that since f is
nondecreasing, the original recurrence simplifies to

(4) M(n)= max (M(k)+M(n-k)+f(k)).
l<=k<=tn/2



1190 z. LI AND E. M. REINGOLD

Direct computation gives

M(2) M(1)+ M(1) +/(1), M(3) M(1)+ M(2) +/(1),

M(4) =max (M(1) + M(3)+f(1), M(2)+ M(2) +f(2))
=max (4M(1)+3f(1), 4M(1)+2f(1)+f(2))
4M 1 + 2f( 1 + max (f( 1 ), f(2))

4M(1 + 2f(1) +f(2)

=M(2)+M(2)+f(2).

This establishes the theorem for n =< 4.
Suppose, by induction, that the theorem is true for values less than n; we will

show that (3) holds for n 2m+i as well. In particular, we will show that for rn => 2,
1 _-< _-< 2m, (that is, n -> 5),

M(Zm)+M(i)+f(i)>-M(k)+M(Zm+i-k)+f(k), l<-k<-Zm-l+i/2.
Since equality occurs at k i, it follows that

M(2)+M(i)+f(i) max (M(k)+M(2"+i-k)+f(k))
1k[(2’"+i)/2]

M(Zm+ i).

The range 1 =< k <_-2 "-1 + i/2 is broken into four subranges that are handled in separate
cases.

Case 1. <-_ k < i. This is the simplest case; we have

M(k)+ M(2 + i- k)+f(k)= M(k)+(M(2m)+ M(i- k)+f(i- k))+f(k)

(by induction)

M(2")+ (M(k)+ M(i- k)+ min (f(k),f(i- k)))

+ max (f(k), f( k))

<=M(2m)+M(i)+max (f(k),f(i-k))

(by the definition of M)

<-M(2m)+M(i)+f(i),

since f is nondecreasing.
Case 2. + =< k < 2m-2 + i/2.

M(k) + M(2 + i- k) +f(k) M(k) + M(2m-1 + 2 m-1 + i- k) +f(k)
M(k)+(M(2m-1)+M(2m-l+ i-k)

+f(2m-l+i-k))+f(k) (by induction)

M(2m-1)+(M(k)+ M(2m-1 + i-k)+f(k))

+f(2m-l+i-k)
M(2m-’) + M(2m-1 + i) +f(2 m-’ + i- k)

(by the definition of M)

M(2-1) + (M(2 m-1 + M(i) +f(i)) +f(2 m-1 + i- k)

(by induction)

(M(2m-1) + M(2m-1)+f(2m-1))+ M(i)+f(i),

because < k and f is nondecreasing.
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M(2m) + M(i) +f(i) (by induction).

Case 3. 2’-2+ i/2<- k<-_2 "-1.

M(k) + M(2" + i- k)+f(k) M(k) + M(2"-1 + 2 ’’-1 + i- k) +f(k)

M(k)+(M(2"-1)+ M(2m-1 + i- k) +f(2’-1 + i- k))

+f(k),

by induction, since < k.

M(2m-1)+(M(k)+ M(2’-I + i- k) +f(2"-a + i- k))

+f(k)

-< M(2’-1) + M(Zm-1 + i)+f(k),

by the definition of M, since k >_- 2 "-1 + i- k.

M(2n-1) + (M(2n-1) + M(i)+f(i))+f(k)

(by induction)

(M(2n-1) + M(2"-1)) + M(i) +f(i) +f(k)

M(Z")-/(zn-1)+M(i)+f(i)+f(k) (by induction)

M(2’) + M(i)+f(i)+(f(k)-f(Zm-1))

<-M(2n)+M(i)+f(i),

since k_-< 2 "-I and f is nondecreasing.
Case 4. 2m-l<k<-_2"-+i/2. Let k=2m-l+j, l<-j<-i/2<-2n-1; if i-j>2"-1

then i-(k-2n-1)>2 "-1 so that i> k and we have Case 1. Hence we may assume
that -j _-< 2"-1 and we have

M(k)+ M(2 + i- k)+f(k)= M(2 ’’-I +j)+ M(2"-1 + i-j)+f(2 m-1 +j)

(M(2m-’ + M(j) +f(j)) + (M(2m-l) + M(i-j)

+f(i-j))+f(Z’-l+j),

by induction, since j _-__ 2 n-1 and -j 2 n-1.

(M(2 ’-1) + M(Zm-1))+ (M(j)+ M(i-j) +f(j))

+f(i--j)+f(zn-l+j)

--< (M(2 -f(2 m-l))+ M(i) +f(i-j) +/(2 m-1 +j),

by induction and the definition of M.

M(2n) + M(i)+f(i)+((f(2 n-1 +j) -/(2’-l))

-(f(i)-f(i-j)))

<-M(2m)+M(i)+f(i),

because for 1 <=j_<-i/2N2 m-a the bracketed term is negative by hypothesis.
A detailed examination of [2] reveals that Batty and Rogers actually proved

Theorem 1. However, all they state is the following corollary.
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COROLLARY 1 [2]. Let M(n) be defined by the recurrence (1), where M(1) is given
andf is nondecreasing and concave. Then M(n satisfies

M(2 + i) M(2") + M(i) +f(i), 1 <_- <_- 2’, m _-> 0.

Proof The concavity of f guarantees that it satisfies the inequality (2) in the
hypothesis of Theorem 1.

We can use Theorem to obtain an explicit solution to recurrence (1) for
nondecreasing functions f that satisfy inequality (2). First, we get the solution for
powers of two, then we extend it to arbitrary n.

COROLLARY 2. Let M(n) be defined by the recurrence (1), where M(1) is given
and f is nondecreasing and satisfies inequality (2). Then

M(2k) 2kM(1 + 2k-’ ).
i=0

Proof The proof is by repeated application of (3).
COROLLARY 3. Let M(n) be defined by the recurrence (1), where M(1) is given

and f is nondecreasing and satisfies inequality (2). Let n 2k, + 2k2 +. + 2k’,
0 <- kl < k2 <" < kl, ,(n) -> 1; then

(5) M(n) nM(1)+ E E f
j=l i= j=l i=1

(6) =riM(l)+ 2 f(2-1) + f 2k’
j=l j=l i=1

Proof. Equation (5) follows from repeated application of (3), together with Corol-
lary 2. Equation (6) follows from (5) by observing that the coefficient off(2 t-x) in (5)
is l<=<-_l.k>-_t 2k;-t [n/2tJ

Corollary 3 can be applied to a variety of step functions f, including f(x)=
[lg(x+l)], f(x)= [x/2J, and so on. The evaluations of M(n) in such cases are
straightforward algebraic calculations. We give one example of such a calculation in
the next corollary. We chose to give this example, f(x)= Jig n J, because this particular
choice of f is what initiated our investigation [16].

COROLLARY 4. Let M(n) be defined by the recurrence (1) with f(x)= [lg xJ. Then
M(n)=(M(1)+ 1)n- [lg nJ (n).

Proof. Since [lg xJ is nondecreasing and satisfies (2), Theorem I and its corollaries
apply. Equation (5) in Corollary 3 tells us that

M(n)= M(1)n+=l 2kj-1 ,o= = k
ki-1

=M(1)n+ i2g,-1-i+ k-[lgnJ,
j=l i=0 j=l

since k [lg nJ. It remains to show that

ki-1
i2k’--i+ k=n-,(n).

j=l i=0 j=l

We have

k-I
izk-l-i+ 2 k= 2 (2k k l) + 2 k= 2 2kJ- l=n-,(n),

j=l i=0 j=l j=l j=l j=l j=l

t+lsince i=0 i2’- 2 2. [3
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The most famous instance of (1) is with f(x) x and M(1) 0 [4], [8], 11 ], 14].
We have Corollary 5.

COROLLARY 5 [8], 11 ], 14]. Let M(n) be defined by the recurrence (1), with
n--1 p(k),f(x) x and M 1 O. Then M(n) =o

Proof. Since f(x)= x satisfies inequality (2), we apply Corollary 3 and find that

M(n)= 2 2-+ 2 2 2k’
j= j= i=

from equation (6). Now, imagine the binary representations of 0, 1, 2, , n 1 written
in an array, one above the other with the columns aligned. The number of 1-bits can

n-1be counted row by row to give 2=0 ’(k). Alternatively, the number of 1-bits can be
counted column by column as follows. In the jth column from the right there will be
In/2] complete groups of 2- 1-bits, for a total of [n/2J 2-1 1-bits in those complete
groups; summing this value from one to infinity counts the 1-bits in complete groups,
column by column. Now we count the fragmentary groups of 1-bits column by column
as follows. If the jth column of n is a 1-bit (that is, if 2-l appears in the binary
representation of n), there will be a fragmentary group of 1-bits in column j. The
fragmentary group in column j will have a number of 1-bits equal to the value of the
binary number formed by the bits of n to the right of the jth column, that is, 2i=1

1-bits. Summing this for all the 1-bits in n (except the first which can have no fragmentary
group), we obtain precisely Zj211 2 2*,.

3. The convex case. The case of nondecreasing, convexf is not nearly as interesting
as the concave case. As in the concave case, we state and prove a result that holds for
a relatively weak form of convexity, and then state as a corollary the result for usual
convexity. Also as in the concave case, Batty and Rogers [2] proved a more general
result than they state.

DEFINITION. A real-valued function f(n) is convex if 2f(n) 0 for all n 0,
that is, if

f(n+Z)-f(n+l)f(n+l)-f(n) for alln0.

TheOReM 2. Let M(n) be defined by the recurrence (1), where M(1) is given and
f is nondecreasing and satisfies
(7) f( [(p + q)/2] -f( [q/ZJ f(p) -f( [p/2 ])

for all integers p and q, 0 p q. en M(n) satisfies

(8) M(n)= M([n/2])+ M([n/Z])+f([n/2]).

Proof The proof is by induction on n. As in the proof of Theorem 1, the original
recurrence simplifies to

M(n)= max (M(k)+M(n-k)+f(k))
lNkN[n/ZJ

and direct computation gives

M(2)= M()+ M()+T(),

so the theorem holds for n N 2. Suppose it holds for all values less than n; we will
show that (8) holds for n as well. In particular, we will show that for all p, q, 0 < p N q,
p+q=n,

M( In/Z] + M( [n/2 ])+f( In/2] M(p)+ M(q) +f(p).
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Since equality occurs for p [n/2J, q In/2], it follows that

M([n/2J)+M([n/Z])+f([n/ZJ)= max (M(k)+M(n-k)+f(k)).
l<--k<={n/ZJ

If p is odd and q is even, we have [p/ZJ + [q/Z] [(p+ q)/2] and [p/2]+ [q/Z]
[(p+q)/2]. Since p+q n we have

M(p)+ M(q)+f(p)= M([p/ZJ)+ M([p/2])+f([p/2])+ M([q/ZJ)+ M([q/2])

+f([q/ZJ)+f(p) (by induction)

(M( [p/2J + M( [q/2 ])+f( [p/ZJ ))+ (M( [p/2 ])

+ M( [q/ZJ)+f([p/Z])) +f( [q/ZJ)-f([p/Z]) +f(p)

-< M( [n/2J )+ M( [n/2 ])+f( [q/ZJ

-f([p/2])+f(p) (by the definition of M)

M([n/2J)+M([n/Z])+f([n/ZJ)

((f( [(p + q)/ZJ -f( [q/2J )) -(f(p) -f( [p/2 ])))

=< M( [n/ZJ + M( In]) +f( [n/2J ),

because f satisfies inequality (7). On the other hand, if either p is even and q is odd,
or if both p and q have the same parity, we have [p/2J + [q/2] [(p+ q)/2] and
[p/2]+ [q/2] [(p+q)/2] and the proof continues exactly as above.

COROLLARY 6 [2]. Let M(n) be defined by the recurrence (1), where M(1) is given
andf is nondecreasing and convex. Then M(n satisfies

M(n)= M([n/2])+ M([n/2])+f([n/2J).

Proof Since

{(p+q)/2] {q/2] ->_p- [p/2]

for all nonnegative integers p, q, it follows that inequality (7) holds by the convexity
off [3

COROLLARY 7. Let M(n) be defined by the recurrence (1), where M(1) is given
and f is nondeereasing and satisfies inequality (7); we have

M(2) 2M(1) +2- ).
i=0

Proof The proof is by repeated application of equation (8).
COROLLARY 8 [8], [14]. Let m(n) be defined by the recurrence (1), with f(x)= x;

then M(n)= M(Ln/ZJ)+ M([n/2])+ Ln/2}. [3

4. The general case. Corollaries 2 and 7 suggest that the general asymptotic
character of M(n) does not depend on the particular shape of f, only on it being
nondecreasing. In this section we verify this observation and derive bounds on M(n)
for arbitrary nondecreasing f

In studying the function M(n) as defined by recurrence (1) for arbitrary nonde-
creasing f, it will be convenient to use binary trees to represent the recursive evaluation
of (1) for a given n. We define a partition tree of n as a rooted binary tree T containing
n- 1 internal nodes and n external nodes (see, for example, 16]) in which every node
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x in T is labeled with a natural number: the root is labeled with n, every internal node
is labeled with the sum of the labels of its two children, and every external node is
labeled with one. Furthermore, the label of a left child must never be larger than the
label of its sibling. When no confusion results, we will refer to a node by its label. We
denote by -(n) the set of all partition trees of n.

We will want to consider partition trees in which parts of the tree have been
pruned away. Given a particular partition tree T in J(n), we define the sequence of
truncated partition trees To T, T1, T2, as follows. T,, t- 0, is the tree that results
when all nodes x < 2 in T are delected.

Finally, we define the function F(T), for a truncated partition tree T, to be

F(T)= E f(x).
left children in T

The formation rule for partition trees and the nondecreasing property of f make the
relationship between the recurrence (1) and partition trees

M(n)=nM(1)+ max F(T).
Tin W(n)

We will, therefore, be able to bound M(n) by bounding F(T). Specifically, we will
show below (in the proof of Theorem 3) that

k-1

F(T) <- E (In + bi_,)f(2’) for all T in -(n)
i=1

where k-1 [lg n] and n (... b3b2bbo)2. First, however, we need a preliminary
result.

Given a partition tree T, let L(T) denote the number of left children in T. Then,
we define

Lt(n) max L(Tt);
Tin -(n)

that is, Lt(n) denotes the largest number of left children remaining in any partition
tree of n that has been pruned of all nodes with labels less than 2 t. Obviously, L,(1) 0
and L,(n) can be defined recursively by

(9) Lt(n)= max (Lt(k)+Lt(n-k)+g(k))
lk<=[n/2]

where

0 if x < 2 t,
g(x)

otherwise;

the g(k) term in the recurrence counts the root of the left subtree.
LEMMA.

[n/2’]-I if n>-2’,L, (n)
0 otherwise,.

Proof Recurrence (9) is an instance of recurrence (4) and the function g is
nondecreasing and satisfies inequality (2), so that Theorem 1 and its corollaries apply.
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Corollary 3 tells us that

L,(n)= nLt(1)+ Z 2k;-1 2-i -b’’ kj
l<=j<! i=t j=l 0 otherwiseJ
ki>

>
Y (2k,-’-l)+ v([n/2’])-I fn=2,

<_-_! 0 otherwiseJ
ki>

v( Ln/2’JLn/2’J-v(Ln/2’J)+
0

_f[n/2’]-I if n>=2’,
0 otherwise.

>f n=2,
otherwiseJ

THEOREM 3. Let M(n be defined by the recurrence (1), where M(1) is given and
f is nondecreasing. Then M(n) satisfies

tlgn]

M(n)<-nM(1) + Z ([n/2’J+b,_l)f(2’)
i=0

where n (. b3bzblbo)2.
Proof Let 2k-1--< n <2k so that k-1 Jig n]. The theorem will follow from the

lemma and the inequality
k-1

F(T)-< Y [Lk-(i+l)(n)- Lk-i(n)]f(2k-i) for all T in -(n),
i=1

because

M(n)=nM(1)+ max F(T).
Tin 57-(n)

In fact, for any given partition tree T in W(n) we will establish, by induction on t, the
more general inequality

(10) F(Tk_t) <- (Lk_(i+l)(n)--Lk_i(n))f(2 k-i) --(Lk_t(n)--L(Tk_t))f(2k-t+l),
i=1

for l <-t<-k.
We need to establish the basis. Because k- 1 [lg n J, there is no left child x _-> 2 k-1

in any T in 3"(n); thus F(Tk_l)=O, forall T in 3-(n). Similarly, Lk_l(n)= L(Tk_I)=O,
so (10) holds for 1.

Suppose (10) holds and < k; we will show that it holds for + 1 as well. We have

F(Tk-(t+l)) F(Tk-t) + Z f(x)
2k-(t+l)<=X<2k-t
is left child in T

<-_F(Tk_,)+ Z f(2k-t)
2k-(t+t)<_X<2
is left child in T

because f is nondecreasing.

{ the number of left children
=F(Tk-’)+\xin Tsuchthat2 <2

f(2 k
k (t+l) < X

--t

F(Tk_,)+(L(Tk_(t+l))-L(Tk_,))f(2k-’).
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Using (10), we have

<_ (L_(,/(n)-L_,(n))f(2-’) -(L_(n)-L(T_,))f(2-’+)
i=1

(L_(+(n)-L_,(n)g(2-’) -(L_,(n)-L(r_,)g(2-’)
i=1

since f is nondecreasing.

(L_(i+l(n)-L_,(n))f(2-’) -(L_,(n)-L(T_(,+I)g(2-’)

completing the induction.

Now, T To, so

M(n)=nM(1)+ max F(To),
Tin (n)

and then

k-1

(11) M(n)<=nM(1)+ (Lk_(,+,)(n)--Lk_,(n))f(2k-’),
i=1

by (10) with k since Lo(n) L(To) n 1.
The lemma tells us that

f!n/2
k-(i+l) 1-(In-’] -1),

Lk-i+l)(n) Lk_i(n) n/2k-+l) 1 -0,
--0

n > 2 k-i

2 k-(i+l) n < 2 k-i

/1 2 k-(i+l)

[n/2k-i+l)J [n/2k-ij,
[n/Zk-i+l)J--1,
O,

n >2k-i

2 k-(i+l) < n "(2 k-i

/1 2 k-(i+l)

f In/2 k-’] + bk-(,+l),
O,

n >=2 k-i,
otherwise,

because n/ 2 2 n/2"+ + bin. Inequality (11) thus becomes

k-1

M(n)<-nM(1) + Z ([n/2k-’J +bk-+l))f(2k-)
i=1

k-1

nM(1)+
i=1

as desired.
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COROLLARY 9. Let M(n) be defined by the recurrence (1), where M(1) is given
andf is nondecreasing. Then M n satisfies

[lgn]

(12) nM(1)+ Y
j=l

[n/UJf(2-l)+ f 2k, <=
j=l i=1

Llgnj 1-1

M(n)<=nM(1)+ Y. [n/UJf(2J)+ Y f(2k,+l),
j=l j=l

where n 2kt / 2g2 at-. / 2k’, 0 -< kl < k2 <" < kl, and v(n) >- 1.

Proof. The upper bound follows directly from Theorem 3. The lower bound follows
from equation (6) in Corollary 3, interpreted as the evaluation of F(T(n)), where
T(n) in 3-(n) is defined recursively as follows: T(1) is a single leaf labeled one. If
n 2 / i, 1 < -< 2m, then T(n) has the label n at the root, T(i) as its left subtree, and
T(2") as its right subtree.

5. Conclusions and open problems. The most striking conclusion we can make is
that divide-and-conquer algorithms whose time requirements are given by (1) can use
far more than logarithmic time for their merge step, without losing overall linear-time
behavior: Inequality (12) guarantees that M(n)= O(n), even for f(x) as large as
O(x/(log x)/), e >0, that is, even when f is almost linear! This observation should
make possible the use of more sophisticated merge steps in the divide-and-conquer
algorithms.

Table 1 gives some examples of the comparative growth rates of M(n) versus f,
based on inequality (12). All of the entries in Table 1 are straightforward to verify,
except those for

og

TABLE
Relative growth rates off versus M(n), based on inequality (12).

For any particular base, log(k) x is the kth iterated logarithm defined by
log() x x, log(k+) x log (log (k) x) and log* x is the least k such
that log(k) -<_ 1. Unless otherwise indicated, the base of the logarithms is

arbitrary.

f(x) M(n)

O(n)

O(n)

O(n In* n)

O(n(ln b) ’g;’’)

O(n log (k+) n)

O((n log n)/log log n)

O(n (log n) k+)

O(n’+(logn) k)
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those interesting entries follow from the proof of Lemma B.1 in [13] (see also [19]).
We may also ask for what function f will M(n) na (n), where a (n) is a functional
inverse of Ackermann’s function (see [20]); the answer, which is fairly complex, can
be found in [17].

The specific case off(x) [lg x] is very strange. Inequality (2) in Theorem 1 fails
(with, for example, rn i=4 and j 1), as does inequality (7) in Theorem 2 (with
p 31 and q 34, for instance). However, the conclusions of both theorems hold! That
is, the solution to recurrence (1) in this case is M(n) (M(1) + 1) n [lg n which
satisfies both equations (3) and (8) as is easily shown by induction on n. This anomaly
suggests that both Theorems and 2 can be proved under weaker assumptions than
we have used. The seemingly insignificant change of f from f(x)= [lg x] to f(x)=
[lg(x+l)], which does satisfy inequality (2), yields the solution M(n)=
(M(1) +2)n- [lg n] -,(n)-1. When M(1)= 0, this is roughly twice as large as when
f(x) [lg x], demonstrating a somewhat unstable dependence of M(n) on f

The bound in Theorem 3, and hence the upper bound in Corollary 9, is fairly
tight when f is a constant, but becomes progressively looser as the rate of growth of
f increases. For f(x)= (R)(xW), w >= O, for example, the upper bound is approximately
2 times the lower bound. We believe that the lower bound is more nearly correct,
but an improved upper bound has eluded us.

We should mention that the solution to the minimax form.of the recurrence (1),
namely,

M(n)= min (M(k)+M(n-k)+max (f(k),f(n-k))),

is precisely parallel to the maximin form that we have considered. In the minimax
form, the roles of nondecreasing and nonincreasing are interchanged, as are the roles
of concavity and convexity. It is the minimax form that was studied in [2].

Finally, there are two natural generalizations of recurrence (1) that can also be
studied:

max ( M(k)+minf(k))M(n)
kl+k2+’"+k,=n /---1 li<=t

and the identical definition with "min" replaced by "sum-of-all-but-the-max." Little
is known about either generalized form. The generalization with "min" has been
considered in [1], while the generalization with "sum-of-all-but-the-max" occurs in
[22] and 23 ].

Acknowledgments. We thank Herbert Edelsbrunner for asking us about the
behavior of the recurrence for f other than (R)(log n), for pointing out references [3],
[5], [7], [9], [12], and [23], and for his helpful comments. We thank Ronald Rivest
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GEOMETRY HELPS IN MATCHING*

PRAVIN M. VAIDYA?

Abstract. A set of 2n points on the plane induces a complete weighted undirected graph as follows.
The points are the vertices of the graph, and the weight of an edge between any two points is the distance
between the points under some metric. The problem of finding a minimum weight complete matching
(MWCM) in such a graph is studied. An O(n25(log n)4) algorithm is given for finding an MWCM in such
a graph, for the L (manhattan), the L (Euclidean), and the L metrics. The bipartite version of the problem
is also studied, where half the points are painted with one color and the other half with another color, and
the restriction is that a point of one color may be matched only to a point of another color. An O(n2 log n)
algorithm for the bipartite version, for the L1, L2, and L metrics, is presented. The running time for the
bipartite version can be further improved to O(n2(log n) 3) for the L and L metrics.

Key words, weighted matching, computational geometry, optimization

AMS(MOS) subject classifications. 68Q20, 68Q25, 68u05

1. Introduction. Given a complete weighted undirected graph on a set of 2n
vertices, a complete matching is a set of n edges such that each vertex has exactly one
edge incident on it. The weight of a set of edges is the sum of the weights of the edges
in the set, and a minimum weight complete matching (MWCM) is a complete matching
that has the least weight among all the complete matchings.

We study the problem of finding an MWCM in the complete graph induced by
a set of 2n points on the plane. The points are the vertices of the graph, and the weight
of an edge between any two points is the distance between the points under some
metric. We shall investigate two common metrics: the L (manhattan) metric, and the

L2 (Euclidean) metric. (We note that the L metric can be converted to the L1 metric
by rotating the coordinate system by 45, and so any algorithm for the L1 metric can
be trivially modified to work for the L metric.) The input consists of 2n points that
specify the locations of the vertices on the plane. Each point p is given as an ordered
pair (Px, Py), where px and py denote the x and y coordinates of p, respectively. The
Lr distance between two points p and q is given by (Ipx-qx] r+lpy --qylr) 1/r" (Note
that the L1 distance between p and q is given by [p,- qx[+ Ip- ql.) we shall assume
that the metric defining the edge weights is fixed.

We also study the bipartite version of the MWCM problem for points on the
plane. In the bipartite version, half the points are painted with one color and the other
half another color, and the restriction is that a point of one color can be matched only
to a point of the other color.

The complete graph induced by a set of 2n points on the plane is entirely specified
by the locations of the vertices. So the problem of finding an MWCM-in such a graph
differs from the problem of finding an MWCM in a general complete graph in that
the size of the input is O(n) rather than ’(n2). The input is sparse since the edge
weights are implicitly defined by the underlying geometry. It is interesting to investigate
if the geometric nature of the MWCM problem for points on the plane can be exploited

* Received by the editors November 30, 1987; accepted for publication (in revised form) December 5,
1988.

? Department of Computer Science, University of Illinois at Urbana-Champaign, 1304 W. Springfield
Avenue, Urbana, Illinois 61801. Present address, AT&T Bell Laboratories, 600 Mountain Avenue, Murray
Hill, NJ 07974.
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to obtain an algorithm for its solution that is faster than the O(n3) algorithm [6], [11]
for general graphs. At this point we note that several heuristics for finding a good
complete matching (not necessarily of minimum weight) on points on the plane have
been developed [2], [9], 17], but the only known way to find an MWCM on 2n points
on the plane is to run the MWCM algorithm for general graphs that requires O(n 3)
time. In this paper we show that geometry does help to obtain a faster algorithm. We
give an O(n25(log n) 4) algorithm for finding an MWCM in the complete graph induced
by a set of 2n points on the plane, for the L1 and L2 metrics. For the bipartite version
of the MWCM problem for 2n points on the plane, we give an O(n2 log n) algorithm
for the L1 and L metrics. For the bipartite case, the running time of the MWCM
algorithm can be further improved to O(n2(log n) 3) for the L1 metric. The space
requirement of all the algorithms is O(n log n) in the case of Le metric and O(n(log n) 2)
in the case of L1 metric.

The algorithms described in this paper will be essentially the well-studied primal-
dual algorithms for weighted matching, namely, the Hungarian method 10], 11 ], 14]
for bipartite matching, and Edmond’s algorithm [4], [11], [14] for general matching.
The primal-dual algorithms for weighted matching associate a dual variable with each
vertex of the given graph, and the slack associated with an edge is the weight of the
edge minus the sum of the dual variables associated with the end vertices of the edge.
The algorithms can be substantially speeded up for points in the plane by the application
of two key ideas. First, associating a weight with each vertex (point) that is suitably
related to the dual variable corresponding to the vertex and that changes much less
frequently than the dual variable, and implicity maintaining the dual variable using
the weight. Second, reducing the computation of the minimum slack for certain subsets
of edges to geometric query problems that involve the weights associated with the
vertices and that can be efficiently solved using known data structures in computational
geometry.

In 2 we shall discuss some geometric query problems that arise naturally in the
implementation of the primal-dual weighted matching algorithm for points on the
plane, and see how known data structures in computational geometry can be used to
solve them efficiently. In 3 we shall give the algorithm for the bipartite version of
the MWCM problem for points in the plane. The bipartite case is easier, and serves
to illustrate the main ideas that are used in developing the algorithm for the general
case. In 4 we describe the algorithm for finding an MWCM in the complete graph
induced by a set of points on the plane.

We shall assume a real RAM model of computation 15] standard in computational
geometry, so arithmetic operations (i.e., addition, subtraction, multiplication, division),
memory access operations, and comparison operations, on real numbers require con-
stant time. (Actually, it is not necessary to assume that division requires constant time;
the restricted assumption that division by two takes constant time is adequate.) For
the case of the L2 metric, we must make the additional assumption that either square
roots can be computed in constant time (so that edge weights can be obtained in
constant time) or that the edge weights have been precomputed and are available at
the start of the algorithm.

Next, we introduce some notation and definitions.
A priority queue [1] is an abstract data structure consisting of a collection of

elements, each element being associated with a real-valued priority. A priority queue
supports the three operationsninsert an element with some priority, delete an element,
and find an element with the minimum priority--in time proportional to the logarithm
of the number of elements in the priority queue.
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We let d(p, q) denote the distance between points p and q. (The metric under
consideration will be clear from the context.) Let Hx(a, b) denote the set of all points
p on the plane such that a =< px _-< b. Similarly, let Hy(a, b) denote the set of all points
p on the plane such that a <-py _-< b. For a pair of real numbers a and b, [a, b) denotes
the set of all real numbers e such that a _-< c < b. With respect to an ordered sequence
al < a2 <" < am, [ai, aj) denotes the set of all ak such that _-< k <j.

With respect to a set of points P such that there is a weight w(p) associated with
each point p in P, we define the following terms. For subsets P1, P2 of P, shortest[ PI, P2]
denotes an edge (p*, p2*), p* e P1, P2* P2, such that

d(p* P’z)- w(p* )- w(p*2 min {d(pl, P2)- w(p)- w(p)}.
Pl P1, P2 P2

For a point q, nearest[q, P] denotes a point p* P such that

d(q, p*)- w(p*)= min {d(q, p)- w(p)},
pEP

and shortest[q, P] denotes the edge (q, nearest[q, P]).
Finally, we shall use the term vertex when referring to a graph, and the term node

when referring to a data structure.

2. Geometric query problems arising in matching on the plane. The primal-dual
algorithms for weighted matching associate a dual variable with each vertex of the
given graph, and the slack associated with an edge is the weight of the edge minus
the sum of the dual variables associated with the end vertices of the edge. During the
execution of the matching algorithm, we are repeatedly required to compute the
minimum slack for certain subsets of edges. To perform this computation efficiently
we shall need a good solution to the following query problems.

PROBLEM 1. Given a set of points P and a weight w(p) for each point p in P,
preprocess P so that for a given query point q, nearest[ q, Pi, Pj)] can be found quickly.

PROBIEM 2. Given a set of points P, an ordering p < P2 <" < Pl’l of the points
in P, and a weight w(p) associated with each point p in P, preprocess P, so that given
a query point q, and an interval [pi, p.) such that <-_i<j<-_lP[+ 1, nearest[q, [p, p)]
can be computed quickly.

In Problems 1 and 2 the set P is static. We shall also require a solution to the
semidynamic version of Problems and 2. In the semidynamic version, a new point
can be added to P but a point can never be deleted from P. Furthermore, P is totally
ordered by the following rule. For a pair of points p, p’ P, p < p’ if and only if p was
added to P before p’.

Problem 1 comes up in the bipartite case as well as the general case, and its
solution enables us to quickly compute the minimum slack for various subsets of edges.
Problem 2 and the semidynamic versions of the two problems arise because of certain
subsets of vertices of odd cardinality, called blossoms, in Edmond’s algorithm for
general weighted matching. One type of blossom corresponds to intervals in some
ordering on the set of vertices (points), and given a vertex q and a blossom B of this
type, we are required to compute the minimum slack over all edges between q and
vertices in B. This leads to Problem 2. The semidynamic versions arise because of
blossoms merging to form bigger blossoms.

In 2.1 and 2.2 we describe solutions to Problems and 2, respectively. In 2.3
we shall describe how to suitably modify the data structures for Problems and 2 to
handle the semidynamic case where new points may be inserted into P but no point
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may be deleted from/9. The solutions use segment trees 15], a data structure common
in computational geometry. So we shall first briefly discuss segment trees. The segment
tree for the interval [i,j) is a rooted binary tree defined as follows"

(1) j > + 1. The interval [i, j) is associated with the root of the segment tree. The
left subtree a,t the root is the segment tree for [i, [(i+j)/2]) and the right
subtree at the root is the segment tree for [(i +j)/2 ], j).

(2) j i+ 1. With the root is associated the interval i, i+ 1), and the left and right
subtrees are both empty.

(3) j-< i. The segment tree is empty.
The segment tree has O(log (IJ- il)) levels, and the disjoint union of all the intervals
at a specific level in the tree is the interval [i,j)o. Any subinterval of [i,j) with integer
endpoints can be expressed as the disjoint union of O(log (IJ-il)) intervals in the
segment tree. The segment tree data structure extends naturally to an ordered sequence
al < a2 <’’" < a,, via the correspondence between the interval [i,j) and the interval
[a,, a).

2.1. Problem 1. For the case of the Euclidean (L) metric the weighted Voronoi
diagram (WVD) [5], [16] of the points in P provides an adequate solution to Problem
1. Such a Voronoi diagram divides the plane into IPl regions (some possibly empty),
there being a region Vor (p) for each point p P. Vor (p) is the region given by

Vor (p)= {p": /p’ P, a(p", p)- w(p) <= d(p", p’)- w(p’)}.

The WVD of P can be constructed in O([Pllog (]P])) time [5]. Furthermore, in
O([P[ log (IPI)) additional time it can be preprocessed, so that given a query point q,
in O(log (]P])) time we can find a point/ in P such that q Vor (/) [3], [12]. So once
the WVD of P is available, nearest[q, P] can be obtained in O(log (]P])) time for any
point q.

For the case of the L metric we shall use the Willard-Lueker modification of the
two-dimensional range tree 15] to provide a suitable solution to Problem 1. The range
tree (RT) for P is as follows. At the top level is a segment tree for the nondecreasing
sequence of x-coordinates of the points in P. At a segment tree node 0 associated
with the interval [a, b) of the x-axis is stored an ordered list of points in Pf’)H)c(a, b),
with the points being ordered by y-coordinate. The segment tree also contains extra
pointers from each internal node to its two children for efficient searching. The entire
RT for P can be constructed in O(]P log (]P[)) time. To facilitate the search for
nearest[q, P] we shall store some additional information at each node. Let q be a
node in the top level segment tree, and let [a, b) be the interval associated with 0. Let
p Hx(a, b) f’) P. In addition to storing p in the ordered list at , we store along with
p the following points"

(1) nearest[(a, py), Pfq Hx(a, b) l"] Hy(py, c)].
(2) nearest[ a, py ), P fq H), a, b 71He (-00, py ].
(3) nearest[(b, py), Pf’l Hx(a, b)f’l Hy(py, 00)].
(4) nearest[(b, py), Pfq H,,(a, b) Hy(-OO, py)].

For a vertical strip H)(a, b) these additional points may be computed in
H(a, b)]) time leading to a total of O(IP log ([P])) for all the nodes in the tree. Suppose
p, p’ are adjacent points in the ordered list of points in P f’l Hx(a, b) stored at node 0.
Also suppose that the query point q is such that py >-qy >-p’y. Then q satisfies the
following two conditions"

(1) If q _-< a then one of the two points nearest[ a, py), Pf) H,c(a, b) f-) Hy(py, )],
and nearest[(a, p’) Pf’I H,(a, b)f-) Hy(-OO, p’y)], is nearest[q, Pfq H)(a, b)]Y
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(2) If q, _-> b then one ofthe two points nearest[ b, py), Pf’) Hx(a, b)f’l Hy(py, )],
and nearest[(b, p’y), Pf) Hx(a, b)f’) Hy(-, p)] is nearest[q, Pfq H,(a, b)].
So given a query point q, we visit the O(log ([P])) nodes in the segment tree correspond-
ing to the decomposition of the two segments [-, q,), and [q,, ), locate q in the
ordered lists at these nodes, and compute nearest[q, P] in O(log (IP])) time.

LEMMA 1. Given a set ofpoints P on the plane, and a weight w(p) associated with
each point p in P, P can be preprocessed in o(IP[ log ([P[)) time, so that given a query
point q, nearest[q, P] and shortest[q, P] can be found in O(log (IP[)) time.

2.2. Problem 2. The data structure for Problem 2 has two levels. At the top level
is a segment tree for the ordered sequence Pl P2 <’’" < PlPl of the points in P. At a
segment tree node associated with the interval [Pk, Pl) is stored the WVD for the set
[Pk, Pl) in the case of L, metric, and the RT for the set [Pk, Pl) in the case of L1 metric.
Given an interval [Pi, Pj), we visit the O(log (IPI)) nodes in the segment tree correspond-
ing to the decomposition of [pi, pj), and search the WVD/RT at each of these nodes,
and thereby compute nearest[q, [p, p)] in O((log (IPI)) 2) time. The data structure may
be easily constructed in o(IPl(log (IPI))) time.

LEMMA 2. Let P {Pl <P2 ’’’PlPI} be an ordered set of points on the plane,
and let there be a weight w( p) associated with each point p in P. P can be preprocessed
in O(IPl(log (IPI)) 2) time, so that given a query point q and an interval [Pi, P) such
that l<-i<j<-_lPl+l nearest[q,[pi, p)] and shortest[q,[pi, p)] can be found in
O((log (IPI)) 2) time. [

2.3. Dynamizing the data structures for insertion. In this section we shall describe
how to dynamize the data structures for Problems 1 and 2 (described in 2.1 and
2.2, respectively) to handle the semidynamic case where new points may be inserted
into P, but no points may be deleted from P. P is totally ordered by the following
rule. For a pair of points p, p’ in P, p < p’ if and only if p was added to P before p’.

There are standard techniques 13] for dynamizing a static data structure to support
insertion, and we shall briefly describe how to apply one of them to the weighted
Voronoi diagram and the range tree.

Let

[PI Y a,2’, a, {0, 1},
O--<i--<log2 ([P[)

be the binary representation of ]PI. Let P1, P2," be a partition of P such that:
(1) IPl= ai2 , O=< i=<log2
(2) If i>j then each point in P was inserted into P before any of the points

in P.
The semidynamic WVD (RT) is just a collection ofWVDs (RTs), one for each nonempty
P in the partition of P. Using the semidyanmic WVD (RT), given a query point
q, nearest[q, P] may be obtained O((log (IP])) 2) time. Furthermore, if we start with
P 4) and there are a total of rn insertions into P, then the total cost of maintaining
the semidynamic WVD (RT) for P is O(rn(log rn) 2) operations [13].

The static data structure for Problem 2 described in 2.2 may be dynamized to
allow insertions into P in a similar manner. The dynamization increases the query
time and the total time for all the insertions by a factor of at most 2 log2 (IPI) [13].

LEMMA 3. Let P be a set ofpoints such that new points may be added to P, but no
point may be deletedfrom P. With each point p P is associated a weight w(p). Suppose
in the beginning P oh, and in the end P contains rn points.
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(1) We can maintain a semidynamic WVD/RT for P such that:
(1.1) The total time for all the m insertions and thereby the total time for

maintaining for the semidynamic WVD/RT is O(m(log m)2).
(1.2) Given a query point q, nearest[q, P] (and shortest[q, P]) can befound in

O((log m) 2) time.

(2) Suppose P is totally ordered by the following rule. For a pair ofpoints p, p’ in
P, p < p’ if and only ifp was added to P before p’. Also, let Pl
be the ordered sequence of the points in P. Then we can maintain a semidynamic
data structure for P such that:
(2.1) The total time for inserting all the m points and thereby the total time for

maintaining the semidynamic data structure is O(m(log m)3).
(2.2) Given a querypoint q, and an interval [Pi, Pj) such that 1 <- <j<-[Pl+ 1,

nearest[q, [Pi, Pj)] (and shortest[q, [pi, Pj)]) can befound in O((log m) 3)
time.

3. Weighted bipartite matching on the plane. We are given two sets U and V each
consisting of n points on the plane. U and V induce a complete bipartite graph whose
vertices are the points in U and V, and the weight of an edge (ui, vj), ui U, v V, is
the distance between ui and v under some metric. We consider two metrics, the L
metric and the L2 metric. The problem is to find a minimum weight complete matching
in the complete bipartite graph on U and V.

Let ul," ", un be an enumeration of the vertices in U, and let Vl,’" ", vn be an
enumeration of the vertices in V. A linear programming formulation 11] of the above
bipartite weighted matching problem is:

min Y d ui vj xi
i,j

subject to xij=l, i=l,...,n,

x0=l j=l,...,n,

xi >= O

with the understanding that (ui, vj) is in the matching X if and only if xij 1. The dual
linear program is

j

subject to ai + ,8 <= d (ui, v), l_--<i_-<n, l_-<j--<n,

unconstrained

cei and flj are the dual variables associated with ui and vj, respectively. Orthogonality
conditions that are necessary and sufficient for optimality of primal and dual solutions
are:

(3.1) xq> 0=:> a, + ]3; d(ui, vj)

(3.2) Ol 0::> xij 1, i=l,...,n,
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(3.3) /3j 0:=)’E xij 1, j 1,..., n.

We will use the version of the Hungarian method 10] for weighted bipartite matching
given in [11]. The Hungarian method maintains dual feasibility at all times, and in
addition maintains satisfaction of all orthogonality conditions except (3.3). Initially,
we start with the empty matching X=4, and a feasible dual solution
mini {d(ui, v)}, ai =0. The method proceeds in phases, and during each phase the
matching X is augmented by an edge. Thus during each phase the number of violations
of (3.3) is decreased by one.

During each phase we focus on those edges (ui, v) such that ai +/3 d(u, vj).
These are the admissible edges. The exposed vertices are those that are not matched
by the current matching X. An alternating path is one that alternately traverses an
edge in the matching X, and an edge not in the matching X. An augmenting path is
one that is between two exposed vertices. A phase consists of searching for an
augmenting path among the admissible edges.

For each exposed vertex in V, we grow an alternating tree rooted at the vertex.
Each vertex in U U V that is in an alternating tree is reachable from the root of the
tree via an alternating path that uses only admissible edges. Each vertex in an alternating
tree is labelled, and each vertex that is not in any of the alternating trees is free. The
root of an alternating tree is given an s-label of the form [s, root]. A matched vertex

v V in an alternating tree is given an s-label of the form [s, Uk] ,where Uk is the vertex
to which v is matched. A vertex ui U in an alternating tree is given a t-label of the
form [t, v], where v is the vertex from which ui was labelled. An s-vertex (t-vertex)
is a vertex with an s-label (t-label). Furthermore, an s-vertex (t-vertex) is reachable
from an exposed vertex in V by an even (odd) length alternating path that uses only
admissible edges.

Let S(T) denote the set of all the s-vertices (t-vertices), and let F denote the set
of all the free vertices in U. (Thus F U-T.) Initially all the vertices are free, and
to start with each exposed vertex in V is given an s-label. Thus at the beginning of a
phase, S consists of the exposed vertices in V and F U. Let 6 be defined as

6= min {d(ui, vj)-ai-/?}.
ui F,v.j S

We use a variable A to keep track of the sum of dual changes 6, and associate a weight
w(v)(w(u)) with each vertex v in V (u in U). The weights are used to implement a
phase efficiently. At the beginning of a phase A 0; for each ui U, w(u)= ci; and
for each v V, w(v)= j. Depending on whether 6 equals zero or exceeds zero, the
alternating trees are grown or there is a dual variable change.

Case 1. 6=0 (add to alternating trees or augment). Let (ui, v), ui F, vS be
an admissible edge, i.e., d (u, vj) ci -/3j 0.

If ui is exposed, then we have discovered an augmenting path among the admissible
edges, and we can construct such a path by backtracking from v to the root of the
alternating tree containing v using the labels on the vertices in the tree.

If ui is matched to vk, then give ui the t-label [t, vj], and give vk the s-label [s, ui],

F:=F-{ui}, T:=TU{ui}, S:=SU{v},

w(u,) := , + A, w(v) := A.

Case 2. 6 > 0 (dual variable change).. A := A + 6;
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For each vertex ui 6 T, ai := a- 6;
For each vertex vj S,/3j :=/3j + 6. [3

We note that for each s-vertex v,/3 equals w(vj)+ A, and for each t-vertex u, a
equals w(u) A. So during a phase, it suffices to maintain A and the weights associated
with all the vertices, and there is no need to explicitly update the dual variables ai,/3,
every time 6 exceeds zero. At the end of a phase the correct values of the dual variables
may be computed using A and the weights. A useful property of the weights is that
the weight of a vertex changes only when it is labelled, and once it has been labelled
its weight does not change during the remainder of the phase. Thus we may write

6= min {d(u, v)-w(u)-w(v)}-.
uF,vS

We will use the data structures used in the solution of Problem in 2, namely,
the weighted Voronoi diagram (WVD) and the range tree (RT), to efficiently compute
6, and an edge (u, v), u F, v S, such that d (u, v) w(u) w(v) 6 + A. Throughout
a phase, S is partitioned into $1 and $2 such that IS2[-<_x/ft. Also, F is partitioned
into FI, F2,"’, Fno.51, (some of the F’s possibly empty) such that IF[<_-In5],
1 -< -<_ [n"5 ]. We maintain following data structures"

(1) A priority queue containing the edge shortest[ u, $1] for each u 6 F. The priority
of an edge (u, v) in this queue is d(u, v)-w(u)-w(v).

(2) A priority queue containing the edges shortest[ v, Fi], 1 <- <- [n5 ], for each
vertex v in $2. The priority of an edge (u, v) in this queue is also d (u, v) w(u) w(v).

(3) The WVD/RT for each of the sets F1, F_,..., Fno.51.
6 and an edge for which 6 is achieved can be obtained in O(log n) time by examining
an edge with minimum priority in (1) and (2) above. A new vertex added to S always
gets inserted into S. In order to maintain the condition that IS21-<x/if, whenever the
size of $2 reaches the threshold of x/ we add all the vertices in Sz to S1 and reset $2
to the null set. Then shortest[u, $1] must be recomputed for every u F. From Lemma
1 in 2, this recomputation may be done in O(n log n) time using a WVD/RT for
leading to total of O(n 1.5 log n) operations for the recomputation for the entire phase.
Next we shall see that an insertion into $2, and a deletion from F, each cost O(n5 log n)
operations. As there are O(n) such insertions and deletions in a phase, this leads to
a total of O(n15 log n) operations per phase.

(i) Suppose a vertex v is inserted into $2. Then we must compute shortest[v, F],
and insert it into the priority queue in (2) above, for i= 1,..., In5]. Using the
maintained WVD/RT for F, shortest[v, F] can be found in O(log n) time. Hence an
insertion costs O(n"5 log n) operations.

(ii) Suppose a vertex u is deleted from F, and suppose u 6 F. Then recomputing
the WVD/RT for Fi requires O(n’5 log n) time, and recomputing shortest[v, Fi] for
all the vertices v in $2 and maintaining the priority queue also requires O(n5 log n)
time. Thus a deletion costs O(n’5 log n) operations.

Finally, since a phase takes O(n 1"5 log n) time, and as there are at most n phases,
the total running time of the weighted bipartite matching algorithm for points in the
plane is O(n2"5 log n). In 3.1 we shall see how to further improve the running time
of the bipartite matching algorithm to O(n(log r/) 3) for the case of L1 metric.

3.1. Improving the complexity for the L metric. In this section we shall show that
for the case of the L1 metric, the running time of the weighted bipartite matching
algorithm for points on the plane can be further improved to O(n2(log n)3). Since we
shall be dealing with the L1 metric only in this section, d(p, q) will denote the L1
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distance between p and q throughout this section. Note that maintaining the dual
variables can be accomplished in O(n) time per phase. To efficiently compute 8, we
shall maintain a data structure containing all the points in F (3 S such that:

(1) shortest(F, S) can be obtained in O(1) time.
(2) A point in S can be inserted (or deleted) in O((log n) 3) time, and a point in

F can be deleted (or inserted) in O((log n) 3) time.
Suppose that shortest(F, S)= (u, v). Depending on whether d(u, v) w( u) w( v) A

equals or exceeds zero there is a dual variable change, and then (u, v) becomes
admissible. If u is exposed then there is an augmentation and the phase ends. Otherwise,
both u and the vertex to which u is matched get labelled and enter an alternating tree.
u is deleted from F and the vertex to which u is matched is inserted into S. Correspond-
ingly, there is a deletion from and an insertion into the above-mentioned data structure.
Thus, using the above data structure it takes O((log n) 3) operations to increase the
number of labelled vertices by 2, thereby leading to O(n(log n) 3) operations per phase.
This leads to a running time of O(n2(log n) 3) for the L1 case.

Next, we describe a data structure for maintaining shortest[F’, S’] for the special
case when F’ and $’ are separated by a vertical line. Then using the data structure for
this special case we shall show how to implement the above-mentioned data structure
for maintaining shortest[F, S]. Let U’ and V’ be fixed subsets of U and V, respectively,
such that all the points in U’ lie on one side of the vertical line x a, and all the
points in V’ line on the other side of the line x a. (Points in U’ and V’ could lie on
the line x a.) Let F’= F t3 U’, and let S’= S t3 V’. Let rn [U’kJ V’[. Let bl --< bz-<-" <--
bin be the nondecreasing sequence of the y-coordinates of the points in U’U V’. The
data structure consists of a segment tree for this sequence of y-coordinates together
with extra information stored at each node in the segment tree. Consider a node p in
the segment tree associated with the interval [bi, bj) of the y-axis. Let k= [(i+j)/2].
At node q we store the following:

(i) Four priority queues, one for each of the four sets F’f3Hy(bi, bk), F’t3
Hy(bk, bj), S’(3 Hy(bi, bk), and S’f3 Hy(bk, b). The priority of a point p in any of the
four queues is given by d (p, (a, bk)) w(p).

(ii) The edge shortest[ 1:’ (3 Hy (bi, b), S’ t3 Hy(b, b)].
Next, we shall see that once the two edges shortest[F’f3Hy(b,
and shortest[ F’ f3 Hy (bk, b), S’ t3 Hy (bk, bj) are available, using the priority queues
stored at node q, shortest[ F’ (3 Hy(b, b), S’(3 Hy(b, b)] maybe computed in O(log m)
time. This is seen as follows. First, note that for a pair of points u and v, u
F’ f3 Hy(bi, bk), and v S’ t3 Hy(bk, b),

d(u, v)= d(u, (a, bk))+ d(v, (a, bk)),

and hence

Thus

d(u, v)- w(u)- w(v)= d(u, (a, bk))-- w(u)+ d(v, (a, bk))-- w(v).

min {d(u, v)- w(u)- w(v)}
F’FI Hy(bi, b ), S’(3 Hy (bk, hi)

min {d(u, (a, bk))-w(u)}+ min {d(v, (a, bk))--w(v)}.
F’NHy(bi, bk) uS’FlH.v(bk, hi)

The same relationship holds for u F’ (3 Hy(bk, b) and v S’ (3 Hy(b, bk). Thus
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shortest[ F’.VI Hy bi, bk ), S’ Ci Hy bk, b and shortest[ F’ VI Hy bk, b ), S’ VI Hy bi, bk
may be computed by examining the four points with minimum priority in the four
priority queues described in (i) above. This requires O(log m) time. And once, short-
est[ F’ VI Hy (hi, bk ), S’ CI Hy (hi, bk ], shortest[F’ CI Hy bk, b ), S’ CI Hy bk, b ], short-
est[ F’ CI Hy (bi, bk), S’ CI Hy (bk, bs)], and shortest[ F’ f-) Hy (bk, bs), S’ f3 Hy (hi, bk)], are

available, shortest[ F’ CI Hy (bi, bs), S’ VI Hy (bi, bs) is computable in constant time.
We now show that a point may be inserted into or deleted from the data structure

for maintaining shortest[F’, S’] in O((log m) 2) time. When a point p is added to S’
(or F’), it is inserted into the priority queues at the nodes in the segment tree that lie
on the path from the root to the leaf corresponding to the point p. So there are O(log m)
insertions, each costing O(log m) operations. We then start from the leaf corresponding
to the inserted point p and work our way up toward the root, updating in sequence
the edge (as specified by (ii) above) that is stored at each of the O(log m) nodes on
the path from the leaf to the root. Let O be a node on this path. Once the updates at

nodes on the subpath from the leaf to q have been performed, the update at node qt
may be performed in O(log m) time using the priority queues stored at q. Thus,
whenever there is an insertion, shortest[F’, S’] is updated in O((log m) 2) operations.
The same bound holds when a point is deleted from F’ (or S’).

The data structure for maintaining shortest[F, S] is a two level data structure. At
the top level is a segment tree for the nondecreasing sequence al -< a2 <-""--< a2, of
the x-coordinates of the points in U (J V, and at each node is a data structure for the
special case mentioned above. Specifically, let q be a node in the top level segment
tree and let [ai, as) be the interval of the x-axis associated with q. Let k [(i+j)/2].
At node q we store the following:

(I). A data structure as described above for maintaining each of the two

edges shortest[F Vi H,, (ai, ak), S ("l Hx (ak, as) and shortest[F Hx(ak, as),
S f3 H,(ai, ak)]. This is the secondary data structure stored at qt.

(II). The edge shortest[Ff3H,(ai, as),SVIH,,(a, as) ].
We note that the edge stored, at the root (as specified by (II) above) is shortest[F, S].
When a point is inserted, we start at the leaf in the top level segment tree corresponding
to the inserted point, and perform updates in sequence at the nodes on the path from
this leaf to the root. Suppose p is a node on this path. Once the updates at nodes on
the subpath from the leaf to tp have been performed, the edges shortest[F (3 H(ai, ak),
S (3 Hx (ai, a)] and shortest[F VI H(a, as), S VI H,(ak, as)], are available. The updates
in the secondary data structure at q are performed in O((log n) 2) time, and then
shortest[F (3/-I (a, ak), S (3 H,(a, as) ], and shortest[F f3 H(a, as), S f3 Hx (ai, a)],
are also available. Then shortest[F Hx(ai, as), 5; f3 Hx(a, as) is computable in con-
stant time. Since there are O(log n) nodes on the path from a leaf in the top level
segment tree to the root, the total cost of an insertion is O((log n) 3) operations. The
same bound holds for deleting a point.

4. Weighted general matching on points in the plane. We are given a set V of 2n
points in the plane. The set of points V induces a complete graph whose vertices are
the points in V, and the weight of an edge between two points is the distance between
the points under some metric. We shall consider two cases, one where the weight of
an edge is given by the Euclidean (L2) distance between the two endpoints of the edge,
and the other where the weight of an edge is given by the L1 distance between the
endpoints of the edge. We let vl, v,. , vn denote the 2n vertices (points) in V. Let
O denote the set of all those subsets of V having cardinality that is odd and greater
than one.
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The MWCM problem in the complete graph on V is formulated as a linear program
[4], [113, [143"

min Z d (/’)i, Vj
<j_2n

subject to Y xo 1,
lj=2n,j#i

i= 1,. ., 2n

xo>=O l <=i<j<-2n

with the understanding that x/j 1 if and only if (vi, v) is in the matching X.
The dual linear program is given by

2n

max ai + Y z(B)
i=1 BO

subjectto a+c+ z(B)<-d(v, v), l<=i<j<-2n
vi, vj B,B-O

VB O, z(B)<-O.

a is the dual variable associated with vertex vi, and z(B) is the dual variable
associated with the odd set B. Orthogonality conditions that are necessary and sufficient
for optimality of primal and dual solutions are:

(4.1) x/j > 0c+ a + z(U)=d(vi, v),
l.)i,D.jG B,B 0

(4.2) ai 0:= x 1,
<=j2n,j

(4.3) z(B) < 00 x/j-
l.)i,Dj B 2

Edmond’s algorithm [4], [11], [14] for finding a minimum weight complete
matching maintains dual feasibility at all times, and in addition maintains the satisfac-
tion of all orthogonality conditions, except conditions (4.2). The algorithm starts with
the empty matching X=4, and a feasible dual solution given by ai=

1/2 min.j v-, d (vi, v), 1, , 2n, and z(B) 0, for all B O. The algorithm proceeds
in phases. During each phase the, cardinality of the matching X increases by one
thereby decreasing the number of violations of (4.2) by one.

An O(nm log n) implementation of Edmond’s algorithm for finding a minimum
weight complete matching in a graph with n vertices and rn edges is given in [8]. We
shall utilize the underlying geometry together with some of the ideas in [8] to obtain
an O(nZ5(log n) 4) algorithm for finding an MWCM on 2n points on the plane. First,
we shall sketch Edmond’s algorithm, and then show how to efficiently implement it
for points in the plane.

4.1. Blossoms and their representation. As the algorithm proceeds, it discovers
certain subsets of V (of odd size) called blossoms. It is convenient to consider the
vertices of V as (trivial) blossoms of size one. For a pair of blossoms B, B’, either
B B’= , B B’, or B’__. B, and a blossom that is not a subset of any other blossom
is a maximal blossom. The algorithm has z(B)<0 only for those B O that are
nontrivial blossoms. Consequently, the number of nonzero z(B)’s is O(n).
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The discussion below about blossoms follows [8]. The representation that we use
for blossoms is identical to the one in [8] but we shall describe it here for completeness.

An edge (vi, vj) is admissible if and only if

Ot, "Ji- Ol.j + E z(B d vi, )j ).
vi,v.jG B,B 0

An alternating path from Vo to v is a sequence of edges {e (vi_, vi)}= such that
for 1, , r- 1, e X if and only if e+l X. An alternating path from a maximal
blossom Bo to a maximal blossom B (possibly B0 Br) is a sequence of edges
{e (u_, v)}= such that for i=0,..., r, u, v B, where B0,’" ", B are distinct
maximal blossoms, and for i= 1,..., r-1, e X if and only if e+ X. When the
algorithm discovers an odd length alternating path, that uses only admissible edges,
from a maximal blossom B0 to itself (i.e., B0 B, e, e X), a new blossom B is
formed. Ba,. ., B are the subblossoms of the new blossom B. (Note: A blossom that
is a proper subset of Bi, for some i, -< =< r, is not a subblossom of B.) Each blossom
has a base vertex. The base of a trivial blossom is the unique vertex in it. The base of
the blossom B defined above is the base of Bo (=B).

A nontrivial blossom B is represented by the cyclic double-linked list {(B, e)}=a,
and by its base. (From an entry (B, e) in the list there are bidirectional links to (Bt, e)
where I=(imodr)+l.) B,,i=l,...,r are the subblossoms of B, and Br is the
distinguished subblossom that contains the base of B. For each i, l<=i<_-r-1,
(e, e2," ", e,) and (e, e_,. ., e+) are alternating paths that use admissible edges
only from B to B. The one of even length is the one whose last edge is in X.

A blossom B of size 2k + 1 has the following two properties. First, there are exactly
k matched edges (i.e., edges in X) both of whose endpoints are in B, and the base of
B is that vertex in B not an endpoint of one of these k edges. Second, there is an even
length alternating path, which uses only admissible edges, from the base of B to every
vertex in B. As a consequence an alternating path, which uses admissible edges only,
from a maximal blossom B to a maximal blossom B’ can be expanded into an alternating
path, which uses admissible edges only, from the base of B to the base of B’.

The structure of a maximal blossom B can be represented by a tree. In this tree
the sons of a blossom B are its subblossoms B, , B, and the leaves are the vertices
of B. This tree will be denoted as the structure tree of B. The structure tree of B is
implicitly represented by the cyclic double-linked lists {(B, e)},r.= corresponding to
B, its subblossoms, the subblossoms of its subblossoms, and so on. The tree implies
a total order on the vertices in B: v < vj if and only if v is to the left of vj in the tree.
The base of B is largest vertex in this ordering. Furthermore, a blossom B’ that is a
subset of B corresponds to an interval in this ordering. Also note that the base of a
blossom changes only when the matching X is augmented, and so during a phase of
the algorithm the ordering of the vertices in an existing blossom does not change.

During the course of the matching algorithm, given a vertex vj we shall need to
know the identity of the maximal blossom containing vj. To be able to obtain this
identity efficiently, we also represent the maximal blossoms as ordered sets of vertices.
These ordered sets are implemented as concatenable queues [1]. Such queues support
the operations of find, split, and concatenate 1] in time proportional to the logarithm
of the number of items in the queue. So given a vertex vj, the base of the maximal
blossom containing vj and thereby the identity of the maximal blossom containing vj
can be computed in O(log n) time. When a blossom B splits into r subblossoms, the
splitting of the concatenable queue for B into the concatenable queues for the sub-
blossoms of B may be carried out in O(r log n) time. Similarly, when a new blossom
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B is formed from r blossoms, the concatenation of the r concatenable queues of the
subblossoms of B to obtain the concatenable queue for B may also be carried out in
O(r log n) time.

4.2. A phase of the algorithm. An edge in the matching X is said to be matched,
and an edge not in X is said to be unmatched. A vertex is matched if there is an edge
in X incident to it. A vertex is exposed if there is no edge in X incident to it. A blossom
is exposed (matched) if and only if its base is exposed (matched). An augmenting path
is an alternating path between two distinct exposed maximal blossoms or between two
distinct exposed vertices. A phase consists of looking for an augmenting path, that
uses admissible edges only, between two exposed maximal blossoms.

We grow an alternating tree rooted at each exposed maximal blossom. The nodes
in an alternating tree are themselves maximal blossoms. Each node in an alternating
tree is reachable from the root by an alternating path that uses only admissible edges.
Each maximal blossom that is a node in an alternating tree is labelled, and each maximal
blossom that is not in any of the alternating trees is free. (Note that only a maximal
blossom can be labelled or free.) A node in an alternating tree that is reachable by an
even (odd) length alternating path from the root is given an s-label (t-label). An
s-label (t-label) given to a node B is of the form [s, (vi, vj)]([t, (vi, vj)]) where v B
and vg is the first vertex (point) on the alternating path from B to the root of the
alternating tree containing B. A node with an s-label (t-label) is called an s-blossom
(t-blossom). A vertex in an s-blossom (t-blossom) is referred to as an s-vertex (t-vertex).
A vertex in a free blossom is called a free vertex. We let S(T) denote the set of all
the s-vertices (t-vertices), and let F denote the set of free vertices. (Note that V S U
TUF.)

At the start of a phase each maximal exposed blossom is given an s-label, and
each maximal matched blossom is flee. (So initially, T b.) A phase consists of several
steps and at each step one of following four things must happen. Either there is an
admissible edge between two s-vertices not in the same s-blossom or there is an
admissible edge between an s-vertex and a free vertex or the dual variable corresponding
to a t-blossom is zero or there is a dual variable change. In the first case an alternating
tree can be grown, in the second case an augmenting path is found or a new blossom
is discovered, in the third case a t-blossom expands, and an occurrence of the fourth
case is always followed by an occurrence of one the first three cases in the next step.
Let

6= min {d(v, v)-a-a},
vi S, vj F

t2= man { d vi’ vj) Oi Oj}l)i,vjGS, l)i,Oi not in the s-blossom 2

63-" man {,zB..)},B t-blossom

and

6 min {6, 6:,

A detailed description of the four cases that can occur at a step during a phase
is given below. A accumulates the dual variable changes 6 during a phase, and at the
start of a phase A 0.

Case 1. 61 0 (grow an alternating tree). In this case there is an admissible edge
between an s-vertex and a free vertex. Let (vi, v) be such an edge where v is an
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s-vertex and vj is in a free blossom B. Let b be the base of B and let (b,.vk) be the
matched edge incident on b. Then vk is also a free vertex, and is in some free blossom
B’. B gets the label t, (vi, vj)], and B’ gets the label Is, (b, v)].

By using the representations of the blossoms as ordered sets (i.e., the concatenable
queues), the maximal blossoms containing v, vj, and v, may be found in O(log n)
time, and so once the edge (vi, vj) is available the labelling takes O(log n) time. ]

Case 2. 62=0 (discover a new blossom or augment). In this case there is an
admissible edge between two s-vertices not in the same s-blossom. Let (v, v) be such
an edge, and let v, v, be in distinct s-blossoms B, B’, respectively. Using the labels
on blossoms, we backtrack along the alternating path from B to the root of the
alternating tree containing B. Simultaneously, we also backtrack along the alternating
path from B’ to the root of the alternating tree containing B’. We make a careful
backtrack by backtracking one blossom on both paths each time, marking blossoms
along the way. Either we discover a new blossom or find an augmenting path.

(i) A new blossom is found. Suppose the new blossom has r subblossoms. Then
we will visit at most 2r blossoms before finding the first common blossom C on both
paths. We use the parts of the paths from C to B and from C to B’ to generate the
cyclic double-linked list {(B, e)}7= for the new blossom, where Br C and ei are
taken from the labels on the two paths. The base of the new blossom is the base of
C. The new blossom gets an s-label, and the subblossoms of the new blossom get
unlabelled and stop being s-blossoms/t-blossoms (since they are no longer maximal
blossoms). The dual variable associated with the new blossom is initialized to zero.
Using the concatenable queues and the labels, finding the common blossom C and
constructing the new cyclic double-linked list requires O(r log n) operations. The
concatenable queue for the new blossom is obtained by concatenating together the
concatenable queues for the r subblossoms in O(r lo.g n) time.

(ii) An augmenting path is discovered between two exposed blossoms. If we
discover an augmenting path r between two exposed blossoms, then we construct an
augmenting path between the base vertices of the two exposed blossoms as follows.
For each blossom on the path r, we recursively find an even length alternating path
between the base of the blossom and the vertex by which the path r leaves the blossom.
Once the even length alternating paths within all the blossoms that lie on the path r
are available, we connect up these paths using the edges on r to give an augmenting
path between the base vertices of the two exposed blossoms. The resulting augmenting
path uses admissible edges only. We switch the status of the edges on the resulting
augmenting path from matched to unmatched and vice versa. This augments the
matching X and the current phase ends. We note that for each blossom through which
the augmenting path passes, the base vertex changes and the ordering of the vertices
in the blossom that is implied by the structure tree also changes. [3

Case 3. 63 =0 (expand a t-blossom). Let B be a t-blossom such that the dual
variable z(B) associated with B is zero, and let B be labelled t, (v, vi)]. Suppose that
vi Bi where B,..., Br are the subblossoms of B and Br contains the base of B. The
blossom B expands, the blossoms on the odd length alternating path from Bg to Br
become free, and the blossoms on the even length alternating path from B to B get
alternating labels starting and ending with a t-label. The labels are generated using
the edges e in the cyclic double-linked list for B. The concatenable queues for the
subblossoms of B are obtained by splitting for 1, , r- 1 each B from B according
to its base, which is its largest element.

Using the cyclic double-linked lists and the concatenable queues, the expansion
of a t-blossom B with r subblossoms can be carried out in O(r log n) time. 13
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Case 4. 3 > 0 (dual variable change). In this case the dual variables are changed
as follows:

For every s-vertex vi, ci := c + 3;
For every t-vertex vj, c := c 3;
For every s-blossom B, z(B) := z(B) 23;
For every t-blossom B’, z(B’) := z(B’) + 23;
A:=A+& [3

At the end of a phase we construct the augmenting path, and augment the matching
X by switching the status of the edges on the augmenting path from matched to
unmatched and vice versa. We then change the base of each blossom through which
the augmenting path passes, and rebuild the concatenable queues for all the maximal
blossoms through which the augmenting path passes, since changing the base changes
the ordering of the vertices in the blossom. Finally, we expand all maximal blossoms
B such that z(B)= 0. (This ensures that at the start of the next phase the dual variable
associated with each maximal blossom has nonzero value.)

We have the following useful lemma concerning the behavior of blossoms in a
phase, which follows directly from Cases 1-4 described above.

LEMMA 4. (a) Each blossom that gets an s-label some time during the phase,
corresponds to a unique node in the structure tree of some maximal blossom at the end
of the phase. Each blossom that gets a t-label or becomesfree some time during the phase,
corresponds to a unique node in the structure tree ofsome maximal blossom at the beginning
of the phase.

(b) A free blossom is either free from the beginning of the phase or becomes free
because it is the subblossom of some t-blossom that expands. Once a blossom receives a
t-label, either it stays as a t-blossom until the phase ends, it expands, or it loses its label
because it becomes the subblossom of a new s-blossom, in which case it stays unlabelled
until the phase ends. Once a blossom receives an s-label, it either remains an s-blossom,
until the phase ends, or it loses its label because it becomes the subblossom a new s-blossom,
in which case it stays unlabelled until the phase ends.

(c) The total number offree blossoms plus s-blossoms plus t-blossoms in a phase is
O(n). ]

The remainder of 4 will be devoted to the efficient implementation of a phase.
We shall assign a weight w(v), suitably related to the dual variable c, to each vertex
v in V, a weight w(B) to each s-blossom B, and also an offset /z(B) to
each blossom B, which measures the change in the value of the dual variable of a
vertex in B. In 4.3 we shall describe how to compute these weights and offsets, and
show how to efficiently maintain the dual variables using these weights and offsets. In

4.4 and 4.5 these weights and offsets will be used along with the underlying geometry
to construct a scheme for efficiently maintaining 31 and 32, respectively. The running
time per phase may be broken down as follows:

(1) The computation at the end of a phase (i.e., constructing the augmenting path,
etc.) requires O(n log n) time.

(2) In 4.3 it is shown that the time for computing the weights and the offsets
and for maintaining the dual variables using the weights and the offsets is O(n15) per
phase.

(3) In 4.4 we show that the time required for maintaining 31, and an appropriate
edge between an s-vertex and a free vertex for which 31 is achieved, is O(n5(log )2)
per phase. Furthermore, since Case 1 can occur O(n) times during one phase,
O(n log n) extra time is spent in Case 1 per phase in addition to the time required for
maintaining 31. So the total time spent in Case 1 is O(n(log rt) 2) per phase.
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(4) In 4.5 we show that the time required to maintain 62, and an appropriate
edge between two s-vertices not in the same s-blossom for which 62 is achieved, is
O(nLS(1og n) 4) per phase. From Lemma 4 above it follows that O(n log n) extra time
is spent in Case 2 per phase in addition to the time required for maintaining 62. So
the total time spent in Case 2 is O(nLS(1og n) 4) per phase.

(5) To maintain 63 the t-blossoms are kept in a priority queue, and the priority
of a t-blossom B in this queue is given by -w(B). Each t-blossom B satisfies the
condition z(B)= w(B)+2A, and so the t-blossom with the largest weight is also the
t-blossom with largest value for the dual variable z(B). Then from Lemma 4 above it
follows that O(n log n) time is spent in Case 3 per phase in addition to the time for
computing the weights w(B) of blossoms.
Thus the time required by the algorithm per phase is O(nl5(log n)4). Since the number
of phases is at most n, the total running time is O(nZ5(log n)4).

4.3. Weights, offsets, and dual variables. It is too time consuming to explicitly
update the dual variables whenever there is a dual variable change (i.e., whenever
Case 4 in 4.2 occurs), so they are implicitly maintained by associating weights w
with the vertices and the blossoms, and offsets/x with the blossoms. Similar ideas are
also used in [8] to implicitly maintain the dual variables. Let w(vi) denote the weight
associated with vertex vi, and let/x(B) denote the offset associated with blossom B.
We divide blossoms into large and small blossoms according to their size: a large
blossom is one that contains at least vertices, and a small blossom is one that
contains less than vertices. As mentioned in 4.2, A denotes the sum of the dual
variable changes 6 since the beginning of the phase. The weights associated with
vertices and the offsets associated with blossoms are updated so that after each step
of a phase (that consists of executing one of the four cases in 4.2) the following four
relationships are maintained:

(1) For each s-vertex v, ai w()i) -- A.
(2) For each vertex v in a t-blossom B, aj= w(v)+ (B)-A.
(3) For each vertex Vk in a large free blossom B’, Cek W(Vk)+ tx(B’).
(4) For each vertex Vl in a small free blossom B", eel W(Vl).

At any time during a phase, to compute the value of the dual variable associated with
a t-vertex or a free vertex we find the maximal blossom containing the vertex and then
use the above relations. So at any time during the phase, the value of the dual variable
associated with a vertex is computable in O(log n) time. At the end of a phase the
values of the dual variables associated with all the vertices are explicitly computed.

At the beginning of a phase the weights and offsets are initialized as follows.
For each V E V w(vi):--- Oi;

For each blossom B,/x (B) := 0.
Note that A 0 at the beginning of a phase.

Next we shall describe how to update the weights and offsets during each of the
four cases that occur at a step during a phase. (These cases were described in 4.2.)

Case 1. 61 =0. In this case a free blossom B gets a t-label, and a free blossom
B’, such that a matched edge joins the base of B to a vertex in B’, gets an s-label. The
weights and offsets are updated as follows.

If newly labelled t-blossom B is a large blossom

then (B) :=/x(B) + A
else z(B):= A;

For each vertex vi in newly labelled s-blossom B’,
If B’ is a large blossom
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then w(vi):= w(vi)+ tx(B’)-A
else w(vi) := w(vi) A. I-!

Case 2. 62 0. The weights and offsets need to be updated only in the case when
a new blossom is discovered in Case 2. Let B be the new blossom that is discovered.
Note that B gets an s-label, and all the vertices in each subblossom of B, which had
a t-label, switch status from t-vertices to s-vertices.

For each subblossom B’ of B which had a t-label,
For each vertex vi in B’, w(vi) := w(v) +

Case 3. t --0. In this case a t-blossom B expands, and each of its subblossoms
either becomes free or gets an s- or a t-label. We perform the following updates:

For each subblossom B’ of B,
If B’ gets a t-label then/x(B’) :=/x(B);
If B’ gets an s-label then

For each vertex v in B’, w(v):= w(v)+tx(B)-2A;
If B’ is a large blossom and B’ becomes free then/x(B’) :=/x(B)- A;
If B’ is a small blossom and B’ becomes free then

For each vertex vi in B’, W(Vi):=
Case 4. 6>0. A:=A+6.
It is easily verified that the updates to the weights and the offsets maintain the

above-mentioned four relationships between the weights, the offsets, and the dual
variables. A blossom switches status whenever one of three things happens: (1) it is
free and gets labelled; (2) it is labelled and gets unlabelled because it becomes the
subblossom of a new blossom; or (3) it becomes free or labelled because it is the
subblossom of some blossom that expands. From Lemma 4 in 4.2, the total number
status switches of blossoms is O(n) per phase. So the total number of updates to the
offsets/x is O(n), since/x(B) is updated only when B switches status. The weight of
a vertex is updated when it switches status from t-vertex/free vertex to s vertex, and
whenever it becomes free and is in a small free blossom. Since a vertex switches status
to s-vertex at most once during a phase, since the total number of status switches of
blossoms is O(n) per phase, and since a small blossom contains at most v/-ff vertices,
we get that the total number of updates to weights w of vertices is O(n 5) per phase.
So maintaining the weights of all the vertices and the offsets of all the blossoms requires
O(n5) time per phase.

The values of the dual variables associated with s-blossoms and t-blossoms are
also implicitly maintained by weights associated with these blossoms. Let w(B) denote
the weight associated with blossom B. When a blossom B receives a t-label we initialize
its weight as

w(B):=z(B)-2A.
As long as B remains a t-blossom the value of z(B) is implicitly given by the relation

z(B)=w(B)+2A.

When B stops being a t-blossom (by becoming a subblossom of a new blossom and
thereby getting unlabelled) we explicitly compute the value of the dual variable z(B).
When a blossom B’ receives an s-label we initialize its weight as

w(B’) := z(B’) + 2A,

and for the duration of the period for which B’ is an s-blossom the value of z(B’) is
implicitly given by

z(B’) w(B’) 2A.
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When B’ stops being an s-blossom (by becoming a subblossom of a new blossom and
thereby getting unlabelled) we explicitly compute the value of the dual variable z(B’).
Since the total number of times blossoms are labelled is O(n) per phase, the weights
of the blossoms can be maintained in O(n) time per phase.

4.4. Maintaining 1 during a phase. In this section we shall describe how to
maintain 61, and an edge between an s-vertex and a free vertex such that 61 is achieved
for that edge. The slack associated with an edge (vi, vj) is given by the quantity
d (vi, j) ai aj, and denoted by slack[ (i, j) ]. Let

1 min {slack[ (vi, vj) ]},
viS, vj in large free blossom

and

12 min {slack[(vi, vj)]}.
vi S, Ui in small free blossom

Then clearly,

1 =min {11,612}.

In 4.4.1 and 4.4.2 we shall describe how to maintain and
and O(n 1.5 log n) time per phase, respectively.

4.4.1. Maintaining 1. During the computation of 11, we will be required to
quickly find shortest[vj, B] for an s-vertex v and a large free blossom B. A data
structure for doing this is obtained as follows. From Lemma 4 ( 4.2), a free blossom
B is a blossom that existed at the beginning of the phase. Consider the maximal
blossom B’ that contained B at the start of the phase, and the ordering imposed on
the vertices of B’ by the structure tree of B’. The free blossom B corresponds to an
interval in this ordering, in other words if/.)i, Vl B and vi < v then each vertex v in
B’ such that v < v, < vt is also in B. So the problem is to preprocess each maximal
blossom B’ at the start of a phase, so that later on in the phase, given a vertex v and
a blossom B that is a subset of B’ (and therefore corresponds to an interval in the
ordering on B’), shortest[v, B] may be found quickly. This is precisely Problem 2
given in 2. So, by Lemma 2 ( 2.2) we can preprocess all the maximal blossoms B’
that exist at the start of a phase in O(n(log n) 2) time, so that given a free blossom B
later in the phase together with a vertex v, shortest[v, B] can be found in O((log n) e)
time.

As in the bipartite case, the set of s-vertices S is partitioned into S, $2, such that
IS2I x/c-. We maintain the following edges"

(1) For each large free blossom B, the edge shortest[B, $1]. All these edges are
in a priority queue, with the priority of an edge (vi, vj) being given by slack[(vi, v)].

(2) For each large blossom B’ that is either a subset of a t-blossom or a subset
of a free blossom, the edge shortest[B’,

(3) For each pair vg, B, where v $2 and B is a large free blossom, the edge
shortest[v, B]. All these edges are also in a priority queue, with the priority of an edge
being given by its slack.
We note that for each vertex v in a large free blossom B, ai w(vi)+ Ix(B) where
tz(B) is the offset associated with B, and that for each s-vertex vj, a w(v)+ A. Thus
if B is a large free blossom and S’_ S, then

slack[shortest[B, S’]] min {slack[(vi, v)]}.
viB,vjS’
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So, t11 is achieved either for the edge in (1) above with minimum priority or for the
edge in (3) above with minimum priority, and may be computed in O(log n) time by
examining these two edges.

At the beginning of a phase, S consists of the vertices in exposed blossoms and
$2 is empty. Note that a vertex is never deleted from S. A new s-vertex is always
inserted into S2 Whenever the size of $2 reaches the threshold of [nS], we add all
the vertices in S: to S1 and reset $2 to the empty set. When vertices are moved from
$2 to $1 the edges in (1) and (2) above must be recomputed, and this may be
accomplished in O(n log n) time as follows. We utilize the data structures for Problem
1 described in 2.1. We construct the weighted Voronoi diagram/range tree (WVD/RT)
for the points in S, and for each vertex vi that is a free vertex or a t-vertex, we
compute shortest[vi, S] by querying the WVD/RT for S This requires O(n log n)
time by Lemma in 2.1. Then using the structure trees of the t-blossoms and the
free blossoms, the edges in (1) and (2) above can be computed in O(n) extra time.
As the recomputation is done at most times per phase, the time for the recomputation
is O(n 1.5 log n) for the entire phase.

Note that for each vertex v in a large t-blossom or in a large free blossom, the
weight w(v) equals the value of dual variable a at the beginning of the phase, and
so the edges in (1) and (2) above need to be recomputed only when S changes.

Next, we show that the time required for updating the edges in (1), (2), and (3)
above whenever a large blossom becomes free or a large free blossom gets labelled or
a vertex is inserted into S2 is O(,f-(log r/)2).

(a) Suppose a t-blossom expands and one of its subblossoms, say B, becomes
free. Also, suppose B is a large blossom. Then the edge shortest[B, S], which is one
of the edges in (2) above, is inserted into the priority queue in (1) above. For each
vertex vj S2, the edge shortest[vj, B] is computed in O((log/’1) 2) time using the data
structure described at the start of the section and is inserted into the priority queue in
(3) above. This leads to a cost of O/-(log n) 2) operations when a large blossom
becomes free.

(b) Suppose a large free blossom gets a t-label Then the O(/-) edges
that are incident to vertices in B are deleted from the priority queues in (1) and (3) above.

(c) Suppose a vertex vj is inserted into $2. Then for each large free blossom B,
we find shortest[v, B] in O((log n) 2) time, and insert it into the priority queue in (3)
above. Since at most large free blossoms can be present at any given time, an
insertion into $2 costs O(vC(log g/)2) operations.
From Lemma 4 ( 4.2), it follows that the number of times blossoms become free or
get labelled is O(n), and the number of insertions into $2 is also O(n). So from (a)-(c)
and the bound on the time for recomputing the edges in (1) and (2) above, we may
conclude that the time for maintaining 1 is O(n5(log n) :) per phase.

4.4.2. Maintaining 12" In this case too S is partitioned into S and S2 such that
]S2[-<x/. The free vertices in the small free blossoms are partitioned into
F, F2,’’’, Frn.51 (some of the Fi’s could be empty) such that for each small free
blossom B

and

IFI =< 2(/-B+ 1), i= 1," ", In5].
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We maintain the following edges and data structures:
(1) For each vertex vk that is in a small free blossom, the edge shortest[vk, S].

All these edges are in a priority queue with the priority of an edge being given by its
slack.

(2) For each vertex v S2, the edges shortest[ v, Fi], 1 -< _-< [n5 ]. All these edges
are also in a priority queue with the priority of an edge being given by its slack.

(3) The weighted Voronoi diagram/range tree (WVD/RT) for $1 and for each
Fi, 1-<_ i-<_v. For each vertex v in a small free blossom, c w(vk), and for each
vertex vj S, c w(vj) + A. Thus if F’ is a subset of the set of vertices in small free
blossoms and S’

_
S, then

slack[shortest[ F’, S’]] min {slack[(v, vj)]}.
vl, F’,viS’

Hence 612 is achieved either for the edge in (1) above with minimum priority or for
the edge in (2) above with minimum priority, and can be computed in O(log n) time
by examining these edges.

A new s-vertex is always inserted into $2. Whenever the size of $2 reaches the
threshold of v/if, all the vertices in $2 are added to $1 and $2 is reset to the null set,
and the edges in (1) above are recomputed. By Lemma ( 2.1) the recomputation
may be done in O(n log n) time using the WVD/RT for $1. So the time for recomputa-
tion is O(n 1.5 log n) per phase.

Next, we show that the time for updating the edges in (1) and (2) above when a
small blossom becomes free or a small free blossom gets labelled or a vertex is inserted
in $2 is O(/-ff log n).

(a) Suppose a small blossom B becomes free. Let F be such that IFI <- /-ff. (By
the pigeonhole principle, there always exists such an F.) All the vertices in B are
added to F, the WVD!RT for Fi is recomputed, and then for each v $2, shortest[ vj, Fi]
is recomputed in O(log n) time by querying the WVD/RT for F. For each vertex

v B, the edge shortest[vk, S] is found in O(log n) time by querying the WVD/RT
for $1. So when a small blossom B becomes free it costs O((4-ff+]BI)log n)=
O(/- log n) operations.

(b) Suppose a small free blossom B gets a t-label First, the O(/-ff) edges
in the above priority queues that are incident to vertices in B are deleted. Let B F.
All the vertices in B get deleted from F, the WVD/RT for F is recomputed, and then
for each v S2, shortest[v, Fi] is recomputed by querying the WVD/RT for Fi. So
when a small free blossom gets labelled it costs O(x/-ff log n) operations.

(c) Suppose a vertex v is inserted into $2. Then we have to compute short-
est[vj, Fi], 1 <-i<-_ In5]. So the cost in this case is also O(x/-ff log n) operations.
From Lemma 4 ( 4.2) it follows that the number of times blossoms become free or
get labelled is O(n), and the number of insertions into $2 is also O(n). From (a)-(c),
and the time bound for recomputing the edges in (1) above, we may then conclude
that the time for maintaining 612 is O(//1"5 log n).

4.5. Maintaining 32 during a phase. In this section we will describe how to maintain
62, and an associated edge (vi, v) for which 62 is achieved, where v, v, are s-vertices
in distinct s-blossoms. As before, the slack associated with an edge (v, v), is given
by the quantity d (vi, v) a ce, and denoted by slack[(v, v)]. Note that for each
v S, ce w(vi) + A. Thus if S’

___
S and S"

___
S, then

slack[ shortest[ S’, S"]] min {slack[(vi, vj)]}.
St,l)j. S"
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So we can use the weights rather the dual variables in maintaining 62. Let

621 min {slack[ (vi, vj) ]},
vi,vi, in distinct large s-blossoms

622 min {slack[ (vi, vj) ]},
vi is in small s-blossom

v.i is in large s-blossom

and

Clearly,

623 min {slack[ Vi, l)j) ]}.
l)i,] in distinct small s-blossoms

6: 1/2 min {62, 622,623}.
In 4.5.1-4.5.3, we describe how to maintain 621 622 and 623 in O(nl5(log n)2),
O(n1 log n), and O(nlS(log n)4), time per phase, respectively.

Consider a specific phase. Let B be a blossom that has an s-label sometime during
the phase. An s-subblossom (t-subblossom) of B is a subblossom of B that has an
s-label (t-label), sometime during the phase, prior to B getting its s-label. We require
the following easily proven lemma.

LEMMA 5. Consider the s-blossoms that are present at the end ofa particular phase.
With each such s-blossom is associated a tree whose root is itself and the leaves are
all the vertices in B. Each nonleaf node in this tree is a blossom that had an s-label
sometime during the phase. The sons ofa nonleaf node (blossom) B are as follows. Each
son ofB that is not a leaf is an s-subblossom of B. Each son ofB that is a leaf is a vertex
in B that has switched status from free vertex/t-vertex to s-vertex as a result ofB getting
an s-labeL Let - denote the forest of such trees associated with the s-blossoms at the end
of the phase. Note that for a blossom (node) B in forest ’, the number of vertices in
B (i.e., IBI) equals the number of leaves in the subtree rooted at B.

For each node B in the forest ’, define or(B) as follows"
(1) For a leaf B, let r( B) 1.
(2) Let B be a nonleaf node. Consider vertices to be trivial blossoms of size 1. Let

B’ be a son of B such that B’ contains the largest number of vertices among all the sons

of B. We let  (B)-IBI-IB’I,
Then , r(B) O(n log n).

B node in forest

4.5.1. Maintaining 321. For each pair B, B, where B and B are distinct large
s-blossoms, we maintain the edge shortest[B,/]. The edges are in a priority queue,
with the priority of an edge (v, vj) being slack[(vi, vj)]. 621 is achieved for an edge
with the minimum priority in this priority queue. We also maintain a semidynamic
weighted Voronoi diagram/range tree (WVD/RT) described in 2.3 for each large
s-blossom. Note that once the semidynamic WVD/RT for a blossom B is available,
shortest[vi, B] is computable in O(log n) 2) time for any vertex vi. The shortest edges
between large s-blossoms are updated as follows"

(1) Suppose a large blossom B gets an s-label in Case 1 or Case 3 in 4.2. Then
each vertex in B switches status to s-vertex. For each large s-blossom/ (other
than B), we compute the edge shortest[ vi, B] for all vertices v in B by querying
the WVD/RT for B, and use these edges to find shortest[B,/]. We also build
the semidynamic WVD/RT for B. As the number of large s-blossoms present
at any time is O(,,/-ff), we spend O(IBIv/-ff(log n) 2) time when B gets an s-label.

(2) Suppose a new large s-blossom B is created in Case 2 in 4.2. Let C be the
set of all vertices v in B such that v is either in a t-subblossom of B or in a
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small s-subblossom of B. Note that each subblossom of B is either a t-subblossom or
an s-subblossom, and that each vertex in each t-subblossom of B switches status to
s-vertex when B receives an s-label.
(2.1) For each large s-subblossom B’ of B, we delete from the above priority queue

the O(x/) edges which are incident to vertices in B’.
(2.2) Let B be a large s-blossom other than B. For each vertex vi in C, the edge

shortest[vi, B] is found by querying the semidynamic WVD/RT for B. Using
these edges together with the edges shortest[B’,/], where B’ are the large
s-subblossoms of B, shortest[B, B] is obtained, and inserted into the above
priority queue. Since at most O(x/-) large s-blossoms may be simultaneously
present and since the number of subblossoms of B is O(]CI), the time to compute
shortest[B,/] for all large s-blossoms/ is O(]C]x/-(log n)2).

(2.3) Let B’ be an s-subblossom of B such that B’ has the greatest size among
all the s-subblossoms of B.
(2.3.1) If B’ is a small blossom, then B= C and the semidynamic

WVD/RT for B is constructed in O([C[(log n) 2) time.
(2.3.2) If B’ is a large blossom, then the semidynamic WVD/RT for B

is obtained by inserting all the vertices in B- B’ into the semidy-
namic WVD/RT for B’. So there are r(B) insertions into a
semidynamic WVD/RT where o-(B) is as defined in Lemma 5.

A upper bound of O(nl5(log rt) 2) on the time per phase for the computations in (1),
(2.1), and (2.2) follows from the following observations. First, the total number of
status switches of vertices to s-vertices is O(n) per phase. Second, the number of
blossoms labelled during a phase is O(n), and so the number of s-subblossoms
generated during a phase is O(n). Third, for each vertex v, the condition that v is in
a small s-subblossom of a large s-blossom can occur at most once during a phase.
From these observations it also follows that the time spent in (2.3.1) is O(n(log n) 2)
per phase. By Lemma 5, the total number of insertions into semidynamic WVD/RT’s
in (2.3.2) is O(n log n) per phase, and so the total time per phase spent in (2.3.2) is
O(n(log n) 3) at the average rate of at most O((log n) 2) per insertion. Thus the time
for maintaining t21 is O(nl5(log n) 2) per phase.

4.5.2. Maintaining 622. The procedure for maintaining 322 is similar to the one
for maintaining the minimum slack 3 in the bipartite case discussed in 3. Let SL
denote the set of those vertices in S that are in large s-blossoms, and let SM denote
the set of those vertices in S that are in small s-blossoms. SL is partitioned into S/1, S/2,
such that ISml=<x/-. S4 is partitioned into S4,S42,"" ,S4r, r= In5], such that
]S4i1=<2([n5]+1), l_-<i_-< In5]. (Some of the S4;’s could possibly be empty.) The
following information is maintained:

(i) For each vie S4, the edge shortest[v, S]. These edges are in a priority
queue, with the priority of an edge being its slack.

(ii) For each vj SL2 the edges shortest[vj, S], 1 <-_ <- [n]. These edges too
are in a priority queue with the priority of an edge being given by its slack.

(iii) The WVD/RT for S/1 and for each S4, _-<i_-< [n].
Clearly, 622 is achieved for either the edge in (i) with minimum priority or the edge
in (ii) with minimum priority.

Initially, SL contains all the vertices in the large exposed blossoms, and S/2 4.
When a new vertex is added to SL, it is always inserted into S/. When the size of S2
reaches the threshold of In5], all the vertices in SL are moved over to S, and the
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edges in (i) are recomputed. By Lemma 1 ( 2.1), using the WVD/RT for SL1 the
recomputation may be performed in O(n log n) time, leading to a time of O(n 1.s log n)
per phase for the recomputation.

Suppose there is an insertion into SM, say vi is inserted into SM,. Then the WVD/RT
for Si and the edges shortest[v, Si] for the vertices v in SL2 must be recomputed,
and shortest[vi, Sl] must be computed and inserted into the priority queue in (i). So
an insertion into S costs O(ns log n) time. Similarly, a deletion from S costs
O(ns log n) time. Insertion of a vertex v into SL2 also costs O(nS log n) time, as
the edges shortest[v, SMi], 1 <- iN Ins] have to be computed. (Note that there are no
deletions from S.) The number of insertions into SL and S is O(n) per phase. So
the time for all the insertions into S2, and all the insertions into and deletions from
S, is O(nlS log n) per phase.

Thus the time for maintaining 622 is O(n l’s log n) per phase.

4.5.3. Maintaining 23. Next, we show how to maintain 623. Let the vertices in S
be ordered by the following rule. For vi, v S, vi < vj if and only if v was added to S
before vj. Note that for an s-blossom B, the ordering on the vertices in S induces a
partition of S-B into at most IBI+I intervals. Let Ul< u2<’’’ < uls denote the
ordered sequence of the vertices in S. By Lemma 3 ( 2.3), we can maintain a
semidynamic data structure for S (that is a dynamized version of the data structure
for Problem 2 in 2) such that:

(I) The total cost of inserting all the points in S, and thus the total time for
maintaining the data structure for an entire phase is O(n(log n)3).

(II) Given an interval [ui, u), l<=i<j<=lSl+l, and a vertex Vk, short-
est[vk, [Ui, U)] may be computed in O((log n) 3) time.

For each small s-blossom B the following edges incident on the vertices in B are
maintained. Let IBI r, and let u < u <. < u,. be the ordered sequence ofthe vertices
in the small s-blossom B. Then S-B can be expressed as the disjoint union of the
intervals [b/l, U/I), [Uil-t-1, Ui2), [lgi,._l+l, lgi,.) [Ui,.+I, U]SI+I). (Some of the intervals
could possibly be empty.) We shall maintain the edge shortest[B, [ul, ui)], and the
edges shortest[B, [uk+, uk+, )], 1 <- k < [BI. (Note that shortest[B, [u,.+l, Ulsl+ )] is not
included.)

All these edges corresponding to the small s-blossoms are placed in a priority
queue, with the priority of an edge given by its slack. It is easily seen that if (u, u)
is an edge in this priority queue with the minimum priority then slack[(u, u)]_<-623.

The computations required to maintain the above edges associated with small
s-blossoms are broken down into two cases:

(a) An existing small blossom B gets an s-label. This happens in Case and Case
3 in 4.2, and the vertices in the newly labelled blossom B switch status from free
vertices/t-vertices to s-vertices. All the vertices in B get added to S and so B corresponds
to a single interval in the ordering on S. Moreover, S-B is also an interval. For each
vertex u B, shortest[ui,, S-B] is found in O((log n) 3) time by querying the data
structure for S, and using these edges shortest[B, S-B] is obtained in o([BI) extra
time. So the time spent is O(IBl(log n)3).

(b) A new small blossom B is discovered and gets an s-label. This happens in
Case 2 in 4.2. Let B’ be an s-subblossom of B such that B’ has the largest size among
all the s-subblossoms of B. Let [B =r, and let IB’I m. Let ui, < u,2<... < ui,. be the
vertices in B, and let u., < u: <. < UJ,,, be the vertices in B’. Let J be the set of intervals
defined by

J-- {[’1 Uil)’ [UiI+I, Ui2)’"""’ [Ui,.-I+I Ui,.)}’
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and J’ be the set of intervals defined by

jr= {[Ul /,/j), [uj+l /’/j2),""", [uj ,+1, b/j,,,)}.

Note that (V-B)(q [ul, uir) can be expressed as the disjoint union of all the intervals
in J, and that (V-B’)(q [ul, uj.,) can be expressed as the disjoint union of all the
intervals in J’. Furthermore, [J f) J’[-> In’l- (Inl-In’l) and so J- J’[-<_ 2(IBI-IB’I). The
edges shortest[B, I] for all the intervals I in J may be obtained in O(IBI(IBI-IB’I)
(log/1) 3) time as follows. For each interval I’ in J-J’, we compute shortest[u’, I’] for
all vertices u’ in B’. For each interval I in J, we compute shortest[u, I] for all vertices
u in B-B’. Each edge is obtained by querying the data structure for S (described in
2.3) in O((log n) 3) time, and all these edges may be obtained in o([nl(lnl-ln’[)x

(log n) 3) time. Then as the edges shortest[B’, I’], I’ 6 J f3 J’, are already available, the
edges shortest[B, I], I J, can be found in O(IBl(IBl-IB’l)log n) additional time.
The time per phase for the computations in (a) above is O(n(log n)3), since all the
blossoms labelled by an s-label in Case 1 and Case 3 in 4.2 are disjoint. As the size
of a small s-blossom is at most x/-, O(([Bl-[B’l)x/(log n) 3) time is spent in (b) per
each new blossom B, where B’ is an s-subblossom of B that contains the largest number
of vertices among all the s-subblossoms of B. In other words, O(o-(B)x/(log n) 3) time
is spent in (b) above per each new s-blossom B, where o-(B) is as defined in Lemma
5. Then we may apply Lemma 5 and conclude that the time per phase spent in
performing the computations in (b) above is O(nl5(log n)4). Thus the time per phase
for maintaining 623 is O(nl5(log n)4).

5. Conclusion. We have shown that the underlying geometry can be exploited to
speed up algorithms for weighted matching when the vertices of the graph are points
on the plane, and the weight of an edge between two points is the distance between
the points under some metric. The techniques described in the paper can be used to
speed up algorithms for related problems such as bottleneck matching [11] for points
on the plane, and the transportation problem [11], [14] where the sources and the
sinks are located on the plane and the cost of transporting from a source to a sink is
proportional to the distance between the source and the sink. The techniques in the
paper can also be utilized to speed up scaling algorithms [7], [18] for matching and
related problems by a factor of about v/ for points on the plane. Finally, we note
that for the L1 and the Loo metrics the algorithms in the paper easily extend to the
case where the vertices of the graph are points in d-dimensional space (d fixed) rather
than points on the plane. For points in d-dimensional space we use d-dimensional
range trees instead of two-dimensional range trees 15], and this increases the running
time of the matching algorithms by at most O(log rt) d.
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discussions, and M. R. Garey and D. S. Johnson for useful comments and suggestions
concerning the presentation of this paper.

REFERENCES

[1] A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] D. Avls, A survey of heuristics for the weighted matching problem, Networks, 13 (1983), pp. 475-493.
[3] H. EDELSBRUNNER, L. J. GUIBAS, AND J. STOLFI, Optimal point location in a monotone subdivision,

Tech. Report, DEC Systems Research Center, Paid Alto, CA, 1984.



GEOMETRY HELPS IN MATCHING 1225

[4] J. EDMONDS, Maximum matching and a polyhedron with 0, 1-vertices, J. Res. Nat. Bur. Standards, 69B
(1965), pp. 125-130.

[5] S. FORTUNE, A sweepline algorithmfor Voronoi diagrams, in Proc. ACM Annual Symposium Computa-
tional Geometry, Association for Computing Machinery, New York, 1986, pp. 313-322.

[6] H. N. GABOW, An efficient implementation of Edmond’s algorithm for maximum matching on graphs,
J. Assoc. Comput. Mach., 23 (1976), pp. 221-234.

[7] H. N. GABOW AND R. E. TARJAN, Faster scaling algorithms for network problems, Tech. Report,
Department of Computer Science, Princeton University, Princeton, NJ, 1987.

[8] Z. GALIL, S. MICALI, AND H. N. GABOW, Priority queues with variable priority and an O(EV log V)
algorithm for finding a maximal weighted matching in general graphs, in Proc. 22nd Annual IEEE
Symposium Foundations of Computer Science, IEEE Computer Society, Washington, DC, 1982,
pp. 255-261.

[9] M. IRI, M. MUROTA, AND S. MATSUI, Linear time heuristics for minimum-weight perfect matching on
a plane with application to the plotter problem, unpublished manuscript.

[10] H. W. KUHN, The Hungarian method for the assignment problem, Naval Res. Logist. Quart., 2 (1955),
pp. 83-97.

[11] E. LAWLER, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston, New
York, 1976.

[12] D.T. LEE AND F. P. PREPARATA, Location ofa point in a planar subdivision and its applications, SIAM
J. Comput., 6 (1977), pp. 594-606.

[13] K. MEHLHORN, Data Structures and Algorithms 3: Multidimensional Searching and Computational
Geometry, EATCS Monographs on Theoretical Computer Science, Springer-Verlag, Berlin, New
York, pp. 2-9, 1984.

[14] C. H. PAPADIMITRIOU AND K. STEIGLITZ, Combinatorial Optimization: Algorithms and Complexity,
Prentice-Hall, Englewood Cliffs, NJ, 1982.

[15] F. P. PREPARATA AND M. I. SHAMOS, Computational Geometry: An Introduction, Springer-Verlag,
Berlin, New York, 1985.

16] M. SHARIR, Intersection and closest-pair problems for a set ofplanar discs, SIAM J. Comput., 14 (1985),
pp. 448-468.

[17] K. J. SUPOWIT AND E. M. REINGOLD, Divide-and-conquer heuristics for minimum weighted Euclidean
matching, SIAM J. Comput., 12 (1983), pp. 118-144.

[18] H. N. GABOW AND R. E. TARJAN, Faster scaling algorithms for graph matching, Tech. Report,
Department of Computer Science, Princeton University, Princeton, NJ, 1987.



SIAM J. C()MPUT.

Vol. 18, No. 6, pp. 1226-1244, December 1989
(C) 1989 Society for Industrial and Applied Mathematics

010

ON RELAXED SQUASHED EMBEDDING OF GRAPHS
INTO A HYPERCUBE*

MING-SYAN CHEN’ AND KANG G. SHINS

Abstract. Task allocation in an n-dimensional hypercube (or an n-cube) multicomputer consists of two
sequential steps: (i) determination of the size of the cube required to accommodate an incoming task
composed of a set of interacting modules, and (ii) allocation of the task to a cube ofthe dimension determined
from (i). Step (i) is usually done manually by the users, which is often difficult and leads to the underutilization
of processors in an n-cube system. The main objective here is to automate step (i). Step (ii) has already
been addressed in [IEEE Trans. Comput., 36 (1987), pp. 1396-1407].

Each incoming task is represented by a graph in which each node denotes a module of the task and
each link represents the need of intermodule communication. Each module must be assigned to a subcube
in such a way that node adjacencies in the associated task graph are preserved. This assignment problem
is called the relaxed squashed (RS) embedding of a graph, and the minimal dimension of a cube required
for a given graph is termed the weak cubical dimension of the graph. Some mathematical properties of the
RS embedding are derived first. In light of these mathematical properties, fast algorithms are developed to
RS embed task graphs. A heuristic function for the A* search algorithm is also derived to determine the
weak cubical dimension of a graph.

Key words, n-cube, loop switching addressing scheme, squashed embedding, weak cubical dimension,
heuristic search

AMS(MOS) subject classifications. 05C10, 06E15, 14E25

1. Introduction. Recently, hypercube multicomputers are beginning to spread
widely in the research and development community as well as in commercial markets
[Cor85], [Sei85], [Va182], [Wi187]. To execute a task in an n-dimensional hypercube
(or n-cube) multicomputer, the task is usually decomposed into a set of interacting
modules that are then assigned to a subcube. Thus, task allocation in an n-cube
multicomputer system consists of two sequential steps: (i) determination of the
dimension of the subcube required to accommodate all the modules of each incoming
task, and (ii) allocation of each task to a subcube of the dimension determined from
(i) in the hypercube multicomputer. As an efficient solution to (ii), we propose a first-fit
linear search for required subcubes whose addresses are represented by the binary
reflected Gray code [CHS87]. Conventionally, (i) is determined manually by the users,
which is often very difficult and results in the underutilization of processors and
degradation of system performance. The automation of step (i) is thus very important
and will be the focus of this paper.

Each incoming task is described by a graph (called task graph), in which each
node denotes a module of the task and each link represents the need of intermodule
communication. We want to determine a subcube in the n-cube system that can
accommodate the incoming task subject to some constraints. Note that different
computing systems and user environments may require different criteria to be used for
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the determination of the subcube size required for each task. Several important results
in various types of embedding have been reported [Fir65], [GAG75], [GrP72], [Har86],
[Har80], [HAM72]. Basically, isomorphic embedding is a node-to-node adjacency-
preserving mapping [GAG75], [HAM72], whereas isometric embedding is a node-to-node
distance-preserving mapping [Fir65]. In homeomorphic embedding, additional nodes
are allowed to be inserted into edges so as to make the graph isomorphically embeddable
into a cube [Har86]. Squashed embedding is a. node-to-subcube distance-preserving
mapping [GrP72].

In this paper, we propose and investigate a new type of embedding, called relaxed
squashed (RS) embedding, a node-to-subcube adjacency-preserving mapping, In other
words, adjacent modules in the task graph are assigned to adjacent subcubes. The
dimension of the minimal cube required for the RS embedding of a given graph will
henceforth be called the weak cubical dimension of the graph. Clearly, the problem of
determining the weak cubical dimension of a task graph is similar to the squashed
embedding problem [BGK72], [GrP71], [GrP72], [Yao78], [Win83] in the sense that
each node in the source graph is mapped into a subcube. But, it differs from the
squashed embedding problem in that only adjacency, rather than internode distance,
must be preserved under the mapping. For example, the embedding from a path P4
into a Q2 in Fig. preserves adjacency, but not distance.

n n 2 n 3 n 4

0 0 0 0

n2 n3

n n4

Q2

FG. 1. A mapping that preserves adjacency but not distance.

From the result of the squashed embedding problem [Win83], we know that every
graph has its weak cubical dimension, although the cubical dimension is defined only
for cubical graphs [Har69]. Similarly to the determination of the cubical dimension
of cubical graphs [KVC85] [CKV87], we shall prove that the problem of determining
the existence of an RS embedding from a graph to a cube of a given dimension is
NP-complete. This proof justifies the need of our heuristic approaches to the RS
embedding problem. Some mathematical properties for the RS embedding problem
will be derived first. Then, using these results, we shall develop (a) fast algorithms for
the RS embedding of a given task graph and (b) a heuristic function for the A* search
algorithm to determine if a graph can be RS embedded into a cube of a given dimension.
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By applying this search algorithm for different dimensions repeatedly, we can determine
the weak cubical dimension of a graph.

This paper is organized as follows. The definitions and notation necessary for our
discussion are given in 2 where related topics and results are also reviewed. Section
3 deals with the mathematical properties of the RS embedding. Using these properties,
fast algorithms for the RS embedding are then developed in 4. A heuristic search
algorithm to determine if a graph can be RS embedded into a cube of a given dimension
is proposed. Illustrative examples are presented in 5, and the paper concludes with
6.

2. Preliminaries.
2.1. Notation and definitions. Denote an undirected graph by GA VA, EA), where

VA and Ea are the set of nodes and the set of links in GA, respectively, and use G to
denote the complement of a graph G [Har69]. For two graphs GA =(VA, EA) and
GB VB, E), G is a subgraph of GA if V

_
VA and EB EA. An induced subgraph

of GA with a node set Vs c_ VA is the maximal subgraph of GA with the node set Vs.
An edge in a connected graph is called a bridge if its removal disconnects the

graph. Clearly, the removal of an edge from a tree will result in two trees, called the
attached trees of the edge. The number of nodes in the larger of the two attached
trees of an edge is called the weight of the edge. The centroid edge of a tree is defined
as the edge with the minimal weight. Besides, the graph operations, x (product), U
(union) and + (join) [Har69] will be used to facilitate our presentation. Note that
while the union operation may be applied on two graphs that are not disjoint, the join
operation is applied only on two disjoint graphs. An illustrative example of the above
operations is given in Fig. 2. An n-cube can now be defined as Q, K2 x Q,-1, for all
n-> 1, where K is the complete graph with two nodes and Qo is a trivial graph with
one node.

Let Z be the ternary symbol set {0, 1, ,}, where is the don’t care symbol. Then,
every subcube of an n-cube can be uniquely represented by a sequence of ternary
symbols, called the address of the subcube. Also, let ]q] denote the dimension of the
subcube q. The distance between two subcubes is then defined as follows.

DEFINITION 1. The Hamming distance, H""x"I+, between two subcubes
with addresses a a,a,_ al and/3 b,b,_ b in a Q, is defined as H(a, )
Z" h(ai bi), wherei=1

1 if[a=0andb=l]or[a=landb=0],
h(a, b)

otherwise.

A subcube a a,a,_ a is said to contain another subcube/3 b,b,_ bl,
denoted by/3 c_ c, if and only if all the nodes in/3 belong to a. The notation/3 c c is
used to denote the case when /3 __c_ a and /3 a. The minimal upper subcube of two
subcubes a and /, denoted by lcm (c,/3), is then defined as the smallest subcube
among all those subcubes which contain both a and/3. Similarly, the maximal lower
subcube of two subcubes c and/3, denoted by gcd (a,/3), is the largest subcube among
all those subcubes contained in both a and /3. For notational convenience, we let
gcd (a,/3)= if H(c,/3)-> 1. For example, H(00,1,, 1000,) 2, lcm (,100, 0110)
1,0, and gcd (01,,,,10,) =010,. Also, let D(n) denote the address of the subcube

assigned to module n and B(n) denote the set of nodes adjacent to n in the graph.
For the graph of Fig. 3, we get B(nl) {n2, n3, n4, n6}.

One tree is said to be larger than the other if it contains more nodes.
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FIG. 2. The product, union, and join operations on graphs.
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FIG. 3. An example task graph.
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2.2. Previous related results. In [GrP71], an interesting addressing scheme for
loop switching networks [Pie72] has been proposed. In this scheme, a loop switching
network is represented by a graph in which nodes and links represent the loops and
the contact points between loops, respectively. The problem is to find an addressing
scheme in which each node is assigned a sequence of ternary symbols to correctly
represent distances between nodes in the graph. More formally, this problem can be
stated as follows. Given a connected graph G with n nodes, find the least integer
N(G) with which it is possible to assign each node v in G an address D(v)E
such that do(v, v2)=H(D(v),D(v2)), for all Vl, v2 V, where d(v, v2) is the
distance between v and v2 in G, and Vc is the set of nodes in G. Naturally, the
following two questions arise. (1) Does there always exist such an addressing scheme
for an arbitrary network G with n nodes? (2) If the answer to (1) is yes, what is the
least number N(G) ofternary symbols that suffices to implement the addressing scheme
for G? This problem was studied for more than a decade [BGK72], [GrPT1], [GrP72],
[Yao78] until an important conjecture N(G) < n-1 was proved in [Win83]. Thus,
questions (1) and (2) have been answered.

As pointed out in [GrP72], this problem is equivalent to the squashed embedding
problem. Embed a task graph into a cube in such a way that each node of the
graph is assigned to a subcube while preserving internode distances. Fig. 4 shows an
example of the squashed embedding, where D(v) 11, D()2) 110, D(D3) 010,
and D(v4) 000.

When task allocation in a hypercube multicomputer is considered, it is more
important to preserve node adjacencies than internode distances, since node adjacencies
are directly related to intermodule communication delays. Based on this observation,
we shall consider the problem of embedding a given task graph into a hypercube in
such a way that each task module must be assigned to a subcube while preserving task
module adjacencies. This problem can be viewed as a relaxed version of the squashed

v 2

v

v3 v4

D(v

011 J
D((1010 D(v2)

D(v
101

000 100

FIG. 4. An example of squashed embedding.
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embedding problem since it preserves node adjacencies instead of internode distances.
(Henceforth it will be called the relaxed squashed (RS) embedding.) Obviously, a graph
can be RS embedded in any cube of size greater than or equal to its weak cubical
dimension. Insofar as system utilization is concerned, however, we want to find a
minimal cube for the RS embedding of each task graph. Several important properties
of the RS embedding problem will be derived in the following section. We shall prove
first that the problem of determining the existence of an RS-embedding for a given
task graph is NP-complete, and then derive some mathematical properties of the RS
embedding. These properties will be applied to develop our heuristic solutions.

3. Mathematical properties of RS-embedding.
THEOREM 1. The problem of determining if a graph can be RS embedded into a

cube of a given dimension is NP-complete.
Proof Suppose k is the dimension of the cube into which a source graph is to be

RS embedded. Consider the instance that the source graph contains 2k nodes. Clearly,
the source graph can be RS embedded into a Qk if and only if it can be isomorphically
embedded into a Qk. However, the problem of determining whether a graph of 2k

nodes can be isomorphically embedded into a Qk has already been proved to be
NP-complete in [CKV87], meaning that the problem of determining whether a graph
of 2k nodes can be RS embedded into a Qk is also NP-complete. This theorem is thus
proved by restriction [GaJ79]. [3

Theorem justifies the need of heuristic solution approaches to the RS embedding
problem. It is necessary to develop some mathematical properties of the RS embedding
problem, on which these heuristic approaches will be based. The following theorem
about the squashed embedding has been proved in [GrP72].

THEOREM 2 [GrP72]. N(K,)= n-1, where K, is a complete graph with n nodes.
Note that when the graph to be embedded is a complete graph, the requirement

of preserving distance is the same as the adjacency requirement. This fact is described
by the following corollary.

COROLLARY 2.1. Let wd (G) be the weak cubical dimension of G. Then, wd (K,)
n-1.

Consider the case when G1 is a subgraph of G2. Clearly, we have less restirction
in the RS embedding of G than that of G2. This leads to the following proposition.

PROPOSITION 1. If G is a subgraph of G2, then wd (G) -< wd (G2).
Since the number of nodes in the n-cube must be greater than or equal to that of

the task graph to be embedded, we have the following corollary.
COROLLARY 2.2. Let G be a graph with n nodes. Then, [log n _-< wd (G)-< n- 1.
Note that Corollary 2.2 provides loose bounds for the weak cubical dimension of

a graph with n nodes.
THEOREM 3. Let G= (V, E) be a connected graph and let Gs (Vs, Es) be a

subgraph of G. Suppose the induced subgraph of G with the node set Vs, denoted by
ind Vs), can be RS embedded into a Qm, and the removal of all edges in Es from G
results in Vsl disjoint graphs, Gi V, Ei), <= <- Vsl. Then, wd (G)_-<
max --<--<1 vl {wd (G)} + m.

Proof Let u, <= <- Vsl k, be the nodes in Gs 71 G. Since ind (Vs) can be RS
embedded into a Qm and Gs

_
ind (Vs), there exists an addressing scheme for the

RS embedding of Gs into the Q,. Let D(ui) denote the address of ui Vs f-I V in
the addressing scheme.

Partition V into k disjoint node sets V/, 1 <- <= k. For =< -< k, let D, (v) denote
the address of v V/for the RS embedding of G into a Qwd(, and let Dk,(v) denote
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the kth bit of D,(v). Without loss of generality, we can assume rl
maxl=i=k {ri=wd (Gi)}. Address each node w in G with D(w) according to the
following rules"

(1) For all wE V, encode the first m bits of D(w) with Ds(u).
(2) For all w E V, m + 1 _<- k <- r h- m, if D;(ui) 1 then D(w) D7"(w) else

Dk(w) D"(w). And, let D(w) for ri + m + 1 -< k -< r + m.
This theorem follows from the existence of the above addressing scheme for G, whose
length is max l<-i<=lWsl {wd (Gi)} + m. [3

For an illustrative purpose, consider the example graph in Fig. 5(a). The induced
subgraph of the node set {Ul, u2, u3} is Gs in Fig. 5(b) and can be RS embedded into
a Q2. G, G2, and G in Fig. 5(c) are the resulting graphs after removing the edges
of Gs from G. We have maxl=_3 {wd (G)} 2. By encoding the last two bits of D(ui),
1 _<- -<_ 3, with O’s and ,’s only, inverting some corresponding bits in the address D, (w)
to preserve the adjacency in G, and using D.(u) as the leading portion of the address
of w E V, we get the address of each node in G as shown in Fig. 5(d).

u2

(a) An example graph G.

O 11G G2:

00 10

u

u30 ul
* 01

(b) The encoding of Gs.
u2

0

00 11

(c) The encoding of GI, G2 and G3

000" 001 *u2
1"00u "1 0101

* 01 * 10 0110 0111

(d) The encoding of G.

FIG. 5. An illustrative example for Theorem 3.
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It is important to note that there does not exist any bound tighter than the upper
bound provided in Theorem 3. This can be proved by showing the existence of some
graphs for which the equality relation in Theorem 3 holds. For example, if Gi QR
for l<=i<=lVs and some nonnegative integer p and Gs=Q,, then wd(G)=
wd (Gi)+ m. Furthermore, the above theorem and Proposition 1 lead to the following
corollary.

COROLLARY 3.1. Let Gi, <= i<-_k, be disjoint graphs and G--Uki_l Gi. Then,
wd (G) _-< maxl<__iNk {wd (Gi)} + [log2 k ].

Since every edge in a tree is a bridge, the following corollary, an immediate result
of Theorem 3, can be used to determine a tighter upper bound for the weak cubical
dimension of a tree.

COROLLARY 3.2. Let Cl(T) and c2(T) denote the two attached trees of the centroid
edge of a tree T. Then, wd (T) -<_ max {wd (cl (T)), wd (c2(T)) + 1.

As it will be shown in 4, Corollary 3.2 can be applied to implement a fast
algorithm for the RS embedding of a given tree. In addition, the effects of join and
product operations on the weak cubical dimension of graphs can be described below
by Theorems 4 and 5.

THEOREM 4. wd (G1 + G2) -<- wd (G1) + wd (G2) + 1.

Proof Let D.;(w) denote the address of w G, j 1, 2, before a join operation.
Address each node w in G G1 + G2 according to the following rules:

(1) If w V, then D(w)=O,...,D,(w), which contains wd (Gz) consecutive
’s before D,(w).

(2) If w Vz, then D(w) 1D(w), ,, which contains wd (G) consecutive
’s after D(w).

Clearly, the above addressing scheme, having length wd (G) + wd (G) + 1, not
only preserves the original adjacency in G and G, but also joins every pair of nodes
(b/l, JX2) U, Vl, U2 V

Note that Theorem 4 provides the best upper bound, since there exist some
graphs for which the equality relation in Theorem 4 holds, e.g., wd (Ql+ Q2)-
wd (Q1) +wd (Q2) + 1.

COROLLARY 4.1. Let { V1, V2} be a partition of the node set of a graph GA, i.e.,
V (’1 V2 and VI U V2 VA. Let the induced subgraphs of GA with the node sets V1
and V2 be Gh and G,2, respectively. Then, wd (GA) <= wd (G,) + wd G,2) + 1.

Proof Since GA c_G_ Gh + G2 the inequality wd (GA) <= wd (G, + G) =< wd (G,) +
wd (G12)+ 1 follows from Proposition 1 and Theorem 4.

Let Gia_s denote the induced subgraph of GA with the node set VA--Vs where
Vs
_

VA. Then, we have the following corollary.
COROLLARY 4.2. wd (GA) wd (GIA_s) -t-IVS["
Proof. Let GI be the induced subgraph of GA with Vs. From Corollary 4.1,

wd (GA) <- wd (Gls) -b wd GA_S -+- 1. In addition, we get wd (Gls) [Vs[- from Corol-
lary 2.2, and thus, this corollary follows.

Using Corollaries 4.1 and 4.2, in 4 we shall propose two fast algorithms for the
RS embedding of a given graph. The relationship between the weak cubical dimensions
of several graphs and that of their union can be described by the following corollary.

COROLLARY 4.3. Let G=t_J G. Then, wd (G)=<= wd (Gi)+m-1.
Proof First, prove the inequality wd (G U G2) -<- wd (G) + wd (G2) + 1. Let G.

be the induced subgraph of G2 with the node set V2- V1. Clearly, G U G2 G + G..
Then, the inequality, wd (G t_J G) -< wd (G) + wd (G.) + 1 =< wd (G1) + wd (G2) + 1,
follows from Theorem 4 and Proposition 1. The corollary follows by applying this
inequality repeatedly.
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It is interesting to compare Corollary 4.3 with Corollary 3.1 that is applicable to
disjoint graphs only. This result agrees with our intuition, since there are fewer
restrictions in the RS embedding of disjoint graphs. Moreover, we have the following
corollary for the complement of a graph.

COIOLI.ARY 4.4. Let G be a graph with n nodes. Then, wd (G)+wd (G)>-n-2.
Proof Since Kn=GUG, we get n-l=wd(Kn)=wd(GUG)<-wd(G)+

wd (G)+I. [-1

Corollary 4.4 can sometimes be used to determine tighter bounds of the weak
cubical dimension of a graph. For example, Corollary 2.2 offers a loose lower bound
(6) ofwd (Q6), whereas Corollary 4.4 gives a much tighter lower bound (56) ofwd (Q6).

COROLLARY 4.5. Let T be a tree with n nodes. Then, wd (T)<-2 [log2 n ].
Proof Since every tree is a bigraph, there exists an integer rn such that T is

a subgraph of Kn_m,m, where Kp.q is a complete bigraph [Har69]. Without loss
of generality, we can let rn =< n/2. Clearly, [log2 m -<_ [lo52 n/2] [log2 n 1,
and [log2 (n m) -< [log2 n ]. Then, we have wd (T) _-< wd (Kn-r,.,) -<-
[1og2 (n rn) + [log2 rn + -< [-log2 n + [log2 n + 1 2 [log2 n ].

This corollary offers a tighter upper bound of the weak cubical dimension of a
tree. Using Corollary 4.5, a fast RS embedding algorithm for a given tree will be
developed in 4.

THEOREM 5. wd (a 62) -< wd (G) + wd (G2).
Proof For all Ul V, u2e V2, let DG,(u) and DG2(u2) be the addresses of u and

u2 before the product operation. Encode the address of a node (u, u2) in G1 x G2 with
the concatenation of their original addresses, D,(u)D2(uz), whose length is
wd (G1) + wd (G2). Obviously, the adjacency requirement in G1 x G2 is preserved under
the above addressing scheme, and thus the theorem follows.

Note that Theorem 5 also provides the best upper bound. For example, wd (Qr x
Qs) wd (Qr)+ wd (Q,) for positive integers r and s. It can also be verified that the
above addressing schemes are valid for the squashed embedding problem, i.e., N(G x
G2)---N(G)+ N(G). In addition, from the topology of a hypercube, we have the
theorem below.

TWEOREM 6. Let q be an m-dimensional subcube of a Qn, where n >= m. Then, q is

adjacent to at most (n- m)2 subcubes within the Q,.
Proof Without loss of generality, we can let the address of q be 00... 0* "*,

in which there are n-m consecutive O’s followed by m consecutive .’s. Note that the
address of every Q0 adjacent to q must have one 1 and (n rn- 1) O’s in its left n rn
bits. Among all Qo’s adjacent to q, there are 2 different Qo’s with the kth bit equal
to for m+l<-_k<-_n. Thus, q is adjacent to exactly (n-m)2mQo’s.

In what follows, the number (n m)2" will be referred to as the adjacency number
of q, where q is an m-dimensional subcube of a Q,.

COROLLARY 6.1. Let {d} be the degree sequence of a graph CA. If wd (CA) <- m,
then .IV__A 2b <--2m, where for each l<--_i<--I gAI, bg is the least nonnegative integer such
that the adjacency number of Qb di.

Proof From Theorem 6, the dimension of the subcube assigned to a task node n
with degree d cannot be less than b. This corollary follows from the fact that the total
number of nodes in a Q,, assigned to GA must be less than or equal to the total number
of its nodes, 2m. [’]

Since b >- O, <- <--[VAI, we have 21v__31 2b, >=IVAI, meaning that using the knowledge
of degree sequence provides a tighter lower bound than Corollary 2.2. Moreover, the
relationship between the number of edges in a graph and its weak cubical dimension
can be described by the following theorem.
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THEOREM 7. Let rn wd (GA) and k= [log2 (2m/I VAI)J. Then,

IEAI <----&[(2-- Wal) min {(m- k- 1)2 k+, Wal- 1
+ (21VAI- 2 m-k) min {(m k)2k, Wal-

Note that Theorem 7 provides a necessary condition for a task graph with a given
number of edges to be RS embedded into a cube. This condition provides information
useful for the decomposition of a task into (interacting) modules in such a way that
the resulting task graph can be embedded into a cube of a given dimension. In order
to simplify the proof of Theorem 7, first it is necessary to introduce the following two
lemmas.

LEMMA 1. The maximal adjacency number of a subcube in a Q, is 2-, which is
attained by a subcube of dimension n- 1 or n- 2.

Proof Let F(k) (n k)2k. Since dF(k)/dk= 2k[(n k) 1Oge 2-1]>0for0=k -<

n 2, and F(n 1) F(n 2) 2- > F(n) 0, this lemma follows.
2;<2". Then,LEMMA 2. Let ai, l<----i<--r, be nonnegative integers and i--

f(a, a2, ar)=i= (m-ai)2, <-2 -k--r)(m--k--1)2k+l+(2r--2"-k)(m--k)2k,
where k= [log2 (2"/r)].

Proof Let (a*, 02*," ", at*) be the vector that maximizes f(a, a2,..., ar), i.e.,
f*=f(a*,..., a*). From the proof of Lemma 1, we know that g(ai)= (m-a)2; is
a monotonically increasing function in the integer variables a, where 1-< a =< m- 1.

=min {a*} and suppose 2" i=1 2*. 2"--r 20*.Let ap i<=r > 0. Then, i= must be an
integral multiple of 20,*,. This is impossible, since the ap* in the function f can be

2=2" implyingreplaced with ap* + 1, resulting in a larger f-value than f*. Thus, i=
that there exist ap* and a*, p x, such that ap* a* min=<__<r {a*}. We claim that
max<=i<=r{a*}-min<=i<__r{a*}<-l, and then this lemma follows from the fact that
2"-k--r variables among a*’s are k+ and 2r-2"-k variables among a*’s are k.

maxl__<ir {a*}, ap**= a* =.minl=<ir {a*} and suppose ay* ap* _-> 2. Then,Let ay
we have 2*."+2+2=20:-+2a:’-+2+1 and (m-a*y)2*.,+(m-a*p)2,+
(m-a*)2<-(m-a*y+ 1)2.,*-+ (m- ay*+ 1)2-,*-+ (m- ap*- 1)20,+. This leads to a

* and a* in the function f can be replaced by ay*-1contradiction, because ay, ap,
ay* 1, and ap* + 1, respectively, yielding a larger f-value than f*. Therefore, the claim
max __< i<= {a*}-minl__<i__<r {a*} _-< 1 is proved and, thus, this lemma follows.

Proof of Theorem 7. Let a be the dimension of the subcube assigned to a task
2; <2" follows from the capacity constraintnode ni in GA 1 <- <-- VAI r. Then i=l

of a Q". Note that the adjacency number of the subcube assigned to n is (m- a)2i
and the degree of any node in GA <--IWal- 1. This theorem follows from Lemma 2 and
the fact that i= d 2[EAI.

When a graph belongs to some regular families, its weak cubical dimension can
be determired by the theorem below.

THEOREM 8. The weak cubical dimensions of a cycle C", a path P", and a star
can be determined by the following formulas:

(i) wd (C") [log2 m];
(ii) wd (P")= [log m ];
(iii) wd (S")= [loge(m-1)]+l.
Proof Consider (i) first. Clearly, wd (C")_-> [log m] k. From the existence of

Hamiltonian cycles in a Qg, we know that a C" can be RS embedded into a Qk by
embedding 2k--m nodes of the Cm into Ql’S and 2m-2k nodes of the C" into Qo’s,
and thus (i) is proved. Part (ii) follows from (i) immediately.

Consider (iii). Let 6k be a trivial graph with k nodes and no edges. Note that
S"=t5"_1+61 and wd (6k) [log2 k]. Then, we have wd (S")=< [logz (m-1)]+l by
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Theorem 4. From Lemma 1, we know that the maximal adjacency number of a subcube
in a Qog2(,,-1)l is 2fg2(m-1)l-l<m--1. Thus, wd(Sm)> [log2(m-1)] and (iii)
follows. []

COROLLARY 8.1. Let mcxd denote a (c d)-dimensional mesh. Then, wd (mcxd)
log2 c + [log2 d ].

Proof. Since a (c d)-dimensional mesh is Pc x Pd, this corollary follows from
Theorem 5 and (ii) of Theorem 8..

Due to its nature of NP-completeness, the weak cubical dimension of a graphis
in general very difficult to characterize. However, as we shall show in the following
section, the mathematical properties derived in this section can play a significant role
in designing efficient algorithms for the RS embedding of a given graph.

4. Algorithms for relaxed squashed embedding. The mathematical properties
derived in 3 are applied to the design of algorithms for the RS embedding. Fast
algorithms of polynomial time complexity that are efficient but may not provide the
minimal cube required for a given task graph are presented first. Then, a heuristic
search algorithm is developed to determine the weak cubical dimension of a graph.

4.1. Fast algorithms for RS-embedding. Since every tree is a bigraph, we have an
efficient addressing scheme for a tree with n nodes as described below.

ALGORITHM AI(T)/*. This algorithm uses the property that every tree T is a
bigraph and determines an efficient addressing scheme for T.,/

Step (1). Choose an arbitrary node in T. Label it with a symbol /.

Step (2). Label with -’s all the nodes adjacent to each node labeled with +. If
every node in T has been labeled with + or then goto Step (4).

Step (3). Label with /’s all the nodes adjacent to each node labeled with -. If
every node in T has been labeled with / or then goto Step (4) else
goto Step (2).

Step (4). Suppose there are j nodes with / and k nodes labeled with -. Then,
encode all the nodes labeled with + with 0,... ,B(+)(i), O<=i<-j 1,
where B<+)(i) is a binary representation of the number with [log2j]
bits, which follows [log2 k] *’s. Also, encode all the nodes labeled with

with 1B-)(i), ,, 0 -< -< k- 1, where B-)(i) is a binary representa-
tion of the number with [log2 k] bits, followed by [log2j] *’s.

By Corollary 4.5, the length of the above addressing scheme must be less than or
equal to 2[log2 n]. (This, in general, is significantly less than n-1 for a large n.)
Although the required length of the addressing scheme used in A1 may be larger than
the weak cubical dimension of the tree, A is favorable in some cases due to its linear
complexity.

Corollary 3.2 suggests the following algorithm that also determines a cube required
to accommodate a tree.

ALGORITHM A2(T)/*. This algorithm determines the dimension of a cube to
accommodate a task tree T.,/

Step (1). If T is a star or a path then determine wd (T) by Theorem 8 and return
wd(T) else compute the weight of each edge and determine the centroid
edge of the tree.

Step (2). Let T1 and T2 be the two attached trees of the centroid edge of T. Return
max {A(T), A2( T2)} + 1.

A2 is recursive and uses the divide-and-conquer technique. We decompose a tree
by removing its centroid edge first, and then continue to decompose the remaining
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trees in the same way until only stars or paths are left, whose weak cubical dimension
can be determined by Theorem 8. An illustrative example for this algorithm can be
found in 5. Note that the complexity of A2 depends on the degree of sophistication
in the way of determining the centroid edge. Nevertheless, it is easy to verify that A2
requires only polynomial time.

Consider the case when the task graph is an arbitrary graph. Clearly, using
Corollary 2.1, we can derive a straightforward algorithm for the RS embedding of each
graph: address any first two nodes with 0... 0 and 0... 01, respectively, each of
which consists of n 1 bits, and then the kth node, 3 <= k <= n, with 0 01, * that
consists of n- k consecutive O’s and k-2 consecutive ,’s. However, despite its linear
complexity, this naive algorithm is not used for a better system utilization. Instead,
we present Algorithm A below that is derived from Corollary 4.2.

ALGORITHM A3(G)/*. Using the technique of node-removing, this is a fast
algorithm to determine the size of the cube required for a given task graph.,/

Step (1). Let n* be the node with the largest degree among all the nodes in G.
If d(n*)<-2 then goto Step (2) else goto Step (3).

Step (2). Determine all the cycles in G, denoted by C, C2, ., C m, and the least
integer p such that 2 p > i=1 2[lg21Cilqq- 2[lgz(lvl-Y"’--’tlC’l)] where IC’l is
the number of nodes in the cycle C i. Return p.

Step (3). Let G1 := G- n* and return A3(G1)+ 1.

Using A3, a graph is reduced by removing the node with the largest degree from
the graph. The reduction steps are performed repeatedly until the graph is reduced to
the extent that it contains only disjoint cycles and paths. By Corollary 4.2, the size
determined in Step (2) plus the total number of nodes removed will be the dimension
of a cube required to accommodate the original task graph. Note that in A2 and A3,
it is required to determine if a graph belongs to some families of graph such as paths,
stars, and cycles. For this purpose, an adjacency matrix [Har69] can be used to represent
each task graph, since these families of graph can be easily identified if they are
represented with adjacency matrices. Moreover, by Corollary 4.1 we can modify Step
(3) of A as follows and get a generalized version of A3, called Algorithm An.

Step (3’). Partition V into V and V2. Let GI, and GI be, respectively, the in-
duced subgraphs of G with the node sets V and V2. Return Aa(Gt)-+-
A4( GI2 "k- 1.

Several heuristic approaches can be employed in determining how to partition
the node set V into V and V2 in Step (3’) of A4. Clearly, a more sophisticated method
will lead to an addressing scheme with a shorter length at the cost of higher computa-
tional costs of A4.

Although the above proposed algorithms are efficient in determining the required
cube for a given graph, the resulting cube may not be minimal. As far as the system
utilization is concerned, we want to find the minimal subcube required for a given
task graph. This is explored in 4.2.

4.2. An algorithm for determining the weak cubical dimension. To determine the
weak cubical dimension of a task graph, first we present an algorithm that determines
whether or not there is an RS embedding from a given task graph into a cube. Then,
the algorithm is applied to determine the weak cubical dimension of the graph. To
facilitate our discussion, we label the task graph as follows. Label the node with the
largest degree with n and let X := {n} and i:= 2. Then, among all the nodes that are
adjacent to any node in X and are not in X, choose a node with the largest degree
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and label this node with ni. Then, let X := X U {hi} and i:= i+ 1. Repeat the same
procedure until all nodes are labeled.

Now, we want to assign a subcube within the n-cube to each node in a task graph,
node by node, subject to the adjacency requirement in the RS embedding. Clearly,
this problem is a graph matching problem and can be solved by a state-space search
similar to the one in [ShT85]. In what follows, we shall formulate a heuristic function,
and the A* search algorithm [Nil80] will then be used to determine the existence of
an RS embedding from a given graph into a cube. The following definitions are
necessary to facilitate our presentation.

DEFINITION 2. The merge operation, denoted by @, of two sets of subcubes, U
and U2, is defined as

U @ U2 {1 " lcm (a,/3) for a U and/3 Uz}.

The merge operation among k-2 sets of subcubes is written as @=i=
DEFINITION 3. The exclusion operation of two sets of subcubes, U and U2, is

defined as

U- U2 {rl r U and gcd (t, r)= , V U2}.
DFyxoy 4. The reduced set of a set of subcubes U is defined as

Rd.(U)=U-{rlrUand tcrforsome tU}.

For example, let U {0,,, 0,0, 01,, 001}, U2 {00,, 10,}, and U3 {001}. Then,
Rd (U) {0,0, 01,, 001}, U- U2= {01,}, and U2@ U3 {00,, ,0,}. Recall that B(n)
is the set of all nodes adjacent to n in the task graph Gr. Let M denote the partial
mapping for the task node n, 1 Nj N i. Let A) be the set of unoccupied Q0’s that are
adjacent to D(n) under the partial mapping M. Also, define the set of essential
subcubes of n under the partial mapping M, denoted by as the reduced set of
unoccupied subcubes that are adjacent to the subcubes assigned to all ne B(n),
1 N k N i. For example, suppose that in the graph of Fig. 3, we have D(n)=00,,
O(n2) 010. Then, ..,a() {011,100, 101}, .A().. {110, 011}, and (2)n3 {011, 1,0}. That
is, the subcube to be assigned to n3 should contain either 011 or 1,0 to satisfy the
adjacency requirement. Then, the ] generated under M can be expressed as follows"

(1) e (i) Rd( @ ()) +, A,, D(nj) Vk> i.
niB(nk) j=l
ljNi

From this formula, we can determine the sets of all essential subcubes of unassigned
task nodes Note that F( is determined by A) for all n B(n), and the adjacencyk

requirement, and the term j= D(nj) in equation (1) is necessary to exclude, the
possibility of allocating the already occupied subeubes. Given a partial mapping M,
the set of all possible subeubes that can be assigned to the task node n+ is represented
by

Sp(E()=q there exists tE tq andi+1 i+1
(2)

2 [O(n)l+lql<2n-(IVTI -i-1) D(nj).
j=l

The inequality in equation (2) is to ensure that after the allocation of q to n+,
there is a sufficient number of nodes in the Q to be assigned to the remaining task
nodes. From equation (2) it is easy to see that both (i) more subcubes in E) andi+l

(ii) subcubes of smaller dimensions in E () will allow for more freedom in allocatingi+l
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a required subcube to ni+. This in turn implies that the sets of essential subcubes of
unassigned nodes can be used in determining the heuristic value of the node in the
search tree associated with the partial mapping made thus far.

Suppose that a node p in the search tree corresponds to the allocation of a subcube
q to the task node hi. Then, A(ni, can be determined by the method introduced in the
proof of Theorem 6, and the sets Ai], <= k < i, can be updated from their predecessors
by equation (3) below. They are in turn used to determine E i) k > i, by using equation
(1).
(3) Ai=’-’-{q}.--nk l<k<i.=

Combining all the results and findings discussed thus far, a heuristic function for each
node p in the search tree can be contructed as follows:

(4)
f(P) g(P) + h(p) where g(p)= i2 n,

h(p)= , V(E) and V(E= E,i+1 teE

Note that the heuristic value (or h-value) of a node p is defined so that both more
subcubes in ---nki and subcubes of smaller dimensions in E]., k> i, will result in a
larger h-value of p. Applying the above heuristic function to the A* search algorithm,
we propose the following RS-embedding algorithm.

ALGORITHM RS-embedding (Gr, k)/,. This algorithm determines the existence
of an RS embedding from a task graph G- into a Qk.*/

Step (1). Without loss of generality, let the list OPEN be
{00. 0, 0 0,,. , 0, ,} consisting of k strings of length k-
each. Check the validity of these nodes by using Theorem 6. Compute
equations (1), (3), and (4) for nodes in the list OPEN.

Step (2). If OPEN , report false and exit. Determine the node p with the
maximal f-value from the list OPEN. Remove it from OPEN and put
it into the list CLOSE. If node p is associated with the allocation of the
last node, report true and exit.

Step (3). Determine the successors of p by equation (2). Check the validity of
successors by using Theorem 6, evaluate equations (1), (3), and (4) for
valid nodes, and put these nodes in the list OPEN.

Step (4). Go to Step 2.

According to the formulation of the heuristic function, the h-value of any node
in the search tree must be less than 2n. This means that our heuristic function satisfies
the monotone restriction [Nil80]. In other words, the goal nodes whose distances from
the root node are V-I have the maximal f-value. Thus, if there exist goal nodes in the
search tree, then one of them should be reached in a finite number of steps. Note that
there may be more than one goal node in the search tree. However, we are concerned
only with the existence of such nodes, rather than the number of such nodes in the
search tree.

Using the RS embedding algorithm, we can determine the existence of an RS
embedding of a given graph into a cube. For some graphs whose weak cubical
dimensions are in a narrow range, a linear search algorithm is suggested as follows.
Since an unsuccessful search usually involves more computational costs than a success-
ful one, the linear search algorithm is designed to perform a top-down search for the
weak cubical dimension of a graph. Let ub and lb be, respectively, the upper and
lower bounds of the weak cubical dimension of the graph determined by the mathemati-
cal properties in 3. Using a linear search, the expected number of times to execute
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the RS embedding algorithm is (ub- lb+ 1)/2, containing (ub- lb- 1)/2 successful
searches and one unsuccessful search.

On the other hand, the bounds for the weak cubical dimension of some other
graphs may be quite loose, making any linear search algorithm inefficient. For those
graphs, a binary search algorithm is suggested. Then, the expected number of times
used to execute the RS embedding algorithm becomes [log2 (ub-Ib + 1)], in which
successful and unsuccessful searches have the same likelihood of occurrence.

5. Examples. In this section, examples are presented to illustrate the application
of the results developed in 3 and the execution of the algorithms proposed in 4.

Example 1. Consider the example graph G shown in Fig. 6. From Corollary 2.2,
we have [log26]=3-<wd(G)-<6-1=5. Moreover, from Corollary 6.1 we get
wd (G) 3. Let V1 {r/l, n2, ns, n6} and V2 {n3, n4}. Denote the induced subgraph
with the node in V by G.j, j 1, 2. Clearly, G, C4 and G P2. Thus, from Corollary
4.1 we obtain wd (G) -< wd (C4) / wd (P2) + 1 2 + 1 + 1. From the above results, we
get wd (G) 4.

n n2

n 3 n4

n
5

n
6

FIG. 6. An example graph G.

Example 2. Consider the task tree shown in Fig. 7(a). Using A1, we obtained a
labeled tree as shown in Fig. 7(b), and then derived an addressing scheme with the
length [log2 5 + [log2 8 + 1 7. For example, under this addressing scheme the assig-
ned address of ns, the second node labeled with +, is 0010.** and that of ns, the
fourth node labeled with -, is 1,**100.

The application of A2 to the tree in Fig. 7(a) can be described by Fig. 8. The tree
with the weight of each edge specified is given in Fig. 8(a), and the operations of A2
are illustrated by the binary tree in Fig. 8(b). Each internal node in Fig. 8(b) has two
children that are the disjoint trees resulting from the removal of its centroid edge. For
example, T1 and T2 are the two attached trees of the edge (ns, ns), while n8 is in T
and n5 in T2. Using A:, we get A2(T3) 3, A2(T4) 2, A2(Ts) 2, A2(T6) 1, A(T) 4,
A2(T2) 3, and A2(T) 5.

Example 3. Consider the example graph (3 (V, E) of Fig. 3. Again, we have
wd ((3)>= [log2 V]] 3 from Corollary 2.2. In addition, the induced subgraph of G
with the node set {n2, r/3, r/a, r/5, r/6} is P5 whose weak cubical dimension is 3. From
Corollary 4.2, we get 3-< wd (G)-<4. To determine wd ((3), we must apply the RS
embedding algorithm.
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n
10 [ n4 n

n7

n12 n9 n
3

(a) An example tree T.

(b) The labeling of the tree T.

FIG. 7. An example of labeling a tree.

Figure 9 shows the state-space search tree for a Q3 to accommodate the task graph.
Let L denote the list of occupied subcubes. By using the heuristic search algorithm in
4.2, initially we get OPEN {000, 00., 0..}. Note that the allocation (n <--000) and

(nl <-- 0..) will be eliminated by Theorem 6 and equation (2), respectively. Thus, node
A is the only node to be expanded. According to equations (1), (3), and (4), we have
the following:

(1) Node a(n -00,)" a,)= E= E(=/13 E(1)=/14 E(1)=/I {010, 011,100, 101}, E(nl5)=
{010, 011,100, 101,110, 111}, and L= {00.}. g(A) 23, h(A) =4+4+4+4+.6, and
f(A) 30.

(1)Under the allocation M1 (nl <-- 00.), we get Sp (E, )= {010, 011, 101, 100, 01.,
10., .10, .11, 1.0, 1.1} from equation (2). Due to the symmetry, only the computation
for the nodes B, C, and D is shown below.

(2) Node B (n2<-010)" A(2)={011 100, 101}, A(2)= {011 110} 2)=
"/11 /12 /13

---(2) (2)Rd (A//, A/12) {011, 1.0}, E 2)/14 E(2)//6 {011,100, 101}, E 2)//5 {011,110}, and L=
{00., 010}. g(B) 232 16, h(B) 11/2+ 3 + 2 + 3, and f(B) 251/2.

(3) Node C (n2 <-- 01.) Z{2) a(2) , (2)
../1, ={100, 101}, ../12 {110, 111} *-’/13

Rd (A)Q).A2]) ={1.0, 1.1}, E 2) E 2)
//4 /16 ={100, 101}, E) {110,111}, and L=/15

{00., 01.}. g(C) =232= 16, h(C)=1/2+1/2+2+2+2, and f(C) =23.
j. (2)(4) Node D (n2<--*10)

{011 100, 1.1}, E (2) .(2)
,,4 /16 ={101 100,011}, E (2) {100,011 111}, and L= {00., .10}

g(D) 232 16, h(D) 21/2+ 3 + 3 + 3, and f(D) 271/2.
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12p
n nnl0 4

n3 @. 2 .9 n n5

12

n12 n9 n
3

(a) A ee wi e weight of each edge specified.

T

T3 s T--- Ts’--P3 T6"-- P2

(b) The determination of the subcube required for a tree using divide and conquer.

FIG. 8. An application example for Corollary 3.2.

Since node D has the maximal f-value among the three nodes, D is now the next
node to be expanded. Note that under the partial mapping M2 (nl - 00., n2 * 10),
Sp (E(2) {011 100}. Then, using the same procedure the remaining computation forr/3

the heuristic search algorithm is given below.
(5) Node E (n3011) g(E)=233=24, h(E)=1/2+2+2 andf(E)=281/2.
(6) Node F (n3 100): g(F) 233 24, h(F) 1 + 2 + 2 and f(F) 29.
Node F is now the next node to be expanded. Using the same procedure, it is

easy to verify that all the children of nodes F and E can be pruned, and node B
becomes the next node to be expanded, since f(B)>f(C). Thus, M2=(nl00*,
n2+- 010), leading to the following results: f(G) 271/2, f(H) 281/2, and f(I) 281/2.

Now, node H is to be expanded. Continuing the same procedure, we obtain the
following results: f(J)= 34, f(K)= 41, and f(L)=48.

Since the node L is associated with the allocation of the last node, true will be
reported, meaning that an RS embedding of G into Q3 has been found and wd (G) 3.
It is easy to see that the proposed heuristic function plays an important role in guiding
and, thus, speeding up the state-space search. Use of the f-value of a node as an
indication of the likelihood for the node to lead to a successful mapping results in a
significant improvement over a blind search. However, as the size of the task graph
increases, large amounts of computation will be required for the node expansion of
the heuristic search, and the necessity of applying this state search algorithm to every
graph calls for an optimization in some sense. For example, depending on the system’s
objective function, one can strike a compromise between the system utilization and
the computational cost.
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n --- 000 A:n o00* n --0"*
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FIG. 9. Part of the search tree.

6. Discussion and conclusion. We have proposed and investigated a new type of
embedding, called the RS embedding, that was motivated by the problem of allocating
tasks in a hypercube multicomputer. Several mathematical properties for the weak
cubical dimension have been derived that are not only applied to develop fast algorithms
for the RS embedding, but also used to guide the heuristic search for an RS embedding.

The problem studied in this paper can be generalized by considering both the
computation load of each module and the communication load between modules in
a task graph. The task graph can then be represented by a labeled graph. The number
assigned to a node of the graph denotes the dimension of a subcube required for the
corresponding module to perform the computation load of the module. The number
assigned to an edge of the task graph represents the required number of communication
links between the two subcubes assigned to the two task nodes incident to this edge
to provide enough communication capacity between them. Note that two adjacent
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subcubes could have different numbers of connecting links. For example, .10. and
00,0 are connected by a link (0100, 0000), and 010. and 00.. are connected by two
links, (0100, 0000) and (0101, 0001). Thus, the constraint treated in this paper is a
special case of the generalized version, since one is assigned to every node and every
edge of the task graph.

Clearly, the inclusion of computation and communication loads of modules
increases the number of constraints to meet, and thus, makes the RS embedding more
realistic but complicated.
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SIMPLE FAST ALGORITHMS FOR THE EDITING DISTANCE BETWEEN
TREES AND RELATED PROBLEMS*

KAIZHONG ZHANG" AND DENNIS SHASHA$

Abstract. Ordered labeled trees are trees in which the left-to-right order among siblings is. significant.
The distance between two ordered trees is considered to be the weighted number of edit operations
(insert, delete, and modify) to transform one tree to another. The problem of approximate tree matching is
also considered. Specifically, algorithms are designed to answer the following kinds of questions:

1. What is the distance between two trees?
2. What is the minimum distance between T and T when zero or more subtrees can be removed

from T2
3. Let the pruning of a tree at node n mean removing all the descendants of node n. The analogous

question for prunings as for subtrees is answered.
A dynamic programming algorithm is presented to solve the three questions in sequential time O(I Tll x

IT2lxmin (depth( Tt), leaves( T)) x min (depth(T2), leaves(T2))) and space O(Ir, x lT21) compared with
o(I T,I IT=I x(depth(T)): x (depth(T2))) for the best previous published algorithm due to Tai [J. Assoc.
Comput. Mach., 26 (1979), pp. 422-433]. Further, the algorithm presented here can be parallelized to give
time O(1 T[ /1 T=I).

Key words, trees, editing distance, parallel algorithm, dynamic programming, pattern recognition

AMS(MOS) subject classifications. 68P05, 68Q25, 68Q20, 68R10

1. Motivation.
1.1. Applications. Ordered labeled trees are trees whose nodes are labeled and in

which the left-to-right order among siblings is significant. As such they can represent
grammar parses, image descriptions, and many other phenomena. Comparing such
trees is a way to compare scenes, parses, and so on.

As an example, consider the secondary structure comparison problem for RNA.
Because RNA is a single strand of nucleotides, it folds back onto itself into a shape
that is topologically a tree (called its secondary structure). Each node of this tree
contains several nucleotides. Nodes have colorful labels such as "bulge" and "hairpin."
Various researchers [ALKBO], [BSSBWD], [DD] have observed that the secondary
structure influences translation rates (from RNA to proteins). Because different sequen-
ces can produce similar secondary structures IDA], [SKI, comparisons among secon-
dary structures are necessary to understanding the comparative functionality of different
RNAs. Previous methods for comparing multiple secondary structures of RNA
molecules represent the tree structures as parenthesized strings [$88]. These have been
recently converted to using our tree distance algorithms.

Currently we are implementing a package containing algorithms described in this
paper and some other related algorithms. A preliminary version of the package is being
used at the National Cancer Institute for the RNA comparison problem.

1.2. Algorithmic approach. The tree distance problem is harder than the string
distance problem. Intuitively, here is why. In the string case, if Sl[i] S2[j], then the

* Received by the editors August 5, 1987; accepted for publication (in revised form) February 12, 1989.
This work was partially supported by the National Science Foundation under grant number DCR8501611
and by the Office of Naval Research under grant number N00014-85-K-0046.
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New York 10012 (zhang@csd2.nyu.edu). Present address, Department of Computer Science, Middlesex
College, The University of Western Ontario, London, Ontario, Canada N6A 5B7.

t Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York,
New York, 10012 (shasha@nyu.edu).
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distance between Sl[1..i-1] and Sz[1..j--1] is the same as between Sl[1..i] and
$2[1 ..j]. The main difficulty in the tree case is that preserving ancestor relationships
in the mapping between trees prevents the analogous implication from holding.

By introducing the distance between ordered forests and careful elimination of
certain subtree-to-subtree distance calculations we are able to improve the time and
space of best previous published algorithm [T]. Note that the improvement of space
for this problem is extremely important in practical applications.

Besides improving on the time and space of the best previous algorithm [T], our
algorithm is far simpler to understand and to implement. In style, it resembles algorithms
for computing the distance between strings. In fact, the string distance algorithm is a
special case of our algorithm when the input is a string.

2. Definitions.
2.1. Edit operations and editing distance between trees. Let us consider three kinds

of operations. Changing node n means changing the label on n. Deleting a node n
means making the children of n become the children of the parent of n and then
removing n. Inserting is the complement of delete. This means that inserting n as the
child of n’ will make n the parent of a consecutive subsequence of the current children
of n’. Figs. 1-3 illustrate these editing operations.

T1 T2
(a-- b)

FG.

(b A)

FG. 2

T1
(A b)

FG. 3
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(1) Change. To change one node label to another.
(2) Delete. To delete a node. (All children of the deleted node b become children

of the parent a.)
(3) Insert. To insert a node. (A consecutive sequence of siblings among the children

of a become the children of b.)
Following [WF] and [T], we represent an edit operation as a pair (a, b) (A, A),

sometimes written as a b, where a is either A or a label of a node in tree T1 and b
is either A or a label of a node in tree T2. We call a b a change operation if a A
and b A; a delete operation if b A; and an insert operation if a A. Since many
nodes may have the same label, this notation is potentially ambiguous. It could be
made precise by identifying the nodes as well as their labels. However, in this paper,
which node is meant will always be clear from the context.

Let S be a sequence Sl,’’ ", Sk of edit operations. An S-derivation from A to B
is a sequence of trees Ao,"’’, Ak such that A Ao, B Ak, and Ai-1 "-> Ai via si for
l<__i<_k.

Let y be a cost function that assigns to each edit operation a- b a nonnegative
real number y(a- b). This cost can be different for different nodes, so it can be used
to give greater weights to, for example, the higher nodes in a tree than to lower nodes.

We constrain 7 to be a distance metric. That is,
(i) y(a-b)>=O; y(aa)=O
(ii) y(a-b)=y(b-a); and
(iii) y(a-e)<- y(ab)+y(bc).
We extend y to the sequence S by letting y(S) i y(si). Formally the distance

between T and T2 is defined as follows:

6(TI, T2)= min {y(S)]S is an edit operation sequence taking T to T2}.

The definition of y makes 6 a distance metric also.

2.2. Mapping. Let T1 and T2 be two trees with N and N2 nodes, respectively.
Suppose that we have an ordering for each tree, then T[i] means the ith node of tree
T in the given ordering.

The edit operations give rise to a mapping that is a graphical specification of what
edit operations apply to each node in the two trees (or two ordered forests). The
mapping in Fig. 4 shows a way to transform T1 to T:. It corresponds to the sequence
(delete (node with label c), insert (node with label c)).

T1 T2

FG. 4
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Consider the diagram of a mapping in Fig. 4. A dotted line from T[i] to T2[j]
indicates that T[i] should be changed to Tz[j] if T[i] Tz[j], or that T[i] remains
unchanged if T[i] T2[j]. The nodes of T not touched by a dotted line are to be
deleted and the nodes of T2 not touched are to be inserted. The mapping shows a way
to transform T to T.

Formally we define a triple (M, T1, T2) to be a mapping from T1 to T2, where M
is any set of pair of integers (i,j) satisfying:

(1) <-i<-_N, I <-j<-_N2;
(2) For any pair of (i,j) and (i,j) in M,

(a) il i if and only if jl =j2 (one-to-one),
(b) T[i] is to the left of Tl[i2] if and only if T2[j] is to the left of T2[j]

(sibling order preserved),
(c) T[il] is an ancestor of T[i] if and only if T[jl] is an ancestor of T[j_]

(ancestor order preserved).
We will use M instead of (M, T1, T2) if there is no confusion. Let M be a mapping

from T to T2. Let I and J be the sets of nodes in T and T2, respectively, not touched
by any line in M. Then we can define the cost of M"

y(M)= y(T[i]Tz[j])+ y(TI[i]A)+Z y(ATz[j]).
(i,j) M i jJ

Mappings can be composed. Let M be a mapping from T to T2 and let M2 be
a mapping from TE to T3. Define

M, ME= {(i,j)[ lk s.t. (i, k) M, and (k,j) M2}.

LEMMA 1. (1) M M is a mapping.
(2) 3’(M, M2)<= T(M1)+ 3"(M2).
Proof. Case (1) follows from the definition of mapping.
(2) Let M be the mapping from T to T2. Let ME be the mapping from T2 to

T3. Let M M2 be the composed mapping from T to T3 and let I and J be the
corresponding deletion and insertion sets. Three general situations occur. (i,j)
M M2, I, or j J. In each case this corresponds to an editing operation 3’(x - y)
where x and y may be nodes or may be A. In all such cases, the triangle inequality
on the distance metric 3’ ensures that 3"(x-y)<=3"(x-z)+3"(z-y).

The relation between a mapping and a sequence of edit operation is as follows.
LEMMA 2. Given S, a sequence Sl,"’, Sk of edit operations from T to T2, there

exists a mapping Mfrom T to T2 such that 3"(M) <= 3"(S). Conversely, for any mapping
M, there exists a sequence of editing operations such that 3"(S)= 3"(M).

Proof. The first part can be proved by induction on k. The base case is k- 1. This
case holds, because any single editing operation preserves the ancestor and sibling
relationships in the mapping. In the general case, let S be the sequence s,..., Sk-
of edit operations. There exist a mapping M1 such that 3’(M1) <- 3’(S). Let M be the
mapping for Sk. From Lemma 1, we have that

3’(M,o M) -<_ 3’(M,) + 3’(M2) -<_ 3’(S).

To construct the sequence of editing operations, simply perform all the deletes
indicated by the mapping (i.e., all nodes in T having no lines attached to them are
deleted), then all relabellings, then all inserts. [3

Note that our definition of mapping is different from the definition in [T]. We believe that our definition
is more natural because it does not depend on any traversal ordering of the tree.
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Hence, 6(T1, T2)= min {y(M)IM is a mapping from T to T2}.
There has been previous work on this problem. Tai [T] gave the best published

algorithm for the problem. [Z83] is an improvement of [T], giving better sequential
time and space than [T]. Our new algorithm is much simpler than [T] and [Z83], gives
better time and space than both ofthem, and extends to related problems. The algorithm
of Lu [L] does not solve this problem for trees of more than two levels.

3. A simple new algorithm. This algorithm, unlike [T], [L], and [Z83], will, in its
intermediate steps, consider the distance between two ordered forests. At first sight
one may think that this will complicate the work, but it will in fact make matters easier.

We use a postorder numbering of the nodes in the trees. In the postordering,
TI[ 1 i] and T211 ..j] will generally be forests as in Fig. 5. (The edges are those in the
subgraph of the tree induced by the vertices.) Fortunately, the definition of mapping
for ordered forests is the same as for trees.

3.1. Notation. Let T[i] be the ith node in the tree according to the left-to-right
postorder numbering, l(i) is the number of the leftmost leaf descendant of the subtree
rooted at T[i]. When T[i] is a leaf, /(i)=i. The parent of T[i] is denoted p(i).
We define p(i)=i, pl(i)=p(i),p:(i)=p(pl(i)), and so on. Let anc(i)=
{pk( i) lO <- k <= depth(i)}.

T[ i..j] is the ordered subforest of T induced by the nodes numbered to j inclusive
(Fig. 5). If i>j, then T[i..j]=. T[1..i] will be referred to as forest(i), when the
tree T referred to is clear. T[ l(i)., i] will be referred to as tree(i). Size(i) is the number
of nodes in tree(i).

T T[1 7]

T[4] T[51

T[7] T[1] T[2] T[4] T[5]

FIG. 5

T[7]

The distance between T[i’..i] and T[j’..j] is denoted forestdist(T[i’..i],
T[j’..j]) or forestdist(i’., i,j’..j) if the context is clear. We use a more abbreviated
notation for certain special cases. The distance between T[1..i] and T[1..j] is
sometimes denoted forestdist( i, j). The distance between the subtree rooted at and
the subtree rooted at j is sometimes denoted treedist( i, j).

3.2. New algorithm. We first present three lemmas and then give our new algorithm.
Recall that anc(i)= {pk(i)lO<-_k<-depth(i)}.
LEMMA 3. (i) forestdist((, ) O.
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(ii) forestdist( TI[ 1(il).. i], ) =forestdist( TI[ l(i)., i- 1 ], ) + 3/( T[i] -> A).
(iii) forestdist(, T2[ l(j) ..j]) forestdist(, T2[ l(j) ..j 1])+ 3/(A- T2[j])

where i, anc( i) and jl anc(j).
Proof Case (i) requires no edit operation. In (ii) and (iii), the distances correspond

to the cost of deleting or inserting the nodes in T[l(i).. i] and T2[l(j)..j]), respec-
tively.

LEMMA 4. Let il anc( i) and jl anc(j). Then

(forestdist(l( il).. i- 1, l(j,)..j) + 3/( TI[ i] --> A),

]forestdist( l( i,) i, l(j)..j 1) + /(A- T[j]),
forestdist( l( il) i, l(j) ..j) minlforestdist l( i) l( i) 1, l(j) l(j) 1)

| +forestdist( i).. 1, (j)..j 1

( + 3/(T,[i]--> T2[j]).

Proof We compute forestdist(l(il)..i, l(jl)..j) for l(i,) < iN i, and l(jl)<-_j<-j,.
We are trying to find a minimum-cost map M between forest( l( il).. i) and for-
est(l(jl)..j). The map can be extended to T[i] and T[j] in three ways.

(1) T[i] is not touched by a line in M. Then (i,A)M. So, forest-
dist( l( i) i, l(jl) ..j) forestdist( l( i) i- 1, l(j) ..j) + 3/( T[ i] - A).

(2) T2[j] is not touched by a line in M. Then (A,j)M. So, forest-
dist(l(il)., i,/(jl)..j) =forestdist(l(i).. i,/(jl)..j 1) + 3/(A T[j]).

(3) T[i] and T_[j] are both touched by lines in M. Then (i,j) M. Here is why.
Suppose (i,k) and (h,j) are in M. If l(il)<-h<-l(i)-l, then is to the right of h so
k must be to the right of j by the sibling condition on mappings. This is impossible
in forest(l(jl)..j). Similarly, if is a proper ancestor of h, then k must be a proper
ancestor ofj by the ancestor condition on mappings. This too is impossible. So, h i.
By symmetry, k =j and (i, j) M.

Now, by the ancestor condition on mapping, any node in the subtree rooted at
Tl[i] can only be touched by a node in the subtree rooted at T2[j]. Hence,

forestdist( l( i,) i, l(j,) ..j) forestdist( l( il) l(i) 1, l(j,) l(j) 1

+forestdist(l(i).. i- 1, l(j)..j 1) + 3/( T[ i] -> T2[j]).

Figure 6 shows the situation.

r[il

r[l(i)..l(i)-11 Tl[l(i) i-11

r+[jl

T2[l(jl)..l(j)- 1] T2[I(j) j-l]

FIG. 6. Case (3) of Lemma 4.
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Since these three cases express all the possible mappings yielding forest-
dist(l(il)., i, l(jl)..j), we take the minimum of these three costs. Thus,

(forestdist( l( il).. i- 1, l(j) ..j) + y( T[ i] ---) A)

]forestdist(l(il).. i, l(jl)..j 1) + 7(A - T2[j])
forestdist( l( i) i, l(j) ..j) minforestdist( l( i) l( i) 1, l(j) l(j) 1)

I +forestdist (l( i).. 1, (j)..j 1

( + T(T,[i]

LEMMA 5. Let i anc( i) and jl anc(j). Then
(1) If l( i) l( i,) and l(j) l(j,)

fforestdist( t( il) i- 1, l(j,) .j) + y( TI[ i] - A),
forestdist(t(il)., i,/(jl)..j) minlforestdist(t(i) i,/(jl)..j 1) + y(A -* T2[j]),

(forestdist(l(i,) i- 1, t(jl)..j 1) + y( T[ i] - Tz[j]).

(2) If l( i) 1( i) or t(j) /(jl) (i.e., otherwise)

fforestdist( l( i,) i- 1, t(j) .j) + y( Tl[ i] - A),

Jforestdist(l(il).. i, l(j)..j + ,/(A --, T2[j]),
forestdist( l( il).. i, j) min

forestdist( l( i) l( i) 1, l(j) l(j) 1)
( + treedist(i, j).

Proof. By Lemma 4, if l(i) (i) and l(j) l(j) then, since forestdist(l(i)., l(i)
1, l(j)..l(j)- 1) forestdist(, ) -0, (1) follows immediately.

Because the distance is the cost of a minimal cost mapping, we know forest-
dist(l(i)..i, l(j)..j) forestdist(l(i)..l(i)- 1, l(j)..l(j)- 1)4- treedist(i,j) since the
latter formula represents a particular (and therefore possibly suboptimal) mapping of"
forest(l(il)..i) to forest(l(j)..j). For the same reason, treedist(i,j) -forestdist(l( i).. 1, l(j)..j 4- 7( T[ i] - T2[j]). Lemma 4 and these two inequalities
imply that the substituting of treedist(i,j) for forestdist(l(i)., i- 1, l(j)..j- 1) /
7(T[i]- T2[j]) in (2) is correct. (See Fig. 7.)

Lemma 5 has three important implications:
First, the formulas it yields suggest that we can use a dynamic programming style

algorithm to solve the tree distance problem.
Second, from (2) of Lemma 5 we observe that to compute treedist(i,j) we need

in advance almost all values of treedist(i, j) where i is the root of a subtree containing
and j is the root of a subtree containing j. This suggests a bottom-up procedure for

computing all subtree pairs.
Third, from (1) in Lemma 5 we can observe that when is in the path from l(i)

to i and j is in the path from l(jl) to jl, we do not need to compute treedist(i,j)
separately. These subtree distances can be obtained as a byproduct of computing
treedist( il j).

These implications lead to the following definition and then our new algorithm.
Let us define the set LR_keyroots of tree T as follows:

LR_keyroots(T)= {klthere exists no k’> k such that/(k)= l(k’)}.

That is, if k is in LR_keyroots(T) then either k is the root of T or l(k) l(p(k)),
i.e., k has a left sibling. Intuitively, this set will be the roots of all the subtrees of tree
T that need separate computations.

Consider trees T and T2 in Fig. 4. From the above definition we can see that
LR_keyroots(T1) {3, 5, 6} and LR_keyroots(T2) {2, 5, 6}.
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l(i)=l(il) and/(J)=/(,]l)

Tl[i]

Tl[l(i) i-l]

T2[j]

T2[I(j) j-.]

l(i)4:l(il) or/(j)4:l(jl)

rl[l(il)..l(i)- 1] tree(i) T2[l(jl)..l(j)- 1] tree(j)

FIG. 7. The two situations of Lemma 5.

It is easy to see that there is a linear time algorithm to compute the function l(
and the set LR_keyroots. We can also assume that the result is in array and LR_keyroots.
Furthermore, in array LR_keyroots the order of the elements is in increasing order.

We are now ready to give our new simple algorithm.

Input: Tree T and T2.
Output: Tree_dist( i, j), where 1 -< i<-IT, and <--j<--ITI.
Preprocessing
(To compute l(), LR_keyrootsl and LR_keyroots2)
Main loop

for i’ := 1 to [LR_keyroots(T1)[
for j’ := 1 to ILR_keyroots(T2)

LR_keyroots 1[ i’ ];
j LR_keyroots2[j’ ];
Compute treedist(i, j);

We use dynamic programming to compute treedist(i, j). The forestdist values computed
and used here are put in a temporary array that is freed once the corresponding treedist
is computed. The treedist values are put in the permanent treedist array.

The computation of treedist(i,j).
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forestdist(, ) 0;
for i :-l(i) to

forestdist( TI[ l(i)., il], ) =forestdist( TI[ l(i)., il 1 ], ) 4- 5,( TI[ i] - A)
for jl :- l(j) to j
forestdist(, T2[ l(j) .jl]) forestdist(, T2[ l(j) .jl 1])4- ),(A- T2[jl])

for il :-l(i) to
for jl :- l(j) to j

if l(i)= l(i) and/(jl)- l(j) then
forestdist( T[ l(i)., il], T2[ l(j)..jl)] min (

forestdist( TI[ l( i).. il 1 ], TEl l(j)..jl]) 4- 5,( TI[ il] - A),
forestdist( TI[ l( i).. il], T[ l(j)..jl 1 ]) 4- ),(A - T[jl]),
forestdist( TI[ l(i)., 1 ], T.[ l(j)..jl 1 ]) 4- 5,( Tl[ il] - TE[jl]))

treedist(il,jl)-forestdist(Tl[l(i)..i],T[l(j)..j])/* put in permanent
array */

else
forestdist( TI[ l(i)., il], T[ l(j)..jl]) min (

forestdist( TI[ l( i).. il 1 ], T[ l(j)..jl]) 4- 5’( TI[ il] A),
forestdist( TI[ l( i).. il], T[ l(j)..jl 1]) 4- ),(A - T[jl]),
forestdist( TI[ 1( i) l( il) 1], TEl l(j) l(j) 1]) 4- treedist( il jl))

THEOREM 1. The basic algorithm is correct.

Proof. We will prove that for any pair (i, j) such that i LR_keyroots(T1) and
j LR_keyroots(T2), the following invariants holds.

tree_dist(3, 2) tree_dist(3, 5) tree_dist(3, 6)
0 0 0 2 3 4 5 6

0 2 3 4 5
2 2 2 2 2 2 2 2 3 4

tree_dist(5, 2) tree_dist(5, 5) tree_dist(5, 6)
0 0 0 2 3 4 5 6

0 2 3 4 4 5

tree_dist (6, 2) tree_dist (6, 5)
0 0

2 2 2
3 2 3 3
4 3 4 4
5 4 5 4
6 5 6 5

tree_ dist (6, 6)
0 2 3 4 5 6

0 2 3 4 5
2 0 2 3 4
3 2 2 3 4 5
4 3 2 2 3 4
5 4 3 2 3 2 3
6 5 4 3 3 3 2

tree_dist

0 2 3 5
0 2 3 5

2 2 2 2 4
3 3 2 4 4

3 4 0 5
5 5 3 3 5 2

FIG. 8. The result of computation for T and T in Fig. 4.
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(1) Immediately before the computation of treedist(i,j), all distances
treedist(il,jl), where l(i)<-i<-i and l(j)<=j,<=j and either l(i) l(i)or l(j) l(j),
are available. In other words, treedist(i, j) is available if i is in the subtree of tree(i)
but not in the path from l(i) to and j is in the subtree of tree(j) but not in the path
from t(j) to j.

(2) Immediately after the computation of treedist(i, j), all distances treedist(i, jl),
where l(i) <- il <- and l(j) <-j <-j are available.

We first show that if (1) is true then (2) is true. From Lemma 5 we know that all
required subtree-to-subtree distances are available. (We need all treedist(i,jl) such
that l(i) _<- i _-< and l(j) <-j <-j and either l(i) l(i) or l(j) l(j), and by (1) all these
distances are available.) We compute each treedist(i ,j), where l(il)= l(i) and l(j)=
l(j) in the if part and add it to the permanent treedist array. So, (2) holds.

Let us show that (1) always holds. Suppose l(i) l(i). Let i be the lowest ancestor
of such that iLR_keyroots(T1). Since l(i)-l(i)l(i),ii. Since i

< i. So i’ be the lowest ancestor of jl such that j’LR_keyroots(T1) 1-- < i. Let jl G

LR_keyroots(T.). Sincej LR_keyroots( T2),j <-j. Hence i +j < +j. This means that
treedist(i’ ,j) will have already been computed before treedist(i,j) because in the main
loop LR_keyrootsl and LR_keyroots2 are in increasing order. Hence treedist(i,j) is
available after the computation of treedist(i’,j]). [3

As an example, consider tree T and T2 in Fig. 4. For simplicity, assume that all
insert, delete, and change (of labels) operations will cost one. Figure 8 shows the result
of applying our new algorithm to T1 and T2. The matrix below tree_dist( i, j) is the
result of temporary array produced by the computation of tree_dist(i,j). (Out of 36
possible tree_dist arrays, only ninethose corresponding to pairs of keyrootsare
explicitly computed.) The matrix below tree_dist is the final result. The value in the
lower right corner (2) is the distance between T1 and T.

4. Some aspects of our algorithm.
4.1. Complexity.
LEMMA 6. ILR_keyroots(r) <_-Ileaves(T)l.
Proof We will prove that for any i, j LR_keyroots(T), l(i) l(j).
Let i,jLR_keyroots(T) and i<j. If l(i)=l(j) from i<j we know that is in

the path from l(j) to j. By the definition of l(j), has no left_sibling. This contradicts
the assertion that i LR_keyroots(T). Hence each leaf is the leftmost descendant of
at most one member of LR_keyroots(T). So, ILR_keyroots( T)l -<- [leaves( T) I. 3

Because not all subtree-to-subtree distances need be computed, the number of
such calculation a node participates in is less than its depth. Instead, it is the node’s
collapsed depth:

LR_colldepth( i) lanc( i) LR_keyroots( T)I.
We define the collapsed depth of tree T as follows:

LR_colldepth( T) max LR_colldepth( i).

By the definition and
min (depth (T), leaves(T))
min (depth(T), leaves(T)).

LEMMA 7.

Lemma 6 we can see that LR_colldepth(i)
for 1 lTI. Hence LR_colldepth(T) <-

i= LR_keyroots( T)]

i=1

j=N

Size(i) 2 ILR-colldepth(j)]
j=l
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Proof. Consider when node j is counted in the first summation" in the subtrees
corresponding to each of its ancestors that is in LR_keyroots(T). By the definition of
LR_colldepth( ),j is counted LR_colldepth(j) times.

THEOREM 2. The time complexity is O(]Tll lT2l min (depth( T1), leaves( T1))
min (depth(T2), leaves(T2))). The space complexity is O(I LI TI).

Proof Let us consider the space complexity first. We use a permanent array for
treedist and a temporary array for forestdist. Each of these two arrays requires space

Consider the time complexity of our algorithm. The preprocessing takes linear
time. The subtree distance dynamic programming algorithm takes Size(i) x Size(j) for
the subtree rooted at T[i] and the subtree rooted at T2[j]. We have a main loop that
calls this subroutine several times. So the time is"

i=lLU_keyroots T1) j=lLR_keyroots( T2)

E Size(i) x Size(j)
i=1 j=l

i=lLR_keyroots( Tl)l j=lLR_keyroots( T2)I., Size(i) x Size(j).
i=1 j=l

By Lemma 6, the above equals
i= N j= N, LR_colldepth i) x LR_colldepth (j).
i=1 j-----1

This is less than

IT1[ x T.[ x LR_colldepth(T1) x LR_colldepth(T2).

By the definition of LR_colldepth, we have that the time complexity is

o(I T[ x IT=[ min (depth(T), leaves(T1)) x min (depth(T), leaves(T2))).

These time and space complexities are an improvement over the O(IT I T=I
depth(T1)2x depth(Tz)2) time and space complexity of IT].

Note. If we use a right-to-left postorder numbering for tree nodes and define
similar functions r(i), RL_keyroots(T) and RL_colldepth(i), we can have the same

N2 RL_colldepth (j)result as above. The complexity will be Ei=l
Clearly, using the left-to-right or right-to-left postorder numberings give the same

worst-case time complexity. However, in practice it may be beneficial to choose the
ordering that gives the lower of the following two products" i=N,i LR_colldepth(i)x

N2 RL_colldepth(j).i=N, gL_colldepth(i) x ===-N2 Lg_colldepth(j) and

4.2. Mapping. It is natural to ask for a mapping that yields the distance computed.
Also given two trees, we may ask, what is the largest common substructure of these
two trees? This is analogous to the longest common substring problem for strings. We
can find the mapping in the same time and space complexity as finding the distance,
although we do not give the details here. The mapping is produced by our toolkit.

4.3. Parallel implementation. A straightforward transformation of our algorithm
to a parallel one yields an algorithm with time complexity O(N1 + N:) whereas [T]
and Z83 have time complexity O( N + N:) depth (TI) + depth (T2))). Our algorithm
uses O(min (I TI[, IT21) leaves(T) leaves(T)) processors.

Actually, by controlling the starting point of each treedist computation more carefully, we can reduce
the processor bound to O(min ([ T[, T2[) x min (depth(T), leaves(T)) x min (depth(T2), leaves(T2)). The
algorithm is more complicated however.
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The algorithm computes in "waves" for all subtree pairs tree(i) and tree(j), where
e LR_keyroots(T1) and j LR_keyroots(T2), simultaneously. We start at wave 0. At

wave k, for each such subtree pair tree(i) and tree(j), compute forest-
dist(l(i)..il, l(j)..j), where (i-l(i))+(j-l(j))= k.

We now present the parallel algorithm in detail. (When the PARBEGIN-PAREND
construct surrounds one or more for loops, it means that every setting of the iterators
in the enclosed for loops can be executed in parallel. The semantics are those of the
sequential program ignoring this construct.)

In the algorithm dist[ i, j] is the array for the computation of treedist(i, j). Therefore
dist[ i, j][ p, q] is the distance forestdist(l(i)..p, l(j)..q) and is. the p, qth member of
the array computing treedist(i, j).

ALGORITHM PARALLEL DISTANCE.
begin
PARBEGIN

for i’ := to [LR_keyroots(T1)l
for j’ := 1 to ILR_keyroots(T2)

:= LR_keyroots 1 i’
j := LR_keyroots2[j’]
dist[i,j][l(i) 1, t(j) 1] := 0/* initializes temporary array for each tree

dist */
PAREND
for k:=0 to N-1
PARBEGIN

for i’ := 1 to ILR_keyroots(Tl)
for j’ := 1 to ILR_keyroots( T2)]

:= LR_keyroots 1[ i’]
j := LR_keyroots2[ i’]
dist[ i, j][ l(i) + k, l(j)

:= dist[ i, j][ l( i) + k- 1, l(j) 1]+ y( Till[i]+ k] - A)
PAREND
for k:-0 to M-1
PARBEGIN

for i’ :- to ILR_keyroots(T)
for j’ :- 1 to ILR_keyroots(T2)

:= LR_keyroots 1 i’
j :- LR_keyroots2[j’]
dist[ i, j][ l(i) 1, l(j) + k]

:= dist[i,j][l(i)- 1, l(j)+ k- 1]+ y(A- Till[j]+ k])
PAREND

for k:=0 to N+M-2
PARBEGIN

for i’ := to ILR_keyroots(T1)l
for j’ := 1 to ILR_keyroots(Tz)

:= LR_keyroots 1 i’
j := LR_keyroots2[j’]
for i,, jl satisfying il l( i) +jl l(j) k and l( i) <-_ il <= i, l(j) <-j, <=j

if l(i) l(il) and l(j) =/(jl) then
dist[ i, j][ il, jl] := min {

dist[ i,j][ il- 1,jl] + y( TI[ il] - A)
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dist[i,j][i,j- 1]+ ’y(A T2[j])
dist[ i, j][ i 1, j + ’y( T[ i] T2[j])

}
treedist( i j) := dist[ i, j][ i, j]

else
dist[ i, j][ i, j] := min {

dist[i, j][ i- 1,j] + y(T[i] A)
dist[i,j][i,j- 1]+ y(A T2[j])
dist[ i, j][ l(i) 1, l(j) 1 + treedist[ i j]

}
end

It is easy to see that in the above algorithm all the terms, except treedist[il,jl], are
available whenever needed. We now show that treedist[i,jl] is available whenever
we use it. Our argument is similar to the one we used in the sequential case.

Note that we compute all terms such that (i l(i)) + (j l(j)) k together. During
that computation, all terms such that (i- l(i))+ (j- l(j))< k are available. So, when
we need item treedist[ i, jl], either l(i) > l(i) or l(j) > l(j). Let i2 be the lowest ancestor
of i such that izE LR_keyroots(T1). Let j2 be the lowest ancestor of j such that
j2E LR_keyroots(T). Since l(il)=/(i2) and l(j)= l(j) we know either 1(i2)> l(i) or
l(jz)>l(j). Therefore, (i-l(i2))+(j-l(jz))<(i-l(i))+(j-l(j))=k. Hence
treedist[il,jl] was already computed in the computation of dist[iz,j2][i ,j] and put
into the permanent tree distance array. This settles correctness.

THEOREM 3. The Parallel Distance Algorithm has time complexity 0(I Tll +ITzl).
Proof By simple analysis of the for loop. 13

4.4. From trees to strings. Strings are an important special case of trees. This
algorithm is a generalization of the natural dynamic programming algorithms on strings
in two senses" time complexity and algorithmic style.

First, we consider the time complexity. Since a string has only one leaf, applying
our algorithms to strings yields a time complexity of O(ITI[ Tzl). This is the same
as that of the best available algorithm for the general problem of string distance.

Second, we consider the algorithm itself. For a string S, LR_keyroots(S) {root}.
So the main loop will only have one iteration. In the dynamic programming subroutine,
since l(i) 1, we will never come to the case l(i) # l(i) or l(j) l(j). So if we change
to [TI, j to Tz], 1(i) to one, l(j) to one, delete the main loop and delete the case

where l(i) l(i) or l(j) l(j), we will have exactly the string distance algorithm.

5. The general technique applied to approximate tree matching. Many problems in
strings can be solved with dynamic programming. Similarly, our algorithm not only
applies to tree distance but also provides a way to do dynamic programming for a
variety of tree problems with the same time complexity. In this section we show how
to apply this general paradigm to approximate tree matching.

5.1. Algorithm template. Here is the general form of the algorithm (assuming a

left-to-right postorder traversal):

preprocessing
main loop

for i’ := 1 to ILR_keyroots(T)
for j’ := 1 to ILR_keyroots( T2)I

LR_keyroots 1[ i’];
j LR_keyroots2[j’ ];
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compute Tree_D( i,j);
subroutine for Tree_D( i, j)

empty_initialization
for := l(i) to

left_initialization

for jl := l(j) to j
right_initialization

for il:= l(i) to
for jl := l(j) to j

if l(il)= l(i) and l(j)= l(j) then
general_if_computation
Tree_D( il ,j) Forest_D( T[ l(i) i], T2[ l(j) ..jl]);

else
general_else_computation

5.2. Approximate tree matching. We first consider approximate string matching
[$80], [U83], [U85], [LV]. We will then give two natural generalizations of approximate
string matching to approximate tree matching. This will also be a generalization of the
exact tree matching algorithm as found in Hoffmann and O’Donnell [HO].

The approximate string matching problem is the following. Given two strings
STEXT and SPAT, the problem is to compute, for each i, SD[i, SPAT]=
mini {D(STEXT[j..i], SPAT)}, where =<j=< i+ and D is the string distance metric.
In other words, the problem is to compute, for each i, the minimum number of editing
operations between the "pattern" string SPAT[1..]PATI] and the "text string"
STEXT[1.. i] where any prefix can be removed from STEXT[1..i]. (Intuitively, the
algorithm finds the "occurrence" in TEXT that most closely matches PAT.)

To extend this problem to trees, we must gene-alize the notion of removing a
prefix. For us, a prefix will mean a collection of subtrees.

We first define two operations at a node.
Removing at node T[ i] means removing the subtree rooted at T[ i]. In other words,

delete T[l(i).. i]. (See Fig. 9.)
Pruning at node T[ i] means removing all the descendants of T[ i]. In other words,

delete T[l(i)..i-1]. (Thus, a pruning never eliminates the entire tree.) (See Fig. 10.)

T T’

T[S]

T[61 T[7]
T[1] T[2I

T[4I T[S]
FIG. 9. Remove subtree rooted at T[8].

T[91
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T T’

T[7I
T[1] T[2]

T[41 T[SI
FIG. 10. Pruning at T[8]mremove all its proper descendants.

T[8]

Assume an ordering for tree T. Define a subtree set S(T) as follows: S(T) is a
set of numbers satisfying

(1) i S(T) implies that 1_-< i<-ITI
(2) i,j S(T) implies that neither is an ancestor of the other.

Define R(T, S(T)) to be the tree T with removing at all nodes in S(T).
Define P(T, S(T)) to be the tree T with pruning at all nodes in S(T).

Now we can give the definition of approximate tree matching. Given tree T and
PAT, for each i, we want to calculate

DR(T[l(i)..i, PAT)=min {treedist(R(T[l(i)..i], S(T[l(i)..i])), PAT)}.
s

DP( T[ l( i) i, PAT) min { treedist( P( T[ l(i) i], S( T[ l(i) i])), PAT)}.
s

The minimum here is over all possible subtree sets S( T[ l( i).. i]). We consider
each generalization in turn.

5.2.1. Remove any number of subtrees from TEXT tree. The problem is as follows.
Given trees T and T2, we want to know what is the minimum distance between
Till(i).. i] and T2 when zero or more subtrees can be removed from T[l(i).. i].

Let F_DR(T[I(i)..il], T2[l(j)..jl]) denote the minimum distance between forest
T[ l(i)., i] and T2[ l(j)..j] with zero or more subtrees removed from T[ l(i)., i]. Let
T_DR(i,j) denote the minimum distance between tree T[ l( i) i] and T2[l(j)..j] with
zero or more subtrees removed from T[l(i).. i]. We write the algorithm in the form
suggested by the algorithm template.

ALGORITHM SUBTREE REMOVAL.
empty_initialization:
F_DR , ) 0
left_initialization:

F_DR(T,[l(i) i,], ) 0
right_initialization:
F_DR(, T2[l(j)..j,])= F_DR(, Te[I(j)..j,-1])+T(A-
general_if_computation
/* applies if l(i,) l(i) and l(j,) l(j)*/
F_DR T[ l( i) i,], T[ l(j) ..j,]) min {
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F_DR(, T_[I(j)..j,]),
F_DR(T[I(i)..i- 1], T2[l(j)..j,])+ y(T[i,]-> A),
F_DR(T[I(i)..i], T2[I(j)..j- 1])+ 3,(A-* T[j]),
F_DR(T[I(i)..i- 1], T[I(j)..j- 1])+ y(T[i]-> T2[j])}
/* put the derived treedist in the permanent array, as specified by template */
general_else_computation
F_DR T[ l(i)., i], T[l(j)..j]) min {
F_DR(T[I(i)..I(i)- 1], T2[I(j)..j]),

F_DRITI[I(i)..i-I], T[l(j)..])+ y(Tl[i]-> A),
F_DR T[l(i) i], T2[I(j)..jl ]) + y(A--> T2[jl])
F_DR(T[I(i)..I(i)- 1], T2[l(j)..l(j)- 1])+ T_DR(i,jl)}

LEMMA 8. Algorithm Subtree Removal is correct.

Proof. First we show that the initialization is correct. The empty_initialization and
the right_initialization are the same as in the tree distance algorithm. The left_initializ-

ation F_DR(T[I(i)..i],)=O is correct, because we can remove all of Tl[l(i)..i].
For the general term F_DR(T[I(i)..i], T[I(j)..j]), we ask first whether or not

the subtree T[l(i)..i] is removed. If it is removed, then the distance should be
F_DR(T[I(i)..I(i)-I], T[I(j)..j]). Otherwise, consider the mapping between
Tt[l(i)..il] and T2[I(j)..j] after we perform an optimal removal of subtrees of
T[l(i)..i]. Now we have the same three cases as in Lemma 4. Hence the general
expression should be the minimum of these four terms:

F_DR( T[ I( i).. i], T2[ l(j)..jl]) min {
I_DR TI[ l(i)., l(i) 1], T2[ l(j)..j]),
F_DR(TI[I(i)..i- 1], T[I(j)..j])+ .,(TI[il] --> A),
F_DR(T[I(i)..i], T2[I(j)..j- 1])+ y(A--> T[j]),
F_DR T[ l(i)., l(i) 1 ], T[ l(j)../(jl) 1 ])
+ F_DR( T[l(i)..i- 1], T2[I(jl)..j- 1])+ y( T[ il]--> T2[j])}

As in Lemma 5, this specializes to the general_if_computation and the gen-
eral_else_computation given in the algorithm.

5.2.2. Prune at any number of nodes from the TEXT tree. Given trees T and T,
we want to know what is the minimum distance between T[l(i).. i] and T2 when there
have been zero or more prunings at nodes of T[l(i).. i].

Let F_DP(T[I(i)..i], T[I(j)..j]) denote the minimum distance between for-
est T[l(i).. i] and T2[I(j)..j] with zero or more pruning from T[l(i).. i]. Let
T_DP(i, j) denote the minimum distance between tree T[ l(i)., i] and T2[ l(j)..j] with
zero or more prunings from T[l(i).. i]. The following initialization and general term
computation steps will give us an algorithm to solve our problem.

ALGORITHM PRUNINGS.
empty_initialization"
F_DP(,)=O
left_initialization"

F_DP( T[ l( i) i], F_DP( T[ l( i) l( i) 1 , ) + y( T[ i,] --> A)
right_initialization:
F_DP(, T[l(j)..j.]) F_DP(, T:[ l(j)..j, ]) + (A- T:[j-I)
general_if_computation
/* applies if l(i)= l(i) and l(j)= l(j)*/
F_DP( T[ 1( i) i-], T2[ l(j) ..j]) min
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F_DP(, T2[ l(j)..j, 1 ]) + 3/( TI[ il] - T2[j,]),
F_DP( TI[ l(i)., il 1 ], T2[ l(j)..jl]) + 3/( TI[ il] - A),
F_DP( T[ l(i)., il], T2[ l(j)..jl 1 ]) + 3/(A - TE[jl]),
F_DP( T[ I( i) il 1], T2[l(j)..jl 1 ]) + 3/(Tl[ il] - T2[j])}

/* put the derived treedist in the permanent array, as specified by template */
general_else_computation
F_DP( TI[ l(i)., il], T2[ l(j)..jl]) min {
F_DP( Tl[l(i).. l(il) 1], T2[l(j)..jl]) 4. 3/( Tl[ il] -> A),
F_DP( T[l(i).. il 1], T2[l(j)..jl]) + 3/( TI[ il] - A),
F_DP(TI[I(i) il], T2[l(j)..jl 1 ]) + 3/(A- T2[jl]),
F_DP(Tl[l(i)..l(il)- 1], T2[l(j)..l(jl)- 1])+ T_DP(i,jl) }

LEMMA 9. Algorithm Prunings is correct.

Proof. First we show that the initialization is correct. The empty_initialization and
the right_initialization are the same as in the tree distance algorithm. For left_initializ-

ation, the best we can do for tree T[l(il)..il] is to prune at TI[il]. Therefore
F_DP( TI[ I( i).. il], ) F_DP( TI[ l(i).. 1(il) 1 ], ) + 3/( TI[ il] -’> A). Hence the
left_initialization is correct.

For the general term F_DP(T[I(i)..il], TE[l(j)..jl]), we have the following
similar three cases.

(1) TI[il] is not touched by a line of M.
(la) (without pruning) F_DP( TI[ l(i)., il- 1 ], T2[ l(j)..jl]) + 3/( TI[ il] - A)
(lb) (with pruning) F_DP(Tl[l(i)..l(il)- 1], T[I(j)..jl])+ 3/(Tl[i]- A)

(2) T[jl] is not touched by a line of M. Since we only prune from T1, there is
only one case here:

F_DP( T[ l(i)., il], T_[l(j)..jl 1 ]) 4- 3/(A- TI[ il])

(3) both TI[il] and T2[j] are touched by lines of M.
(3a) (without pruning)

F_DP( TI[ l( i).. l(il) 1], T:[ l(j)., l(j,) 1])

4- F_DP( T[ l( il).. i 1 ], T2[ l(j)..j 1]) 4- 3/( TI[ il] - T2[j])

(3b) (with pruning)

F_DP( TI[ l( i).. l(il) ], T2[ l(j)../(jl) 1 ]) + F_DP(, T2[/(jl)..jl ])

4- 3/( T[ il] T2[jl])

If /(i)=/(il) and /(j)= l(j), consider cases (lb) and (3b.) Case (lb) becomes
F_DP(, T2[l(j)..jl])+ 3/(Tl[i]- A). Case (3b) becomes F_DP(, Ta[l(j)..j- 1])+
3/(Tl[i] T2[j]). Now from the right_initialization we know that

F_DP((, T2[ l(j)..j,]) + 3/( TI[ il] A)

>-- F_DP(, T2[ l(j)..jl ]) + 3/(A T2[jl]) + 3/( T[ i,] A)

F_DP((, T2[l(j)..j,- 1])+ 3/(Tl[il] T2[j,]).

So the distance given by case (lb) => the distance from (3b). The proposed gen-
eral_if_computation is therefore correct where the first term handles two cases.

If l(i) 1(i) or l(j) l(j), consider case (3). As in Lemma 6, cases (3a) and (3b)
can be replaced by F_DP( T[ l(i)., t(i) 1 ], T2[ l(j)., t(j,) ]) + T_DP(i, j). The
proposed general_else_computation is therefore correct. Hence algorithm pruning is
correct. [3
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6. Conclusion. We present a simple dynamic programming algorithm for finding
the editing distance between ordered labelled trees. Our algorithm

(1) Has better time and space complexity than any in the literature;
(2) Is efficiently parallelizable; and
(3,) Is generalizable with the same time complexity to approximate tree matching

problems.
We have implemented these algorithms as a toolkit that has already been used at

the National Cancer Institute.
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RELATING THE TYPE OF AMBIGUITY OF FINITE AUTOMATA TO THE
SUCCINCTNESS OF THEIR REPRESENTATION*

BALA RAVIKUMARt AND OSCAR H. IBARRA$

Abstract. This paper considers the problem of how the size of a nondeterministic finite automaton
(nfa) representing a regular language depends on the type of ambiguity of the nfa. Primarily, the relationship
between the ambiguity and the size in five types of nfa’s with increasing degrees of nondeterminism is
studied: DFA (deterministic), UNA (unambiguous), FNA (finitely ambiguous), PNA (polynomially
ambiguous), and ENA (exponentially ambiguous) nfa’s. The goal is to show "separation" among these
classes, where a class A is said to be "separated" from B (written (A, B)) if for infinitely many n, there are
machines of type B with n states whose minimal equivalent type A machine has more than p(n) states for
any polynomial p. Two classes are "polynomially equivalent" (written A B) if machines of type A can be
converted to machines of type B with only a polynomial increase in the number of states, and vice versa.
For a class X, let X(b) denote the restricted class of machines of type X with the restriction that the
language accepted is bounded. The first main result compares the bounded restrictions of the five classes
mentioned above. Specifically, the following is shown: (DFA(b), UNA(b)), (UNA(b), FNA(b)), FNA(b)
PNA(b) and PNA(b) ENA(b), providing a complete picture of how the type of ambiguity affects the size
complexity for unary and bounded languages. For unbounded languages it is conjectured that each of the
five types of nondeterminism is separate from its higher types. But a proof does not exist at this time for
two of the separations, the other two carrying over directly from the unary case. Candidates are offered that
may be useful in proving the (other two) conjectured separations, and also a weaker form of separation in
one case is shown. The notion of "concurrent conciseness" introduced by Kintala and Wotschke is studied.
A class C is said to be concurrently concise over two classes A and B if (A, B) and (B, C) can be proved
using the same collection of witness languages. One of the main results of this paper shows that, for
unrestricted inputs, PNA is concurrently concise over DFA and UNA. This answers an open problem of
Stearns and Hunt. The succinctness problem is also studied through (regularity preserving) closure properties,
an approach initiated by Sakoda and Sipser, and some interesting contrasts between various classes of nfa’s
are shown.

Key words, nondeterministic finite automaton, ambiguity, succinctness of representation

AMS(MOS) subject classifications. 680, 68Q

1. Introduction. Ever since Rabin and Scott [RABI59] introduced the concept of
a nondeterministic finite automaton (nfa), problems concerning the complexity of
representation (size complexity) of regular languages have been studied extensively.
Since regular languages have a plethora of different characterizations, the study of
concise representations of regular languages seems to offer an endless stream of
problems. In light of recent developments relating the randomness of strings to the
size complexity of machines generating them (this is the idea of Kolmogorov com-
plexity, see e.g., [PAUL79]), there is a renewed interest in the study of succinctness
of representations. We begin with a brief summary of some earlier results in this area.

Meyer and Fischer [MEYE71] have considered the blow-up in the number of
states when converting an nfa to a deterministic finite automaton (dfa) and have shown
that, in the worst case, the number of states in a minimum dfa equivalent to an nfa
of n states is 2 n. The same problem has also been considered when the underlying
alphabet is unary. In this case the blow-up, although smaller than 2 n, is still exponential.
An exact expression for the blow-up has hitherto remained elusive. Moore [MOOR71 ],
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? Department of Computer Science and Statistics, University of Rhode Island, Kingston, Rhode Island
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$ Department of Computer Science, University of Minnesota, Minneapolis, Minnesota 55455.

1263



1264 B. RAVIKUMAR AND O. H. IBARRA

Mandl [MAND73], and recently Denes, Kim, and Rouch [DENE85] have obtained
a near-optimal bound of (R) (en 1og,/2) for this problem. (In the above expression, e
stands for the base of the natural logarithm, and log n denotes log2 n, as do all the
logarithms in the rest of the paper.)

Schmidt [SCHM78] has compared the relative succinctness offered by several
pairs of devices that include, apart from finite-state devices, pushdown machines.
Kintala and Wotschke [KINT80] have defined the "amount of nondeterminism" as
the minimum number of nondeterministic moves on any accepted input and established
a hierarchy of succinctness based on the amount of nondeterminism. They [KINT86]
also have introduced a concept called concurrent conciseness and compared the
concurrent conciseness of degree automata [WOTC77], probabilistic automata
[RABI63], and nfa’s. Ehrenfeucht and Zeiger [EHRE76] have obtained several results
comparing the relative succinctness of finite automata and regular expressions. Addi-
tional results comparing the expressive power of various control features (such as
"goto") in regular expressions have been presented by Abrahamson [ABRA87].

An important classification of nfa’s is based on the notion of ambiguity, i.e., the
number of accepting derivations of an input string x. (An accepting derivation of a
string is defined as a sequence of states visited on input x leading to acceptance.) This
notion was first introduced and studied by Mandel and Simon [MAND77], Jacob
[JACO77], and Reutenauer [REUT77]. It has been further investigated by Chan and
Ibarra [CHAN83], Stearns and Hunt [STEA85], Ibarra and Ravikumar [IBAR86],
and Weber and Seidl [WEBE86]. An nfa is said to be k-ambiguous if, for each string
accepted, there are at most k accepting computations. An nfa is said to be finitely
ambiguous if it is k-ambiguous for some k. An nfa is said to be polynomially ambiguous
if there is a polynomial p(.) such that the number of accepting computations for any
string of length n is at most p(n). An nfa that is polynomially ambiguous, but not
finitely ambiguous is called strictly polynomially ambiguous. The same way, an nfa is
said to be strictly exponentially ambiguous if it is not polynomially ambiguous. (Note
that the number of derivations of a string in any nfa is at most a single exponential
in the length of the string, hence the term exponentially ambiguous would hold for
any nfa.) It has been shown by Mandel and Simon [MAND77] and Reutenauer
[REUT77] (and independently by others) that there is an algorithm to decide if a given
nfa is finitely, strictly polynomially or strictly exponentially ambiguous. Weber and
Seidl [WEBE86] have shown that there is a polynomial time algorithm for the above
classification. The present study is motivated by the following question regarding the
above classification. How is the succinctness of representation related to the degree
of ambiguity?

In this study, we compare the following families of devices: DFA (the collection
of deterministic finite automata), UNA (the collection of unambiguous nfa, i.e.,
one-ambiguous nfa’s), FNA (the collection of finitely ambiguous nfa’s), PNA (the
collection of polynomially ambiguous nfa’s), and ENA (the collection of exponentially
ambiguous nfa’s). For a collection X of devices (such as X- UNA, etc.), let X(b)
denote the subset of X with the property that each device in this subset accepts a

i ibounded language (i.e., a language whose strings are of the form al a2 ak, where
ai’s are symbols of the alphabet). Also, for two classes of devices A and B, let (A, B)
denote the fact that B can be exponentially more succinct than A (i.e., there exists a
collection of languages {Ln} such that Ln can be accepted by an n state device of type
B, but any device of type A accepting L, must have more than p(n) states for any
polynomial p) and let A B denote the fact that each device in A can be converted
to an equivalent device in B with a polynomial blow-up and vice versa. We present
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results comparing DFA(b), UNA(b), FNA(b), PNA(b), and ENA(b). Specifically, we
show that (DFA(b), UNA(b)), (UNA(b), FNA(b)), FNA(b) PNA(b), and PNA(b)
ENA(b) hold, i.e., for bounded inputs, fna’s can be exponentially more succinct than
una’s and una’s can be exponentially more succinct than dfa’s; however, ena’s and
pna’s are convertible to fna’s at only a polynomial increase in the number of states.
Note that the above claims immediately imply, for unrestricted inputs, the following
relations: (DFA, UNA) and (UNA, FNA). The other relationships seem hard to prove.
We conjecture that (FNA, PNA) and (PNA, ENA), and offer candidates for proving
the claim. We also provide an evidence for the later conjecture by proving a special
case of it.

Concurrent conciseness of a family A of devices over two families B and C has
been defined in [KINT86] as a simultaneous succinctness of A over B and C. By
"simultaneous" we mean that the same collection of languages bears witness to the
succinctness of A over B, as also of B over C. The question of whether ENA is
concurrently concise over UNA and DFA has been raised by Stearns and Hunt
[STEA85]. We prove the stronger claim that PNA is concurrently concise over UNA
and DFA, resolving the question of Stearns and Hunt in the affirmative.

We also study the succinctness problem through "closure properties," an approach
initiated by Sakoda and Sipser [SAKO78]. We define the closure (with respect to an
operation ) for a class A of finite-state devices as follows. Let be a regularity
preserving operation, and let M1, M2 A. Then L(MI) L(M2) is regular, and assuming
that A is universal in the sense that it can accept the class of all regular languages,
there is an M A such that L(M)= L(M) L(M2). The question is: "What is the
size of the smallest such M, as a function f of the numbers of states of M and M2?"
If f is bounded by a polynomial, then we say that A is polynomially closed under .
Closure properties show an interesting contrast between different subclasses of nfa’s.
For example, the class DFA is not polynomially closed under concatenation or Kleene
star but ENA is, under these operations. Apart from the fact that many results regarding
succinctness can be sharpened or presented in a different perspective through the
closure properties, we feel that this study is of interest in its own right. We prove some
closure and nonclosure properties for the various classes of devices mentioned above.

The main results are presented in 3-5 following some definitions and back-
ground material in 2.

2. Preliminaries. We begin with some basic definitions and notation. Define a dfa
M to be a 5-tuple M (Q, Z, 6, qo, F), where Q is a finite set of states, Z is a finite
alphabet, qo Q is the start state, F Q is the set of accepting states, and 6 is defined
as 6:Q - Q. An nfa is defined as a five-tuple (Q, Z, 6, qo, F), where all the com-
ponents are exactly as above except 6 that is defined as a map 6:Q Z 2Q. We do
not allow e-moves in an nfa. We further assume that the fa’s are reduced, i.e., they
do not have useless states (thus, all the states are reachable from the start state on
some input, and from each state an accepting state can be reached on some input).
Note that none of the results presented in this paper require these assumptions; rather
these are made for stylistic simplicity and avoidance of inessential details. IMI denotes
the number of states in M. This will be used as the size complexity of a machine. We
use aM(n) to denote the "ambiguity function" of an nfa, defined as the maximum
number of accepting computations (i.e., sequences of states ending in an accepting
state) for any input string w such that Iwl n and we L(M), the language accepted
by M. An nfa is said to be k-ambiguous (for a fixed k) if aM(n)<=k, for all n.
One-ambiguous nfa’s are called unambiguous. An nfa is polynomially ambiguous if
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there exists a polynomial p(.) such that aM(n)<--p(n) for all n. The unrestricted nfa
is called exponentially ambiguous since the number of derivations for a string of length
n is bounded by c (where c is the number of states of the machine).

Let F be an arbitrary collection of symbols. We use DFA to denote the collection
of dfa’s whose input alphabet is a finite subset 2; of F. In the same way, the collections
of unambiguous, finitely, polynomially, and exponentially ambiguous nfa’s are denoted
by UNA, FNA, PNA, and ENA, respectively. Clearly DFA_ UNA

_
FNA_ PNA

ENA. To make a more definite reference to the type of ambiguity of an nfa, we use
the following definition. An nfa of a given type X (in the above sequence of inclusions)
is said to be strictly of type X if it is of type X, but not of any preceding type. For
example, a polynomially ambiguous nfa is strictly polynomially ambiguous if it is
polynomially ambiguous but not finitely ambiguous. We will also be interested in the
following subsets of these classes of collections. When the input of any fixed device
in any of these collections is restricted to a unary alphabet, we obtain the families
DFA(u), UNA(u), etc. When the underlying languages accepted by these collections
are bounded (i.e., subsets of a*la*’" a*, where aieY-,), we obtain the collections
DFA(b), UNA(b), etc. We denote the collections of two-way dfa’s (whose head can
move on either directions on the input tape) by 2-DFA and those of sweeping dfa’s
(that are 2-dfa’s whose head can reverse only on the endmarkers) by SDFA. Their
restrictions to unary and bounded languages will be denoted by 2-DFA(u), 2-DFA(b),
etc. To denote a typical or generic device of a specific type, we use the name of the
collection in small letters, e.g., "Let M be an fna," etc.

The following definition of f-conciseness was adopted from [KINT86] with a
minor modification:

DEFINITION. A class of automata B is f-concise over another class A if and only
if there is an infinite sequence of languages {Ln} such that

(i) For all n, there exists an n-state automaton Mn in B accepting Ln.
(ii) For infinitely many n, every M in A accepting Ln must have at least f(n) states.
We write B-f(n)- A to denote the fact that B is f-concise over A. Since we are

mainly interested in contrasting polynomial growths and superpolynomial growths,
we also need the following coarser definition. We denote by (A, B) the fact that B is

f-concise over A for some f that cannot be upper-bounded by a polynomial. If (A, B)
is not true, then we write B _<-A. Thus, if B_-< A, then any M B can be converted to
an equivalent M’ in A with at most a polynomial increase in the number of states. We
write A B to denote the fact that A _-< B and B _-< A. If B -<_ A and if it is not true that
A-<_ B, then we write B < A. Observe that it is possible that (A, B) and (B, A) are both
true. In this case, we write A < > B. (A and B are incomparable.)

3. Succinctness problem for unary and bounded languages. In this section, we study
the succinctness versus size relation when the input is restricted to bounded languages.
First we consider unary languages and prove that DFA(u)<UNA(u), UNA(u)<
FNA(u), and FNA(u)= PNA(u)= ENA(u). We then extend these results to bounded
languages. We also present results comparing 2-DFA(u) with some of the classes stated
above. Obviously the inequalities stated above among DFA, UNA, and FNA carry
over to the unbounded languages. At present we can claim much less about the relative
succinctness of FNA, PNA, and ENA. We conjecture that PNA < FNA and ENA <
PNA, i.e., all the five types of nfa’s form a hierarchy. We offer candidates that might
enable us to prove the conjectured separations. In the latter case, we also provide an
evidence in defense of the conjecture by proving a weaker form of it.

We need the following preliminary results. Our first lemma is from [STEA85].
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LEMMA 1. Let M (Q, , 6, qo, F) be an unambiguous nfa with m states. The
shortest word not accepted by M is no longer than m.

Our next result is from [IBAR86] and [WEBE86]. This result provides a charac-
terization of polynomial and exponential ambiguities of nfa’s. Before we state the
result, we need the following notation. For an nfa M (Q, E, 6, qo, F), where p, q Q,
and weE*, define N(p, w, q) to be the number of ways in which w can be derived
starting from p, ending in q.

LEMMA 2. Let M Q, E, 6, qo, F) be an nfa.
(i) [IBAR86] A necessary and sufficient condition for M to be strictly exponentially

ambiguous is that there exists a q Q and a string w e such that N(q, w, q) >_ 2.
(ii) [WEBE86] A necessary and sufficient condition for M to be strictly polynomially

ambiguous is that M is not exponentially ambiguous and there exist different
states p, q and a word w # e such that p 6 (p, w), q 6 (p, w), and q 6 (q, w).

Figures 1 and 2 show examples of strictly polynomially and exponentially
ambiguous nfa’s.

The following definition and lemma are from [CHRO86].
DEFINITION. An nfa M (Q, E, 6, qo, F) where E {a} is in normalform if it has

the following properties:
(a) Q {qo," ", q,,} LJ C, LJ "Ck, where C {Pi,o, ", Pi,y,-1}, i= 1, 2," ", k,
(b) 6 can be described as follows: qi+l6(qi, a), i=l,...,m-1, P,/I

6(p,.j, a), i= 1, , k, and j 0,..., y- 1, Pi,o 6(qm, a), i= 1,..., k.
(The addition j + above is mod y.)

We now state the next lemma.
LEMMA 3 [CHRO86]. For each nfa A (over a unary alphabet) with n states there

is an equivalent nfa A’ in normalform with at most a total of O( n 2) states, and at most
n states that are not in a loop.

Proof For the proof see Lemma 4.3 of [CHRO86]. [-I

In fact, [CHRO86] presents a simple algorithm to construct A’ from A.
We now prove the result comparing UNA(u), FNA(u), PNA(u), and ENA(u).
THEOREM 1. DFA(u) < UNA(u), UNA(u) < FNA(u), and FNA(u) PNA(u)

ENA(u).
Proof of DFA(u)<UNA(u). It is sufficient to show (DFA(u), UNA(u)). We

construct a collection {L,}, n 1, 2, of regular languages such that for all sufficiently

0,1 0,1

FIG. 1. Example of a strictly polynomially ambiguous nfa.

a b b
a

a

FIG. 2. Example of a strictly exponentially ambiguous nfa.
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large n, the following holds: (i) L, can be accepted by an unambiguous nfa with m. + 1
states, and (ii) for any dfa N accepting L, the number of states M of N must be at
least m(lg m")/2/8. We first show how to construct {L}, n 1, 2, , and prove claims
(i) and (ii) about them.

Let Pi denote the ith prime number. In order to define {L}, it is convenient to
construct a square matrix A, of order n n: the diagonal entries of A are * (space-
filler), An is symmetric so we only need to describe the upper triangular portion of
A. The upper triangular portion of A, (consisting of n(n 1)/2 entries) is simply the
sequence p,, p,+,..., Pn-+n(n-)/2 placed in the row-major order. Figure 3 shows
A,. A specific example is shown in Fig. 4.

Now define the sets {S}, 1,. ., n as follows" $7 is the collection of elements
of the ith column in An (excluding *). Also let T, U = $7. We can now define the
languages {L}, j=l,2,..., n as follows: L.={aili--j (mod m) for all rnS.}.
Finally, let L, U jn___l L;. Also let m, rIps p + Hps, p+ + lip,s:: p, and M,
HpT,,P.

To simplify the notation we use m and M instead of rn,, M,, respectively. The
same way, we will drop n from all the symbols keeping in mind the fact that we are

Pn+

n-2

P P2n-2Pn n+l

P3n-4P2n-1
* Pan 7Pn+2

Pt
P P *P3n-4 4n-7

n n n n
s s 2 s 3 Sn-1

FIG. 3. We matrix A,, (t n- + n(n- 1)/2).

n

P4 P5 P6

P4 P7 P8

P5 P7 P9

P6 P8 P9

FIG. 4. Matrix A4.
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proving the result for a generic n. Thus, for example, we will use Si, T, Lj, and L in
the place of $7, Tn, L’, and L,, respectively.

CLAIM 1. For all sufficiently large n, M >-m(lgm)’/2/8.
Proof Recall from the prime number formula [APOS76] and [ROSS62] that there

exist integers Cl, c2 such that for all r, cr log r <-pr<-_ c2r log r. Now for any p T,
p __< p2. Thus Up,s, p <= (p,2)-. Therefore

(1)
=< n. (2c2n log n)-<--_ czn log n)2"

for all sufficiently large n. Thus, for all large n,
m <= (c2n log n)2".

Thus,

Next,

m= H P+ H P+’’’+ H p
pS pS pS,,

m=I-IP
pT

=>prl (since p is the smallest element in T)

>- (cn log n) "’-)/a

> (2rt log n) "/4 for all sufficiently large n,
rn’/8 from inequality (1).

(2) M>-m "/8.

Also from the inequality (1), m =< (2n log rt)2n so log m <=2n log (2n log n)< rt
2

for large n. Thus, n_>-(log m) /2. Combining this with (2) we have the desired
inequality.

CLAIM 2. There exists an unambiguous nfa with m + 1 states that accepts L.
Proof It is easy to see that there exists a dfa Mi with Hps, p states accepting Li.

Now construct an nfa M with 1+= ]M 1 + rn states as shown in Fig. 5. The
machine M has e-moves, but they can be removed without increasing the number of
states.

Start states of

machine (Mi

FIG. 5. nfa M.
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Clearly M accepts L and has rn + states as claimed. It only remains to show
that M is unambiguous. We show this by proving that Li f-)Lj for i#j.

SUBCLAM. For # j, Li f-I Lj .
Proof Assume the contrary. (Without loss of generality we assume that i>j.)

Then there exists k such that ak LCI Lj. We then have k (mod p) for all pc Si,
and k j (mod p) for all p Sj.

This means that k= a’(I-Ips, p)+i for some integer c, and k= ’(I-Ipsj P)+J
for some integer/3. Thus

P P

Note that there is (exactly) one tSiCiSi. Clearly, divides --o’(I-Ips]))+
fl’(IIps, P). Thus, from (**) it follows that divides i-j. Note that 1-<j <i-< n, so
i-j < n. However -> p -> c n log n > n. Therefore cannot divide i-j since is larger
than i-j. This is a contradiction. Hence M is unambiguous.

We now prove our final claim.
CLAIM 3. For any dfa N accepting L, the number of states in N must be at least M.
Proof Assume the contrary, i.e., there is a dfa N (Q, 5:, 3, qo, F) with fewer than

M states accepting L. Then there exist integers i, j (0 _<-j < < M) such that 3(qo, a )
3(qo, aj). Let the modular representation of and j be i= (il, i2,"" ", it) and j
(jl,j2,’’’,j,), respectively, where ]TI. (This means that im is the remainder when

is divided by the mth element s,, in some fixed ordering s, s2," , s, of T.) Clearly,
i# j, so for some r, 1 _<-r<_-t, ir #jr. We will now describe a procedure to find an

integer k such that a+k L, but aJ+_ L. The procedure is given below.
First note that there is a unique pair of sets (Sp, Sq) where p < q such that

Sp (3 Sq {st}. The basic idea is to choose k such that
(i) aj+k L for any # q, and
(ii) a i/k Lq.
We would then argue that aj+k is in Lq. We carry out the construction using the

matrix An. First delete the qth row and the qth column of An to obtain
choose the elements in the diagonal immediately above the main diagonal. Let these
elements be r2, r3, rq-1, rq+ rn_ (Note that the sets to which these elements
belong are $2, $3, ", Sq-1, Sq+l, ", Sn-1, respectively.) Finally pick r from the set
S-{r2, r3, rn-}.

Let the remainders when j is divided by r, r2," .., rn_ be e,. ., en-, respec-
tively. (Note that e, e2,. ., etc. are components of the vector j.) Also let the elements
of Sq be {u,..., un_l} and the remainders when is divided by u,..., un_ be
f,f2,"" ,fn-, respectively. (As above, note that fl,f)_,’", etc. are components of
vector i.) Now k (a positive integer) can be chosen to satisfy the following set of
congruences:

k -e + 1 + 1 (mod r)
k -ez + 2 + 1 (mod r2)

k=-- -en_l + n l+l(mod

(set 1)

k-- -f + q (mod u,)
k--- -f2 + q (mod u2)

(set 2)

k-= -fn- + q (mod un_)
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Note that, by the Chinese Remainder Theorem [NIVE60], such a positive integer
k exists. It is easy to see that aj+k Li for any # q, and a i+k Lq. Let c be such that
uc=sr. Clearly i+k=q (mod uc), but ij (mod uc). (Recall that i-= ir (mod uc),j--jr
(mod u) and ir #jr.) Thus j+k q (mod u) so as+ Lq. Thus as+ L. This is a
contradiction since 6(qo, a i) 6(qo, aS). This completes the proof of Claim 3. Thus
DFA(u) < UNA(u).

Proof of UNA(u) < FNA(u). Since UNA(u) _-< FNA(u), it is enough to show that
(UNA(u), FNA(u)). Define a collection of languages as follows. Let Pi denote the ith
prime number and L be defined as

L, {an[n 0 (mod pj) for some j _-< k}.

It is easy to see that Lk can be accepted by an fna with i--= Pi states. Such an fna for
k- 3 is shown in Fig. 6. By the prime number theorem [APOS76], Pi O(i log i), so

k k
i--1Pi O(i=1 /log i)= O(k2 log k).

FIG. 6. An fna accepting L3.

We next show that any una accepting L requires at least 1-I i=l Pi- states. To
show this, let M be any una accepting L. We see that the shortest string not accepted
by Lk is ap’pz’’’pk. Thus, by Lemma 1, the size of M must be at least I-I ki=pi-l>-2k -1.
This proves that (UNA(u), FNA(u)). Using the f-conciseness notation of [KINT86]
(see 2), the above result can be stated in a sharper form as FNA(u) (2(2n/lg n),/_ 1) -UNA(u).

Proof of FNA(u)= PNA(u)= ENA(u). This immediately follows from Lemma 3
via the following observations: (i) A’ in Lemma 3 is finitely ambiguous and (ii)
IA’I--< o(Ial=).

We next show how to extend Theorem 1 to bounded languages.
THEOREM 2. DFA(b) < UNA(b), UNA(b) < FNA(b), and FNA(b) PNA(b)

ENA(b).
Proof. The facts that DFA(b) < UNA(b) and UNA(b) < FNA(b) immediately

follow from Theorem 1. In the rest of the proof we show that FNA(b) ENA(b). For
simplicitly we consider bounded languages L such that L a’b*. It is easy to generalize
the result. Let L_ a’b* be accepted by an ena and let [M[ n. We further simplify
the discussion by assuming that Lf3 a* . (Otherwise, we can let L L (A L where
L fq a* and L2 a* and apply the following procedure for the language L. It is
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straightforward to construct a machine for L2 from M. Finally one can construct a
machine for L1 t.J L2.) We show that L can be accepted by a fna with at most p(n)
states for some polynomial p(.). The intuitive idea behind the proof is simple, and we
illustrate it with an example. Intuitively the states of an nfa accepting L_ a’b* can
be partitioned into two sets A and B as follows" for some state q, if all the arcs incident
into q are labeled a, then q is in A else it is in B. For the nfa in Fig. 7, the partition
is as shown in Fig. 8.

Clearly if p, q are in A (in B) and if q 6 3(p, t), then a (t b). As a next step,
we introduce additional states in A and B so that in the resulting machine there are
only e-arcs from A to B. This requires the introduction of the following states" for
each q in B such that for some p A, q 6(p, a), introduce a state q’ in A and replace
the arc (p, q) labeled a by two arcs: (p, q’) labeled a and (q’, q) labeled e. For each q
in B such that for some pc A, q e 6(p, b), introduce a state q" in B and replace the
arc (p, q) labeled a by two arcs: (p, q") labeled e and (q’, q) labeled b. This construction
applied on Fig. 8 results in Fig. 9.

Let M1 and M2 be the machines in Fig. 9, whose transition graphs are induced
by the set of states A and B, respectively. For any pair (p, q), where p and q are states
in Mi (i= 1 or 2), let Mi(p, q) denote the machine obtained by keeping the transitions
of M, but renaming the start state as p, and the accepting state as q. Convert each
Mi(p, q) to a finitely ambiguous machine using Lemma 3. (Call the resulting machine
again as Mi(p, q).) Also assume that the states of Mi(p, q) have been distinctly named.
Finally, construct a new machine M’ as follows. M’ uses the following machines: (1)
For each q with an e-arc leaving q, the machine M(po, q) where Po is the start state
of M, (2) for each p with an e-arc entering into p, and for each accepting state q of

FIG. 7

FIG. 8
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FIG. 9

M, the machine M2(p, q). Also introduce a new start state p and introduce an e-arc
from p to the start state Po in each machine M(po, r) for each r. Also for each e-arc
(p, q) in Fig. 9, connect an e-arc from the state p of the machine Ml(po,P) to the
state q of the machine M2(q, t) for each t. Finally, the set of accepting states of M’
is {tlM(q t) is used in M’}. The machine M’ derived from Fig. 9 is shown in Fig. 10.

It is easy to prove the correctness of the above construction, l-1
We conclude this section with a brief discussion of the relative conciseness of the

collections 2-DFA(u) and NFA(u). The problem of2-DFA versus NFA was considered
in [SAKO78] and [SIPS79]. In [SAKO78] it has been shown that (ENA, 2-DFA) and
conjectured that ENA < > 2-DFA, but this claim is (to the best of our knowledge) still
open. In [SIPS79] it has been proved that (SDFA, ENA), a weaker claim. Berman
[BERM79] and Sipser [SIPS79] have shown that (SDFA, 2-DFA). In contrast to the
above claims, we prove the following result.

THEOREM 3. (i) ENA(u)<2-DFA(u), (ii) 2-DFA(u) =SDFA(u).
Proof of (i). To prove the desired claim, we must show two results: ENA(u) <

2-DFA(u) and (ENA(u), 2-DFA(u)). We first outline a proof of the former result.
This result was also obtained independently by Chrobak [CHRO86]. We must show
that any given nfa M over a unary alphabet can be converted to a 2-dfa with a
polynomial blowup in the number of states. Using Lemma 3, convert M to a fna M’
in the normal form. M’ can be viewed as a finite union of dfa’s. Now construct a 2-dfa

M (4",6)

(1,4 M (5",6)

FIG. 10
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that simulates this fna by simulating a dfa during each sweep. This result was indepen-
dently obtained by Chrobak [CHRO86]. We next prove that (ENA(u), 2-DFA(u)).
Consider the collection Fk of languages defined as follows" Fk {a"ln is divisible by
pj for allj <- k}. It is easy to show that F can be accepted by a j-1P state 2-dfa, and
any nfa accepting F requires at least I-[=1P states. Ths completes the proof of (1).

Proof of (ii). The proof is analogous to Theorem 2 presented in [IBAR88]. We
omit the details.

We conclude this section with some remarks regarding the succinctness problem
for unbounded languages. The result (DFA, UNA) has been proved by Meyer
and Fischer [MEYE71] using the following candidate: L, L( r,, where r,=
(0+ 1-+-e)ml(0+ 1) m-1. Lm can be accepted by a ufa with 2m+ 1 states and any dfa
that accepts Lm has at least 2 states. Note that Theorem shows that the claim holds
even over a one-letter alphabet. The same way, as shown in Theorem 1, (UNA, FNA)
also holds even for unary alphabet languages. We have not been able to prove either
of the following claims: (1) PNA< ENA (2) FNA< PNA. We conjecture that both
these results are true and offer the following candidate languages.

For (FNA, PNA)" Let L L(r,) where rk =(0+ 1)*1(0+ 1)1(0+ 1)*. Figure 11
shows a pna with k + 3 states accepting L. We conjecture that there is no polynomial
p(.) such that for a collection {M} of fna’s accepting L,, IM,I <-p(k) for all k.

0,1

FIG. 11. A pna for L.

For (PNA, ENA): Let L {anln 0 (mod p) for some j-< k and n -> 1}, where
pj is the jth prime number. (Recall that this collection of languages was used in Theorem
1.) Now let A (#L#)*. (A is the "marked Kleene closure" of Lk in the automata
theoretic parlance.) It is easy to see that there exists an ena of size O(k

i=lPi)--
O(k2 log k) states accepting Ak.

We conjecture that the number of states in any pna accepting A is not bounded
by a polynomial in k. Although we do not have a proof of this result, we provide an
evidence by showing that among a restricted class of pna’s none with fewer than 2k/2

states can accept A. This restricted class of machines is defined as follows. For any
machine M in this class, there is only one state q in Q, the set of states of M, such
that for any q’, q" in Q, if q" 6(q’, #), then q"= q. Informally it means that there is
only one state in M with arcs labeled "#" entering into it. We now prove the following
claim regarding restricted pna’s.

CLAIM. Let M be a restricted pna accepting Ak. Then ]M ->_ 2/2.
Proof Let M (Q, Z, 3, qo, {f}). Clearly, f is the only state such that for some

q Q, f 6(q, #). Define Q1 {qlf 6(q, #)} and Q2 {q[q 6(f, #)} {f}. For any
q Q1, define M as M’q=(Q,Z, 6,f, {q}). Next define Mq from M as follows" (i)
Remove all the edges labeled # from M; and (ii) reduce the resulting nfa, i.e., remove
the useless states.

First observe that Q (3 Q2 , for if q Q1 f3 Q2, then for some string w At,,
f 6(qo, w), and hencef 6(qo, w##) implying that w## A, a contradiction, since
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e is not in Ak. We claim that Mq is a ufa for all q e Q2, as seen from the following
argument. Suppose Mq is ambiguous. Then there is a word w e such that N(p, w, q) _->

2. In this case, for the original machine M, N(f, #w#,f)>-2. Thus by Lemma 2, M
is exponentially ambiguous, a contradiction. Furthermore, using the same argument,
we observe that L(Mr)f3 L(M) for r s. Now it is easy to construct a ufa M’
with the following properties: (i)IM’I 2q [Mq[ -it- 1; and (ii) L(M’)= Lk. The construc-
tion of M’ is by simply introducing a new start state and having e-transitions to the
start states of all Mq’s and then removing the e-transitions. Hence, M’ is unambiguous.
We now show that L(M’)= Lk. Since it is obvious that L(M’)_ Lk, we need only to
show that Lk c_ L(M’). Let # w# e Lk. Then, # w##w# is in Ak. Since M is a restricted
machine, any computation (i.e., any sequence of states) on the input # w# will terminate
in f, and hencefe 6(f, # w#). Thus we L(Mq) for some q, so we L(M’). This completes
the proof that Lk L(M’). The bound on the number of states in M’ is obvious. Thus,
if IMI t, then ]M’ _-< 2 + 1. From Lemma 1, we see that 2 q- 1 >= ]M’] >- IIi P, > 2k, and
thus _>-2 k/2 (for k => 2). This proves the desired claim.

Table 1 summarizes the results on succinctness for unary and bounded languages.

4. Concurrent conciseness of representations. Concurrent conciseness was intro-
duced in [KINT86] as an important generalization of "usual" conciseness for the
follow.ing reasons:

Assume that we have three classes of automata C1, C2, and C3. One is often able to
prove the conciseness of C2 over C1 using a sequence of languages {A,,}, and the
conciseness of C3 over C2 using another sequence of languages {B,,}. The problem is
that {A,,} and {B,,} have often very little in common since {A,,} exploits the advantages
of C2 over C and {B,,} exploits the advantages of C3 over C2. Concurrent conciseness
addresses the question whether there is one sequence of languages which concurrently
establishes the conciseness of C2 over C and that of C3 over C2.
Following [KINT86], we quantify the concurrent conciseness as follows.
DEFINITION. Say that C is f,g-concurrently concise over C2 and C denoted by

C -f(n) C2 g(n) - C3 for some f(n) and g(n) if C1 is f-concise over C2 and C2
is g-concise over C3 for the same sequence of languages.

TABLE
Succinctness results for unary and bounded inputs.

DFA
UNA
FNA
PNA
ENA

UNA FNA PNA ENA 2-DFA

Since our primary concern in this paper has been to contrast the polynomial
growth and the superpolynomial growth, we need the following coarser definition. We
write (A, B, C) to denote the fact that C-f(n)- B-g(n) A, wheref and g are both
superpolynomials. Thus (A, B, C) means that, in a strong sense, A, B, and C form a
hierarchy with respect to concise representations. Our next result is to show that
(DFA, UNA, PNA). This result settles an open problem mentioned by Stearns and
Hunt [STEA85].

THEOREM 4. PNA-24-a-/(4)--> UNA-(n/16)(Ign-4) DFA.
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Proof Consider the collection {Jk} of languages defined as follows:

J= {xlylx, y {0, 1}*, [y] k= and x has a substring of the form lzl where Izl- k}.

We show the following.
CLAIM 1. Jk can be accepted by a k2+ k + 4 state pna.
Proof We describe informally a pna accepting Jk. Mk uses k + 3 states to verify

the existence of the substring lzl, and counts k2 characters following a 1 to accept
strings in Jk. It is easy to see that Mk satisfies our requirements. [3

CLAIM 2. Any dfa accepting Jk requires at least 2 k2+l states.

Proof Let M be a dfa accepting Jk. For any strings x, y lk+aE k2+l, X y implies
6(qo, x) = 6(qo, y). Thus M must have 2 k2+1 states. [3

CLAIM 3. There exists a (2k+3+ k2+ 1)-state una accepting Jk.
Proof We first construct a dfa M, with 2k+3 states to accept the language

{xlyllx, y {0, 1}*, ]Yl k}. M, has as its states q where tr in {0, 1}* with Io-[-< k + 2.
qx is the start state. The 6-function of M, is constructed in such a way that 6(q, w) qw
if Iwl-<_ k + 2, else 6(q, w)= qw, where w’ is a suffix of w of length k + 2. The accepting
states of M, are F {qwlW 1 w’l for some w’ of length k}. We modify M, to Mk as
follows"

(A) Introduce new states Po, Pl," ", Pk2, and introduce the following transitions"

t(pi, O)-- t(pi, 1)-- {Pi+I} if i< k2,
(B) Remove the transitions from all the states of F in M, and add the following

transitions:
6(p, 0)= {p}, 6(p, 1)= {p, po} for all p in F.

(C) The only accepting state of Mk is the state pk2.

Figure 12 shows the construction of Mk from M,"
Clearly, Mk is an una such that L(Mk)--Jk. [3

The final step in the proof is the following claim:
CLAIM 4. Any una accepting the language Jk has at least 2k/4 states.

Proof The basic machinery used in this proof is an argument based on linear
independence that was originally proposed by Schmidt [SCHM78] (Theorem 3.9).
This technique was also used in [SIPS79].

Let M be a ufa accepting Jk. We want to show that IMI >-2k/4. In the rest of the
proof, we follow the notation used in Theorem 3.9 of [SCHM78].

FIG 12. M constructed from M’k"
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Let x{0, 1}k+l, and assume that Kx ={q, q2,’’’, qr(x)} is the set of states
reachable from qo via x. Define for each i, (1 _-< i<-_f(x)), the set A7 {y in {0, 1}k+[
there exists a qFf36(qi, ylOk2)}. Thus A7 is the set of words of length k+l
that lead from the state qi (in Kx) to acceptance. Define A=
{{AT}]i 1, 2,. ,f(x), x {0, 1}k+l}. Let Bl, B2," ", Bm be a listing of the members
of A without repetitions. Let K {q]q 6(qo, x) for some x in {0, 1}k+}. For any q K,
associate the set B={y in {0, 1}k+] there exists a q in Ff36(q, ylOk2)}. Since this
mapping is surjective (onto), rn <=]K]. Also since ]K]_-<]M], we have rn_-<]M]. We
complete the proof of Claim 4 by showing that m >-_ 2k/4.

To do this, we interpret the subsets of {0, 1}k+ as elements of the 2n-dimensional
vector-space over the field Z2. Let xi, 0<= i<=2k+- 1, be the binary representation of
with a padding of zeros (at the left) to make ]xil k + 1. With each C {0, 1}k+, we

associate the vector C (Co, el," ", c2k+-2, C2k+l-), where c 1 if x C and C 0
otherwise. For simplicity, assume that k is odd. The proof can be easily modified to
handle the case when k is even.

Now let T {0, 1}k+l be defined as" T={w]number of O’s in w is (k+ 1)/2}. For
any x T, consider the set A, {1 A defined as above. A, thus consists of y’s such
that xy lOk2 Jk. Since M is unambiguous, the sets A, , Af’) are mutually disjoint
and furthermore, all the i’A, s occur among the B s, the vector A can be written as a
linear combination of vectors {B}, 1, 2, , m, i.e., there exist tl, t2, tm {0, 1}
such that

(3) Ax= E tB.
j=l

Consider the set of vectors V={Ay[ye T}. We shall show that V is linearly
independent, as follows. Let Yl, Y2, ", Yr (r, the number of elements in T ((k/)/2))
be an arbitrary but fixed ordering of T. We define a Boolean matrix U of order r 2
as follows:

U-

Thus the rows of U are the vectors Aye, Aye,..., Ayr. Proving that V is linearly
independent is equivalent to proving that the rank of U is r. We prove the latter by
showing that there exists a submatrix U (of U) of order r x r that can be derived by
permuting the columns of the complement of the permutation matrix L given by

011 1

101 1

111 0

For any i, 1 N N r, define g(i) as the integer obtained by complementing the bits
in the string y x(. Now the submatrix U is defined by the set of columns {g(i)},
i= 1, 2,. ., r of U. We claim that, in the column g(i) of U, the only 0 entry is U,g(.
For a string x, let denote the string obtained by interchanging the 0’s and l’s in x.

kClearly, the string yylO J since for any pair of positions (t, f) separated by k in
yy, the tth and th letters are complementary. Thus, A implying U,g( 0. Next
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kobserve that yjyllO is in Jk as seen from the following argument. Since yj yi, there
exists a t, 1 _<- _<- k, such that the tth letter of y is the same as the tth letter of. Thus,
y./10k2 Jk. This implies 6 As; implying U,g(i)= 1 for any j i. Thus the rank of
and U is r and hence V is linearly independent. From (1) it follows that V is a subset

k+l
of the vector space generated by B1, B2, , Bin. Therefore m >= r ((+1)/2) >=
2k/4. [-]

The claim made in Theorem 4 follows from the proof of Claims 1-4.
Since both 2"/-k/4" and (n/16)og ,-4 are superpolynomials, we obtain the following

corollary.
COROLLARY 1. (DFA, UNA, PNA).
This corollary settles the question raised in [STEA85] of whether it is possible to

have simultaneous nonpolynomial blowups among the three collections, DFA, UNA,
and ENA. In fact, our result proves a stronger claim.

It appears that the same candidate languages {J} can be used to prove
(DFA, FNA, PNA). This can be done by showing a claim stronger than Claim 4 of
Theorem 4, namely, any fna accepting J requires f(k) states for some superpolynomial
f(.).

5. Closure properties of classes of finite-state devices. In this section, we consider
the closure properties of various classes of finite-state devices. Let A be a class of finite
state devices that is universal in the sense that every regular language can be accepted
by some machine in A. (Note that all the classes of finite state devices considered in
this paper are universal.) We ask the following question. "If L and L are accepted
by machines M and Mz of type A, is it true that L L2 can also be accepted by a
machine of type A, whose size is bounded by a polynomial in the sizes of M1 and M,
where is a regularity preserving operation?" If the answer is yes, then we say that
A is polynornially closed under . Many of the succinctness claims made earlier can
be sharpened by studying the polynomial closure of various classes of devices under
some fundamental regularity preserving operations such as concatenation and com-
plementation.

The following definition is essentially due to Sakoda and Sipser [SAKO78].
DEFNWOY. Let A be a collection of devices, and let be a regularity preserving

operation. A is said to be closed under if there exists a polynomial p(.) such that
the following holds: For any M,MzA, there is an McA such that L(M)=
L(MI) L(M) and IM[ =< p(max {IM, I, IMI}).

We study the closure of the collections DFA, UNA, FNA, PNA, ENA, and 2-DFA
under the following fundamental regularity preserving operations: union, intersection,
complementation, concatenation, Kleene star, and reversal. Table 2 contains a summary
of results. A Y denotes that the closure property holds and an N denotes that it does
not. A question mark indicates that the problem is open. A number next to a Y or N
(such as Y(3), etc.) denotes its location in the proof of Theorem 5. (Trivial proofs of
closure are omitted.)

THEOREM 5. The closure properties as indicated in Table 2 hold.
Proof (1) Let L and L2c_ {0, 1}* be defined by the following regular expressions

r =(0+ 1)*1 and r=(0+ 1) "-. There exist dfa with 2 and n states, respectively,
accepting L and L. It is also easy to see that L Lz cannot be accepted by a dfa
with less than 2" states.

(2) To prove this result, we first define a large alphabet, similar to the alphabet
used in [SAKO78] to obtain a "hardest language" for the problem of conversion from
1-nfa to 2-dfa.

Let B be the set of bipartite graphs with 2n vertices, whose vertex partition has
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TABLE 2
Closure properties.

Union
Intersection
Complement
Reversal
Concatenation
Kleene star

DFA

Y
Y
Y

N(4)
N(1)
N(2)

UNA

Y
Y

Y(4)
N(5)
N(6)

FNA

Y
Y

N(7)
Y(4)

PNA

Y
Y

N(7)
Y(4)
Y

ENA

Y
Y

N(7)
Y(4)
Y
Y

2-DFA

Y
Y

Y(3)
Y

n vertices each. Pictorially, the graphs are represented as in Fig. 13, with the vertices
occurring in two columns (left and right). The directed edges are from left to right
and each vertex has outdegree and indegree at most 1. Figure 13 shows two members
of the alphabet B4.

For two graphs G and G2, the product GI(R) G2 is defined as a graph obtained
by superposing the right boundary of G with the left boundary of G2. Figure 14 shows
the graph G(R) G for G1 and G2 of Fig. 13.

The notion of product can be extended in an obvious way to several graphs. In
a product graph, the start vertex is the vertex in the first row of the leftmost boundary,
and the terminal vertex is the last row of the rightmost boundary (u and v, respectively,
in Fig. 14).

Now we define a collection of languages Lk as follows: Lk--{G." GrlGi Bk
for all i, and G (R) G2(R)’" "(R) Gr has a directed path from start to terminal vertex}. It
is easy to see that Lk can be recognized by a dfa with k states. We show that any dfa
M recognizing Lk* has a least 2k- states, For any string G... Gr, define
o’(G1""" Gr) {2,3,’’’, k} as follows. In the product graph GI@’" "@Gr, add new
edges from the last row to the first row on all columns except the first and last columns.

FIG. 13. Two members of B4.

U

FIG. 14. The graph ofG (R) G
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An integer i, 2_-< -< k, is in cr(G Gr) if in the resulting graph, there is a path from
the start vertex to the vertex on the ith row of the last column. Let M be a dfa that
accepts L*, and let 6 be its transition function. It is easy to see that if 6(qo, G1 Gin)
qi, and (qo, G’l’’" G’)= qj, and if r(G1... G,,) r (G’I"’" G’,), then qi and qj
are different. Thus, there are at least 2 k-1 states in M. Finally note that Bk can be
mapped to {0, 1} and the lower bound claim still holds.

(3) This result has been proved by Sipser [SIPS80] as an application of a general
result that any deterministic off-line TM using bounded space can be made halting.

(4) For DFA, the nonclosure follows from the collection of languages L,=
(0+ 1)"-1(0+ 1)*. The closure for the other families follows from the fact that the
standard procedure for constructing a machine to accept the reverse of a language
(viz, reversing the direction of the arrows, etc.) preserves the type of ambiguity.

(5) To prove that ufa’s are not closed under concatenation, we need a result of
[SCHM78]. Let Ck {x#y]lx]- ]y] k, and x y}. It has been shown in [SCHM78]
that any una accepting Ck requires at least 2k states. We define the languages

Ll={XllXl<=k},
e2 {ay# x, bx2la, b {0, 1 }, a b, ]Yl -< k 1, lYl Ix2], ]Xll + Ix21 k 1 },

L3-- {x#yllxl- lyl- k}.

It is easy to see that L and L3 can be accepted by una’s with O(k) states, and
L2 can be accepted by a una with O(k) states. Also note that L. L2 CI L3 Ck. Since
una’s are closed under intersection, the desired claim follows from Schmidt’s result.

(6) The nonclosure of ufa’s under Kleene star follows from the fact that Ck
(L I,_J L2)* i"1 L

(7) We show the stronger claim that FNA(u) is not closed under complement.
Let p be the ith prime number. Consider Lk {a"ln 0 (mod Pi) for some 1 _<- <- k, n >_-

1}. We have noted in Theorem that there exists a finitely ambiguous nfa with

Z k;= Pi O( log k).states to accept Lk. We shall nowshow that any nfa M accepting
L-- requires at least I-[ k 2= p > (for k-> 2) states. First observe that the two shortest
strings in L-- are of length 0 and 1-[ ki= p. Consider a sequence of states in M leading
to acceptance on input a . (Such a sequence exists since a is in L---.) Let this sequence
be qo,""", q,. If M has fewer than states, there exist integers and j (1 <=i<j <= t)
such that qi q;. This implies that a-+ is in L-, a contradiction since 0 < t-j + < t.
This completes the proof. [3

6. Concluding remarks. In this paper, we have compared the relative succinctness
of nondeterministic finite automata ofvarious types of ambiguities and have established
that the machines with "higher ambiguity" tend to be more succinct. These results are
refinements and/or improvements over the earlier results of similar kind such as
presented in [MEYE71] and [SCHM78]. We have presented a result on the concurrent
conciseness of NFA over UFA and DFA, solving an open problem due to Stearns and
Hunt. We also have studied the succinctness of various classes of finite-state devices
through regularity preserving transformations.

Among the problems that remain open, we mention the following:
(1) Prove that (FNA, PNA).
(2) Prove that (PNA, ENA).
(3) Prove that FNA is not polynomially closed under concatenation.
It appears that the same candidate languages Dk c__ {0, 1}* are suitable for problems

(1) and (3). The collection Dk is: Dk {wlw xlylz, x, y, z in {0, 1}*, lYl k}. It is
easy to see that Dk can be accepted by a pna with O(k) states. It remains to be shown
that any fna accepting Dk requires at least f(-) for some - > 0. In addition to solving
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open problems (1) and (3), this claim would also settle an unproven conjecture stated
in 4, namely, (DFA, FNA, PNA).

Acknowledgment. The authors are grateful to an anonymous referee for a remark-
ably thorough reading of an earlier version of this paper that led to many corrections
and improvements.
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COMPLEMENTATION PROBLEMS*
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Jun Tarui has pointed out a technical error in the last row of Table 1: expected
time is not the correct measure for defining the classes PP and PLP. Gill [2, Prop. 3.1],
for instance, shows that any recursively enumerable set can be accepted in constant
expected time by a probabilistic machine with unbounded two-sided error.. Similarly,
Jung’s result [3] that PL= PLP would have a straightforward proof if expected time
were used in the definition of PLP. In both cases, the definition should be in terms of
worst case time. This error has no effect on the results in the remainder of the paper.
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